xref: /openbmc/linux/kernel/cpu.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/kthread.h>
15 #include <linux/stop_machine.h>
16 #include <linux/mutex.h>
17 
18 /*
19  * Represents all cpu's present in the system
20  * In systems capable of hotplug, this map could dynamically grow
21  * as new cpu's are detected in the system via any platform specific
22  * method, such as ACPI for e.g.
23  */
24 cpumask_t cpu_present_map __read_mostly;
25 EXPORT_SYMBOL(cpu_present_map);
26 
27 #ifndef CONFIG_SMP
28 
29 /*
30  * Represents all cpu's that are currently online.
31  */
32 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
33 EXPORT_SYMBOL(cpu_online_map);
34 
35 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
36 EXPORT_SYMBOL(cpu_possible_map);
37 
38 #else /* CONFIG_SMP */
39 
40 /* Serializes the updates to cpu_online_map, cpu_present_map */
41 static DEFINE_MUTEX(cpu_add_remove_lock);
42 
43 static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain);
44 
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46  * Should always be manipulated under cpu_add_remove_lock
47  */
48 static int cpu_hotplug_disabled;
49 
50 static struct {
51 	struct task_struct *active_writer;
52 	struct mutex lock; /* Synchronizes accesses to refcount, */
53 	/*
54 	 * Also blocks the new readers during
55 	 * an ongoing cpu hotplug operation.
56 	 */
57 	int refcount;
58 } cpu_hotplug;
59 
60 void __init cpu_hotplug_init(void)
61 {
62 	cpu_hotplug.active_writer = NULL;
63 	mutex_init(&cpu_hotplug.lock);
64 	cpu_hotplug.refcount = 0;
65 }
66 
67 cpumask_t cpu_active_map;
68 
69 #ifdef CONFIG_HOTPLUG_CPU
70 
71 void get_online_cpus(void)
72 {
73 	might_sleep();
74 	if (cpu_hotplug.active_writer == current)
75 		return;
76 	mutex_lock(&cpu_hotplug.lock);
77 	cpu_hotplug.refcount++;
78 	mutex_unlock(&cpu_hotplug.lock);
79 
80 }
81 EXPORT_SYMBOL_GPL(get_online_cpus);
82 
83 void put_online_cpus(void)
84 {
85 	if (cpu_hotplug.active_writer == current)
86 		return;
87 	mutex_lock(&cpu_hotplug.lock);
88 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
89 		wake_up_process(cpu_hotplug.active_writer);
90 	mutex_unlock(&cpu_hotplug.lock);
91 
92 }
93 EXPORT_SYMBOL_GPL(put_online_cpus);
94 
95 #endif	/* CONFIG_HOTPLUG_CPU */
96 
97 /*
98  * The following two API's must be used when attempting
99  * to serialize the updates to cpu_online_map, cpu_present_map.
100  */
101 void cpu_maps_update_begin(void)
102 {
103 	mutex_lock(&cpu_add_remove_lock);
104 }
105 
106 void cpu_maps_update_done(void)
107 {
108 	mutex_unlock(&cpu_add_remove_lock);
109 }
110 
111 /*
112  * This ensures that the hotplug operation can begin only when the
113  * refcount goes to zero.
114  *
115  * Note that during a cpu-hotplug operation, the new readers, if any,
116  * will be blocked by the cpu_hotplug.lock
117  *
118  * Since cpu_hotplug_begin() is always called after invoking
119  * cpu_maps_update_begin(), we can be sure that only one writer is active.
120  *
121  * Note that theoretically, there is a possibility of a livelock:
122  * - Refcount goes to zero, last reader wakes up the sleeping
123  *   writer.
124  * - Last reader unlocks the cpu_hotplug.lock.
125  * - A new reader arrives at this moment, bumps up the refcount.
126  * - The writer acquires the cpu_hotplug.lock finds the refcount
127  *   non zero and goes to sleep again.
128  *
129  * However, this is very difficult to achieve in practice since
130  * get_online_cpus() not an api which is called all that often.
131  *
132  */
133 static void cpu_hotplug_begin(void)
134 {
135 	cpu_hotplug.active_writer = current;
136 
137 	for (;;) {
138 		mutex_lock(&cpu_hotplug.lock);
139 		if (likely(!cpu_hotplug.refcount))
140 			break;
141 		__set_current_state(TASK_UNINTERRUPTIBLE);
142 		mutex_unlock(&cpu_hotplug.lock);
143 		schedule();
144 	}
145 }
146 
147 static void cpu_hotplug_done(void)
148 {
149 	cpu_hotplug.active_writer = NULL;
150 	mutex_unlock(&cpu_hotplug.lock);
151 }
152 /* Need to know about CPUs going up/down? */
153 int __ref register_cpu_notifier(struct notifier_block *nb)
154 {
155 	int ret;
156 	cpu_maps_update_begin();
157 	ret = raw_notifier_chain_register(&cpu_chain, nb);
158 	cpu_maps_update_done();
159 	return ret;
160 }
161 
162 #ifdef CONFIG_HOTPLUG_CPU
163 
164 EXPORT_SYMBOL(register_cpu_notifier);
165 
166 void __ref unregister_cpu_notifier(struct notifier_block *nb)
167 {
168 	cpu_maps_update_begin();
169 	raw_notifier_chain_unregister(&cpu_chain, nb);
170 	cpu_maps_update_done();
171 }
172 EXPORT_SYMBOL(unregister_cpu_notifier);
173 
174 static inline void check_for_tasks(int cpu)
175 {
176 	struct task_struct *p;
177 
178 	write_lock_irq(&tasklist_lock);
179 	for_each_process(p) {
180 		if (task_cpu(p) == cpu &&
181 		    (!cputime_eq(p->utime, cputime_zero) ||
182 		     !cputime_eq(p->stime, cputime_zero)))
183 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d\
184 				(state = %ld, flags = %x) \n",
185 				 p->comm, task_pid_nr(p), cpu,
186 				 p->state, p->flags);
187 	}
188 	write_unlock_irq(&tasklist_lock);
189 }
190 
191 struct take_cpu_down_param {
192 	unsigned long mod;
193 	void *hcpu;
194 };
195 
196 /* Take this CPU down. */
197 static int __ref take_cpu_down(void *_param)
198 {
199 	struct take_cpu_down_param *param = _param;
200 	int err;
201 
202 	/* Ensure this CPU doesn't handle any more interrupts. */
203 	err = __cpu_disable();
204 	if (err < 0)
205 		return err;
206 
207 	raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
208 				param->hcpu);
209 
210 	/* Force idle task to run as soon as we yield: it should
211 	   immediately notice cpu is offline and die quickly. */
212 	sched_idle_next();
213 	return 0;
214 }
215 
216 /* Requires cpu_add_remove_lock to be held */
217 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
218 {
219 	int err, nr_calls = 0;
220 	cpumask_t old_allowed, tmp;
221 	void *hcpu = (void *)(long)cpu;
222 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
223 	struct take_cpu_down_param tcd_param = {
224 		.mod = mod,
225 		.hcpu = hcpu,
226 	};
227 
228 	if (num_online_cpus() == 1)
229 		return -EBUSY;
230 
231 	if (!cpu_online(cpu))
232 		return -EINVAL;
233 
234 	cpu_hotplug_begin();
235 	err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
236 					hcpu, -1, &nr_calls);
237 	if (err == NOTIFY_BAD) {
238 		nr_calls--;
239 		__raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
240 					  hcpu, nr_calls, NULL);
241 		printk("%s: attempt to take down CPU %u failed\n",
242 				__func__, cpu);
243 		err = -EINVAL;
244 		goto out_release;
245 	}
246 
247 	/* Ensure that we are not runnable on dying cpu */
248 	old_allowed = current->cpus_allowed;
249 	cpus_setall(tmp);
250 	cpu_clear(cpu, tmp);
251 	set_cpus_allowed_ptr(current, &tmp);
252 	tmp = cpumask_of_cpu(cpu);
253 
254 	err = __stop_machine(take_cpu_down, &tcd_param, &tmp);
255 	if (err) {
256 		/* CPU didn't die: tell everyone.  Can't complain. */
257 		if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
258 					    hcpu) == NOTIFY_BAD)
259 			BUG();
260 
261 		goto out_allowed;
262 	}
263 	BUG_ON(cpu_online(cpu));
264 
265 	/* Wait for it to sleep (leaving idle task). */
266 	while (!idle_cpu(cpu))
267 		yield();
268 
269 	/* This actually kills the CPU. */
270 	__cpu_die(cpu);
271 
272 	/* CPU is completely dead: tell everyone.  Too late to complain. */
273 	if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod,
274 				    hcpu) == NOTIFY_BAD)
275 		BUG();
276 
277 	check_for_tasks(cpu);
278 
279 out_allowed:
280 	set_cpus_allowed_ptr(current, &old_allowed);
281 out_release:
282 	cpu_hotplug_done();
283 	if (!err) {
284 		if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod,
285 					    hcpu) == NOTIFY_BAD)
286 			BUG();
287 	}
288 	return err;
289 }
290 
291 int __ref cpu_down(unsigned int cpu)
292 {
293 	int err = 0;
294 
295 	cpu_maps_update_begin();
296 
297 	if (cpu_hotplug_disabled) {
298 		err = -EBUSY;
299 		goto out;
300 	}
301 
302 	cpu_clear(cpu, cpu_active_map);
303 
304 	/*
305 	 * Make sure the all cpus did the reschedule and are not
306 	 * using stale version of the cpu_active_map.
307 	 * This is not strictly necessary becuase stop_machine()
308 	 * that we run down the line already provides the required
309 	 * synchronization. But it's really a side effect and we do not
310 	 * want to depend on the innards of the stop_machine here.
311 	 */
312 	synchronize_sched();
313 
314 	err = _cpu_down(cpu, 0);
315 
316 	if (cpu_online(cpu))
317 		cpu_set(cpu, cpu_active_map);
318 
319 out:
320 	cpu_maps_update_done();
321 	return err;
322 }
323 EXPORT_SYMBOL(cpu_down);
324 #endif /*CONFIG_HOTPLUG_CPU*/
325 
326 /* Requires cpu_add_remove_lock to be held */
327 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
328 {
329 	int ret, nr_calls = 0;
330 	void *hcpu = (void *)(long)cpu;
331 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
332 
333 	if (cpu_online(cpu) || !cpu_present(cpu))
334 		return -EINVAL;
335 
336 	cpu_hotplug_begin();
337 	ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu,
338 							-1, &nr_calls);
339 	if (ret == NOTIFY_BAD) {
340 		nr_calls--;
341 		printk("%s: attempt to bring up CPU %u failed\n",
342 				__func__, cpu);
343 		ret = -EINVAL;
344 		goto out_notify;
345 	}
346 
347 	/* Arch-specific enabling code. */
348 	ret = __cpu_up(cpu);
349 	if (ret != 0)
350 		goto out_notify;
351 	BUG_ON(!cpu_online(cpu));
352 
353 	cpu_set(cpu, cpu_active_map);
354 
355 	/* Now call notifier in preparation. */
356 	raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu);
357 
358 out_notify:
359 	if (ret != 0)
360 		__raw_notifier_call_chain(&cpu_chain,
361 				CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
362 	cpu_hotplug_done();
363 
364 	return ret;
365 }
366 
367 int __cpuinit cpu_up(unsigned int cpu)
368 {
369 	int err = 0;
370 	if (!cpu_isset(cpu, cpu_possible_map)) {
371 		printk(KERN_ERR "can't online cpu %d because it is not "
372 			"configured as may-hotadd at boot time\n", cpu);
373 #if defined(CONFIG_IA64) || defined(CONFIG_X86_64)
374 		printk(KERN_ERR "please check additional_cpus= boot "
375 				"parameter\n");
376 #endif
377 		return -EINVAL;
378 	}
379 
380 	cpu_maps_update_begin();
381 
382 	if (cpu_hotplug_disabled) {
383 		err = -EBUSY;
384 		goto out;
385 	}
386 
387 	err = _cpu_up(cpu, 0);
388 
389 out:
390 	cpu_maps_update_done();
391 	return err;
392 }
393 
394 #ifdef CONFIG_PM_SLEEP_SMP
395 static cpumask_t frozen_cpus;
396 
397 int disable_nonboot_cpus(void)
398 {
399 	int cpu, first_cpu, error = 0;
400 
401 	cpu_maps_update_begin();
402 	first_cpu = first_cpu(cpu_online_map);
403 	/* We take down all of the non-boot CPUs in one shot to avoid races
404 	 * with the userspace trying to use the CPU hotplug at the same time
405 	 */
406 	cpus_clear(frozen_cpus);
407 	printk("Disabling non-boot CPUs ...\n");
408 	for_each_online_cpu(cpu) {
409 		if (cpu == first_cpu)
410 			continue;
411 		error = _cpu_down(cpu, 1);
412 		if (!error) {
413 			cpu_set(cpu, frozen_cpus);
414 			printk("CPU%d is down\n", cpu);
415 		} else {
416 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
417 				cpu, error);
418 			break;
419 		}
420 	}
421 	if (!error) {
422 		BUG_ON(num_online_cpus() > 1);
423 		/* Make sure the CPUs won't be enabled by someone else */
424 		cpu_hotplug_disabled = 1;
425 	} else {
426 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
427 	}
428 	cpu_maps_update_done();
429 	return error;
430 }
431 
432 void __ref enable_nonboot_cpus(void)
433 {
434 	int cpu, error;
435 
436 	/* Allow everyone to use the CPU hotplug again */
437 	cpu_maps_update_begin();
438 	cpu_hotplug_disabled = 0;
439 	if (cpus_empty(frozen_cpus))
440 		goto out;
441 
442 	printk("Enabling non-boot CPUs ...\n");
443 	for_each_cpu_mask_nr(cpu, frozen_cpus) {
444 		error = _cpu_up(cpu, 1);
445 		if (!error) {
446 			printk("CPU%d is up\n", cpu);
447 			continue;
448 		}
449 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
450 	}
451 	cpus_clear(frozen_cpus);
452 out:
453 	cpu_maps_update_done();
454 }
455 #endif /* CONFIG_PM_SLEEP_SMP */
456 
457 /**
458  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
459  * @cpu: cpu that just started
460  *
461  * This function calls the cpu_chain notifiers with CPU_STARTING.
462  * It must be called by the arch code on the new cpu, before the new cpu
463  * enables interrupts and before the "boot" cpu returns from __cpu_up().
464  */
465 void notify_cpu_starting(unsigned int cpu)
466 {
467 	unsigned long val = CPU_STARTING;
468 
469 #ifdef CONFIG_PM_SLEEP_SMP
470 	if (cpu_isset(cpu, frozen_cpus))
471 		val = CPU_STARTING_FROZEN;
472 #endif /* CONFIG_PM_SLEEP_SMP */
473 	raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
474 }
475 
476 #endif /* CONFIG_SMP */
477 
478 /*
479  * cpu_bit_bitmap[] is a special, "compressed" data structure that
480  * represents all NR_CPUS bits binary values of 1<<nr.
481  *
482  * It is used by cpumask_of_cpu() to get a constant address to a CPU
483  * mask value that has a single bit set only.
484  */
485 
486 /* cpu_bit_bitmap[0] is empty - so we can back into it */
487 #define MASK_DECLARE_1(x)	[x+1][0] = 1UL << (x)
488 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
489 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
490 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
491 
492 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
493 
494 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
495 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
496 #if BITS_PER_LONG > 32
497 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
498 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
499 #endif
500 };
501 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
502