xref: /openbmc/linux/kernel/cpu.c (revision 965f94c77552d80f824229a6a68f7ca92a59e5ff)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31 
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35 
36 #include "smpboot.h"
37 
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:	The current cpu state
41  * @target:	The target state
42  * @thread:	Pointer to the hotplug thread
43  * @should_run:	Thread should execute
44  * @rollback:	Perform a rollback
45  * @single:	Single callback invocation
46  * @bringup:	Single callback bringup or teardown selector
47  * @cb_state:	The state for a single callback (install/uninstall)
48  * @result:	Result of the operation
49  * @done:	Signal completion to the issuer of the task
50  */
51 struct cpuhp_cpu_state {
52 	enum cpuhp_state	state;
53 	enum cpuhp_state	target;
54 #ifdef CONFIG_SMP
55 	struct task_struct	*thread;
56 	bool			should_run;
57 	bool			rollback;
58 	bool			single;
59 	bool			bringup;
60 	struct hlist_node	*node;
61 	enum cpuhp_state	cb_state;
62 	int			result;
63 	struct completion	done;
64 #endif
65 };
66 
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68 
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74 
75 /**
76  * cpuhp_step - Hotplug state machine step
77  * @name:	Name of the step
78  * @startup:	Startup function of the step
79  * @teardown:	Teardown function of the step
80  * @skip_onerr:	Do not invoke the functions on error rollback
81  *		Will go away once the notifiers	are gone
82  * @cant_stop:	Bringup/teardown can't be stopped at this step
83  */
84 struct cpuhp_step {
85 	const char		*name;
86 	union {
87 		int		(*single)(unsigned int cpu);
88 		int		(*multi)(unsigned int cpu,
89 					 struct hlist_node *node);
90 	} startup;
91 	union {
92 		int		(*single)(unsigned int cpu);
93 		int		(*multi)(unsigned int cpu,
94 					 struct hlist_node *node);
95 	} teardown;
96 	struct hlist_head	list;
97 	bool			skip_onerr;
98 	bool			cant_stop;
99 	bool			multi_instance;
100 };
101 
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105 
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 	/*
109 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 	 * purposes as that state is handled explicitly in cpu_down.
111 	 */
112 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114 
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 	struct cpuhp_step *sp;
118 
119 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 	return sp + state;
121 }
122 
123 /**
124  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125  * @cpu:	The cpu for which the callback should be invoked
126  * @step:	The step in the state machine
127  * @bringup:	True if the bringup callback should be invoked
128  *
129  * Called from cpu hotplug and from the state register machinery.
130  */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 				 bool bringup, struct hlist_node *node)
133 {
134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 	struct cpuhp_step *step = cpuhp_get_step(state);
136 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 	int (*cb)(unsigned int cpu);
138 	int ret, cnt;
139 
140 	if (!step->multi_instance) {
141 		cb = bringup ? step->startup.single : step->teardown.single;
142 		if (!cb)
143 			return 0;
144 		trace_cpuhp_enter(cpu, st->target, state, cb);
145 		ret = cb(cpu);
146 		trace_cpuhp_exit(cpu, st->state, state, ret);
147 		return ret;
148 	}
149 	cbm = bringup ? step->startup.multi : step->teardown.multi;
150 	if (!cbm)
151 		return 0;
152 
153 	/* Single invocation for instance add/remove */
154 	if (node) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		return ret;
159 	}
160 
161 	/* State transition. Invoke on all instances */
162 	cnt = 0;
163 	hlist_for_each(node, &step->list) {
164 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 		ret = cbm(cpu, node);
166 		trace_cpuhp_exit(cpu, st->state, state, ret);
167 		if (ret)
168 			goto err;
169 		cnt++;
170 	}
171 	return 0;
172 err:
173 	/* Rollback the instances if one failed */
174 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 	if (!cbm)
176 		return ret;
177 
178 	hlist_for_each(node, &step->list) {
179 		if (!cnt--)
180 			break;
181 		cbm(cpu, node);
182 	}
183 	return ret;
184 }
185 
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191 
192 /*
193  * The following two APIs (cpu_maps_update_begin/done) must be used when
194  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195  */
196 void cpu_maps_update_begin(void)
197 {
198 	mutex_lock(&cpu_add_remove_lock);
199 }
200 
201 void cpu_maps_update_done(void)
202 {
203 	mutex_unlock(&cpu_add_remove_lock);
204 }
205 
206 /*
207  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208  * Should always be manipulated under cpu_add_remove_lock
209  */
210 static int cpu_hotplug_disabled;
211 
212 #ifdef CONFIG_HOTPLUG_CPU
213 
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215 
216 void cpus_read_lock(void)
217 {
218 	percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221 
222 void cpus_read_unlock(void)
223 {
224 	percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227 
228 void cpus_write_lock(void)
229 {
230 	percpu_down_write(&cpu_hotplug_lock);
231 }
232 
233 void cpus_write_unlock(void)
234 {
235 	percpu_up_write(&cpu_hotplug_lock);
236 }
237 
238 void lockdep_assert_cpus_held(void)
239 {
240 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242 
243 /*
244  * Wait for currently running CPU hotplug operations to complete (if any) and
245  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247  * hotplug path before performing hotplug operations. So acquiring that lock
248  * guarantees mutual exclusion from any currently running hotplug operations.
249  */
250 void cpu_hotplug_disable(void)
251 {
252 	cpu_maps_update_begin();
253 	cpu_hotplug_disabled++;
254 	cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257 
258 static void __cpu_hotplug_enable(void)
259 {
260 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 		return;
262 	cpu_hotplug_disabled--;
263 }
264 
265 void cpu_hotplug_enable(void)
266 {
267 	cpu_maps_update_begin();
268 	__cpu_hotplug_enable();
269 	cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif	/* CONFIG_HOTPLUG_CPU */
273 
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
275 
276 static int bringup_wait_for_ap(unsigned int cpu)
277 {
278 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
279 
280 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 	wait_for_completion(&st->done);
282 	if (WARN_ON_ONCE((!cpu_online(cpu))))
283 		return -ECANCELED;
284 
285 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
286 	stop_machine_unpark(cpu);
287 	kthread_unpark(st->thread);
288 
289 	/* Should we go further up ? */
290 	if (st->target > CPUHP_AP_ONLINE_IDLE) {
291 		__cpuhp_kick_ap_work(st);
292 		wait_for_completion(&st->done);
293 	}
294 	return st->result;
295 }
296 
297 static int bringup_cpu(unsigned int cpu)
298 {
299 	struct task_struct *idle = idle_thread_get(cpu);
300 	int ret;
301 
302 	/*
303 	 * Some architectures have to walk the irq descriptors to
304 	 * setup the vector space for the cpu which comes online.
305 	 * Prevent irq alloc/free across the bringup.
306 	 */
307 	irq_lock_sparse();
308 
309 	/* Arch-specific enabling code. */
310 	ret = __cpu_up(cpu, idle);
311 	irq_unlock_sparse();
312 	if (ret)
313 		return ret;
314 	return bringup_wait_for_ap(cpu);
315 }
316 
317 /*
318  * Hotplug state machine related functions
319  */
320 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
321 {
322 	for (st->state++; st->state < st->target; st->state++) {
323 		struct cpuhp_step *step = cpuhp_get_step(st->state);
324 
325 		if (!step->skip_onerr)
326 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
327 	}
328 }
329 
330 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
331 				enum cpuhp_state target)
332 {
333 	enum cpuhp_state prev_state = st->state;
334 	int ret = 0;
335 
336 	for (; st->state > target; st->state--) {
337 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
338 		if (ret) {
339 			st->target = prev_state;
340 			undo_cpu_down(cpu, st);
341 			break;
342 		}
343 	}
344 	return ret;
345 }
346 
347 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
348 {
349 	for (st->state--; st->state > st->target; st->state--) {
350 		struct cpuhp_step *step = cpuhp_get_step(st->state);
351 
352 		if (!step->skip_onerr)
353 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
354 	}
355 }
356 
357 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
358 			      enum cpuhp_state target)
359 {
360 	enum cpuhp_state prev_state = st->state;
361 	int ret = 0;
362 
363 	while (st->state < target) {
364 		st->state++;
365 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
366 		if (ret) {
367 			st->target = prev_state;
368 			undo_cpu_up(cpu, st);
369 			break;
370 		}
371 	}
372 	return ret;
373 }
374 
375 /*
376  * The cpu hotplug threads manage the bringup and teardown of the cpus
377  */
378 static void cpuhp_create(unsigned int cpu)
379 {
380 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
381 
382 	init_completion(&st->done);
383 }
384 
385 static int cpuhp_should_run(unsigned int cpu)
386 {
387 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
388 
389 	return st->should_run;
390 }
391 
392 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
393 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
394 {
395 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
396 
397 	return cpuhp_down_callbacks(cpu, st, target);
398 }
399 
400 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
401 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
402 {
403 	return cpuhp_up_callbacks(cpu, st, st->target);
404 }
405 
406 /*
407  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
408  * callbacks when a state gets [un]installed at runtime.
409  */
410 static void cpuhp_thread_fun(unsigned int cpu)
411 {
412 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
413 	int ret = 0;
414 
415 	/*
416 	 * Paired with the mb() in cpuhp_kick_ap_work and
417 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
418 	 */
419 	smp_mb();
420 	if (!st->should_run)
421 		return;
422 
423 	st->should_run = false;
424 
425 	lock_map_acquire(&cpuhp_state_lock_map);
426 	/* Single callback invocation for [un]install ? */
427 	if (st->single) {
428 		if (st->cb_state < CPUHP_AP_ONLINE) {
429 			local_irq_disable();
430 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
431 						    st->bringup, st->node);
432 			local_irq_enable();
433 		} else {
434 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
435 						    st->bringup, st->node);
436 		}
437 	} else if (st->rollback) {
438 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
439 
440 		undo_cpu_down(cpu, st);
441 		st->rollback = false;
442 	} else {
443 		/* Cannot happen .... */
444 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
445 
446 		/* Regular hotplug work */
447 		if (st->state < st->target)
448 			ret = cpuhp_ap_online(cpu, st);
449 		else if (st->state > st->target)
450 			ret = cpuhp_ap_offline(cpu, st);
451 	}
452 	lock_map_release(&cpuhp_state_lock_map);
453 	st->result = ret;
454 	complete(&st->done);
455 }
456 
457 /* Invoke a single callback on a remote cpu */
458 static int
459 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
460 			 struct hlist_node *node)
461 {
462 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
463 
464 	if (!cpu_online(cpu))
465 		return 0;
466 
467 	lock_map_acquire(&cpuhp_state_lock_map);
468 	lock_map_release(&cpuhp_state_lock_map);
469 
470 	/*
471 	 * If we are up and running, use the hotplug thread. For early calls
472 	 * we invoke the thread function directly.
473 	 */
474 	if (!st->thread)
475 		return cpuhp_invoke_callback(cpu, state, bringup, node);
476 
477 	st->cb_state = state;
478 	st->single = true;
479 	st->bringup = bringup;
480 	st->node = node;
481 
482 	/*
483 	 * Make sure the above stores are visible before should_run becomes
484 	 * true. Paired with the mb() above in cpuhp_thread_fun()
485 	 */
486 	smp_mb();
487 	st->should_run = true;
488 	wake_up_process(st->thread);
489 	wait_for_completion(&st->done);
490 	return st->result;
491 }
492 
493 /* Regular hotplug invocation of the AP hotplug thread */
494 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
495 {
496 	st->result = 0;
497 	st->single = false;
498 	/*
499 	 * Make sure the above stores are visible before should_run becomes
500 	 * true. Paired with the mb() above in cpuhp_thread_fun()
501 	 */
502 	smp_mb();
503 	st->should_run = true;
504 	wake_up_process(st->thread);
505 }
506 
507 static int cpuhp_kick_ap_work(unsigned int cpu)
508 {
509 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
510 	enum cpuhp_state state = st->state;
511 
512 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
513 	lock_map_acquire(&cpuhp_state_lock_map);
514 	lock_map_release(&cpuhp_state_lock_map);
515 	__cpuhp_kick_ap_work(st);
516 	wait_for_completion(&st->done);
517 	trace_cpuhp_exit(cpu, st->state, state, st->result);
518 	return st->result;
519 }
520 
521 static struct smp_hotplug_thread cpuhp_threads = {
522 	.store			= &cpuhp_state.thread,
523 	.create			= &cpuhp_create,
524 	.thread_should_run	= cpuhp_should_run,
525 	.thread_fn		= cpuhp_thread_fun,
526 	.thread_comm		= "cpuhp/%u",
527 	.selfparking		= true,
528 };
529 
530 void __init cpuhp_threads_init(void)
531 {
532 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
533 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
534 }
535 
536 #ifdef CONFIG_HOTPLUG_CPU
537 /**
538  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
539  * @cpu: a CPU id
540  *
541  * This function walks all processes, finds a valid mm struct for each one and
542  * then clears a corresponding bit in mm's cpumask.  While this all sounds
543  * trivial, there are various non-obvious corner cases, which this function
544  * tries to solve in a safe manner.
545  *
546  * Also note that the function uses a somewhat relaxed locking scheme, so it may
547  * be called only for an already offlined CPU.
548  */
549 void clear_tasks_mm_cpumask(int cpu)
550 {
551 	struct task_struct *p;
552 
553 	/*
554 	 * This function is called after the cpu is taken down and marked
555 	 * offline, so its not like new tasks will ever get this cpu set in
556 	 * their mm mask. -- Peter Zijlstra
557 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
558 	 * full-fledged tasklist_lock.
559 	 */
560 	WARN_ON(cpu_online(cpu));
561 	rcu_read_lock();
562 	for_each_process(p) {
563 		struct task_struct *t;
564 
565 		/*
566 		 * Main thread might exit, but other threads may still have
567 		 * a valid mm. Find one.
568 		 */
569 		t = find_lock_task_mm(p);
570 		if (!t)
571 			continue;
572 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
573 		task_unlock(t);
574 	}
575 	rcu_read_unlock();
576 }
577 
578 /* Take this CPU down. */
579 static int take_cpu_down(void *_param)
580 {
581 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
582 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
583 	int err, cpu = smp_processor_id();
584 
585 	/* Ensure this CPU doesn't handle any more interrupts. */
586 	err = __cpu_disable();
587 	if (err < 0)
588 		return err;
589 
590 	/*
591 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
592 	 * do this step again.
593 	 */
594 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
595 	st->state--;
596 	/* Invoke the former CPU_DYING callbacks */
597 	for (; st->state > target; st->state--)
598 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
599 
600 	/* Give up timekeeping duties */
601 	tick_handover_do_timer();
602 	/* Park the stopper thread */
603 	stop_machine_park(cpu);
604 	return 0;
605 }
606 
607 static int takedown_cpu(unsigned int cpu)
608 {
609 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
610 	int err;
611 
612 	/* Park the smpboot threads */
613 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
614 	smpboot_park_threads(cpu);
615 
616 	/*
617 	 * Prevent irq alloc/free while the dying cpu reorganizes the
618 	 * interrupt affinities.
619 	 */
620 	irq_lock_sparse();
621 
622 	/*
623 	 * So now all preempt/rcu users must observe !cpu_active().
624 	 */
625 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
626 	if (err) {
627 		/* CPU refused to die */
628 		irq_unlock_sparse();
629 		/* Unpark the hotplug thread so we can rollback there */
630 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
631 		return err;
632 	}
633 	BUG_ON(cpu_online(cpu));
634 
635 	/*
636 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
637 	 * runnable tasks from the cpu, there's only the idle task left now
638 	 * that the migration thread is done doing the stop_machine thing.
639 	 *
640 	 * Wait for the stop thread to go away.
641 	 */
642 	wait_for_completion(&st->done);
643 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
644 
645 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
646 	irq_unlock_sparse();
647 
648 	hotplug_cpu__broadcast_tick_pull(cpu);
649 	/* This actually kills the CPU. */
650 	__cpu_die(cpu);
651 
652 	tick_cleanup_dead_cpu(cpu);
653 	rcutree_migrate_callbacks(cpu);
654 	return 0;
655 }
656 
657 static void cpuhp_complete_idle_dead(void *arg)
658 {
659 	struct cpuhp_cpu_state *st = arg;
660 
661 	complete(&st->done);
662 }
663 
664 void cpuhp_report_idle_dead(void)
665 {
666 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
667 
668 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
669 	rcu_report_dead(smp_processor_id());
670 	st->state = CPUHP_AP_IDLE_DEAD;
671 	/*
672 	 * We cannot call complete after rcu_report_dead() so we delegate it
673 	 * to an online cpu.
674 	 */
675 	smp_call_function_single(cpumask_first(cpu_online_mask),
676 				 cpuhp_complete_idle_dead, st, 0);
677 }
678 
679 #else
680 #define takedown_cpu		NULL
681 #endif
682 
683 #ifdef CONFIG_HOTPLUG_CPU
684 
685 /* Requires cpu_add_remove_lock to be held */
686 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
687 			   enum cpuhp_state target)
688 {
689 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
690 	int prev_state, ret = 0;
691 
692 	if (num_online_cpus() == 1)
693 		return -EBUSY;
694 
695 	if (!cpu_present(cpu))
696 		return -EINVAL;
697 
698 	cpus_write_lock();
699 
700 	cpuhp_tasks_frozen = tasks_frozen;
701 
702 	prev_state = st->state;
703 	st->target = target;
704 	/*
705 	 * If the current CPU state is in the range of the AP hotplug thread,
706 	 * then we need to kick the thread.
707 	 */
708 	if (st->state > CPUHP_TEARDOWN_CPU) {
709 		ret = cpuhp_kick_ap_work(cpu);
710 		/*
711 		 * The AP side has done the error rollback already. Just
712 		 * return the error code..
713 		 */
714 		if (ret)
715 			goto out;
716 
717 		/*
718 		 * We might have stopped still in the range of the AP hotplug
719 		 * thread. Nothing to do anymore.
720 		 */
721 		if (st->state > CPUHP_TEARDOWN_CPU)
722 			goto out;
723 	}
724 	/*
725 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
726 	 * to do the further cleanups.
727 	 */
728 	ret = cpuhp_down_callbacks(cpu, st, target);
729 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
730 		st->target = prev_state;
731 		st->rollback = true;
732 		cpuhp_kick_ap_work(cpu);
733 	}
734 
735 out:
736 	cpus_write_unlock();
737 	return ret;
738 }
739 
740 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
741 {
742 	int err;
743 
744 	cpu_maps_update_begin();
745 
746 	if (cpu_hotplug_disabled) {
747 		err = -EBUSY;
748 		goto out;
749 	}
750 
751 	err = _cpu_down(cpu, 0, target);
752 
753 out:
754 	cpu_maps_update_done();
755 	return err;
756 }
757 int cpu_down(unsigned int cpu)
758 {
759 	return do_cpu_down(cpu, CPUHP_OFFLINE);
760 }
761 EXPORT_SYMBOL(cpu_down);
762 #endif /*CONFIG_HOTPLUG_CPU*/
763 
764 /**
765  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
766  * @cpu: cpu that just started
767  *
768  * It must be called by the arch code on the new cpu, before the new cpu
769  * enables interrupts and before the "boot" cpu returns from __cpu_up().
770  */
771 void notify_cpu_starting(unsigned int cpu)
772 {
773 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
774 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
775 
776 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
777 	while (st->state < target) {
778 		st->state++;
779 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
780 	}
781 }
782 
783 /*
784  * Called from the idle task. Wake up the controlling task which brings the
785  * stopper and the hotplug thread of the upcoming CPU up and then delegates
786  * the rest of the online bringup to the hotplug thread.
787  */
788 void cpuhp_online_idle(enum cpuhp_state state)
789 {
790 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
791 
792 	/* Happens for the boot cpu */
793 	if (state != CPUHP_AP_ONLINE_IDLE)
794 		return;
795 
796 	st->state = CPUHP_AP_ONLINE_IDLE;
797 	complete(&st->done);
798 }
799 
800 /* Requires cpu_add_remove_lock to be held */
801 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
802 {
803 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
804 	struct task_struct *idle;
805 	int ret = 0;
806 
807 	cpus_write_lock();
808 
809 	if (!cpu_present(cpu)) {
810 		ret = -EINVAL;
811 		goto out;
812 	}
813 
814 	/*
815 	 * The caller of do_cpu_up might have raced with another
816 	 * caller. Ignore it for now.
817 	 */
818 	if (st->state >= target)
819 		goto out;
820 
821 	if (st->state == CPUHP_OFFLINE) {
822 		/* Let it fail before we try to bring the cpu up */
823 		idle = idle_thread_get(cpu);
824 		if (IS_ERR(idle)) {
825 			ret = PTR_ERR(idle);
826 			goto out;
827 		}
828 	}
829 
830 	cpuhp_tasks_frozen = tasks_frozen;
831 
832 	st->target = target;
833 	/*
834 	 * If the current CPU state is in the range of the AP hotplug thread,
835 	 * then we need to kick the thread once more.
836 	 */
837 	if (st->state > CPUHP_BRINGUP_CPU) {
838 		ret = cpuhp_kick_ap_work(cpu);
839 		/*
840 		 * The AP side has done the error rollback already. Just
841 		 * return the error code..
842 		 */
843 		if (ret)
844 			goto out;
845 	}
846 
847 	/*
848 	 * Try to reach the target state. We max out on the BP at
849 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
850 	 * responsible for bringing it up to the target state.
851 	 */
852 	target = min((int)target, CPUHP_BRINGUP_CPU);
853 	ret = cpuhp_up_callbacks(cpu, st, target);
854 out:
855 	cpus_write_unlock();
856 	return ret;
857 }
858 
859 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
860 {
861 	int err = 0;
862 
863 	if (!cpu_possible(cpu)) {
864 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
865 		       cpu);
866 #if defined(CONFIG_IA64)
867 		pr_err("please check additional_cpus= boot parameter\n");
868 #endif
869 		return -EINVAL;
870 	}
871 
872 	err = try_online_node(cpu_to_node(cpu));
873 	if (err)
874 		return err;
875 
876 	cpu_maps_update_begin();
877 
878 	if (cpu_hotplug_disabled) {
879 		err = -EBUSY;
880 		goto out;
881 	}
882 
883 	err = _cpu_up(cpu, 0, target);
884 out:
885 	cpu_maps_update_done();
886 	return err;
887 }
888 
889 int cpu_up(unsigned int cpu)
890 {
891 	return do_cpu_up(cpu, CPUHP_ONLINE);
892 }
893 EXPORT_SYMBOL_GPL(cpu_up);
894 
895 #ifdef CONFIG_PM_SLEEP_SMP
896 static cpumask_var_t frozen_cpus;
897 
898 int freeze_secondary_cpus(int primary)
899 {
900 	int cpu, error = 0;
901 
902 	cpu_maps_update_begin();
903 	if (!cpu_online(primary))
904 		primary = cpumask_first(cpu_online_mask);
905 	/*
906 	 * We take down all of the non-boot CPUs in one shot to avoid races
907 	 * with the userspace trying to use the CPU hotplug at the same time
908 	 */
909 	cpumask_clear(frozen_cpus);
910 
911 	pr_info("Disabling non-boot CPUs ...\n");
912 	for_each_online_cpu(cpu) {
913 		if (cpu == primary)
914 			continue;
915 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
916 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
917 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
918 		if (!error)
919 			cpumask_set_cpu(cpu, frozen_cpus);
920 		else {
921 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
922 			break;
923 		}
924 	}
925 
926 	if (!error)
927 		BUG_ON(num_online_cpus() > 1);
928 	else
929 		pr_err("Non-boot CPUs are not disabled\n");
930 
931 	/*
932 	 * Make sure the CPUs won't be enabled by someone else. We need to do
933 	 * this even in case of failure as all disable_nonboot_cpus() users are
934 	 * supposed to do enable_nonboot_cpus() on the failure path.
935 	 */
936 	cpu_hotplug_disabled++;
937 
938 	cpu_maps_update_done();
939 	return error;
940 }
941 
942 void __weak arch_enable_nonboot_cpus_begin(void)
943 {
944 }
945 
946 void __weak arch_enable_nonboot_cpus_end(void)
947 {
948 }
949 
950 void enable_nonboot_cpus(void)
951 {
952 	int cpu, error;
953 
954 	/* Allow everyone to use the CPU hotplug again */
955 	cpu_maps_update_begin();
956 	__cpu_hotplug_enable();
957 	if (cpumask_empty(frozen_cpus))
958 		goto out;
959 
960 	pr_info("Enabling non-boot CPUs ...\n");
961 
962 	arch_enable_nonboot_cpus_begin();
963 
964 	for_each_cpu(cpu, frozen_cpus) {
965 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
966 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
967 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
968 		if (!error) {
969 			pr_info("CPU%d is up\n", cpu);
970 			continue;
971 		}
972 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
973 	}
974 
975 	arch_enable_nonboot_cpus_end();
976 
977 	cpumask_clear(frozen_cpus);
978 out:
979 	cpu_maps_update_done();
980 }
981 
982 static int __init alloc_frozen_cpus(void)
983 {
984 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
985 		return -ENOMEM;
986 	return 0;
987 }
988 core_initcall(alloc_frozen_cpus);
989 
990 /*
991  * When callbacks for CPU hotplug notifications are being executed, we must
992  * ensure that the state of the system with respect to the tasks being frozen
993  * or not, as reported by the notification, remains unchanged *throughout the
994  * duration* of the execution of the callbacks.
995  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
996  *
997  * This synchronization is implemented by mutually excluding regular CPU
998  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
999  * Hibernate notifications.
1000  */
1001 static int
1002 cpu_hotplug_pm_callback(struct notifier_block *nb,
1003 			unsigned long action, void *ptr)
1004 {
1005 	switch (action) {
1006 
1007 	case PM_SUSPEND_PREPARE:
1008 	case PM_HIBERNATION_PREPARE:
1009 		cpu_hotplug_disable();
1010 		break;
1011 
1012 	case PM_POST_SUSPEND:
1013 	case PM_POST_HIBERNATION:
1014 		cpu_hotplug_enable();
1015 		break;
1016 
1017 	default:
1018 		return NOTIFY_DONE;
1019 	}
1020 
1021 	return NOTIFY_OK;
1022 }
1023 
1024 
1025 static int __init cpu_hotplug_pm_sync_init(void)
1026 {
1027 	/*
1028 	 * cpu_hotplug_pm_callback has higher priority than x86
1029 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1030 	 * to disable cpu hotplug to avoid cpu hotplug race.
1031 	 */
1032 	pm_notifier(cpu_hotplug_pm_callback, 0);
1033 	return 0;
1034 }
1035 core_initcall(cpu_hotplug_pm_sync_init);
1036 
1037 #endif /* CONFIG_PM_SLEEP_SMP */
1038 
1039 int __boot_cpu_id;
1040 
1041 #endif /* CONFIG_SMP */
1042 
1043 /* Boot processor state steps */
1044 static struct cpuhp_step cpuhp_bp_states[] = {
1045 	[CPUHP_OFFLINE] = {
1046 		.name			= "offline",
1047 		.startup.single		= NULL,
1048 		.teardown.single	= NULL,
1049 	},
1050 #ifdef CONFIG_SMP
1051 	[CPUHP_CREATE_THREADS]= {
1052 		.name			= "threads:prepare",
1053 		.startup.single		= smpboot_create_threads,
1054 		.teardown.single	= NULL,
1055 		.cant_stop		= true,
1056 	},
1057 	[CPUHP_PERF_PREPARE] = {
1058 		.name			= "perf:prepare",
1059 		.startup.single		= perf_event_init_cpu,
1060 		.teardown.single	= perf_event_exit_cpu,
1061 	},
1062 	[CPUHP_WORKQUEUE_PREP] = {
1063 		.name			= "workqueue:prepare",
1064 		.startup.single		= workqueue_prepare_cpu,
1065 		.teardown.single	= NULL,
1066 	},
1067 	[CPUHP_HRTIMERS_PREPARE] = {
1068 		.name			= "hrtimers:prepare",
1069 		.startup.single		= hrtimers_prepare_cpu,
1070 		.teardown.single	= hrtimers_dead_cpu,
1071 	},
1072 	[CPUHP_SMPCFD_PREPARE] = {
1073 		.name			= "smpcfd:prepare",
1074 		.startup.single		= smpcfd_prepare_cpu,
1075 		.teardown.single	= smpcfd_dead_cpu,
1076 	},
1077 	[CPUHP_RELAY_PREPARE] = {
1078 		.name			= "relay:prepare",
1079 		.startup.single		= relay_prepare_cpu,
1080 		.teardown.single	= NULL,
1081 	},
1082 	[CPUHP_SLAB_PREPARE] = {
1083 		.name			= "slab:prepare",
1084 		.startup.single		= slab_prepare_cpu,
1085 		.teardown.single	= slab_dead_cpu,
1086 	},
1087 	[CPUHP_RCUTREE_PREP] = {
1088 		.name			= "RCU/tree:prepare",
1089 		.startup.single		= rcutree_prepare_cpu,
1090 		.teardown.single	= rcutree_dead_cpu,
1091 	},
1092 	/*
1093 	 * On the tear-down path, timers_dead_cpu() must be invoked
1094 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1095 	 * otherwise a RCU stall occurs.
1096 	 */
1097 	[CPUHP_TIMERS_DEAD] = {
1098 		.name			= "timers:dead",
1099 		.startup.single		= NULL,
1100 		.teardown.single	= timers_dead_cpu,
1101 	},
1102 	/* Kicks the plugged cpu into life */
1103 	[CPUHP_BRINGUP_CPU] = {
1104 		.name			= "cpu:bringup",
1105 		.startup.single		= bringup_cpu,
1106 		.teardown.single	= NULL,
1107 		.cant_stop		= true,
1108 	},
1109 	[CPUHP_AP_SMPCFD_DYING] = {
1110 		.name			= "smpcfd:dying",
1111 		.startup.single		= NULL,
1112 		.teardown.single	= smpcfd_dying_cpu,
1113 	},
1114 	/*
1115 	 * Handled on controll processor until the plugged processor manages
1116 	 * this itself.
1117 	 */
1118 	[CPUHP_TEARDOWN_CPU] = {
1119 		.name			= "cpu:teardown",
1120 		.startup.single		= NULL,
1121 		.teardown.single	= takedown_cpu,
1122 		.cant_stop		= true,
1123 	},
1124 #else
1125 	[CPUHP_BRINGUP_CPU] = { },
1126 #endif
1127 };
1128 
1129 /* Application processor state steps */
1130 static struct cpuhp_step cpuhp_ap_states[] = {
1131 #ifdef CONFIG_SMP
1132 	/* Final state before CPU kills itself */
1133 	[CPUHP_AP_IDLE_DEAD] = {
1134 		.name			= "idle:dead",
1135 	},
1136 	/*
1137 	 * Last state before CPU enters the idle loop to die. Transient state
1138 	 * for synchronization.
1139 	 */
1140 	[CPUHP_AP_OFFLINE] = {
1141 		.name			= "ap:offline",
1142 		.cant_stop		= true,
1143 	},
1144 	/* First state is scheduler control. Interrupts are disabled */
1145 	[CPUHP_AP_SCHED_STARTING] = {
1146 		.name			= "sched:starting",
1147 		.startup.single		= sched_cpu_starting,
1148 		.teardown.single	= sched_cpu_dying,
1149 	},
1150 	[CPUHP_AP_RCUTREE_DYING] = {
1151 		.name			= "RCU/tree:dying",
1152 		.startup.single		= NULL,
1153 		.teardown.single	= rcutree_dying_cpu,
1154 	},
1155 	/* Entry state on starting. Interrupts enabled from here on. Transient
1156 	 * state for synchronsization */
1157 	[CPUHP_AP_ONLINE] = {
1158 		.name			= "ap:online",
1159 	},
1160 	/* Handle smpboot threads park/unpark */
1161 	[CPUHP_AP_SMPBOOT_THREADS] = {
1162 		.name			= "smpboot/threads:online",
1163 		.startup.single		= smpboot_unpark_threads,
1164 		.teardown.single	= NULL,
1165 	},
1166 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1167 		.name			= "irq/affinity:online",
1168 		.startup.single		= irq_affinity_online_cpu,
1169 		.teardown.single	= NULL,
1170 	},
1171 	[CPUHP_AP_PERF_ONLINE] = {
1172 		.name			= "perf:online",
1173 		.startup.single		= perf_event_init_cpu,
1174 		.teardown.single	= perf_event_exit_cpu,
1175 	},
1176 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1177 		.name			= "workqueue:online",
1178 		.startup.single		= workqueue_online_cpu,
1179 		.teardown.single	= workqueue_offline_cpu,
1180 	},
1181 	[CPUHP_AP_RCUTREE_ONLINE] = {
1182 		.name			= "RCU/tree:online",
1183 		.startup.single		= rcutree_online_cpu,
1184 		.teardown.single	= rcutree_offline_cpu,
1185 	},
1186 #endif
1187 	/*
1188 	 * The dynamically registered state space is here
1189 	 */
1190 
1191 #ifdef CONFIG_SMP
1192 	/* Last state is scheduler control setting the cpu active */
1193 	[CPUHP_AP_ACTIVE] = {
1194 		.name			= "sched:active",
1195 		.startup.single		= sched_cpu_activate,
1196 		.teardown.single	= sched_cpu_deactivate,
1197 	},
1198 #endif
1199 
1200 	/* CPU is fully up and running. */
1201 	[CPUHP_ONLINE] = {
1202 		.name			= "online",
1203 		.startup.single		= NULL,
1204 		.teardown.single	= NULL,
1205 	},
1206 };
1207 
1208 /* Sanity check for callbacks */
1209 static int cpuhp_cb_check(enum cpuhp_state state)
1210 {
1211 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1212 		return -EINVAL;
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Returns a free for dynamic slot assignment of the Online state. The states
1218  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1219  * by having no name assigned.
1220  */
1221 static int cpuhp_reserve_state(enum cpuhp_state state)
1222 {
1223 	enum cpuhp_state i, end;
1224 	struct cpuhp_step *step;
1225 
1226 	switch (state) {
1227 	case CPUHP_AP_ONLINE_DYN:
1228 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1229 		end = CPUHP_AP_ONLINE_DYN_END;
1230 		break;
1231 	case CPUHP_BP_PREPARE_DYN:
1232 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1233 		end = CPUHP_BP_PREPARE_DYN_END;
1234 		break;
1235 	default:
1236 		return -EINVAL;
1237 	}
1238 
1239 	for (i = state; i <= end; i++, step++) {
1240 		if (!step->name)
1241 			return i;
1242 	}
1243 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1244 	return -ENOSPC;
1245 }
1246 
1247 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1248 				 int (*startup)(unsigned int cpu),
1249 				 int (*teardown)(unsigned int cpu),
1250 				 bool multi_instance)
1251 {
1252 	/* (Un)Install the callbacks for further cpu hotplug operations */
1253 	struct cpuhp_step *sp;
1254 	int ret = 0;
1255 
1256 	/*
1257 	 * If name is NULL, then the state gets removed.
1258 	 *
1259 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1260 	 * the first allocation from these dynamic ranges, so the removal
1261 	 * would trigger a new allocation and clear the wrong (already
1262 	 * empty) state, leaving the callbacks of the to be cleared state
1263 	 * dangling, which causes wreckage on the next hotplug operation.
1264 	 */
1265 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1266 		     state == CPUHP_BP_PREPARE_DYN)) {
1267 		ret = cpuhp_reserve_state(state);
1268 		if (ret < 0)
1269 			return ret;
1270 		state = ret;
1271 	}
1272 	sp = cpuhp_get_step(state);
1273 	if (name && sp->name)
1274 		return -EBUSY;
1275 
1276 	sp->startup.single = startup;
1277 	sp->teardown.single = teardown;
1278 	sp->name = name;
1279 	sp->multi_instance = multi_instance;
1280 	INIT_HLIST_HEAD(&sp->list);
1281 	return ret;
1282 }
1283 
1284 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1285 {
1286 	return cpuhp_get_step(state)->teardown.single;
1287 }
1288 
1289 /*
1290  * Call the startup/teardown function for a step either on the AP or
1291  * on the current CPU.
1292  */
1293 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1294 			    struct hlist_node *node)
1295 {
1296 	struct cpuhp_step *sp = cpuhp_get_step(state);
1297 	int ret;
1298 
1299 	if ((bringup && !sp->startup.single) ||
1300 	    (!bringup && !sp->teardown.single))
1301 		return 0;
1302 	/*
1303 	 * The non AP bound callbacks can fail on bringup. On teardown
1304 	 * e.g. module removal we crash for now.
1305 	 */
1306 #ifdef CONFIG_SMP
1307 	if (cpuhp_is_ap_state(state))
1308 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1309 	else
1310 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1311 #else
1312 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1313 #endif
1314 	BUG_ON(ret && !bringup);
1315 	return ret;
1316 }
1317 
1318 /*
1319  * Called from __cpuhp_setup_state on a recoverable failure.
1320  *
1321  * Note: The teardown callbacks for rollback are not allowed to fail!
1322  */
1323 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1324 				   struct hlist_node *node)
1325 {
1326 	int cpu;
1327 
1328 	/* Roll back the already executed steps on the other cpus */
1329 	for_each_present_cpu(cpu) {
1330 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 		int cpustate = st->state;
1332 
1333 		if (cpu >= failedcpu)
1334 			break;
1335 
1336 		/* Did we invoke the startup call on that cpu ? */
1337 		if (cpustate >= state)
1338 			cpuhp_issue_call(cpu, state, false, node);
1339 	}
1340 }
1341 
1342 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1343 					  struct hlist_node *node,
1344 					  bool invoke)
1345 {
1346 	struct cpuhp_step *sp;
1347 	int cpu;
1348 	int ret;
1349 
1350 	lockdep_assert_cpus_held();
1351 
1352 	sp = cpuhp_get_step(state);
1353 	if (sp->multi_instance == false)
1354 		return -EINVAL;
1355 
1356 	mutex_lock(&cpuhp_state_mutex);
1357 
1358 	if (!invoke || !sp->startup.multi)
1359 		goto add_node;
1360 
1361 	/*
1362 	 * Try to call the startup callback for each present cpu
1363 	 * depending on the hotplug state of the cpu.
1364 	 */
1365 	for_each_present_cpu(cpu) {
1366 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1367 		int cpustate = st->state;
1368 
1369 		if (cpustate < state)
1370 			continue;
1371 
1372 		ret = cpuhp_issue_call(cpu, state, true, node);
1373 		if (ret) {
1374 			if (sp->teardown.multi)
1375 				cpuhp_rollback_install(cpu, state, node);
1376 			goto unlock;
1377 		}
1378 	}
1379 add_node:
1380 	ret = 0;
1381 	hlist_add_head(node, &sp->list);
1382 unlock:
1383 	mutex_unlock(&cpuhp_state_mutex);
1384 	return ret;
1385 }
1386 
1387 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1388 			       bool invoke)
1389 {
1390 	int ret;
1391 
1392 	cpus_read_lock();
1393 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1394 	cpus_read_unlock();
1395 	return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1398 
1399 /**
1400  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1401  * @state:		The state to setup
1402  * @invoke:		If true, the startup function is invoked for cpus where
1403  *			cpu state >= @state
1404  * @startup:		startup callback function
1405  * @teardown:		teardown callback function
1406  * @multi_instance:	State is set up for multiple instances which get
1407  *			added afterwards.
1408  *
1409  * The caller needs to hold cpus read locked while calling this function.
1410  * Returns:
1411  *   On success:
1412  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1413  *      0 for all other states
1414  *   On failure: proper (negative) error code
1415  */
1416 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1417 				   const char *name, bool invoke,
1418 				   int (*startup)(unsigned int cpu),
1419 				   int (*teardown)(unsigned int cpu),
1420 				   bool multi_instance)
1421 {
1422 	int cpu, ret = 0;
1423 	bool dynstate;
1424 
1425 	lockdep_assert_cpus_held();
1426 
1427 	if (cpuhp_cb_check(state) || !name)
1428 		return -EINVAL;
1429 
1430 	mutex_lock(&cpuhp_state_mutex);
1431 
1432 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1433 				    multi_instance);
1434 
1435 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1436 	if (ret > 0 && dynstate) {
1437 		state = ret;
1438 		ret = 0;
1439 	}
1440 
1441 	if (ret || !invoke || !startup)
1442 		goto out;
1443 
1444 	/*
1445 	 * Try to call the startup callback for each present cpu
1446 	 * depending on the hotplug state of the cpu.
1447 	 */
1448 	for_each_present_cpu(cpu) {
1449 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1450 		int cpustate = st->state;
1451 
1452 		if (cpustate < state)
1453 			continue;
1454 
1455 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1456 		if (ret) {
1457 			if (teardown)
1458 				cpuhp_rollback_install(cpu, state, NULL);
1459 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1460 			goto out;
1461 		}
1462 	}
1463 out:
1464 	mutex_unlock(&cpuhp_state_mutex);
1465 	/*
1466 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1467 	 * dynamically allocated state in case of success.
1468 	 */
1469 	if (!ret && dynstate)
1470 		return state;
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1474 
1475 int __cpuhp_setup_state(enum cpuhp_state state,
1476 			const char *name, bool invoke,
1477 			int (*startup)(unsigned int cpu),
1478 			int (*teardown)(unsigned int cpu),
1479 			bool multi_instance)
1480 {
1481 	int ret;
1482 
1483 	cpus_read_lock();
1484 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1485 					     teardown, multi_instance);
1486 	cpus_read_unlock();
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL(__cpuhp_setup_state);
1490 
1491 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1492 				  struct hlist_node *node, bool invoke)
1493 {
1494 	struct cpuhp_step *sp = cpuhp_get_step(state);
1495 	int cpu;
1496 
1497 	BUG_ON(cpuhp_cb_check(state));
1498 
1499 	if (!sp->multi_instance)
1500 		return -EINVAL;
1501 
1502 	cpus_read_lock();
1503 	mutex_lock(&cpuhp_state_mutex);
1504 
1505 	if (!invoke || !cpuhp_get_teardown_cb(state))
1506 		goto remove;
1507 	/*
1508 	 * Call the teardown callback for each present cpu depending
1509 	 * on the hotplug state of the cpu. This function is not
1510 	 * allowed to fail currently!
1511 	 */
1512 	for_each_present_cpu(cpu) {
1513 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1514 		int cpustate = st->state;
1515 
1516 		if (cpustate >= state)
1517 			cpuhp_issue_call(cpu, state, false, node);
1518 	}
1519 
1520 remove:
1521 	hlist_del(node);
1522 	mutex_unlock(&cpuhp_state_mutex);
1523 	cpus_read_unlock();
1524 
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1528 
1529 /**
1530  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1531  * @state:	The state to remove
1532  * @invoke:	If true, the teardown function is invoked for cpus where
1533  *		cpu state >= @state
1534  *
1535  * The caller needs to hold cpus read locked while calling this function.
1536  * The teardown callback is currently not allowed to fail. Think
1537  * about module removal!
1538  */
1539 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1540 {
1541 	struct cpuhp_step *sp = cpuhp_get_step(state);
1542 	int cpu;
1543 
1544 	BUG_ON(cpuhp_cb_check(state));
1545 
1546 	lockdep_assert_cpus_held();
1547 
1548 	mutex_lock(&cpuhp_state_mutex);
1549 	if (sp->multi_instance) {
1550 		WARN(!hlist_empty(&sp->list),
1551 		     "Error: Removing state %d which has instances left.\n",
1552 		     state);
1553 		goto remove;
1554 	}
1555 
1556 	if (!invoke || !cpuhp_get_teardown_cb(state))
1557 		goto remove;
1558 
1559 	/*
1560 	 * Call the teardown callback for each present cpu depending
1561 	 * on the hotplug state of the cpu. This function is not
1562 	 * allowed to fail currently!
1563 	 */
1564 	for_each_present_cpu(cpu) {
1565 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1566 		int cpustate = st->state;
1567 
1568 		if (cpustate >= state)
1569 			cpuhp_issue_call(cpu, state, false, NULL);
1570 	}
1571 remove:
1572 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1573 	mutex_unlock(&cpuhp_state_mutex);
1574 }
1575 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1576 
1577 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1578 {
1579 	cpus_read_lock();
1580 	__cpuhp_remove_state_cpuslocked(state, invoke);
1581 	cpus_read_unlock();
1582 }
1583 EXPORT_SYMBOL(__cpuhp_remove_state);
1584 
1585 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1586 static ssize_t show_cpuhp_state(struct device *dev,
1587 				struct device_attribute *attr, char *buf)
1588 {
1589 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1590 
1591 	return sprintf(buf, "%d\n", st->state);
1592 }
1593 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1594 
1595 static ssize_t write_cpuhp_target(struct device *dev,
1596 				  struct device_attribute *attr,
1597 				  const char *buf, size_t count)
1598 {
1599 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1600 	struct cpuhp_step *sp;
1601 	int target, ret;
1602 
1603 	ret = kstrtoint(buf, 10, &target);
1604 	if (ret)
1605 		return ret;
1606 
1607 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1608 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1609 		return -EINVAL;
1610 #else
1611 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1612 		return -EINVAL;
1613 #endif
1614 
1615 	ret = lock_device_hotplug_sysfs();
1616 	if (ret)
1617 		return ret;
1618 
1619 	mutex_lock(&cpuhp_state_mutex);
1620 	sp = cpuhp_get_step(target);
1621 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1622 	mutex_unlock(&cpuhp_state_mutex);
1623 	if (ret)
1624 		goto out;
1625 
1626 	if (st->state < target)
1627 		ret = do_cpu_up(dev->id, target);
1628 	else
1629 		ret = do_cpu_down(dev->id, target);
1630 out:
1631 	unlock_device_hotplug();
1632 	return ret ? ret : count;
1633 }
1634 
1635 static ssize_t show_cpuhp_target(struct device *dev,
1636 				 struct device_attribute *attr, char *buf)
1637 {
1638 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1639 
1640 	return sprintf(buf, "%d\n", st->target);
1641 }
1642 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1643 
1644 static struct attribute *cpuhp_cpu_attrs[] = {
1645 	&dev_attr_state.attr,
1646 	&dev_attr_target.attr,
1647 	NULL
1648 };
1649 
1650 static const struct attribute_group cpuhp_cpu_attr_group = {
1651 	.attrs = cpuhp_cpu_attrs,
1652 	.name = "hotplug",
1653 	NULL
1654 };
1655 
1656 static ssize_t show_cpuhp_states(struct device *dev,
1657 				 struct device_attribute *attr, char *buf)
1658 {
1659 	ssize_t cur, res = 0;
1660 	int i;
1661 
1662 	mutex_lock(&cpuhp_state_mutex);
1663 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1664 		struct cpuhp_step *sp = cpuhp_get_step(i);
1665 
1666 		if (sp->name) {
1667 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1668 			buf += cur;
1669 			res += cur;
1670 		}
1671 	}
1672 	mutex_unlock(&cpuhp_state_mutex);
1673 	return res;
1674 }
1675 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1676 
1677 static struct attribute *cpuhp_cpu_root_attrs[] = {
1678 	&dev_attr_states.attr,
1679 	NULL
1680 };
1681 
1682 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1683 	.attrs = cpuhp_cpu_root_attrs,
1684 	.name = "hotplug",
1685 	NULL
1686 };
1687 
1688 static int __init cpuhp_sysfs_init(void)
1689 {
1690 	int cpu, ret;
1691 
1692 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1693 				 &cpuhp_cpu_root_attr_group);
1694 	if (ret)
1695 		return ret;
1696 
1697 	for_each_possible_cpu(cpu) {
1698 		struct device *dev = get_cpu_device(cpu);
1699 
1700 		if (!dev)
1701 			continue;
1702 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1703 		if (ret)
1704 			return ret;
1705 	}
1706 	return 0;
1707 }
1708 device_initcall(cpuhp_sysfs_init);
1709 #endif
1710 
1711 /*
1712  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1713  * represents all NR_CPUS bits binary values of 1<<nr.
1714  *
1715  * It is used by cpumask_of() to get a constant address to a CPU
1716  * mask value that has a single bit set only.
1717  */
1718 
1719 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1720 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1721 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1722 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1723 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1724 
1725 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1726 
1727 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1728 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1729 #if BITS_PER_LONG > 32
1730 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1731 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1732 #endif
1733 };
1734 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1735 
1736 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1737 EXPORT_SYMBOL(cpu_all_bits);
1738 
1739 #ifdef CONFIG_INIT_ALL_POSSIBLE
1740 struct cpumask __cpu_possible_mask __read_mostly
1741 	= {CPU_BITS_ALL};
1742 #else
1743 struct cpumask __cpu_possible_mask __read_mostly;
1744 #endif
1745 EXPORT_SYMBOL(__cpu_possible_mask);
1746 
1747 struct cpumask __cpu_online_mask __read_mostly;
1748 EXPORT_SYMBOL(__cpu_online_mask);
1749 
1750 struct cpumask __cpu_present_mask __read_mostly;
1751 EXPORT_SYMBOL(__cpu_present_mask);
1752 
1753 struct cpumask __cpu_active_mask __read_mostly;
1754 EXPORT_SYMBOL(__cpu_active_mask);
1755 
1756 void init_cpu_present(const struct cpumask *src)
1757 {
1758 	cpumask_copy(&__cpu_present_mask, src);
1759 }
1760 
1761 void init_cpu_possible(const struct cpumask *src)
1762 {
1763 	cpumask_copy(&__cpu_possible_mask, src);
1764 }
1765 
1766 void init_cpu_online(const struct cpumask *src)
1767 {
1768 	cpumask_copy(&__cpu_online_mask, src);
1769 }
1770 
1771 /*
1772  * Activate the first processor.
1773  */
1774 void __init boot_cpu_init(void)
1775 {
1776 	int cpu = smp_processor_id();
1777 
1778 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1779 	set_cpu_online(cpu, true);
1780 	set_cpu_active(cpu, true);
1781 	set_cpu_present(cpu, true);
1782 	set_cpu_possible(cpu, true);
1783 
1784 #ifdef CONFIG_SMP
1785 	__boot_cpu_id = cpu;
1786 #endif
1787 }
1788 
1789 /*
1790  * Must be called _AFTER_ setting up the per_cpu areas
1791  */
1792 void __init boot_cpu_state_init(void)
1793 {
1794 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1795 }
1796