1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/smpboot.h> 28 #include <linux/relay.h> 29 #include <linux/slab.h> 30 #include <linux/percpu-rwsem.h> 31 32 #include <trace/events/power.h> 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/cpuhp.h> 35 36 #include "smpboot.h" 37 38 /** 39 * cpuhp_cpu_state - Per cpu hotplug state storage 40 * @state: The current cpu state 41 * @target: The target state 42 * @thread: Pointer to the hotplug thread 43 * @should_run: Thread should execute 44 * @rollback: Perform a rollback 45 * @single: Single callback invocation 46 * @bringup: Single callback bringup or teardown selector 47 * @cb_state: The state for a single callback (install/uninstall) 48 * @result: Result of the operation 49 * @done: Signal completion to the issuer of the task 50 */ 51 struct cpuhp_cpu_state { 52 enum cpuhp_state state; 53 enum cpuhp_state target; 54 #ifdef CONFIG_SMP 55 struct task_struct *thread; 56 bool should_run; 57 bool rollback; 58 bool single; 59 bool bringup; 60 struct hlist_node *node; 61 enum cpuhp_state cb_state; 62 int result; 63 struct completion done; 64 #endif 65 }; 66 67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state); 68 69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 70 static struct lock_class_key cpuhp_state_key; 71 static struct lockdep_map cpuhp_state_lock_map = 72 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key); 73 #endif 74 75 /** 76 * cpuhp_step - Hotplug state machine step 77 * @name: Name of the step 78 * @startup: Startup function of the step 79 * @teardown: Teardown function of the step 80 * @skip_onerr: Do not invoke the functions on error rollback 81 * Will go away once the notifiers are gone 82 * @cant_stop: Bringup/teardown can't be stopped at this step 83 */ 84 struct cpuhp_step { 85 const char *name; 86 union { 87 int (*single)(unsigned int cpu); 88 int (*multi)(unsigned int cpu, 89 struct hlist_node *node); 90 } startup; 91 union { 92 int (*single)(unsigned int cpu); 93 int (*multi)(unsigned int cpu, 94 struct hlist_node *node); 95 } teardown; 96 struct hlist_head list; 97 bool skip_onerr; 98 bool cant_stop; 99 bool multi_instance; 100 }; 101 102 static DEFINE_MUTEX(cpuhp_state_mutex); 103 static struct cpuhp_step cpuhp_bp_states[]; 104 static struct cpuhp_step cpuhp_ap_states[]; 105 106 static bool cpuhp_is_ap_state(enum cpuhp_state state) 107 { 108 /* 109 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 110 * purposes as that state is handled explicitly in cpu_down. 111 */ 112 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 113 } 114 115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 116 { 117 struct cpuhp_step *sp; 118 119 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; 120 return sp + state; 121 } 122 123 /** 124 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 125 * @cpu: The cpu for which the callback should be invoked 126 * @step: The step in the state machine 127 * @bringup: True if the bringup callback should be invoked 128 * 129 * Called from cpu hotplug and from the state register machinery. 130 */ 131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 132 bool bringup, struct hlist_node *node) 133 { 134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 135 struct cpuhp_step *step = cpuhp_get_step(state); 136 int (*cbm)(unsigned int cpu, struct hlist_node *node); 137 int (*cb)(unsigned int cpu); 138 int ret, cnt; 139 140 if (!step->multi_instance) { 141 cb = bringup ? step->startup.single : step->teardown.single; 142 if (!cb) 143 return 0; 144 trace_cpuhp_enter(cpu, st->target, state, cb); 145 ret = cb(cpu); 146 trace_cpuhp_exit(cpu, st->state, state, ret); 147 return ret; 148 } 149 cbm = bringup ? step->startup.multi : step->teardown.multi; 150 if (!cbm) 151 return 0; 152 153 /* Single invocation for instance add/remove */ 154 if (node) { 155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 156 ret = cbm(cpu, node); 157 trace_cpuhp_exit(cpu, st->state, state, ret); 158 return ret; 159 } 160 161 /* State transition. Invoke on all instances */ 162 cnt = 0; 163 hlist_for_each(node, &step->list) { 164 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 165 ret = cbm(cpu, node); 166 trace_cpuhp_exit(cpu, st->state, state, ret); 167 if (ret) 168 goto err; 169 cnt++; 170 } 171 return 0; 172 err: 173 /* Rollback the instances if one failed */ 174 cbm = !bringup ? step->startup.multi : step->teardown.multi; 175 if (!cbm) 176 return ret; 177 178 hlist_for_each(node, &step->list) { 179 if (!cnt--) 180 break; 181 cbm(cpu, node); 182 } 183 return ret; 184 } 185 186 #ifdef CONFIG_SMP 187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 188 static DEFINE_MUTEX(cpu_add_remove_lock); 189 bool cpuhp_tasks_frozen; 190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 191 192 /* 193 * The following two APIs (cpu_maps_update_begin/done) must be used when 194 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 195 */ 196 void cpu_maps_update_begin(void) 197 { 198 mutex_lock(&cpu_add_remove_lock); 199 } 200 201 void cpu_maps_update_done(void) 202 { 203 mutex_unlock(&cpu_add_remove_lock); 204 } 205 206 /* 207 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 208 * Should always be manipulated under cpu_add_remove_lock 209 */ 210 static int cpu_hotplug_disabled; 211 212 #ifdef CONFIG_HOTPLUG_CPU 213 214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 215 216 void cpus_read_lock(void) 217 { 218 percpu_down_read(&cpu_hotplug_lock); 219 } 220 EXPORT_SYMBOL_GPL(cpus_read_lock); 221 222 void cpus_read_unlock(void) 223 { 224 percpu_up_read(&cpu_hotplug_lock); 225 } 226 EXPORT_SYMBOL_GPL(cpus_read_unlock); 227 228 void cpus_write_lock(void) 229 { 230 percpu_down_write(&cpu_hotplug_lock); 231 } 232 233 void cpus_write_unlock(void) 234 { 235 percpu_up_write(&cpu_hotplug_lock); 236 } 237 238 void lockdep_assert_cpus_held(void) 239 { 240 percpu_rwsem_assert_held(&cpu_hotplug_lock); 241 } 242 243 /* 244 * Wait for currently running CPU hotplug operations to complete (if any) and 245 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 246 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 247 * hotplug path before performing hotplug operations. So acquiring that lock 248 * guarantees mutual exclusion from any currently running hotplug operations. 249 */ 250 void cpu_hotplug_disable(void) 251 { 252 cpu_maps_update_begin(); 253 cpu_hotplug_disabled++; 254 cpu_maps_update_done(); 255 } 256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 257 258 static void __cpu_hotplug_enable(void) 259 { 260 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 261 return; 262 cpu_hotplug_disabled--; 263 } 264 265 void cpu_hotplug_enable(void) 266 { 267 cpu_maps_update_begin(); 268 __cpu_hotplug_enable(); 269 cpu_maps_update_done(); 270 } 271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 272 #endif /* CONFIG_HOTPLUG_CPU */ 273 274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st); 275 276 static int bringup_wait_for_ap(unsigned int cpu) 277 { 278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 279 280 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 281 wait_for_completion(&st->done); 282 if (WARN_ON_ONCE((!cpu_online(cpu)))) 283 return -ECANCELED; 284 285 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 286 stop_machine_unpark(cpu); 287 kthread_unpark(st->thread); 288 289 /* Should we go further up ? */ 290 if (st->target > CPUHP_AP_ONLINE_IDLE) { 291 __cpuhp_kick_ap_work(st); 292 wait_for_completion(&st->done); 293 } 294 return st->result; 295 } 296 297 static int bringup_cpu(unsigned int cpu) 298 { 299 struct task_struct *idle = idle_thread_get(cpu); 300 int ret; 301 302 /* 303 * Some architectures have to walk the irq descriptors to 304 * setup the vector space for the cpu which comes online. 305 * Prevent irq alloc/free across the bringup. 306 */ 307 irq_lock_sparse(); 308 309 /* Arch-specific enabling code. */ 310 ret = __cpu_up(cpu, idle); 311 irq_unlock_sparse(); 312 if (ret) 313 return ret; 314 return bringup_wait_for_ap(cpu); 315 } 316 317 /* 318 * Hotplug state machine related functions 319 */ 320 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 321 { 322 for (st->state++; st->state < st->target; st->state++) { 323 struct cpuhp_step *step = cpuhp_get_step(st->state); 324 325 if (!step->skip_onerr) 326 cpuhp_invoke_callback(cpu, st->state, true, NULL); 327 } 328 } 329 330 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 331 enum cpuhp_state target) 332 { 333 enum cpuhp_state prev_state = st->state; 334 int ret = 0; 335 336 for (; st->state > target; st->state--) { 337 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL); 338 if (ret) { 339 st->target = prev_state; 340 undo_cpu_down(cpu, st); 341 break; 342 } 343 } 344 return ret; 345 } 346 347 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 348 { 349 for (st->state--; st->state > st->target; st->state--) { 350 struct cpuhp_step *step = cpuhp_get_step(st->state); 351 352 if (!step->skip_onerr) 353 cpuhp_invoke_callback(cpu, st->state, false, NULL); 354 } 355 } 356 357 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 358 enum cpuhp_state target) 359 { 360 enum cpuhp_state prev_state = st->state; 361 int ret = 0; 362 363 while (st->state < target) { 364 st->state++; 365 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL); 366 if (ret) { 367 st->target = prev_state; 368 undo_cpu_up(cpu, st); 369 break; 370 } 371 } 372 return ret; 373 } 374 375 /* 376 * The cpu hotplug threads manage the bringup and teardown of the cpus 377 */ 378 static void cpuhp_create(unsigned int cpu) 379 { 380 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 381 382 init_completion(&st->done); 383 } 384 385 static int cpuhp_should_run(unsigned int cpu) 386 { 387 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 388 389 return st->should_run; 390 } 391 392 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */ 393 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st) 394 { 395 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU); 396 397 return cpuhp_down_callbacks(cpu, st, target); 398 } 399 400 /* Execute the online startup callbacks. Used to be CPU_ONLINE */ 401 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st) 402 { 403 return cpuhp_up_callbacks(cpu, st, st->target); 404 } 405 406 /* 407 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 408 * callbacks when a state gets [un]installed at runtime. 409 */ 410 static void cpuhp_thread_fun(unsigned int cpu) 411 { 412 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 413 int ret = 0; 414 415 /* 416 * Paired with the mb() in cpuhp_kick_ap_work and 417 * cpuhp_invoke_ap_callback, so the work set is consistent visible. 418 */ 419 smp_mb(); 420 if (!st->should_run) 421 return; 422 423 st->should_run = false; 424 425 lock_map_acquire(&cpuhp_state_lock_map); 426 /* Single callback invocation for [un]install ? */ 427 if (st->single) { 428 if (st->cb_state < CPUHP_AP_ONLINE) { 429 local_irq_disable(); 430 ret = cpuhp_invoke_callback(cpu, st->cb_state, 431 st->bringup, st->node); 432 local_irq_enable(); 433 } else { 434 ret = cpuhp_invoke_callback(cpu, st->cb_state, 435 st->bringup, st->node); 436 } 437 } else if (st->rollback) { 438 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 439 440 undo_cpu_down(cpu, st); 441 st->rollback = false; 442 } else { 443 /* Cannot happen .... */ 444 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 445 446 /* Regular hotplug work */ 447 if (st->state < st->target) 448 ret = cpuhp_ap_online(cpu, st); 449 else if (st->state > st->target) 450 ret = cpuhp_ap_offline(cpu, st); 451 } 452 lock_map_release(&cpuhp_state_lock_map); 453 st->result = ret; 454 complete(&st->done); 455 } 456 457 /* Invoke a single callback on a remote cpu */ 458 static int 459 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 460 struct hlist_node *node) 461 { 462 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 463 464 if (!cpu_online(cpu)) 465 return 0; 466 467 lock_map_acquire(&cpuhp_state_lock_map); 468 lock_map_release(&cpuhp_state_lock_map); 469 470 /* 471 * If we are up and running, use the hotplug thread. For early calls 472 * we invoke the thread function directly. 473 */ 474 if (!st->thread) 475 return cpuhp_invoke_callback(cpu, state, bringup, node); 476 477 st->cb_state = state; 478 st->single = true; 479 st->bringup = bringup; 480 st->node = node; 481 482 /* 483 * Make sure the above stores are visible before should_run becomes 484 * true. Paired with the mb() above in cpuhp_thread_fun() 485 */ 486 smp_mb(); 487 st->should_run = true; 488 wake_up_process(st->thread); 489 wait_for_completion(&st->done); 490 return st->result; 491 } 492 493 /* Regular hotplug invocation of the AP hotplug thread */ 494 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st) 495 { 496 st->result = 0; 497 st->single = false; 498 /* 499 * Make sure the above stores are visible before should_run becomes 500 * true. Paired with the mb() above in cpuhp_thread_fun() 501 */ 502 smp_mb(); 503 st->should_run = true; 504 wake_up_process(st->thread); 505 } 506 507 static int cpuhp_kick_ap_work(unsigned int cpu) 508 { 509 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 510 enum cpuhp_state state = st->state; 511 512 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work); 513 lock_map_acquire(&cpuhp_state_lock_map); 514 lock_map_release(&cpuhp_state_lock_map); 515 __cpuhp_kick_ap_work(st); 516 wait_for_completion(&st->done); 517 trace_cpuhp_exit(cpu, st->state, state, st->result); 518 return st->result; 519 } 520 521 static struct smp_hotplug_thread cpuhp_threads = { 522 .store = &cpuhp_state.thread, 523 .create = &cpuhp_create, 524 .thread_should_run = cpuhp_should_run, 525 .thread_fn = cpuhp_thread_fun, 526 .thread_comm = "cpuhp/%u", 527 .selfparking = true, 528 }; 529 530 void __init cpuhp_threads_init(void) 531 { 532 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 533 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 534 } 535 536 #ifdef CONFIG_HOTPLUG_CPU 537 /** 538 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 539 * @cpu: a CPU id 540 * 541 * This function walks all processes, finds a valid mm struct for each one and 542 * then clears a corresponding bit in mm's cpumask. While this all sounds 543 * trivial, there are various non-obvious corner cases, which this function 544 * tries to solve in a safe manner. 545 * 546 * Also note that the function uses a somewhat relaxed locking scheme, so it may 547 * be called only for an already offlined CPU. 548 */ 549 void clear_tasks_mm_cpumask(int cpu) 550 { 551 struct task_struct *p; 552 553 /* 554 * This function is called after the cpu is taken down and marked 555 * offline, so its not like new tasks will ever get this cpu set in 556 * their mm mask. -- Peter Zijlstra 557 * Thus, we may use rcu_read_lock() here, instead of grabbing 558 * full-fledged tasklist_lock. 559 */ 560 WARN_ON(cpu_online(cpu)); 561 rcu_read_lock(); 562 for_each_process(p) { 563 struct task_struct *t; 564 565 /* 566 * Main thread might exit, but other threads may still have 567 * a valid mm. Find one. 568 */ 569 t = find_lock_task_mm(p); 570 if (!t) 571 continue; 572 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 573 task_unlock(t); 574 } 575 rcu_read_unlock(); 576 } 577 578 /* Take this CPU down. */ 579 static int take_cpu_down(void *_param) 580 { 581 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 582 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 583 int err, cpu = smp_processor_id(); 584 585 /* Ensure this CPU doesn't handle any more interrupts. */ 586 err = __cpu_disable(); 587 if (err < 0) 588 return err; 589 590 /* 591 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 592 * do this step again. 593 */ 594 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 595 st->state--; 596 /* Invoke the former CPU_DYING callbacks */ 597 for (; st->state > target; st->state--) 598 cpuhp_invoke_callback(cpu, st->state, false, NULL); 599 600 /* Give up timekeeping duties */ 601 tick_handover_do_timer(); 602 /* Park the stopper thread */ 603 stop_machine_park(cpu); 604 return 0; 605 } 606 607 static int takedown_cpu(unsigned int cpu) 608 { 609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 610 int err; 611 612 /* Park the smpboot threads */ 613 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 614 smpboot_park_threads(cpu); 615 616 /* 617 * Prevent irq alloc/free while the dying cpu reorganizes the 618 * interrupt affinities. 619 */ 620 irq_lock_sparse(); 621 622 /* 623 * So now all preempt/rcu users must observe !cpu_active(). 624 */ 625 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 626 if (err) { 627 /* CPU refused to die */ 628 irq_unlock_sparse(); 629 /* Unpark the hotplug thread so we can rollback there */ 630 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 631 return err; 632 } 633 BUG_ON(cpu_online(cpu)); 634 635 /* 636 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all 637 * runnable tasks from the cpu, there's only the idle task left now 638 * that the migration thread is done doing the stop_machine thing. 639 * 640 * Wait for the stop thread to go away. 641 */ 642 wait_for_completion(&st->done); 643 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 644 645 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 646 irq_unlock_sparse(); 647 648 hotplug_cpu__broadcast_tick_pull(cpu); 649 /* This actually kills the CPU. */ 650 __cpu_die(cpu); 651 652 tick_cleanup_dead_cpu(cpu); 653 rcutree_migrate_callbacks(cpu); 654 return 0; 655 } 656 657 static void cpuhp_complete_idle_dead(void *arg) 658 { 659 struct cpuhp_cpu_state *st = arg; 660 661 complete(&st->done); 662 } 663 664 void cpuhp_report_idle_dead(void) 665 { 666 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 667 668 BUG_ON(st->state != CPUHP_AP_OFFLINE); 669 rcu_report_dead(smp_processor_id()); 670 st->state = CPUHP_AP_IDLE_DEAD; 671 /* 672 * We cannot call complete after rcu_report_dead() so we delegate it 673 * to an online cpu. 674 */ 675 smp_call_function_single(cpumask_first(cpu_online_mask), 676 cpuhp_complete_idle_dead, st, 0); 677 } 678 679 #else 680 #define takedown_cpu NULL 681 #endif 682 683 #ifdef CONFIG_HOTPLUG_CPU 684 685 /* Requires cpu_add_remove_lock to be held */ 686 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 687 enum cpuhp_state target) 688 { 689 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 690 int prev_state, ret = 0; 691 692 if (num_online_cpus() == 1) 693 return -EBUSY; 694 695 if (!cpu_present(cpu)) 696 return -EINVAL; 697 698 cpus_write_lock(); 699 700 cpuhp_tasks_frozen = tasks_frozen; 701 702 prev_state = st->state; 703 st->target = target; 704 /* 705 * If the current CPU state is in the range of the AP hotplug thread, 706 * then we need to kick the thread. 707 */ 708 if (st->state > CPUHP_TEARDOWN_CPU) { 709 ret = cpuhp_kick_ap_work(cpu); 710 /* 711 * The AP side has done the error rollback already. Just 712 * return the error code.. 713 */ 714 if (ret) 715 goto out; 716 717 /* 718 * We might have stopped still in the range of the AP hotplug 719 * thread. Nothing to do anymore. 720 */ 721 if (st->state > CPUHP_TEARDOWN_CPU) 722 goto out; 723 } 724 /* 725 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 726 * to do the further cleanups. 727 */ 728 ret = cpuhp_down_callbacks(cpu, st, target); 729 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 730 st->target = prev_state; 731 st->rollback = true; 732 cpuhp_kick_ap_work(cpu); 733 } 734 735 out: 736 cpus_write_unlock(); 737 return ret; 738 } 739 740 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 741 { 742 int err; 743 744 cpu_maps_update_begin(); 745 746 if (cpu_hotplug_disabled) { 747 err = -EBUSY; 748 goto out; 749 } 750 751 err = _cpu_down(cpu, 0, target); 752 753 out: 754 cpu_maps_update_done(); 755 return err; 756 } 757 int cpu_down(unsigned int cpu) 758 { 759 return do_cpu_down(cpu, CPUHP_OFFLINE); 760 } 761 EXPORT_SYMBOL(cpu_down); 762 #endif /*CONFIG_HOTPLUG_CPU*/ 763 764 /** 765 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 766 * @cpu: cpu that just started 767 * 768 * It must be called by the arch code on the new cpu, before the new cpu 769 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 770 */ 771 void notify_cpu_starting(unsigned int cpu) 772 { 773 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 774 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 775 776 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 777 while (st->state < target) { 778 st->state++; 779 cpuhp_invoke_callback(cpu, st->state, true, NULL); 780 } 781 } 782 783 /* 784 * Called from the idle task. Wake up the controlling task which brings the 785 * stopper and the hotplug thread of the upcoming CPU up and then delegates 786 * the rest of the online bringup to the hotplug thread. 787 */ 788 void cpuhp_online_idle(enum cpuhp_state state) 789 { 790 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 791 792 /* Happens for the boot cpu */ 793 if (state != CPUHP_AP_ONLINE_IDLE) 794 return; 795 796 st->state = CPUHP_AP_ONLINE_IDLE; 797 complete(&st->done); 798 } 799 800 /* Requires cpu_add_remove_lock to be held */ 801 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 802 { 803 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 804 struct task_struct *idle; 805 int ret = 0; 806 807 cpus_write_lock(); 808 809 if (!cpu_present(cpu)) { 810 ret = -EINVAL; 811 goto out; 812 } 813 814 /* 815 * The caller of do_cpu_up might have raced with another 816 * caller. Ignore it for now. 817 */ 818 if (st->state >= target) 819 goto out; 820 821 if (st->state == CPUHP_OFFLINE) { 822 /* Let it fail before we try to bring the cpu up */ 823 idle = idle_thread_get(cpu); 824 if (IS_ERR(idle)) { 825 ret = PTR_ERR(idle); 826 goto out; 827 } 828 } 829 830 cpuhp_tasks_frozen = tasks_frozen; 831 832 st->target = target; 833 /* 834 * If the current CPU state is in the range of the AP hotplug thread, 835 * then we need to kick the thread once more. 836 */ 837 if (st->state > CPUHP_BRINGUP_CPU) { 838 ret = cpuhp_kick_ap_work(cpu); 839 /* 840 * The AP side has done the error rollback already. Just 841 * return the error code.. 842 */ 843 if (ret) 844 goto out; 845 } 846 847 /* 848 * Try to reach the target state. We max out on the BP at 849 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 850 * responsible for bringing it up to the target state. 851 */ 852 target = min((int)target, CPUHP_BRINGUP_CPU); 853 ret = cpuhp_up_callbacks(cpu, st, target); 854 out: 855 cpus_write_unlock(); 856 return ret; 857 } 858 859 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 860 { 861 int err = 0; 862 863 if (!cpu_possible(cpu)) { 864 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 865 cpu); 866 #if defined(CONFIG_IA64) 867 pr_err("please check additional_cpus= boot parameter\n"); 868 #endif 869 return -EINVAL; 870 } 871 872 err = try_online_node(cpu_to_node(cpu)); 873 if (err) 874 return err; 875 876 cpu_maps_update_begin(); 877 878 if (cpu_hotplug_disabled) { 879 err = -EBUSY; 880 goto out; 881 } 882 883 err = _cpu_up(cpu, 0, target); 884 out: 885 cpu_maps_update_done(); 886 return err; 887 } 888 889 int cpu_up(unsigned int cpu) 890 { 891 return do_cpu_up(cpu, CPUHP_ONLINE); 892 } 893 EXPORT_SYMBOL_GPL(cpu_up); 894 895 #ifdef CONFIG_PM_SLEEP_SMP 896 static cpumask_var_t frozen_cpus; 897 898 int freeze_secondary_cpus(int primary) 899 { 900 int cpu, error = 0; 901 902 cpu_maps_update_begin(); 903 if (!cpu_online(primary)) 904 primary = cpumask_first(cpu_online_mask); 905 /* 906 * We take down all of the non-boot CPUs in one shot to avoid races 907 * with the userspace trying to use the CPU hotplug at the same time 908 */ 909 cpumask_clear(frozen_cpus); 910 911 pr_info("Disabling non-boot CPUs ...\n"); 912 for_each_online_cpu(cpu) { 913 if (cpu == primary) 914 continue; 915 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 916 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 917 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 918 if (!error) 919 cpumask_set_cpu(cpu, frozen_cpus); 920 else { 921 pr_err("Error taking CPU%d down: %d\n", cpu, error); 922 break; 923 } 924 } 925 926 if (!error) 927 BUG_ON(num_online_cpus() > 1); 928 else 929 pr_err("Non-boot CPUs are not disabled\n"); 930 931 /* 932 * Make sure the CPUs won't be enabled by someone else. We need to do 933 * this even in case of failure as all disable_nonboot_cpus() users are 934 * supposed to do enable_nonboot_cpus() on the failure path. 935 */ 936 cpu_hotplug_disabled++; 937 938 cpu_maps_update_done(); 939 return error; 940 } 941 942 void __weak arch_enable_nonboot_cpus_begin(void) 943 { 944 } 945 946 void __weak arch_enable_nonboot_cpus_end(void) 947 { 948 } 949 950 void enable_nonboot_cpus(void) 951 { 952 int cpu, error; 953 954 /* Allow everyone to use the CPU hotplug again */ 955 cpu_maps_update_begin(); 956 __cpu_hotplug_enable(); 957 if (cpumask_empty(frozen_cpus)) 958 goto out; 959 960 pr_info("Enabling non-boot CPUs ...\n"); 961 962 arch_enable_nonboot_cpus_begin(); 963 964 for_each_cpu(cpu, frozen_cpus) { 965 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 966 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 967 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 968 if (!error) { 969 pr_info("CPU%d is up\n", cpu); 970 continue; 971 } 972 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 973 } 974 975 arch_enable_nonboot_cpus_end(); 976 977 cpumask_clear(frozen_cpus); 978 out: 979 cpu_maps_update_done(); 980 } 981 982 static int __init alloc_frozen_cpus(void) 983 { 984 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 985 return -ENOMEM; 986 return 0; 987 } 988 core_initcall(alloc_frozen_cpus); 989 990 /* 991 * When callbacks for CPU hotplug notifications are being executed, we must 992 * ensure that the state of the system with respect to the tasks being frozen 993 * or not, as reported by the notification, remains unchanged *throughout the 994 * duration* of the execution of the callbacks. 995 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 996 * 997 * This synchronization is implemented by mutually excluding regular CPU 998 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 999 * Hibernate notifications. 1000 */ 1001 static int 1002 cpu_hotplug_pm_callback(struct notifier_block *nb, 1003 unsigned long action, void *ptr) 1004 { 1005 switch (action) { 1006 1007 case PM_SUSPEND_PREPARE: 1008 case PM_HIBERNATION_PREPARE: 1009 cpu_hotplug_disable(); 1010 break; 1011 1012 case PM_POST_SUSPEND: 1013 case PM_POST_HIBERNATION: 1014 cpu_hotplug_enable(); 1015 break; 1016 1017 default: 1018 return NOTIFY_DONE; 1019 } 1020 1021 return NOTIFY_OK; 1022 } 1023 1024 1025 static int __init cpu_hotplug_pm_sync_init(void) 1026 { 1027 /* 1028 * cpu_hotplug_pm_callback has higher priority than x86 1029 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1030 * to disable cpu hotplug to avoid cpu hotplug race. 1031 */ 1032 pm_notifier(cpu_hotplug_pm_callback, 0); 1033 return 0; 1034 } 1035 core_initcall(cpu_hotplug_pm_sync_init); 1036 1037 #endif /* CONFIG_PM_SLEEP_SMP */ 1038 1039 int __boot_cpu_id; 1040 1041 #endif /* CONFIG_SMP */ 1042 1043 /* Boot processor state steps */ 1044 static struct cpuhp_step cpuhp_bp_states[] = { 1045 [CPUHP_OFFLINE] = { 1046 .name = "offline", 1047 .startup.single = NULL, 1048 .teardown.single = NULL, 1049 }, 1050 #ifdef CONFIG_SMP 1051 [CPUHP_CREATE_THREADS]= { 1052 .name = "threads:prepare", 1053 .startup.single = smpboot_create_threads, 1054 .teardown.single = NULL, 1055 .cant_stop = true, 1056 }, 1057 [CPUHP_PERF_PREPARE] = { 1058 .name = "perf:prepare", 1059 .startup.single = perf_event_init_cpu, 1060 .teardown.single = perf_event_exit_cpu, 1061 }, 1062 [CPUHP_WORKQUEUE_PREP] = { 1063 .name = "workqueue:prepare", 1064 .startup.single = workqueue_prepare_cpu, 1065 .teardown.single = NULL, 1066 }, 1067 [CPUHP_HRTIMERS_PREPARE] = { 1068 .name = "hrtimers:prepare", 1069 .startup.single = hrtimers_prepare_cpu, 1070 .teardown.single = hrtimers_dead_cpu, 1071 }, 1072 [CPUHP_SMPCFD_PREPARE] = { 1073 .name = "smpcfd:prepare", 1074 .startup.single = smpcfd_prepare_cpu, 1075 .teardown.single = smpcfd_dead_cpu, 1076 }, 1077 [CPUHP_RELAY_PREPARE] = { 1078 .name = "relay:prepare", 1079 .startup.single = relay_prepare_cpu, 1080 .teardown.single = NULL, 1081 }, 1082 [CPUHP_SLAB_PREPARE] = { 1083 .name = "slab:prepare", 1084 .startup.single = slab_prepare_cpu, 1085 .teardown.single = slab_dead_cpu, 1086 }, 1087 [CPUHP_RCUTREE_PREP] = { 1088 .name = "RCU/tree:prepare", 1089 .startup.single = rcutree_prepare_cpu, 1090 .teardown.single = rcutree_dead_cpu, 1091 }, 1092 /* 1093 * On the tear-down path, timers_dead_cpu() must be invoked 1094 * before blk_mq_queue_reinit_notify() from notify_dead(), 1095 * otherwise a RCU stall occurs. 1096 */ 1097 [CPUHP_TIMERS_DEAD] = { 1098 .name = "timers:dead", 1099 .startup.single = NULL, 1100 .teardown.single = timers_dead_cpu, 1101 }, 1102 /* Kicks the plugged cpu into life */ 1103 [CPUHP_BRINGUP_CPU] = { 1104 .name = "cpu:bringup", 1105 .startup.single = bringup_cpu, 1106 .teardown.single = NULL, 1107 .cant_stop = true, 1108 }, 1109 [CPUHP_AP_SMPCFD_DYING] = { 1110 .name = "smpcfd:dying", 1111 .startup.single = NULL, 1112 .teardown.single = smpcfd_dying_cpu, 1113 }, 1114 /* 1115 * Handled on controll processor until the plugged processor manages 1116 * this itself. 1117 */ 1118 [CPUHP_TEARDOWN_CPU] = { 1119 .name = "cpu:teardown", 1120 .startup.single = NULL, 1121 .teardown.single = takedown_cpu, 1122 .cant_stop = true, 1123 }, 1124 #else 1125 [CPUHP_BRINGUP_CPU] = { }, 1126 #endif 1127 }; 1128 1129 /* Application processor state steps */ 1130 static struct cpuhp_step cpuhp_ap_states[] = { 1131 #ifdef CONFIG_SMP 1132 /* Final state before CPU kills itself */ 1133 [CPUHP_AP_IDLE_DEAD] = { 1134 .name = "idle:dead", 1135 }, 1136 /* 1137 * Last state before CPU enters the idle loop to die. Transient state 1138 * for synchronization. 1139 */ 1140 [CPUHP_AP_OFFLINE] = { 1141 .name = "ap:offline", 1142 .cant_stop = true, 1143 }, 1144 /* First state is scheduler control. Interrupts are disabled */ 1145 [CPUHP_AP_SCHED_STARTING] = { 1146 .name = "sched:starting", 1147 .startup.single = sched_cpu_starting, 1148 .teardown.single = sched_cpu_dying, 1149 }, 1150 [CPUHP_AP_RCUTREE_DYING] = { 1151 .name = "RCU/tree:dying", 1152 .startup.single = NULL, 1153 .teardown.single = rcutree_dying_cpu, 1154 }, 1155 /* Entry state on starting. Interrupts enabled from here on. Transient 1156 * state for synchronsization */ 1157 [CPUHP_AP_ONLINE] = { 1158 .name = "ap:online", 1159 }, 1160 /* Handle smpboot threads park/unpark */ 1161 [CPUHP_AP_SMPBOOT_THREADS] = { 1162 .name = "smpboot/threads:online", 1163 .startup.single = smpboot_unpark_threads, 1164 .teardown.single = NULL, 1165 }, 1166 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1167 .name = "irq/affinity:online", 1168 .startup.single = irq_affinity_online_cpu, 1169 .teardown.single = NULL, 1170 }, 1171 [CPUHP_AP_PERF_ONLINE] = { 1172 .name = "perf:online", 1173 .startup.single = perf_event_init_cpu, 1174 .teardown.single = perf_event_exit_cpu, 1175 }, 1176 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1177 .name = "workqueue:online", 1178 .startup.single = workqueue_online_cpu, 1179 .teardown.single = workqueue_offline_cpu, 1180 }, 1181 [CPUHP_AP_RCUTREE_ONLINE] = { 1182 .name = "RCU/tree:online", 1183 .startup.single = rcutree_online_cpu, 1184 .teardown.single = rcutree_offline_cpu, 1185 }, 1186 #endif 1187 /* 1188 * The dynamically registered state space is here 1189 */ 1190 1191 #ifdef CONFIG_SMP 1192 /* Last state is scheduler control setting the cpu active */ 1193 [CPUHP_AP_ACTIVE] = { 1194 .name = "sched:active", 1195 .startup.single = sched_cpu_activate, 1196 .teardown.single = sched_cpu_deactivate, 1197 }, 1198 #endif 1199 1200 /* CPU is fully up and running. */ 1201 [CPUHP_ONLINE] = { 1202 .name = "online", 1203 .startup.single = NULL, 1204 .teardown.single = NULL, 1205 }, 1206 }; 1207 1208 /* Sanity check for callbacks */ 1209 static int cpuhp_cb_check(enum cpuhp_state state) 1210 { 1211 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1212 return -EINVAL; 1213 return 0; 1214 } 1215 1216 /* 1217 * Returns a free for dynamic slot assignment of the Online state. The states 1218 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1219 * by having no name assigned. 1220 */ 1221 static int cpuhp_reserve_state(enum cpuhp_state state) 1222 { 1223 enum cpuhp_state i, end; 1224 struct cpuhp_step *step; 1225 1226 switch (state) { 1227 case CPUHP_AP_ONLINE_DYN: 1228 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 1229 end = CPUHP_AP_ONLINE_DYN_END; 1230 break; 1231 case CPUHP_BP_PREPARE_DYN: 1232 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 1233 end = CPUHP_BP_PREPARE_DYN_END; 1234 break; 1235 default: 1236 return -EINVAL; 1237 } 1238 1239 for (i = state; i <= end; i++, step++) { 1240 if (!step->name) 1241 return i; 1242 } 1243 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1244 return -ENOSPC; 1245 } 1246 1247 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1248 int (*startup)(unsigned int cpu), 1249 int (*teardown)(unsigned int cpu), 1250 bool multi_instance) 1251 { 1252 /* (Un)Install the callbacks for further cpu hotplug operations */ 1253 struct cpuhp_step *sp; 1254 int ret = 0; 1255 1256 /* 1257 * If name is NULL, then the state gets removed. 1258 * 1259 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1260 * the first allocation from these dynamic ranges, so the removal 1261 * would trigger a new allocation and clear the wrong (already 1262 * empty) state, leaving the callbacks of the to be cleared state 1263 * dangling, which causes wreckage on the next hotplug operation. 1264 */ 1265 if (name && (state == CPUHP_AP_ONLINE_DYN || 1266 state == CPUHP_BP_PREPARE_DYN)) { 1267 ret = cpuhp_reserve_state(state); 1268 if (ret < 0) 1269 return ret; 1270 state = ret; 1271 } 1272 sp = cpuhp_get_step(state); 1273 if (name && sp->name) 1274 return -EBUSY; 1275 1276 sp->startup.single = startup; 1277 sp->teardown.single = teardown; 1278 sp->name = name; 1279 sp->multi_instance = multi_instance; 1280 INIT_HLIST_HEAD(&sp->list); 1281 return ret; 1282 } 1283 1284 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1285 { 1286 return cpuhp_get_step(state)->teardown.single; 1287 } 1288 1289 /* 1290 * Call the startup/teardown function for a step either on the AP or 1291 * on the current CPU. 1292 */ 1293 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1294 struct hlist_node *node) 1295 { 1296 struct cpuhp_step *sp = cpuhp_get_step(state); 1297 int ret; 1298 1299 if ((bringup && !sp->startup.single) || 1300 (!bringup && !sp->teardown.single)) 1301 return 0; 1302 /* 1303 * The non AP bound callbacks can fail on bringup. On teardown 1304 * e.g. module removal we crash for now. 1305 */ 1306 #ifdef CONFIG_SMP 1307 if (cpuhp_is_ap_state(state)) 1308 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1309 else 1310 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1311 #else 1312 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1313 #endif 1314 BUG_ON(ret && !bringup); 1315 return ret; 1316 } 1317 1318 /* 1319 * Called from __cpuhp_setup_state on a recoverable failure. 1320 * 1321 * Note: The teardown callbacks for rollback are not allowed to fail! 1322 */ 1323 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1324 struct hlist_node *node) 1325 { 1326 int cpu; 1327 1328 /* Roll back the already executed steps on the other cpus */ 1329 for_each_present_cpu(cpu) { 1330 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1331 int cpustate = st->state; 1332 1333 if (cpu >= failedcpu) 1334 break; 1335 1336 /* Did we invoke the startup call on that cpu ? */ 1337 if (cpustate >= state) 1338 cpuhp_issue_call(cpu, state, false, node); 1339 } 1340 } 1341 1342 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1343 struct hlist_node *node, 1344 bool invoke) 1345 { 1346 struct cpuhp_step *sp; 1347 int cpu; 1348 int ret; 1349 1350 lockdep_assert_cpus_held(); 1351 1352 sp = cpuhp_get_step(state); 1353 if (sp->multi_instance == false) 1354 return -EINVAL; 1355 1356 mutex_lock(&cpuhp_state_mutex); 1357 1358 if (!invoke || !sp->startup.multi) 1359 goto add_node; 1360 1361 /* 1362 * Try to call the startup callback for each present cpu 1363 * depending on the hotplug state of the cpu. 1364 */ 1365 for_each_present_cpu(cpu) { 1366 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1367 int cpustate = st->state; 1368 1369 if (cpustate < state) 1370 continue; 1371 1372 ret = cpuhp_issue_call(cpu, state, true, node); 1373 if (ret) { 1374 if (sp->teardown.multi) 1375 cpuhp_rollback_install(cpu, state, node); 1376 goto unlock; 1377 } 1378 } 1379 add_node: 1380 ret = 0; 1381 hlist_add_head(node, &sp->list); 1382 unlock: 1383 mutex_unlock(&cpuhp_state_mutex); 1384 return ret; 1385 } 1386 1387 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1388 bool invoke) 1389 { 1390 int ret; 1391 1392 cpus_read_lock(); 1393 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1394 cpus_read_unlock(); 1395 return ret; 1396 } 1397 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1398 1399 /** 1400 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1401 * @state: The state to setup 1402 * @invoke: If true, the startup function is invoked for cpus where 1403 * cpu state >= @state 1404 * @startup: startup callback function 1405 * @teardown: teardown callback function 1406 * @multi_instance: State is set up for multiple instances which get 1407 * added afterwards. 1408 * 1409 * The caller needs to hold cpus read locked while calling this function. 1410 * Returns: 1411 * On success: 1412 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1413 * 0 for all other states 1414 * On failure: proper (negative) error code 1415 */ 1416 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1417 const char *name, bool invoke, 1418 int (*startup)(unsigned int cpu), 1419 int (*teardown)(unsigned int cpu), 1420 bool multi_instance) 1421 { 1422 int cpu, ret = 0; 1423 bool dynstate; 1424 1425 lockdep_assert_cpus_held(); 1426 1427 if (cpuhp_cb_check(state) || !name) 1428 return -EINVAL; 1429 1430 mutex_lock(&cpuhp_state_mutex); 1431 1432 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1433 multi_instance); 1434 1435 dynstate = state == CPUHP_AP_ONLINE_DYN; 1436 if (ret > 0 && dynstate) { 1437 state = ret; 1438 ret = 0; 1439 } 1440 1441 if (ret || !invoke || !startup) 1442 goto out; 1443 1444 /* 1445 * Try to call the startup callback for each present cpu 1446 * depending on the hotplug state of the cpu. 1447 */ 1448 for_each_present_cpu(cpu) { 1449 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1450 int cpustate = st->state; 1451 1452 if (cpustate < state) 1453 continue; 1454 1455 ret = cpuhp_issue_call(cpu, state, true, NULL); 1456 if (ret) { 1457 if (teardown) 1458 cpuhp_rollback_install(cpu, state, NULL); 1459 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1460 goto out; 1461 } 1462 } 1463 out: 1464 mutex_unlock(&cpuhp_state_mutex); 1465 /* 1466 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1467 * dynamically allocated state in case of success. 1468 */ 1469 if (!ret && dynstate) 1470 return state; 1471 return ret; 1472 } 1473 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1474 1475 int __cpuhp_setup_state(enum cpuhp_state state, 1476 const char *name, bool invoke, 1477 int (*startup)(unsigned int cpu), 1478 int (*teardown)(unsigned int cpu), 1479 bool multi_instance) 1480 { 1481 int ret; 1482 1483 cpus_read_lock(); 1484 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1485 teardown, multi_instance); 1486 cpus_read_unlock(); 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(__cpuhp_setup_state); 1490 1491 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1492 struct hlist_node *node, bool invoke) 1493 { 1494 struct cpuhp_step *sp = cpuhp_get_step(state); 1495 int cpu; 1496 1497 BUG_ON(cpuhp_cb_check(state)); 1498 1499 if (!sp->multi_instance) 1500 return -EINVAL; 1501 1502 cpus_read_lock(); 1503 mutex_lock(&cpuhp_state_mutex); 1504 1505 if (!invoke || !cpuhp_get_teardown_cb(state)) 1506 goto remove; 1507 /* 1508 * Call the teardown callback for each present cpu depending 1509 * on the hotplug state of the cpu. This function is not 1510 * allowed to fail currently! 1511 */ 1512 for_each_present_cpu(cpu) { 1513 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1514 int cpustate = st->state; 1515 1516 if (cpustate >= state) 1517 cpuhp_issue_call(cpu, state, false, node); 1518 } 1519 1520 remove: 1521 hlist_del(node); 1522 mutex_unlock(&cpuhp_state_mutex); 1523 cpus_read_unlock(); 1524 1525 return 0; 1526 } 1527 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1528 1529 /** 1530 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1531 * @state: The state to remove 1532 * @invoke: If true, the teardown function is invoked for cpus where 1533 * cpu state >= @state 1534 * 1535 * The caller needs to hold cpus read locked while calling this function. 1536 * The teardown callback is currently not allowed to fail. Think 1537 * about module removal! 1538 */ 1539 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1540 { 1541 struct cpuhp_step *sp = cpuhp_get_step(state); 1542 int cpu; 1543 1544 BUG_ON(cpuhp_cb_check(state)); 1545 1546 lockdep_assert_cpus_held(); 1547 1548 mutex_lock(&cpuhp_state_mutex); 1549 if (sp->multi_instance) { 1550 WARN(!hlist_empty(&sp->list), 1551 "Error: Removing state %d which has instances left.\n", 1552 state); 1553 goto remove; 1554 } 1555 1556 if (!invoke || !cpuhp_get_teardown_cb(state)) 1557 goto remove; 1558 1559 /* 1560 * Call the teardown callback for each present cpu depending 1561 * on the hotplug state of the cpu. This function is not 1562 * allowed to fail currently! 1563 */ 1564 for_each_present_cpu(cpu) { 1565 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1566 int cpustate = st->state; 1567 1568 if (cpustate >= state) 1569 cpuhp_issue_call(cpu, state, false, NULL); 1570 } 1571 remove: 1572 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1573 mutex_unlock(&cpuhp_state_mutex); 1574 } 1575 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1576 1577 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1578 { 1579 cpus_read_lock(); 1580 __cpuhp_remove_state_cpuslocked(state, invoke); 1581 cpus_read_unlock(); 1582 } 1583 EXPORT_SYMBOL(__cpuhp_remove_state); 1584 1585 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1586 static ssize_t show_cpuhp_state(struct device *dev, 1587 struct device_attribute *attr, char *buf) 1588 { 1589 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1590 1591 return sprintf(buf, "%d\n", st->state); 1592 } 1593 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1594 1595 static ssize_t write_cpuhp_target(struct device *dev, 1596 struct device_attribute *attr, 1597 const char *buf, size_t count) 1598 { 1599 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1600 struct cpuhp_step *sp; 1601 int target, ret; 1602 1603 ret = kstrtoint(buf, 10, &target); 1604 if (ret) 1605 return ret; 1606 1607 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1608 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1609 return -EINVAL; 1610 #else 1611 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1612 return -EINVAL; 1613 #endif 1614 1615 ret = lock_device_hotplug_sysfs(); 1616 if (ret) 1617 return ret; 1618 1619 mutex_lock(&cpuhp_state_mutex); 1620 sp = cpuhp_get_step(target); 1621 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1622 mutex_unlock(&cpuhp_state_mutex); 1623 if (ret) 1624 goto out; 1625 1626 if (st->state < target) 1627 ret = do_cpu_up(dev->id, target); 1628 else 1629 ret = do_cpu_down(dev->id, target); 1630 out: 1631 unlock_device_hotplug(); 1632 return ret ? ret : count; 1633 } 1634 1635 static ssize_t show_cpuhp_target(struct device *dev, 1636 struct device_attribute *attr, char *buf) 1637 { 1638 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1639 1640 return sprintf(buf, "%d\n", st->target); 1641 } 1642 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1643 1644 static struct attribute *cpuhp_cpu_attrs[] = { 1645 &dev_attr_state.attr, 1646 &dev_attr_target.attr, 1647 NULL 1648 }; 1649 1650 static const struct attribute_group cpuhp_cpu_attr_group = { 1651 .attrs = cpuhp_cpu_attrs, 1652 .name = "hotplug", 1653 NULL 1654 }; 1655 1656 static ssize_t show_cpuhp_states(struct device *dev, 1657 struct device_attribute *attr, char *buf) 1658 { 1659 ssize_t cur, res = 0; 1660 int i; 1661 1662 mutex_lock(&cpuhp_state_mutex); 1663 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1664 struct cpuhp_step *sp = cpuhp_get_step(i); 1665 1666 if (sp->name) { 1667 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1668 buf += cur; 1669 res += cur; 1670 } 1671 } 1672 mutex_unlock(&cpuhp_state_mutex); 1673 return res; 1674 } 1675 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1676 1677 static struct attribute *cpuhp_cpu_root_attrs[] = { 1678 &dev_attr_states.attr, 1679 NULL 1680 }; 1681 1682 static const struct attribute_group cpuhp_cpu_root_attr_group = { 1683 .attrs = cpuhp_cpu_root_attrs, 1684 .name = "hotplug", 1685 NULL 1686 }; 1687 1688 static int __init cpuhp_sysfs_init(void) 1689 { 1690 int cpu, ret; 1691 1692 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1693 &cpuhp_cpu_root_attr_group); 1694 if (ret) 1695 return ret; 1696 1697 for_each_possible_cpu(cpu) { 1698 struct device *dev = get_cpu_device(cpu); 1699 1700 if (!dev) 1701 continue; 1702 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1703 if (ret) 1704 return ret; 1705 } 1706 return 0; 1707 } 1708 device_initcall(cpuhp_sysfs_init); 1709 #endif 1710 1711 /* 1712 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1713 * represents all NR_CPUS bits binary values of 1<<nr. 1714 * 1715 * It is used by cpumask_of() to get a constant address to a CPU 1716 * mask value that has a single bit set only. 1717 */ 1718 1719 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1720 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1721 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1722 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1723 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1724 1725 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1726 1727 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1728 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1729 #if BITS_PER_LONG > 32 1730 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1731 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1732 #endif 1733 }; 1734 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1735 1736 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1737 EXPORT_SYMBOL(cpu_all_bits); 1738 1739 #ifdef CONFIG_INIT_ALL_POSSIBLE 1740 struct cpumask __cpu_possible_mask __read_mostly 1741 = {CPU_BITS_ALL}; 1742 #else 1743 struct cpumask __cpu_possible_mask __read_mostly; 1744 #endif 1745 EXPORT_SYMBOL(__cpu_possible_mask); 1746 1747 struct cpumask __cpu_online_mask __read_mostly; 1748 EXPORT_SYMBOL(__cpu_online_mask); 1749 1750 struct cpumask __cpu_present_mask __read_mostly; 1751 EXPORT_SYMBOL(__cpu_present_mask); 1752 1753 struct cpumask __cpu_active_mask __read_mostly; 1754 EXPORT_SYMBOL(__cpu_active_mask); 1755 1756 void init_cpu_present(const struct cpumask *src) 1757 { 1758 cpumask_copy(&__cpu_present_mask, src); 1759 } 1760 1761 void init_cpu_possible(const struct cpumask *src) 1762 { 1763 cpumask_copy(&__cpu_possible_mask, src); 1764 } 1765 1766 void init_cpu_online(const struct cpumask *src) 1767 { 1768 cpumask_copy(&__cpu_online_mask, src); 1769 } 1770 1771 /* 1772 * Activate the first processor. 1773 */ 1774 void __init boot_cpu_init(void) 1775 { 1776 int cpu = smp_processor_id(); 1777 1778 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 1779 set_cpu_online(cpu, true); 1780 set_cpu_active(cpu, true); 1781 set_cpu_present(cpu, true); 1782 set_cpu_possible(cpu, true); 1783 1784 #ifdef CONFIG_SMP 1785 __boot_cpu_id = cpu; 1786 #endif 1787 } 1788 1789 /* 1790 * Must be called _AFTER_ setting up the per_cpu areas 1791 */ 1792 void __init boot_cpu_state_init(void) 1793 { 1794 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 1795 } 1796