1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/kthread.h> 15 #include <linux/stop_machine.h> 16 #include <linux/mutex.h> 17 18 /* 19 * Represents all cpu's present in the system 20 * In systems capable of hotplug, this map could dynamically grow 21 * as new cpu's are detected in the system via any platform specific 22 * method, such as ACPI for e.g. 23 */ 24 cpumask_t cpu_present_map __read_mostly; 25 EXPORT_SYMBOL(cpu_present_map); 26 27 #ifndef CONFIG_SMP 28 29 /* 30 * Represents all cpu's that are currently online. 31 */ 32 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; 33 EXPORT_SYMBOL(cpu_online_map); 34 35 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; 36 EXPORT_SYMBOL(cpu_possible_map); 37 38 #else /* CONFIG_SMP */ 39 40 /* Serializes the updates to cpu_online_map, cpu_present_map */ 41 static DEFINE_MUTEX(cpu_add_remove_lock); 42 43 static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); 44 45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 46 * Should always be manipulated under cpu_add_remove_lock 47 */ 48 static int cpu_hotplug_disabled; 49 50 static struct { 51 struct task_struct *active_writer; 52 struct mutex lock; /* Synchronizes accesses to refcount, */ 53 /* 54 * Also blocks the new readers during 55 * an ongoing cpu hotplug operation. 56 */ 57 int refcount; 58 } cpu_hotplug; 59 60 void __init cpu_hotplug_init(void) 61 { 62 cpu_hotplug.active_writer = NULL; 63 mutex_init(&cpu_hotplug.lock); 64 cpu_hotplug.refcount = 0; 65 } 66 67 cpumask_t cpu_active_map; 68 69 #ifdef CONFIG_HOTPLUG_CPU 70 71 void get_online_cpus(void) 72 { 73 might_sleep(); 74 if (cpu_hotplug.active_writer == current) 75 return; 76 mutex_lock(&cpu_hotplug.lock); 77 cpu_hotplug.refcount++; 78 mutex_unlock(&cpu_hotplug.lock); 79 80 } 81 EXPORT_SYMBOL_GPL(get_online_cpus); 82 83 void put_online_cpus(void) 84 { 85 if (cpu_hotplug.active_writer == current) 86 return; 87 mutex_lock(&cpu_hotplug.lock); 88 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) 89 wake_up_process(cpu_hotplug.active_writer); 90 mutex_unlock(&cpu_hotplug.lock); 91 92 } 93 EXPORT_SYMBOL_GPL(put_online_cpus); 94 95 #endif /* CONFIG_HOTPLUG_CPU */ 96 97 /* 98 * The following two API's must be used when attempting 99 * to serialize the updates to cpu_online_map, cpu_present_map. 100 */ 101 void cpu_maps_update_begin(void) 102 { 103 mutex_lock(&cpu_add_remove_lock); 104 } 105 106 void cpu_maps_update_done(void) 107 { 108 mutex_unlock(&cpu_add_remove_lock); 109 } 110 111 /* 112 * This ensures that the hotplug operation can begin only when the 113 * refcount goes to zero. 114 * 115 * Note that during a cpu-hotplug operation, the new readers, if any, 116 * will be blocked by the cpu_hotplug.lock 117 * 118 * Since cpu_hotplug_begin() is always called after invoking 119 * cpu_maps_update_begin(), we can be sure that only one writer is active. 120 * 121 * Note that theoretically, there is a possibility of a livelock: 122 * - Refcount goes to zero, last reader wakes up the sleeping 123 * writer. 124 * - Last reader unlocks the cpu_hotplug.lock. 125 * - A new reader arrives at this moment, bumps up the refcount. 126 * - The writer acquires the cpu_hotplug.lock finds the refcount 127 * non zero and goes to sleep again. 128 * 129 * However, this is very difficult to achieve in practice since 130 * get_online_cpus() not an api which is called all that often. 131 * 132 */ 133 static void cpu_hotplug_begin(void) 134 { 135 cpu_hotplug.active_writer = current; 136 137 for (;;) { 138 mutex_lock(&cpu_hotplug.lock); 139 if (likely(!cpu_hotplug.refcount)) 140 break; 141 __set_current_state(TASK_UNINTERRUPTIBLE); 142 mutex_unlock(&cpu_hotplug.lock); 143 schedule(); 144 } 145 } 146 147 static void cpu_hotplug_done(void) 148 { 149 cpu_hotplug.active_writer = NULL; 150 mutex_unlock(&cpu_hotplug.lock); 151 } 152 /* Need to know about CPUs going up/down? */ 153 int __ref register_cpu_notifier(struct notifier_block *nb) 154 { 155 int ret; 156 cpu_maps_update_begin(); 157 ret = raw_notifier_chain_register(&cpu_chain, nb); 158 cpu_maps_update_done(); 159 return ret; 160 } 161 162 #ifdef CONFIG_HOTPLUG_CPU 163 164 EXPORT_SYMBOL(register_cpu_notifier); 165 166 void __ref unregister_cpu_notifier(struct notifier_block *nb) 167 { 168 cpu_maps_update_begin(); 169 raw_notifier_chain_unregister(&cpu_chain, nb); 170 cpu_maps_update_done(); 171 } 172 EXPORT_SYMBOL(unregister_cpu_notifier); 173 174 static inline void check_for_tasks(int cpu) 175 { 176 struct task_struct *p; 177 178 write_lock_irq(&tasklist_lock); 179 for_each_process(p) { 180 if (task_cpu(p) == cpu && 181 (!cputime_eq(p->utime, cputime_zero) || 182 !cputime_eq(p->stime, cputime_zero))) 183 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d\ 184 (state = %ld, flags = %x) \n", 185 p->comm, task_pid_nr(p), cpu, 186 p->state, p->flags); 187 } 188 write_unlock_irq(&tasklist_lock); 189 } 190 191 struct take_cpu_down_param { 192 unsigned long mod; 193 void *hcpu; 194 }; 195 196 /* Take this CPU down. */ 197 static int __ref take_cpu_down(void *_param) 198 { 199 struct take_cpu_down_param *param = _param; 200 int err; 201 202 /* Ensure this CPU doesn't handle any more interrupts. */ 203 err = __cpu_disable(); 204 if (err < 0) 205 return err; 206 207 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, 208 param->hcpu); 209 210 /* Force idle task to run as soon as we yield: it should 211 immediately notice cpu is offline and die quickly. */ 212 sched_idle_next(); 213 return 0; 214 } 215 216 /* Requires cpu_add_remove_lock to be held */ 217 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 218 { 219 int err, nr_calls = 0; 220 cpumask_t old_allowed, tmp; 221 void *hcpu = (void *)(long)cpu; 222 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 223 struct take_cpu_down_param tcd_param = { 224 .mod = mod, 225 .hcpu = hcpu, 226 }; 227 228 if (num_online_cpus() == 1) 229 return -EBUSY; 230 231 if (!cpu_online(cpu)) 232 return -EINVAL; 233 234 cpu_hotplug_begin(); 235 err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, 236 hcpu, -1, &nr_calls); 237 if (err == NOTIFY_BAD) { 238 nr_calls--; 239 __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, 240 hcpu, nr_calls, NULL); 241 printk("%s: attempt to take down CPU %u failed\n", 242 __func__, cpu); 243 err = -EINVAL; 244 goto out_release; 245 } 246 247 /* Ensure that we are not runnable on dying cpu */ 248 old_allowed = current->cpus_allowed; 249 cpus_setall(tmp); 250 cpu_clear(cpu, tmp); 251 set_cpus_allowed_ptr(current, &tmp); 252 tmp = cpumask_of_cpu(cpu); 253 254 err = __stop_machine(take_cpu_down, &tcd_param, &tmp); 255 if (err) { 256 /* CPU didn't die: tell everyone. Can't complain. */ 257 if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, 258 hcpu) == NOTIFY_BAD) 259 BUG(); 260 261 goto out_allowed; 262 } 263 BUG_ON(cpu_online(cpu)); 264 265 /* Wait for it to sleep (leaving idle task). */ 266 while (!idle_cpu(cpu)) 267 yield(); 268 269 /* This actually kills the CPU. */ 270 __cpu_die(cpu); 271 272 /* CPU is completely dead: tell everyone. Too late to complain. */ 273 if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod, 274 hcpu) == NOTIFY_BAD) 275 BUG(); 276 277 check_for_tasks(cpu); 278 279 out_allowed: 280 set_cpus_allowed_ptr(current, &old_allowed); 281 out_release: 282 cpu_hotplug_done(); 283 if (!err) { 284 if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod, 285 hcpu) == NOTIFY_BAD) 286 BUG(); 287 } 288 return err; 289 } 290 291 int __ref cpu_down(unsigned int cpu) 292 { 293 int err = 0; 294 295 cpu_maps_update_begin(); 296 297 if (cpu_hotplug_disabled) { 298 err = -EBUSY; 299 goto out; 300 } 301 302 cpu_clear(cpu, cpu_active_map); 303 304 /* 305 * Make sure the all cpus did the reschedule and are not 306 * using stale version of the cpu_active_map. 307 * This is not strictly necessary becuase stop_machine() 308 * that we run down the line already provides the required 309 * synchronization. But it's really a side effect and we do not 310 * want to depend on the innards of the stop_machine here. 311 */ 312 synchronize_sched(); 313 314 err = _cpu_down(cpu, 0); 315 316 if (cpu_online(cpu)) 317 cpu_set(cpu, cpu_active_map); 318 319 out: 320 cpu_maps_update_done(); 321 return err; 322 } 323 EXPORT_SYMBOL(cpu_down); 324 #endif /*CONFIG_HOTPLUG_CPU*/ 325 326 /* Requires cpu_add_remove_lock to be held */ 327 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) 328 { 329 int ret, nr_calls = 0; 330 void *hcpu = (void *)(long)cpu; 331 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 332 333 if (cpu_online(cpu) || !cpu_present(cpu)) 334 return -EINVAL; 335 336 cpu_hotplug_begin(); 337 ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu, 338 -1, &nr_calls); 339 if (ret == NOTIFY_BAD) { 340 nr_calls--; 341 printk("%s: attempt to bring up CPU %u failed\n", 342 __func__, cpu); 343 ret = -EINVAL; 344 goto out_notify; 345 } 346 347 /* Arch-specific enabling code. */ 348 ret = __cpu_up(cpu); 349 if (ret != 0) 350 goto out_notify; 351 BUG_ON(!cpu_online(cpu)); 352 353 cpu_set(cpu, cpu_active_map); 354 355 /* Now call notifier in preparation. */ 356 raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); 357 358 out_notify: 359 if (ret != 0) 360 __raw_notifier_call_chain(&cpu_chain, 361 CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 362 cpu_hotplug_done(); 363 364 return ret; 365 } 366 367 int __cpuinit cpu_up(unsigned int cpu) 368 { 369 int err = 0; 370 if (!cpu_isset(cpu, cpu_possible_map)) { 371 printk(KERN_ERR "can't online cpu %d because it is not " 372 "configured as may-hotadd at boot time\n", cpu); 373 #if defined(CONFIG_IA64) || defined(CONFIG_X86_64) 374 printk(KERN_ERR "please check additional_cpus= boot " 375 "parameter\n"); 376 #endif 377 return -EINVAL; 378 } 379 380 cpu_maps_update_begin(); 381 382 if (cpu_hotplug_disabled) { 383 err = -EBUSY; 384 goto out; 385 } 386 387 err = _cpu_up(cpu, 0); 388 389 out: 390 cpu_maps_update_done(); 391 return err; 392 } 393 394 #ifdef CONFIG_PM_SLEEP_SMP 395 static cpumask_t frozen_cpus; 396 397 int disable_nonboot_cpus(void) 398 { 399 int cpu, first_cpu, error = 0; 400 401 cpu_maps_update_begin(); 402 first_cpu = first_cpu(cpu_online_map); 403 /* We take down all of the non-boot CPUs in one shot to avoid races 404 * with the userspace trying to use the CPU hotplug at the same time 405 */ 406 cpus_clear(frozen_cpus); 407 printk("Disabling non-boot CPUs ...\n"); 408 for_each_online_cpu(cpu) { 409 if (cpu == first_cpu) 410 continue; 411 error = _cpu_down(cpu, 1); 412 if (!error) { 413 cpu_set(cpu, frozen_cpus); 414 printk("CPU%d is down\n", cpu); 415 } else { 416 printk(KERN_ERR "Error taking CPU%d down: %d\n", 417 cpu, error); 418 break; 419 } 420 } 421 if (!error) { 422 BUG_ON(num_online_cpus() > 1); 423 /* Make sure the CPUs won't be enabled by someone else */ 424 cpu_hotplug_disabled = 1; 425 } else { 426 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 427 } 428 cpu_maps_update_done(); 429 return error; 430 } 431 432 void __ref enable_nonboot_cpus(void) 433 { 434 int cpu, error; 435 436 /* Allow everyone to use the CPU hotplug again */ 437 cpu_maps_update_begin(); 438 cpu_hotplug_disabled = 0; 439 if (cpus_empty(frozen_cpus)) 440 goto out; 441 442 printk("Enabling non-boot CPUs ...\n"); 443 for_each_cpu_mask_nr(cpu, frozen_cpus) { 444 error = _cpu_up(cpu, 1); 445 if (!error) { 446 printk("CPU%d is up\n", cpu); 447 continue; 448 } 449 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 450 } 451 cpus_clear(frozen_cpus); 452 out: 453 cpu_maps_update_done(); 454 } 455 #endif /* CONFIG_PM_SLEEP_SMP */ 456 457 /** 458 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 459 * @cpu: cpu that just started 460 * 461 * This function calls the cpu_chain notifiers with CPU_STARTING. 462 * It must be called by the arch code on the new cpu, before the new cpu 463 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 464 */ 465 void notify_cpu_starting(unsigned int cpu) 466 { 467 unsigned long val = CPU_STARTING; 468 469 #ifdef CONFIG_PM_SLEEP_SMP 470 if (cpu_isset(cpu, frozen_cpus)) 471 val = CPU_STARTING_FROZEN; 472 #endif /* CONFIG_PM_SLEEP_SMP */ 473 raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu); 474 } 475 476 #endif /* CONFIG_SMP */ 477 478 /* 479 * cpu_bit_bitmap[] is a special, "compressed" data structure that 480 * represents all NR_CPUS bits binary values of 1<<nr. 481 * 482 * It is used by cpumask_of_cpu() to get a constant address to a CPU 483 * mask value that has a single bit set only. 484 */ 485 486 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 487 #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x) 488 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 489 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 490 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 491 492 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 493 494 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 495 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 496 #if BITS_PER_LONG > 32 497 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 498 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 499 #endif 500 }; 501 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 502