1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/nmi.h> 28 #include <linux/smpboot.h> 29 #include <linux/relay.h> 30 #include <linux/slab.h> 31 #include <linux/percpu-rwsem.h> 32 33 #include <trace/events/power.h> 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/cpuhp.h> 36 37 #include "smpboot.h" 38 39 /** 40 * cpuhp_cpu_state - Per cpu hotplug state storage 41 * @state: The current cpu state 42 * @target: The target state 43 * @thread: Pointer to the hotplug thread 44 * @should_run: Thread should execute 45 * @rollback: Perform a rollback 46 * @single: Single callback invocation 47 * @bringup: Single callback bringup or teardown selector 48 * @cb_state: The state for a single callback (install/uninstall) 49 * @result: Result of the operation 50 * @done_up: Signal completion to the issuer of the task for cpu-up 51 * @done_down: Signal completion to the issuer of the task for cpu-down 52 */ 53 struct cpuhp_cpu_state { 54 enum cpuhp_state state; 55 enum cpuhp_state target; 56 enum cpuhp_state fail; 57 #ifdef CONFIG_SMP 58 struct task_struct *thread; 59 bool should_run; 60 bool rollback; 61 bool single; 62 bool bringup; 63 bool booted_once; 64 struct hlist_node *node; 65 struct hlist_node *last; 66 enum cpuhp_state cb_state; 67 int result; 68 struct completion done_up; 69 struct completion done_down; 70 #endif 71 }; 72 73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 74 .fail = CPUHP_INVALID, 75 }; 76 77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 78 static struct lockdep_map cpuhp_state_up_map = 79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 80 static struct lockdep_map cpuhp_state_down_map = 81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 82 83 84 static inline void cpuhp_lock_acquire(bool bringup) 85 { 86 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 87 } 88 89 static inline void cpuhp_lock_release(bool bringup) 90 { 91 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 #else 94 95 static inline void cpuhp_lock_acquire(bool bringup) { } 96 static inline void cpuhp_lock_release(bool bringup) { } 97 98 #endif 99 100 /** 101 * cpuhp_step - Hotplug state machine step 102 * @name: Name of the step 103 * @startup: Startup function of the step 104 * @teardown: Teardown function of the step 105 * @skip_onerr: Do not invoke the functions on error rollback 106 * Will go away once the notifiers are gone 107 * @cant_stop: Bringup/teardown can't be stopped at this step 108 */ 109 struct cpuhp_step { 110 const char *name; 111 union { 112 int (*single)(unsigned int cpu); 113 int (*multi)(unsigned int cpu, 114 struct hlist_node *node); 115 } startup; 116 union { 117 int (*single)(unsigned int cpu); 118 int (*multi)(unsigned int cpu, 119 struct hlist_node *node); 120 } teardown; 121 struct hlist_head list; 122 bool skip_onerr; 123 bool cant_stop; 124 bool multi_instance; 125 }; 126 127 static DEFINE_MUTEX(cpuhp_state_mutex); 128 static struct cpuhp_step cpuhp_hp_states[]; 129 130 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 131 { 132 return cpuhp_hp_states + state; 133 } 134 135 /** 136 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 137 * @cpu: The cpu for which the callback should be invoked 138 * @state: The state to do callbacks for 139 * @bringup: True if the bringup callback should be invoked 140 * @node: For multi-instance, do a single entry callback for install/remove 141 * @lastp: For multi-instance rollback, remember how far we got 142 * 143 * Called from cpu hotplug and from the state register machinery. 144 */ 145 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 146 bool bringup, struct hlist_node *node, 147 struct hlist_node **lastp) 148 { 149 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 150 struct cpuhp_step *step = cpuhp_get_step(state); 151 int (*cbm)(unsigned int cpu, struct hlist_node *node); 152 int (*cb)(unsigned int cpu); 153 int ret, cnt; 154 155 if (st->fail == state) { 156 st->fail = CPUHP_INVALID; 157 158 if (!(bringup ? step->startup.single : step->teardown.single)) 159 return 0; 160 161 return -EAGAIN; 162 } 163 164 if (!step->multi_instance) { 165 WARN_ON_ONCE(lastp && *lastp); 166 cb = bringup ? step->startup.single : step->teardown.single; 167 if (!cb) 168 return 0; 169 trace_cpuhp_enter(cpu, st->target, state, cb); 170 ret = cb(cpu); 171 trace_cpuhp_exit(cpu, st->state, state, ret); 172 return ret; 173 } 174 cbm = bringup ? step->startup.multi : step->teardown.multi; 175 if (!cbm) 176 return 0; 177 178 /* Single invocation for instance add/remove */ 179 if (node) { 180 WARN_ON_ONCE(lastp && *lastp); 181 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 182 ret = cbm(cpu, node); 183 trace_cpuhp_exit(cpu, st->state, state, ret); 184 return ret; 185 } 186 187 /* State transition. Invoke on all instances */ 188 cnt = 0; 189 hlist_for_each(node, &step->list) { 190 if (lastp && node == *lastp) 191 break; 192 193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 194 ret = cbm(cpu, node); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 if (ret) { 197 if (!lastp) 198 goto err; 199 200 *lastp = node; 201 return ret; 202 } 203 cnt++; 204 } 205 if (lastp) 206 *lastp = NULL; 207 return 0; 208 err: 209 /* Rollback the instances if one failed */ 210 cbm = !bringup ? step->startup.multi : step->teardown.multi; 211 if (!cbm) 212 return ret; 213 214 hlist_for_each(node, &step->list) { 215 if (!cnt--) 216 break; 217 218 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 219 ret = cbm(cpu, node); 220 trace_cpuhp_exit(cpu, st->state, state, ret); 221 /* 222 * Rollback must not fail, 223 */ 224 WARN_ON_ONCE(ret); 225 } 226 return ret; 227 } 228 229 #ifdef CONFIG_SMP 230 static bool cpuhp_is_ap_state(enum cpuhp_state state) 231 { 232 /* 233 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 234 * purposes as that state is handled explicitly in cpu_down. 235 */ 236 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 237 } 238 239 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 240 { 241 struct completion *done = bringup ? &st->done_up : &st->done_down; 242 wait_for_completion(done); 243 } 244 245 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 246 { 247 struct completion *done = bringup ? &st->done_up : &st->done_down; 248 complete(done); 249 } 250 251 /* 252 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 253 */ 254 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 255 { 256 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 257 } 258 259 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 260 static DEFINE_MUTEX(cpu_add_remove_lock); 261 bool cpuhp_tasks_frozen; 262 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 263 264 /* 265 * The following two APIs (cpu_maps_update_begin/done) must be used when 266 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 267 */ 268 void cpu_maps_update_begin(void) 269 { 270 mutex_lock(&cpu_add_remove_lock); 271 } 272 273 void cpu_maps_update_done(void) 274 { 275 mutex_unlock(&cpu_add_remove_lock); 276 } 277 278 /* 279 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 280 * Should always be manipulated under cpu_add_remove_lock 281 */ 282 static int cpu_hotplug_disabled; 283 284 #ifdef CONFIG_HOTPLUG_CPU 285 286 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 287 288 void cpus_read_lock(void) 289 { 290 percpu_down_read(&cpu_hotplug_lock); 291 } 292 EXPORT_SYMBOL_GPL(cpus_read_lock); 293 294 int cpus_read_trylock(void) 295 { 296 return percpu_down_read_trylock(&cpu_hotplug_lock); 297 } 298 EXPORT_SYMBOL_GPL(cpus_read_trylock); 299 300 void cpus_read_unlock(void) 301 { 302 percpu_up_read(&cpu_hotplug_lock); 303 } 304 EXPORT_SYMBOL_GPL(cpus_read_unlock); 305 306 void cpus_write_lock(void) 307 { 308 percpu_down_write(&cpu_hotplug_lock); 309 } 310 311 void cpus_write_unlock(void) 312 { 313 percpu_up_write(&cpu_hotplug_lock); 314 } 315 316 void lockdep_assert_cpus_held(void) 317 { 318 percpu_rwsem_assert_held(&cpu_hotplug_lock); 319 } 320 321 /* 322 * Wait for currently running CPU hotplug operations to complete (if any) and 323 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 324 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 325 * hotplug path before performing hotplug operations. So acquiring that lock 326 * guarantees mutual exclusion from any currently running hotplug operations. 327 */ 328 void cpu_hotplug_disable(void) 329 { 330 cpu_maps_update_begin(); 331 cpu_hotplug_disabled++; 332 cpu_maps_update_done(); 333 } 334 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 335 336 static void __cpu_hotplug_enable(void) 337 { 338 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 339 return; 340 cpu_hotplug_disabled--; 341 } 342 343 void cpu_hotplug_enable(void) 344 { 345 cpu_maps_update_begin(); 346 __cpu_hotplug_enable(); 347 cpu_maps_update_done(); 348 } 349 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 350 #endif /* CONFIG_HOTPLUG_CPU */ 351 352 #ifdef CONFIG_HOTPLUG_SMT 353 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 354 EXPORT_SYMBOL_GPL(cpu_smt_control); 355 356 static bool cpu_smt_available __read_mostly; 357 358 void __init cpu_smt_disable(bool force) 359 { 360 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 361 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 362 return; 363 364 if (force) { 365 pr_info("SMT: Force disabled\n"); 366 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 367 } else { 368 cpu_smt_control = CPU_SMT_DISABLED; 369 } 370 } 371 372 /* 373 * The decision whether SMT is supported can only be done after the full 374 * CPU identification. Called from architecture code before non boot CPUs 375 * are brought up. 376 */ 377 void __init cpu_smt_check_topology_early(void) 378 { 379 if (!topology_smt_supported()) 380 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 381 } 382 383 /* 384 * If SMT was disabled by BIOS, detect it here, after the CPUs have been 385 * brought online. This ensures the smt/l1tf sysfs entries are consistent 386 * with reality. cpu_smt_available is set to true during the bringup of non 387 * boot CPUs when a SMT sibling is detected. Note, this may overwrite 388 * cpu_smt_control's previous setting. 389 */ 390 void __init cpu_smt_check_topology(void) 391 { 392 if (!cpu_smt_available) 393 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 394 } 395 396 static int __init smt_cmdline_disable(char *str) 397 { 398 cpu_smt_disable(str && !strcmp(str, "force")); 399 return 0; 400 } 401 early_param("nosmt", smt_cmdline_disable); 402 403 static inline bool cpu_smt_allowed(unsigned int cpu) 404 { 405 if (topology_is_primary_thread(cpu)) 406 return true; 407 408 /* 409 * If the CPU is not a 'primary' thread and the booted_once bit is 410 * set then the processor has SMT support. Store this information 411 * for the late check of SMT support in cpu_smt_check_topology(). 412 */ 413 if (per_cpu(cpuhp_state, cpu).booted_once) 414 cpu_smt_available = true; 415 416 if (cpu_smt_control == CPU_SMT_ENABLED) 417 return true; 418 419 /* 420 * On x86 it's required to boot all logical CPUs at least once so 421 * that the init code can get a chance to set CR4.MCE on each 422 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 423 * core will shutdown the machine. 424 */ 425 return !per_cpu(cpuhp_state, cpu).booted_once; 426 } 427 #else 428 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 429 #endif 430 431 static inline enum cpuhp_state 432 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 433 { 434 enum cpuhp_state prev_state = st->state; 435 436 st->rollback = false; 437 st->last = NULL; 438 439 st->target = target; 440 st->single = false; 441 st->bringup = st->state < target; 442 443 return prev_state; 444 } 445 446 static inline void 447 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 448 { 449 st->rollback = true; 450 451 /* 452 * If we have st->last we need to undo partial multi_instance of this 453 * state first. Otherwise start undo at the previous state. 454 */ 455 if (!st->last) { 456 if (st->bringup) 457 st->state--; 458 else 459 st->state++; 460 } 461 462 st->target = prev_state; 463 st->bringup = !st->bringup; 464 } 465 466 /* Regular hotplug invocation of the AP hotplug thread */ 467 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 468 { 469 if (!st->single && st->state == st->target) 470 return; 471 472 st->result = 0; 473 /* 474 * Make sure the above stores are visible before should_run becomes 475 * true. Paired with the mb() above in cpuhp_thread_fun() 476 */ 477 smp_mb(); 478 st->should_run = true; 479 wake_up_process(st->thread); 480 wait_for_ap_thread(st, st->bringup); 481 } 482 483 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 484 { 485 enum cpuhp_state prev_state; 486 int ret; 487 488 prev_state = cpuhp_set_state(st, target); 489 __cpuhp_kick_ap(st); 490 if ((ret = st->result)) { 491 cpuhp_reset_state(st, prev_state); 492 __cpuhp_kick_ap(st); 493 } 494 495 return ret; 496 } 497 498 static int bringup_wait_for_ap(unsigned int cpu) 499 { 500 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 501 502 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 503 wait_for_ap_thread(st, true); 504 if (WARN_ON_ONCE((!cpu_online(cpu)))) 505 return -ECANCELED; 506 507 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 508 stop_machine_unpark(cpu); 509 kthread_unpark(st->thread); 510 511 /* 512 * SMT soft disabling on X86 requires to bring the CPU out of the 513 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 514 * CPU marked itself as booted_once in cpu_notify_starting() so the 515 * cpu_smt_allowed() check will now return false if this is not the 516 * primary sibling. 517 */ 518 if (!cpu_smt_allowed(cpu)) 519 return -ECANCELED; 520 521 if (st->target <= CPUHP_AP_ONLINE_IDLE) 522 return 0; 523 524 return cpuhp_kick_ap(st, st->target); 525 } 526 527 static int bringup_cpu(unsigned int cpu) 528 { 529 struct task_struct *idle = idle_thread_get(cpu); 530 int ret; 531 532 /* 533 * Some architectures have to walk the irq descriptors to 534 * setup the vector space for the cpu which comes online. 535 * Prevent irq alloc/free across the bringup. 536 */ 537 irq_lock_sparse(); 538 539 /* Arch-specific enabling code. */ 540 ret = __cpu_up(cpu, idle); 541 irq_unlock_sparse(); 542 if (ret) 543 return ret; 544 return bringup_wait_for_ap(cpu); 545 } 546 547 /* 548 * Hotplug state machine related functions 549 */ 550 551 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 552 { 553 for (st->state--; st->state > st->target; st->state--) { 554 struct cpuhp_step *step = cpuhp_get_step(st->state); 555 556 if (!step->skip_onerr) 557 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 558 } 559 } 560 561 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 562 enum cpuhp_state target) 563 { 564 enum cpuhp_state prev_state = st->state; 565 int ret = 0; 566 567 while (st->state < target) { 568 st->state++; 569 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 570 if (ret) { 571 st->target = prev_state; 572 undo_cpu_up(cpu, st); 573 break; 574 } 575 } 576 return ret; 577 } 578 579 /* 580 * The cpu hotplug threads manage the bringup and teardown of the cpus 581 */ 582 static void cpuhp_create(unsigned int cpu) 583 { 584 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 585 586 init_completion(&st->done_up); 587 init_completion(&st->done_down); 588 } 589 590 static int cpuhp_should_run(unsigned int cpu) 591 { 592 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 593 594 return st->should_run; 595 } 596 597 /* 598 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 599 * callbacks when a state gets [un]installed at runtime. 600 * 601 * Each invocation of this function by the smpboot thread does a single AP 602 * state callback. 603 * 604 * It has 3 modes of operation: 605 * - single: runs st->cb_state 606 * - up: runs ++st->state, while st->state < st->target 607 * - down: runs st->state--, while st->state > st->target 608 * 609 * When complete or on error, should_run is cleared and the completion is fired. 610 */ 611 static void cpuhp_thread_fun(unsigned int cpu) 612 { 613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 614 bool bringup = st->bringup; 615 enum cpuhp_state state; 616 617 /* 618 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 619 * that if we see ->should_run we also see the rest of the state. 620 */ 621 smp_mb(); 622 623 if (WARN_ON_ONCE(!st->should_run)) 624 return; 625 626 cpuhp_lock_acquire(bringup); 627 628 if (st->single) { 629 state = st->cb_state; 630 st->should_run = false; 631 } else { 632 if (bringup) { 633 st->state++; 634 state = st->state; 635 st->should_run = (st->state < st->target); 636 WARN_ON_ONCE(st->state > st->target); 637 } else { 638 state = st->state; 639 st->state--; 640 st->should_run = (st->state > st->target); 641 WARN_ON_ONCE(st->state < st->target); 642 } 643 } 644 645 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 646 647 if (st->rollback) { 648 struct cpuhp_step *step = cpuhp_get_step(state); 649 if (step->skip_onerr) 650 goto next; 651 } 652 653 if (cpuhp_is_atomic_state(state)) { 654 local_irq_disable(); 655 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 656 local_irq_enable(); 657 658 /* 659 * STARTING/DYING must not fail! 660 */ 661 WARN_ON_ONCE(st->result); 662 } else { 663 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 664 } 665 666 if (st->result) { 667 /* 668 * If we fail on a rollback, we're up a creek without no 669 * paddle, no way forward, no way back. We loose, thanks for 670 * playing. 671 */ 672 WARN_ON_ONCE(st->rollback); 673 st->should_run = false; 674 } 675 676 next: 677 cpuhp_lock_release(bringup); 678 679 if (!st->should_run) 680 complete_ap_thread(st, bringup); 681 } 682 683 /* Invoke a single callback on a remote cpu */ 684 static int 685 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 686 struct hlist_node *node) 687 { 688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 689 int ret; 690 691 if (!cpu_online(cpu)) 692 return 0; 693 694 cpuhp_lock_acquire(false); 695 cpuhp_lock_release(false); 696 697 cpuhp_lock_acquire(true); 698 cpuhp_lock_release(true); 699 700 /* 701 * If we are up and running, use the hotplug thread. For early calls 702 * we invoke the thread function directly. 703 */ 704 if (!st->thread) 705 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 706 707 st->rollback = false; 708 st->last = NULL; 709 710 st->node = node; 711 st->bringup = bringup; 712 st->cb_state = state; 713 st->single = true; 714 715 __cpuhp_kick_ap(st); 716 717 /* 718 * If we failed and did a partial, do a rollback. 719 */ 720 if ((ret = st->result) && st->last) { 721 st->rollback = true; 722 st->bringup = !bringup; 723 724 __cpuhp_kick_ap(st); 725 } 726 727 /* 728 * Clean up the leftovers so the next hotplug operation wont use stale 729 * data. 730 */ 731 st->node = st->last = NULL; 732 return ret; 733 } 734 735 static int cpuhp_kick_ap_work(unsigned int cpu) 736 { 737 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 738 enum cpuhp_state prev_state = st->state; 739 int ret; 740 741 cpuhp_lock_acquire(false); 742 cpuhp_lock_release(false); 743 744 cpuhp_lock_acquire(true); 745 cpuhp_lock_release(true); 746 747 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 748 ret = cpuhp_kick_ap(st, st->target); 749 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 750 751 return ret; 752 } 753 754 static struct smp_hotplug_thread cpuhp_threads = { 755 .store = &cpuhp_state.thread, 756 .create = &cpuhp_create, 757 .thread_should_run = cpuhp_should_run, 758 .thread_fn = cpuhp_thread_fun, 759 .thread_comm = "cpuhp/%u", 760 .selfparking = true, 761 }; 762 763 void __init cpuhp_threads_init(void) 764 { 765 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 766 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 767 } 768 769 #ifdef CONFIG_HOTPLUG_CPU 770 /** 771 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 772 * @cpu: a CPU id 773 * 774 * This function walks all processes, finds a valid mm struct for each one and 775 * then clears a corresponding bit in mm's cpumask. While this all sounds 776 * trivial, there are various non-obvious corner cases, which this function 777 * tries to solve in a safe manner. 778 * 779 * Also note that the function uses a somewhat relaxed locking scheme, so it may 780 * be called only for an already offlined CPU. 781 */ 782 void clear_tasks_mm_cpumask(int cpu) 783 { 784 struct task_struct *p; 785 786 /* 787 * This function is called after the cpu is taken down and marked 788 * offline, so its not like new tasks will ever get this cpu set in 789 * their mm mask. -- Peter Zijlstra 790 * Thus, we may use rcu_read_lock() here, instead of grabbing 791 * full-fledged tasklist_lock. 792 */ 793 WARN_ON(cpu_online(cpu)); 794 rcu_read_lock(); 795 for_each_process(p) { 796 struct task_struct *t; 797 798 /* 799 * Main thread might exit, but other threads may still have 800 * a valid mm. Find one. 801 */ 802 t = find_lock_task_mm(p); 803 if (!t) 804 continue; 805 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 806 task_unlock(t); 807 } 808 rcu_read_unlock(); 809 } 810 811 /* Take this CPU down. */ 812 static int take_cpu_down(void *_param) 813 { 814 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 815 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 816 int err, cpu = smp_processor_id(); 817 int ret; 818 819 /* Ensure this CPU doesn't handle any more interrupts. */ 820 err = __cpu_disable(); 821 if (err < 0) 822 return err; 823 824 /* 825 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 826 * do this step again. 827 */ 828 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 829 st->state--; 830 /* Invoke the former CPU_DYING callbacks */ 831 for (; st->state > target; st->state--) { 832 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 833 /* 834 * DYING must not fail! 835 */ 836 WARN_ON_ONCE(ret); 837 } 838 839 /* Give up timekeeping duties */ 840 tick_handover_do_timer(); 841 /* Park the stopper thread */ 842 stop_machine_park(cpu); 843 return 0; 844 } 845 846 static int takedown_cpu(unsigned int cpu) 847 { 848 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 849 int err; 850 851 /* Park the smpboot threads */ 852 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 853 854 /* 855 * Prevent irq alloc/free while the dying cpu reorganizes the 856 * interrupt affinities. 857 */ 858 irq_lock_sparse(); 859 860 /* 861 * So now all preempt/rcu users must observe !cpu_active(). 862 */ 863 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 864 if (err) { 865 /* CPU refused to die */ 866 irq_unlock_sparse(); 867 /* Unpark the hotplug thread so we can rollback there */ 868 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 869 return err; 870 } 871 BUG_ON(cpu_online(cpu)); 872 873 /* 874 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 875 * all runnable tasks from the CPU, there's only the idle task left now 876 * that the migration thread is done doing the stop_machine thing. 877 * 878 * Wait for the stop thread to go away. 879 */ 880 wait_for_ap_thread(st, false); 881 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 882 883 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 884 irq_unlock_sparse(); 885 886 hotplug_cpu__broadcast_tick_pull(cpu); 887 /* This actually kills the CPU. */ 888 __cpu_die(cpu); 889 890 tick_cleanup_dead_cpu(cpu); 891 rcutree_migrate_callbacks(cpu); 892 return 0; 893 } 894 895 static void cpuhp_complete_idle_dead(void *arg) 896 { 897 struct cpuhp_cpu_state *st = arg; 898 899 complete_ap_thread(st, false); 900 } 901 902 void cpuhp_report_idle_dead(void) 903 { 904 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 905 906 BUG_ON(st->state != CPUHP_AP_OFFLINE); 907 rcu_report_dead(smp_processor_id()); 908 st->state = CPUHP_AP_IDLE_DEAD; 909 /* 910 * We cannot call complete after rcu_report_dead() so we delegate it 911 * to an online cpu. 912 */ 913 smp_call_function_single(cpumask_first(cpu_online_mask), 914 cpuhp_complete_idle_dead, st, 0); 915 } 916 917 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 918 { 919 for (st->state++; st->state < st->target; st->state++) { 920 struct cpuhp_step *step = cpuhp_get_step(st->state); 921 922 if (!step->skip_onerr) 923 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 924 } 925 } 926 927 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 928 enum cpuhp_state target) 929 { 930 enum cpuhp_state prev_state = st->state; 931 int ret = 0; 932 933 for (; st->state > target; st->state--) { 934 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 935 if (ret) { 936 st->target = prev_state; 937 undo_cpu_down(cpu, st); 938 break; 939 } 940 } 941 return ret; 942 } 943 944 /* Requires cpu_add_remove_lock to be held */ 945 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 946 enum cpuhp_state target) 947 { 948 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 949 int prev_state, ret = 0; 950 951 if (num_online_cpus() == 1) 952 return -EBUSY; 953 954 if (!cpu_present(cpu)) 955 return -EINVAL; 956 957 cpus_write_lock(); 958 959 cpuhp_tasks_frozen = tasks_frozen; 960 961 prev_state = cpuhp_set_state(st, target); 962 /* 963 * If the current CPU state is in the range of the AP hotplug thread, 964 * then we need to kick the thread. 965 */ 966 if (st->state > CPUHP_TEARDOWN_CPU) { 967 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 968 ret = cpuhp_kick_ap_work(cpu); 969 /* 970 * The AP side has done the error rollback already. Just 971 * return the error code.. 972 */ 973 if (ret) 974 goto out; 975 976 /* 977 * We might have stopped still in the range of the AP hotplug 978 * thread. Nothing to do anymore. 979 */ 980 if (st->state > CPUHP_TEARDOWN_CPU) 981 goto out; 982 983 st->target = target; 984 } 985 /* 986 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 987 * to do the further cleanups. 988 */ 989 ret = cpuhp_down_callbacks(cpu, st, target); 990 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 991 cpuhp_reset_state(st, prev_state); 992 __cpuhp_kick_ap(st); 993 } 994 995 out: 996 cpus_write_unlock(); 997 /* 998 * Do post unplug cleanup. This is still protected against 999 * concurrent CPU hotplug via cpu_add_remove_lock. 1000 */ 1001 lockup_detector_cleanup(); 1002 return ret; 1003 } 1004 1005 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1006 { 1007 if (cpu_hotplug_disabled) 1008 return -EBUSY; 1009 return _cpu_down(cpu, 0, target); 1010 } 1011 1012 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1013 { 1014 int err; 1015 1016 cpu_maps_update_begin(); 1017 err = cpu_down_maps_locked(cpu, target); 1018 cpu_maps_update_done(); 1019 return err; 1020 } 1021 1022 int cpu_down(unsigned int cpu) 1023 { 1024 return do_cpu_down(cpu, CPUHP_OFFLINE); 1025 } 1026 EXPORT_SYMBOL(cpu_down); 1027 1028 #else 1029 #define takedown_cpu NULL 1030 #endif /*CONFIG_HOTPLUG_CPU*/ 1031 1032 /** 1033 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1034 * @cpu: cpu that just started 1035 * 1036 * It must be called by the arch code on the new cpu, before the new cpu 1037 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1038 */ 1039 void notify_cpu_starting(unsigned int cpu) 1040 { 1041 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1042 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1043 int ret; 1044 1045 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1046 st->booted_once = true; 1047 while (st->state < target) { 1048 st->state++; 1049 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1050 /* 1051 * STARTING must not fail! 1052 */ 1053 WARN_ON_ONCE(ret); 1054 } 1055 } 1056 1057 /* 1058 * Called from the idle task. Wake up the controlling task which brings the 1059 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1060 * the rest of the online bringup to the hotplug thread. 1061 */ 1062 void cpuhp_online_idle(enum cpuhp_state state) 1063 { 1064 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1065 1066 /* Happens for the boot cpu */ 1067 if (state != CPUHP_AP_ONLINE_IDLE) 1068 return; 1069 1070 st->state = CPUHP_AP_ONLINE_IDLE; 1071 complete_ap_thread(st, true); 1072 } 1073 1074 /* Requires cpu_add_remove_lock to be held */ 1075 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1076 { 1077 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1078 struct task_struct *idle; 1079 int ret = 0; 1080 1081 cpus_write_lock(); 1082 1083 if (!cpu_present(cpu)) { 1084 ret = -EINVAL; 1085 goto out; 1086 } 1087 1088 /* 1089 * The caller of do_cpu_up might have raced with another 1090 * caller. Ignore it for now. 1091 */ 1092 if (st->state >= target) 1093 goto out; 1094 1095 if (st->state == CPUHP_OFFLINE) { 1096 /* Let it fail before we try to bring the cpu up */ 1097 idle = idle_thread_get(cpu); 1098 if (IS_ERR(idle)) { 1099 ret = PTR_ERR(idle); 1100 goto out; 1101 } 1102 } 1103 1104 cpuhp_tasks_frozen = tasks_frozen; 1105 1106 cpuhp_set_state(st, target); 1107 /* 1108 * If the current CPU state is in the range of the AP hotplug thread, 1109 * then we need to kick the thread once more. 1110 */ 1111 if (st->state > CPUHP_BRINGUP_CPU) { 1112 ret = cpuhp_kick_ap_work(cpu); 1113 /* 1114 * The AP side has done the error rollback already. Just 1115 * return the error code.. 1116 */ 1117 if (ret) 1118 goto out; 1119 } 1120 1121 /* 1122 * Try to reach the target state. We max out on the BP at 1123 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1124 * responsible for bringing it up to the target state. 1125 */ 1126 target = min((int)target, CPUHP_BRINGUP_CPU); 1127 ret = cpuhp_up_callbacks(cpu, st, target); 1128 out: 1129 cpus_write_unlock(); 1130 return ret; 1131 } 1132 1133 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1134 { 1135 int err = 0; 1136 1137 if (!cpu_possible(cpu)) { 1138 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1139 cpu); 1140 #if defined(CONFIG_IA64) 1141 pr_err("please check additional_cpus= boot parameter\n"); 1142 #endif 1143 return -EINVAL; 1144 } 1145 1146 err = try_online_node(cpu_to_node(cpu)); 1147 if (err) 1148 return err; 1149 1150 cpu_maps_update_begin(); 1151 1152 if (cpu_hotplug_disabled) { 1153 err = -EBUSY; 1154 goto out; 1155 } 1156 if (!cpu_smt_allowed(cpu)) { 1157 err = -EPERM; 1158 goto out; 1159 } 1160 1161 err = _cpu_up(cpu, 0, target); 1162 out: 1163 cpu_maps_update_done(); 1164 return err; 1165 } 1166 1167 int cpu_up(unsigned int cpu) 1168 { 1169 return do_cpu_up(cpu, CPUHP_ONLINE); 1170 } 1171 EXPORT_SYMBOL_GPL(cpu_up); 1172 1173 #ifdef CONFIG_PM_SLEEP_SMP 1174 static cpumask_var_t frozen_cpus; 1175 1176 int freeze_secondary_cpus(int primary) 1177 { 1178 int cpu, error = 0; 1179 1180 cpu_maps_update_begin(); 1181 if (!cpu_online(primary)) 1182 primary = cpumask_first(cpu_online_mask); 1183 /* 1184 * We take down all of the non-boot CPUs in one shot to avoid races 1185 * with the userspace trying to use the CPU hotplug at the same time 1186 */ 1187 cpumask_clear(frozen_cpus); 1188 1189 pr_info("Disabling non-boot CPUs ...\n"); 1190 for_each_online_cpu(cpu) { 1191 if (cpu == primary) 1192 continue; 1193 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1194 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1195 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1196 if (!error) 1197 cpumask_set_cpu(cpu, frozen_cpus); 1198 else { 1199 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1200 break; 1201 } 1202 } 1203 1204 if (!error) 1205 BUG_ON(num_online_cpus() > 1); 1206 else 1207 pr_err("Non-boot CPUs are not disabled\n"); 1208 1209 /* 1210 * Make sure the CPUs won't be enabled by someone else. We need to do 1211 * this even in case of failure as all disable_nonboot_cpus() users are 1212 * supposed to do enable_nonboot_cpus() on the failure path. 1213 */ 1214 cpu_hotplug_disabled++; 1215 1216 cpu_maps_update_done(); 1217 return error; 1218 } 1219 1220 void __weak arch_enable_nonboot_cpus_begin(void) 1221 { 1222 } 1223 1224 void __weak arch_enable_nonboot_cpus_end(void) 1225 { 1226 } 1227 1228 void enable_nonboot_cpus(void) 1229 { 1230 int cpu, error; 1231 1232 /* Allow everyone to use the CPU hotplug again */ 1233 cpu_maps_update_begin(); 1234 __cpu_hotplug_enable(); 1235 if (cpumask_empty(frozen_cpus)) 1236 goto out; 1237 1238 pr_info("Enabling non-boot CPUs ...\n"); 1239 1240 arch_enable_nonboot_cpus_begin(); 1241 1242 for_each_cpu(cpu, frozen_cpus) { 1243 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1244 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1245 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1246 if (!error) { 1247 pr_info("CPU%d is up\n", cpu); 1248 continue; 1249 } 1250 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1251 } 1252 1253 arch_enable_nonboot_cpus_end(); 1254 1255 cpumask_clear(frozen_cpus); 1256 out: 1257 cpu_maps_update_done(); 1258 } 1259 1260 static int __init alloc_frozen_cpus(void) 1261 { 1262 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1263 return -ENOMEM; 1264 return 0; 1265 } 1266 core_initcall(alloc_frozen_cpus); 1267 1268 /* 1269 * When callbacks for CPU hotplug notifications are being executed, we must 1270 * ensure that the state of the system with respect to the tasks being frozen 1271 * or not, as reported by the notification, remains unchanged *throughout the 1272 * duration* of the execution of the callbacks. 1273 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1274 * 1275 * This synchronization is implemented by mutually excluding regular CPU 1276 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1277 * Hibernate notifications. 1278 */ 1279 static int 1280 cpu_hotplug_pm_callback(struct notifier_block *nb, 1281 unsigned long action, void *ptr) 1282 { 1283 switch (action) { 1284 1285 case PM_SUSPEND_PREPARE: 1286 case PM_HIBERNATION_PREPARE: 1287 cpu_hotplug_disable(); 1288 break; 1289 1290 case PM_POST_SUSPEND: 1291 case PM_POST_HIBERNATION: 1292 cpu_hotplug_enable(); 1293 break; 1294 1295 default: 1296 return NOTIFY_DONE; 1297 } 1298 1299 return NOTIFY_OK; 1300 } 1301 1302 1303 static int __init cpu_hotplug_pm_sync_init(void) 1304 { 1305 /* 1306 * cpu_hotplug_pm_callback has higher priority than x86 1307 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1308 * to disable cpu hotplug to avoid cpu hotplug race. 1309 */ 1310 pm_notifier(cpu_hotplug_pm_callback, 0); 1311 return 0; 1312 } 1313 core_initcall(cpu_hotplug_pm_sync_init); 1314 1315 #endif /* CONFIG_PM_SLEEP_SMP */ 1316 1317 int __boot_cpu_id; 1318 1319 #endif /* CONFIG_SMP */ 1320 1321 /* Boot processor state steps */ 1322 static struct cpuhp_step cpuhp_hp_states[] = { 1323 [CPUHP_OFFLINE] = { 1324 .name = "offline", 1325 .startup.single = NULL, 1326 .teardown.single = NULL, 1327 }, 1328 #ifdef CONFIG_SMP 1329 [CPUHP_CREATE_THREADS]= { 1330 .name = "threads:prepare", 1331 .startup.single = smpboot_create_threads, 1332 .teardown.single = NULL, 1333 .cant_stop = true, 1334 }, 1335 [CPUHP_PERF_PREPARE] = { 1336 .name = "perf:prepare", 1337 .startup.single = perf_event_init_cpu, 1338 .teardown.single = perf_event_exit_cpu, 1339 }, 1340 [CPUHP_WORKQUEUE_PREP] = { 1341 .name = "workqueue:prepare", 1342 .startup.single = workqueue_prepare_cpu, 1343 .teardown.single = NULL, 1344 }, 1345 [CPUHP_HRTIMERS_PREPARE] = { 1346 .name = "hrtimers:prepare", 1347 .startup.single = hrtimers_prepare_cpu, 1348 .teardown.single = hrtimers_dead_cpu, 1349 }, 1350 [CPUHP_SMPCFD_PREPARE] = { 1351 .name = "smpcfd:prepare", 1352 .startup.single = smpcfd_prepare_cpu, 1353 .teardown.single = smpcfd_dead_cpu, 1354 }, 1355 [CPUHP_RELAY_PREPARE] = { 1356 .name = "relay:prepare", 1357 .startup.single = relay_prepare_cpu, 1358 .teardown.single = NULL, 1359 }, 1360 [CPUHP_SLAB_PREPARE] = { 1361 .name = "slab:prepare", 1362 .startup.single = slab_prepare_cpu, 1363 .teardown.single = slab_dead_cpu, 1364 }, 1365 [CPUHP_RCUTREE_PREP] = { 1366 .name = "RCU/tree:prepare", 1367 .startup.single = rcutree_prepare_cpu, 1368 .teardown.single = rcutree_dead_cpu, 1369 }, 1370 /* 1371 * On the tear-down path, timers_dead_cpu() must be invoked 1372 * before blk_mq_queue_reinit_notify() from notify_dead(), 1373 * otherwise a RCU stall occurs. 1374 */ 1375 [CPUHP_TIMERS_PREPARE] = { 1376 .name = "timers:prepare", 1377 .startup.single = timers_prepare_cpu, 1378 .teardown.single = timers_dead_cpu, 1379 }, 1380 /* Kicks the plugged cpu into life */ 1381 [CPUHP_BRINGUP_CPU] = { 1382 .name = "cpu:bringup", 1383 .startup.single = bringup_cpu, 1384 .teardown.single = NULL, 1385 .cant_stop = true, 1386 }, 1387 /* Final state before CPU kills itself */ 1388 [CPUHP_AP_IDLE_DEAD] = { 1389 .name = "idle:dead", 1390 }, 1391 /* 1392 * Last state before CPU enters the idle loop to die. Transient state 1393 * for synchronization. 1394 */ 1395 [CPUHP_AP_OFFLINE] = { 1396 .name = "ap:offline", 1397 .cant_stop = true, 1398 }, 1399 /* First state is scheduler control. Interrupts are disabled */ 1400 [CPUHP_AP_SCHED_STARTING] = { 1401 .name = "sched:starting", 1402 .startup.single = sched_cpu_starting, 1403 .teardown.single = sched_cpu_dying, 1404 }, 1405 [CPUHP_AP_RCUTREE_DYING] = { 1406 .name = "RCU/tree:dying", 1407 .startup.single = NULL, 1408 .teardown.single = rcutree_dying_cpu, 1409 }, 1410 [CPUHP_AP_SMPCFD_DYING] = { 1411 .name = "smpcfd:dying", 1412 .startup.single = NULL, 1413 .teardown.single = smpcfd_dying_cpu, 1414 }, 1415 /* Entry state on starting. Interrupts enabled from here on. Transient 1416 * state for synchronsization */ 1417 [CPUHP_AP_ONLINE] = { 1418 .name = "ap:online", 1419 }, 1420 /* 1421 * Handled on controll processor until the plugged processor manages 1422 * this itself. 1423 */ 1424 [CPUHP_TEARDOWN_CPU] = { 1425 .name = "cpu:teardown", 1426 .startup.single = NULL, 1427 .teardown.single = takedown_cpu, 1428 .cant_stop = true, 1429 }, 1430 /* Handle smpboot threads park/unpark */ 1431 [CPUHP_AP_SMPBOOT_THREADS] = { 1432 .name = "smpboot/threads:online", 1433 .startup.single = smpboot_unpark_threads, 1434 .teardown.single = smpboot_park_threads, 1435 }, 1436 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1437 .name = "irq/affinity:online", 1438 .startup.single = irq_affinity_online_cpu, 1439 .teardown.single = NULL, 1440 }, 1441 [CPUHP_AP_PERF_ONLINE] = { 1442 .name = "perf:online", 1443 .startup.single = perf_event_init_cpu, 1444 .teardown.single = perf_event_exit_cpu, 1445 }, 1446 [CPUHP_AP_WATCHDOG_ONLINE] = { 1447 .name = "lockup_detector:online", 1448 .startup.single = lockup_detector_online_cpu, 1449 .teardown.single = lockup_detector_offline_cpu, 1450 }, 1451 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1452 .name = "workqueue:online", 1453 .startup.single = workqueue_online_cpu, 1454 .teardown.single = workqueue_offline_cpu, 1455 }, 1456 [CPUHP_AP_RCUTREE_ONLINE] = { 1457 .name = "RCU/tree:online", 1458 .startup.single = rcutree_online_cpu, 1459 .teardown.single = rcutree_offline_cpu, 1460 }, 1461 #endif 1462 /* 1463 * The dynamically registered state space is here 1464 */ 1465 1466 #ifdef CONFIG_SMP 1467 /* Last state is scheduler control setting the cpu active */ 1468 [CPUHP_AP_ACTIVE] = { 1469 .name = "sched:active", 1470 .startup.single = sched_cpu_activate, 1471 .teardown.single = sched_cpu_deactivate, 1472 }, 1473 #endif 1474 1475 /* CPU is fully up and running. */ 1476 [CPUHP_ONLINE] = { 1477 .name = "online", 1478 .startup.single = NULL, 1479 .teardown.single = NULL, 1480 }, 1481 }; 1482 1483 /* Sanity check for callbacks */ 1484 static int cpuhp_cb_check(enum cpuhp_state state) 1485 { 1486 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1487 return -EINVAL; 1488 return 0; 1489 } 1490 1491 /* 1492 * Returns a free for dynamic slot assignment of the Online state. The states 1493 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1494 * by having no name assigned. 1495 */ 1496 static int cpuhp_reserve_state(enum cpuhp_state state) 1497 { 1498 enum cpuhp_state i, end; 1499 struct cpuhp_step *step; 1500 1501 switch (state) { 1502 case CPUHP_AP_ONLINE_DYN: 1503 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1504 end = CPUHP_AP_ONLINE_DYN_END; 1505 break; 1506 case CPUHP_BP_PREPARE_DYN: 1507 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1508 end = CPUHP_BP_PREPARE_DYN_END; 1509 break; 1510 default: 1511 return -EINVAL; 1512 } 1513 1514 for (i = state; i <= end; i++, step++) { 1515 if (!step->name) 1516 return i; 1517 } 1518 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1519 return -ENOSPC; 1520 } 1521 1522 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1523 int (*startup)(unsigned int cpu), 1524 int (*teardown)(unsigned int cpu), 1525 bool multi_instance) 1526 { 1527 /* (Un)Install the callbacks for further cpu hotplug operations */ 1528 struct cpuhp_step *sp; 1529 int ret = 0; 1530 1531 /* 1532 * If name is NULL, then the state gets removed. 1533 * 1534 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1535 * the first allocation from these dynamic ranges, so the removal 1536 * would trigger a new allocation and clear the wrong (already 1537 * empty) state, leaving the callbacks of the to be cleared state 1538 * dangling, which causes wreckage on the next hotplug operation. 1539 */ 1540 if (name && (state == CPUHP_AP_ONLINE_DYN || 1541 state == CPUHP_BP_PREPARE_DYN)) { 1542 ret = cpuhp_reserve_state(state); 1543 if (ret < 0) 1544 return ret; 1545 state = ret; 1546 } 1547 sp = cpuhp_get_step(state); 1548 if (name && sp->name) 1549 return -EBUSY; 1550 1551 sp->startup.single = startup; 1552 sp->teardown.single = teardown; 1553 sp->name = name; 1554 sp->multi_instance = multi_instance; 1555 INIT_HLIST_HEAD(&sp->list); 1556 return ret; 1557 } 1558 1559 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1560 { 1561 return cpuhp_get_step(state)->teardown.single; 1562 } 1563 1564 /* 1565 * Call the startup/teardown function for a step either on the AP or 1566 * on the current CPU. 1567 */ 1568 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1569 struct hlist_node *node) 1570 { 1571 struct cpuhp_step *sp = cpuhp_get_step(state); 1572 int ret; 1573 1574 /* 1575 * If there's nothing to do, we done. 1576 * Relies on the union for multi_instance. 1577 */ 1578 if ((bringup && !sp->startup.single) || 1579 (!bringup && !sp->teardown.single)) 1580 return 0; 1581 /* 1582 * The non AP bound callbacks can fail on bringup. On teardown 1583 * e.g. module removal we crash for now. 1584 */ 1585 #ifdef CONFIG_SMP 1586 if (cpuhp_is_ap_state(state)) 1587 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1588 else 1589 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1590 #else 1591 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1592 #endif 1593 BUG_ON(ret && !bringup); 1594 return ret; 1595 } 1596 1597 /* 1598 * Called from __cpuhp_setup_state on a recoverable failure. 1599 * 1600 * Note: The teardown callbacks for rollback are not allowed to fail! 1601 */ 1602 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1603 struct hlist_node *node) 1604 { 1605 int cpu; 1606 1607 /* Roll back the already executed steps on the other cpus */ 1608 for_each_present_cpu(cpu) { 1609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1610 int cpustate = st->state; 1611 1612 if (cpu >= failedcpu) 1613 break; 1614 1615 /* Did we invoke the startup call on that cpu ? */ 1616 if (cpustate >= state) 1617 cpuhp_issue_call(cpu, state, false, node); 1618 } 1619 } 1620 1621 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1622 struct hlist_node *node, 1623 bool invoke) 1624 { 1625 struct cpuhp_step *sp; 1626 int cpu; 1627 int ret; 1628 1629 lockdep_assert_cpus_held(); 1630 1631 sp = cpuhp_get_step(state); 1632 if (sp->multi_instance == false) 1633 return -EINVAL; 1634 1635 mutex_lock(&cpuhp_state_mutex); 1636 1637 if (!invoke || !sp->startup.multi) 1638 goto add_node; 1639 1640 /* 1641 * Try to call the startup callback for each present cpu 1642 * depending on the hotplug state of the cpu. 1643 */ 1644 for_each_present_cpu(cpu) { 1645 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1646 int cpustate = st->state; 1647 1648 if (cpustate < state) 1649 continue; 1650 1651 ret = cpuhp_issue_call(cpu, state, true, node); 1652 if (ret) { 1653 if (sp->teardown.multi) 1654 cpuhp_rollback_install(cpu, state, node); 1655 goto unlock; 1656 } 1657 } 1658 add_node: 1659 ret = 0; 1660 hlist_add_head(node, &sp->list); 1661 unlock: 1662 mutex_unlock(&cpuhp_state_mutex); 1663 return ret; 1664 } 1665 1666 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1667 bool invoke) 1668 { 1669 int ret; 1670 1671 cpus_read_lock(); 1672 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1673 cpus_read_unlock(); 1674 return ret; 1675 } 1676 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1677 1678 /** 1679 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1680 * @state: The state to setup 1681 * @invoke: If true, the startup function is invoked for cpus where 1682 * cpu state >= @state 1683 * @startup: startup callback function 1684 * @teardown: teardown callback function 1685 * @multi_instance: State is set up for multiple instances which get 1686 * added afterwards. 1687 * 1688 * The caller needs to hold cpus read locked while calling this function. 1689 * Returns: 1690 * On success: 1691 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1692 * 0 for all other states 1693 * On failure: proper (negative) error code 1694 */ 1695 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1696 const char *name, bool invoke, 1697 int (*startup)(unsigned int cpu), 1698 int (*teardown)(unsigned int cpu), 1699 bool multi_instance) 1700 { 1701 int cpu, ret = 0; 1702 bool dynstate; 1703 1704 lockdep_assert_cpus_held(); 1705 1706 if (cpuhp_cb_check(state) || !name) 1707 return -EINVAL; 1708 1709 mutex_lock(&cpuhp_state_mutex); 1710 1711 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1712 multi_instance); 1713 1714 dynstate = state == CPUHP_AP_ONLINE_DYN; 1715 if (ret > 0 && dynstate) { 1716 state = ret; 1717 ret = 0; 1718 } 1719 1720 if (ret || !invoke || !startup) 1721 goto out; 1722 1723 /* 1724 * Try to call the startup callback for each present cpu 1725 * depending on the hotplug state of the cpu. 1726 */ 1727 for_each_present_cpu(cpu) { 1728 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1729 int cpustate = st->state; 1730 1731 if (cpustate < state) 1732 continue; 1733 1734 ret = cpuhp_issue_call(cpu, state, true, NULL); 1735 if (ret) { 1736 if (teardown) 1737 cpuhp_rollback_install(cpu, state, NULL); 1738 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1739 goto out; 1740 } 1741 } 1742 out: 1743 mutex_unlock(&cpuhp_state_mutex); 1744 /* 1745 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1746 * dynamically allocated state in case of success. 1747 */ 1748 if (!ret && dynstate) 1749 return state; 1750 return ret; 1751 } 1752 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1753 1754 int __cpuhp_setup_state(enum cpuhp_state state, 1755 const char *name, bool invoke, 1756 int (*startup)(unsigned int cpu), 1757 int (*teardown)(unsigned int cpu), 1758 bool multi_instance) 1759 { 1760 int ret; 1761 1762 cpus_read_lock(); 1763 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1764 teardown, multi_instance); 1765 cpus_read_unlock(); 1766 return ret; 1767 } 1768 EXPORT_SYMBOL(__cpuhp_setup_state); 1769 1770 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1771 struct hlist_node *node, bool invoke) 1772 { 1773 struct cpuhp_step *sp = cpuhp_get_step(state); 1774 int cpu; 1775 1776 BUG_ON(cpuhp_cb_check(state)); 1777 1778 if (!sp->multi_instance) 1779 return -EINVAL; 1780 1781 cpus_read_lock(); 1782 mutex_lock(&cpuhp_state_mutex); 1783 1784 if (!invoke || !cpuhp_get_teardown_cb(state)) 1785 goto remove; 1786 /* 1787 * Call the teardown callback for each present cpu depending 1788 * on the hotplug state of the cpu. This function is not 1789 * allowed to fail currently! 1790 */ 1791 for_each_present_cpu(cpu) { 1792 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1793 int cpustate = st->state; 1794 1795 if (cpustate >= state) 1796 cpuhp_issue_call(cpu, state, false, node); 1797 } 1798 1799 remove: 1800 hlist_del(node); 1801 mutex_unlock(&cpuhp_state_mutex); 1802 cpus_read_unlock(); 1803 1804 return 0; 1805 } 1806 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1807 1808 /** 1809 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1810 * @state: The state to remove 1811 * @invoke: If true, the teardown function is invoked for cpus where 1812 * cpu state >= @state 1813 * 1814 * The caller needs to hold cpus read locked while calling this function. 1815 * The teardown callback is currently not allowed to fail. Think 1816 * about module removal! 1817 */ 1818 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1819 { 1820 struct cpuhp_step *sp = cpuhp_get_step(state); 1821 int cpu; 1822 1823 BUG_ON(cpuhp_cb_check(state)); 1824 1825 lockdep_assert_cpus_held(); 1826 1827 mutex_lock(&cpuhp_state_mutex); 1828 if (sp->multi_instance) { 1829 WARN(!hlist_empty(&sp->list), 1830 "Error: Removing state %d which has instances left.\n", 1831 state); 1832 goto remove; 1833 } 1834 1835 if (!invoke || !cpuhp_get_teardown_cb(state)) 1836 goto remove; 1837 1838 /* 1839 * Call the teardown callback for each present cpu depending 1840 * on the hotplug state of the cpu. This function is not 1841 * allowed to fail currently! 1842 */ 1843 for_each_present_cpu(cpu) { 1844 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1845 int cpustate = st->state; 1846 1847 if (cpustate >= state) 1848 cpuhp_issue_call(cpu, state, false, NULL); 1849 } 1850 remove: 1851 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1852 mutex_unlock(&cpuhp_state_mutex); 1853 } 1854 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1855 1856 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1857 { 1858 cpus_read_lock(); 1859 __cpuhp_remove_state_cpuslocked(state, invoke); 1860 cpus_read_unlock(); 1861 } 1862 EXPORT_SYMBOL(__cpuhp_remove_state); 1863 1864 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1865 static ssize_t show_cpuhp_state(struct device *dev, 1866 struct device_attribute *attr, char *buf) 1867 { 1868 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1869 1870 return sprintf(buf, "%d\n", st->state); 1871 } 1872 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1873 1874 static ssize_t write_cpuhp_target(struct device *dev, 1875 struct device_attribute *attr, 1876 const char *buf, size_t count) 1877 { 1878 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1879 struct cpuhp_step *sp; 1880 int target, ret; 1881 1882 ret = kstrtoint(buf, 10, &target); 1883 if (ret) 1884 return ret; 1885 1886 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1887 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1888 return -EINVAL; 1889 #else 1890 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1891 return -EINVAL; 1892 #endif 1893 1894 ret = lock_device_hotplug_sysfs(); 1895 if (ret) 1896 return ret; 1897 1898 mutex_lock(&cpuhp_state_mutex); 1899 sp = cpuhp_get_step(target); 1900 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1901 mutex_unlock(&cpuhp_state_mutex); 1902 if (ret) 1903 goto out; 1904 1905 if (st->state < target) 1906 ret = do_cpu_up(dev->id, target); 1907 else 1908 ret = do_cpu_down(dev->id, target); 1909 out: 1910 unlock_device_hotplug(); 1911 return ret ? ret : count; 1912 } 1913 1914 static ssize_t show_cpuhp_target(struct device *dev, 1915 struct device_attribute *attr, char *buf) 1916 { 1917 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1918 1919 return sprintf(buf, "%d\n", st->target); 1920 } 1921 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1922 1923 1924 static ssize_t write_cpuhp_fail(struct device *dev, 1925 struct device_attribute *attr, 1926 const char *buf, size_t count) 1927 { 1928 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1929 struct cpuhp_step *sp; 1930 int fail, ret; 1931 1932 ret = kstrtoint(buf, 10, &fail); 1933 if (ret) 1934 return ret; 1935 1936 /* 1937 * Cannot fail STARTING/DYING callbacks. 1938 */ 1939 if (cpuhp_is_atomic_state(fail)) 1940 return -EINVAL; 1941 1942 /* 1943 * Cannot fail anything that doesn't have callbacks. 1944 */ 1945 mutex_lock(&cpuhp_state_mutex); 1946 sp = cpuhp_get_step(fail); 1947 if (!sp->startup.single && !sp->teardown.single) 1948 ret = -EINVAL; 1949 mutex_unlock(&cpuhp_state_mutex); 1950 if (ret) 1951 return ret; 1952 1953 st->fail = fail; 1954 1955 return count; 1956 } 1957 1958 static ssize_t show_cpuhp_fail(struct device *dev, 1959 struct device_attribute *attr, char *buf) 1960 { 1961 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1962 1963 return sprintf(buf, "%d\n", st->fail); 1964 } 1965 1966 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1967 1968 static struct attribute *cpuhp_cpu_attrs[] = { 1969 &dev_attr_state.attr, 1970 &dev_attr_target.attr, 1971 &dev_attr_fail.attr, 1972 NULL 1973 }; 1974 1975 static const struct attribute_group cpuhp_cpu_attr_group = { 1976 .attrs = cpuhp_cpu_attrs, 1977 .name = "hotplug", 1978 NULL 1979 }; 1980 1981 static ssize_t show_cpuhp_states(struct device *dev, 1982 struct device_attribute *attr, char *buf) 1983 { 1984 ssize_t cur, res = 0; 1985 int i; 1986 1987 mutex_lock(&cpuhp_state_mutex); 1988 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1989 struct cpuhp_step *sp = cpuhp_get_step(i); 1990 1991 if (sp->name) { 1992 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1993 buf += cur; 1994 res += cur; 1995 } 1996 } 1997 mutex_unlock(&cpuhp_state_mutex); 1998 return res; 1999 } 2000 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2001 2002 static struct attribute *cpuhp_cpu_root_attrs[] = { 2003 &dev_attr_states.attr, 2004 NULL 2005 }; 2006 2007 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2008 .attrs = cpuhp_cpu_root_attrs, 2009 .name = "hotplug", 2010 NULL 2011 }; 2012 2013 #ifdef CONFIG_HOTPLUG_SMT 2014 2015 static const char *smt_states[] = { 2016 [CPU_SMT_ENABLED] = "on", 2017 [CPU_SMT_DISABLED] = "off", 2018 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2019 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2020 }; 2021 2022 static ssize_t 2023 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2024 { 2025 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]); 2026 } 2027 2028 static void cpuhp_offline_cpu_device(unsigned int cpu) 2029 { 2030 struct device *dev = get_cpu_device(cpu); 2031 2032 dev->offline = true; 2033 /* Tell user space about the state change */ 2034 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2035 } 2036 2037 static void cpuhp_online_cpu_device(unsigned int cpu) 2038 { 2039 struct device *dev = get_cpu_device(cpu); 2040 2041 dev->offline = false; 2042 /* Tell user space about the state change */ 2043 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2044 } 2045 2046 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2047 { 2048 int cpu, ret = 0; 2049 2050 cpu_maps_update_begin(); 2051 for_each_online_cpu(cpu) { 2052 if (topology_is_primary_thread(cpu)) 2053 continue; 2054 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2055 if (ret) 2056 break; 2057 /* 2058 * As this needs to hold the cpu maps lock it's impossible 2059 * to call device_offline() because that ends up calling 2060 * cpu_down() which takes cpu maps lock. cpu maps lock 2061 * needs to be held as this might race against in kernel 2062 * abusers of the hotplug machinery (thermal management). 2063 * 2064 * So nothing would update device:offline state. That would 2065 * leave the sysfs entry stale and prevent onlining after 2066 * smt control has been changed to 'off' again. This is 2067 * called under the sysfs hotplug lock, so it is properly 2068 * serialized against the regular offline usage. 2069 */ 2070 cpuhp_offline_cpu_device(cpu); 2071 } 2072 if (!ret) 2073 cpu_smt_control = ctrlval; 2074 cpu_maps_update_done(); 2075 return ret; 2076 } 2077 2078 static int cpuhp_smt_enable(void) 2079 { 2080 int cpu, ret = 0; 2081 2082 cpu_maps_update_begin(); 2083 cpu_smt_control = CPU_SMT_ENABLED; 2084 for_each_present_cpu(cpu) { 2085 /* Skip online CPUs and CPUs on offline nodes */ 2086 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2087 continue; 2088 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2089 if (ret) 2090 break; 2091 /* See comment in cpuhp_smt_disable() */ 2092 cpuhp_online_cpu_device(cpu); 2093 } 2094 cpu_maps_update_done(); 2095 return ret; 2096 } 2097 2098 static ssize_t 2099 store_smt_control(struct device *dev, struct device_attribute *attr, 2100 const char *buf, size_t count) 2101 { 2102 int ctrlval, ret; 2103 2104 if (sysfs_streq(buf, "on")) 2105 ctrlval = CPU_SMT_ENABLED; 2106 else if (sysfs_streq(buf, "off")) 2107 ctrlval = CPU_SMT_DISABLED; 2108 else if (sysfs_streq(buf, "forceoff")) 2109 ctrlval = CPU_SMT_FORCE_DISABLED; 2110 else 2111 return -EINVAL; 2112 2113 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2114 return -EPERM; 2115 2116 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2117 return -ENODEV; 2118 2119 ret = lock_device_hotplug_sysfs(); 2120 if (ret) 2121 return ret; 2122 2123 if (ctrlval != cpu_smt_control) { 2124 switch (ctrlval) { 2125 case CPU_SMT_ENABLED: 2126 ret = cpuhp_smt_enable(); 2127 break; 2128 case CPU_SMT_DISABLED: 2129 case CPU_SMT_FORCE_DISABLED: 2130 ret = cpuhp_smt_disable(ctrlval); 2131 break; 2132 } 2133 } 2134 2135 unlock_device_hotplug(); 2136 return ret ? ret : count; 2137 } 2138 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2139 2140 static ssize_t 2141 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2142 { 2143 bool active = topology_max_smt_threads() > 1; 2144 2145 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active); 2146 } 2147 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2148 2149 static struct attribute *cpuhp_smt_attrs[] = { 2150 &dev_attr_control.attr, 2151 &dev_attr_active.attr, 2152 NULL 2153 }; 2154 2155 static const struct attribute_group cpuhp_smt_attr_group = { 2156 .attrs = cpuhp_smt_attrs, 2157 .name = "smt", 2158 NULL 2159 }; 2160 2161 static int __init cpu_smt_state_init(void) 2162 { 2163 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2164 &cpuhp_smt_attr_group); 2165 } 2166 2167 #else 2168 static inline int cpu_smt_state_init(void) { return 0; } 2169 #endif 2170 2171 static int __init cpuhp_sysfs_init(void) 2172 { 2173 int cpu, ret; 2174 2175 ret = cpu_smt_state_init(); 2176 if (ret) 2177 return ret; 2178 2179 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2180 &cpuhp_cpu_root_attr_group); 2181 if (ret) 2182 return ret; 2183 2184 for_each_possible_cpu(cpu) { 2185 struct device *dev = get_cpu_device(cpu); 2186 2187 if (!dev) 2188 continue; 2189 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2190 if (ret) 2191 return ret; 2192 } 2193 return 0; 2194 } 2195 device_initcall(cpuhp_sysfs_init); 2196 #endif 2197 2198 /* 2199 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2200 * represents all NR_CPUS bits binary values of 1<<nr. 2201 * 2202 * It is used by cpumask_of() to get a constant address to a CPU 2203 * mask value that has a single bit set only. 2204 */ 2205 2206 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2207 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2208 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2209 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2210 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2211 2212 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2213 2214 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2215 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2216 #if BITS_PER_LONG > 32 2217 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2218 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2219 #endif 2220 }; 2221 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2222 2223 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2224 EXPORT_SYMBOL(cpu_all_bits); 2225 2226 #ifdef CONFIG_INIT_ALL_POSSIBLE 2227 struct cpumask __cpu_possible_mask __read_mostly 2228 = {CPU_BITS_ALL}; 2229 #else 2230 struct cpumask __cpu_possible_mask __read_mostly; 2231 #endif 2232 EXPORT_SYMBOL(__cpu_possible_mask); 2233 2234 struct cpumask __cpu_online_mask __read_mostly; 2235 EXPORT_SYMBOL(__cpu_online_mask); 2236 2237 struct cpumask __cpu_present_mask __read_mostly; 2238 EXPORT_SYMBOL(__cpu_present_mask); 2239 2240 struct cpumask __cpu_active_mask __read_mostly; 2241 EXPORT_SYMBOL(__cpu_active_mask); 2242 2243 void init_cpu_present(const struct cpumask *src) 2244 { 2245 cpumask_copy(&__cpu_present_mask, src); 2246 } 2247 2248 void init_cpu_possible(const struct cpumask *src) 2249 { 2250 cpumask_copy(&__cpu_possible_mask, src); 2251 } 2252 2253 void init_cpu_online(const struct cpumask *src) 2254 { 2255 cpumask_copy(&__cpu_online_mask, src); 2256 } 2257 2258 /* 2259 * Activate the first processor. 2260 */ 2261 void __init boot_cpu_init(void) 2262 { 2263 int cpu = smp_processor_id(); 2264 2265 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2266 set_cpu_online(cpu, true); 2267 set_cpu_active(cpu, true); 2268 set_cpu_present(cpu, true); 2269 set_cpu_possible(cpu, true); 2270 2271 #ifdef CONFIG_SMP 2272 __boot_cpu_id = cpu; 2273 #endif 2274 } 2275 2276 /* 2277 * Must be called _AFTER_ setting up the per_cpu areas 2278 */ 2279 void __init boot_cpu_hotplug_init(void) 2280 { 2281 #ifdef CONFIG_SMP 2282 this_cpu_write(cpuhp_state.booted_once, true); 2283 #endif 2284 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2285 } 2286