xref: /openbmc/linux/kernel/cpu.c (revision 8dda2eac)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/cpuset.h>
36 
37 #include <trace/events/power.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/cpuhp.h>
40 
41 #include "smpboot.h"
42 
43 /**
44  * cpuhp_cpu_state - Per cpu hotplug state storage
45  * @state:	The current cpu state
46  * @target:	The target state
47  * @thread:	Pointer to the hotplug thread
48  * @should_run:	Thread should execute
49  * @rollback:	Perform a rollback
50  * @single:	Single callback invocation
51  * @bringup:	Single callback bringup or teardown selector
52  * @cb_state:	The state for a single callback (install/uninstall)
53  * @result:	Result of the operation
54  * @done_up:	Signal completion to the issuer of the task for cpu-up
55  * @done_down:	Signal completion to the issuer of the task for cpu-down
56  */
57 struct cpuhp_cpu_state {
58 	enum cpuhp_state	state;
59 	enum cpuhp_state	target;
60 	enum cpuhp_state	fail;
61 #ifdef CONFIG_SMP
62 	struct task_struct	*thread;
63 	bool			should_run;
64 	bool			rollback;
65 	bool			single;
66 	bool			bringup;
67 	int			cpu;
68 	struct hlist_node	*node;
69 	struct hlist_node	*last;
70 	enum cpuhp_state	cb_state;
71 	int			result;
72 	struct completion	done_up;
73 	struct completion	done_down;
74 #endif
75 };
76 
77 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 	.fail = CPUHP_INVALID,
79 };
80 
81 #ifdef CONFIG_SMP
82 cpumask_t cpus_booted_once_mask;
83 #endif
84 
85 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
86 static struct lockdep_map cpuhp_state_up_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88 static struct lockdep_map cpuhp_state_down_map =
89 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90 
91 
92 static inline void cpuhp_lock_acquire(bool bringup)
93 {
94 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95 }
96 
97 static inline void cpuhp_lock_release(bool bringup)
98 {
99 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100 }
101 #else
102 
103 static inline void cpuhp_lock_acquire(bool bringup) { }
104 static inline void cpuhp_lock_release(bool bringup) { }
105 
106 #endif
107 
108 /**
109  * cpuhp_step - Hotplug state machine step
110  * @name:	Name of the step
111  * @startup:	Startup function of the step
112  * @teardown:	Teardown function of the step
113  * @cant_stop:	Bringup/teardown can't be stopped at this step
114  */
115 struct cpuhp_step {
116 	const char		*name;
117 	union {
118 		int		(*single)(unsigned int cpu);
119 		int		(*multi)(unsigned int cpu,
120 					 struct hlist_node *node);
121 	} startup;
122 	union {
123 		int		(*single)(unsigned int cpu);
124 		int		(*multi)(unsigned int cpu,
125 					 struct hlist_node *node);
126 	} teardown;
127 	struct hlist_head	list;
128 	bool			cant_stop;
129 	bool			multi_instance;
130 };
131 
132 static DEFINE_MUTEX(cpuhp_state_mutex);
133 static struct cpuhp_step cpuhp_hp_states[];
134 
135 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
136 {
137 	return cpuhp_hp_states + state;
138 }
139 
140 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
141 {
142 	return bringup ? !step->startup.single : !step->teardown.single;
143 }
144 
145 /**
146  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
147  * @cpu:	The cpu for which the callback should be invoked
148  * @state:	The state to do callbacks for
149  * @bringup:	True if the bringup callback should be invoked
150  * @node:	For multi-instance, do a single entry callback for install/remove
151  * @lastp:	For multi-instance rollback, remember how far we got
152  *
153  * Called from cpu hotplug and from the state register machinery.
154  */
155 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
156 				 bool bringup, struct hlist_node *node,
157 				 struct hlist_node **lastp)
158 {
159 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
160 	struct cpuhp_step *step = cpuhp_get_step(state);
161 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
162 	int (*cb)(unsigned int cpu);
163 	int ret, cnt;
164 
165 	if (st->fail == state) {
166 		st->fail = CPUHP_INVALID;
167 		return -EAGAIN;
168 	}
169 
170 	if (cpuhp_step_empty(bringup, step)) {
171 		WARN_ON_ONCE(1);
172 		return 0;
173 	}
174 
175 	if (!step->multi_instance) {
176 		WARN_ON_ONCE(lastp && *lastp);
177 		cb = bringup ? step->startup.single : step->teardown.single;
178 
179 		trace_cpuhp_enter(cpu, st->target, state, cb);
180 		ret = cb(cpu);
181 		trace_cpuhp_exit(cpu, st->state, state, ret);
182 		return ret;
183 	}
184 	cbm = bringup ? step->startup.multi : step->teardown.multi;
185 
186 	/* Single invocation for instance add/remove */
187 	if (node) {
188 		WARN_ON_ONCE(lastp && *lastp);
189 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
190 		ret = cbm(cpu, node);
191 		trace_cpuhp_exit(cpu, st->state, state, ret);
192 		return ret;
193 	}
194 
195 	/* State transition. Invoke on all instances */
196 	cnt = 0;
197 	hlist_for_each(node, &step->list) {
198 		if (lastp && node == *lastp)
199 			break;
200 
201 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 		ret = cbm(cpu, node);
203 		trace_cpuhp_exit(cpu, st->state, state, ret);
204 		if (ret) {
205 			if (!lastp)
206 				goto err;
207 
208 			*lastp = node;
209 			return ret;
210 		}
211 		cnt++;
212 	}
213 	if (lastp)
214 		*lastp = NULL;
215 	return 0;
216 err:
217 	/* Rollback the instances if one failed */
218 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
219 	if (!cbm)
220 		return ret;
221 
222 	hlist_for_each(node, &step->list) {
223 		if (!cnt--)
224 			break;
225 
226 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
227 		ret = cbm(cpu, node);
228 		trace_cpuhp_exit(cpu, st->state, state, ret);
229 		/*
230 		 * Rollback must not fail,
231 		 */
232 		WARN_ON_ONCE(ret);
233 	}
234 	return ret;
235 }
236 
237 #ifdef CONFIG_SMP
238 static bool cpuhp_is_ap_state(enum cpuhp_state state)
239 {
240 	/*
241 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
242 	 * purposes as that state is handled explicitly in cpu_down.
243 	 */
244 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
245 }
246 
247 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	wait_for_completion(done);
251 }
252 
253 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
254 {
255 	struct completion *done = bringup ? &st->done_up : &st->done_down;
256 	complete(done);
257 }
258 
259 /*
260  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
261  */
262 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
263 {
264 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
265 }
266 
267 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
268 static DEFINE_MUTEX(cpu_add_remove_lock);
269 bool cpuhp_tasks_frozen;
270 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
271 
272 /*
273  * The following two APIs (cpu_maps_update_begin/done) must be used when
274  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
275  */
276 void cpu_maps_update_begin(void)
277 {
278 	mutex_lock(&cpu_add_remove_lock);
279 }
280 
281 void cpu_maps_update_done(void)
282 {
283 	mutex_unlock(&cpu_add_remove_lock);
284 }
285 
286 /*
287  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
288  * Should always be manipulated under cpu_add_remove_lock
289  */
290 static int cpu_hotplug_disabled;
291 
292 #ifdef CONFIG_HOTPLUG_CPU
293 
294 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
295 
296 void cpus_read_lock(void)
297 {
298 	percpu_down_read(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_lock);
301 
302 int cpus_read_trylock(void)
303 {
304 	return percpu_down_read_trylock(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_trylock);
307 
308 void cpus_read_unlock(void)
309 {
310 	percpu_up_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_unlock);
313 
314 void cpus_write_lock(void)
315 {
316 	percpu_down_write(&cpu_hotplug_lock);
317 }
318 
319 void cpus_write_unlock(void)
320 {
321 	percpu_up_write(&cpu_hotplug_lock);
322 }
323 
324 void lockdep_assert_cpus_held(void)
325 {
326 	/*
327 	 * We can't have hotplug operations before userspace starts running,
328 	 * and some init codepaths will knowingly not take the hotplug lock.
329 	 * This is all valid, so mute lockdep until it makes sense to report
330 	 * unheld locks.
331 	 */
332 	if (system_state < SYSTEM_RUNNING)
333 		return;
334 
335 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
336 }
337 
338 #ifdef CONFIG_LOCKDEP
339 int lockdep_is_cpus_held(void)
340 {
341 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
342 }
343 #endif
344 
345 static void lockdep_acquire_cpus_lock(void)
346 {
347 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
348 }
349 
350 static void lockdep_release_cpus_lock(void)
351 {
352 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
353 }
354 
355 /*
356  * Wait for currently running CPU hotplug operations to complete (if any) and
357  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
358  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
359  * hotplug path before performing hotplug operations. So acquiring that lock
360  * guarantees mutual exclusion from any currently running hotplug operations.
361  */
362 void cpu_hotplug_disable(void)
363 {
364 	cpu_maps_update_begin();
365 	cpu_hotplug_disabled++;
366 	cpu_maps_update_done();
367 }
368 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
369 
370 static void __cpu_hotplug_enable(void)
371 {
372 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
373 		return;
374 	cpu_hotplug_disabled--;
375 }
376 
377 void cpu_hotplug_enable(void)
378 {
379 	cpu_maps_update_begin();
380 	__cpu_hotplug_enable();
381 	cpu_maps_update_done();
382 }
383 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
384 
385 #else
386 
387 static void lockdep_acquire_cpus_lock(void)
388 {
389 }
390 
391 static void lockdep_release_cpus_lock(void)
392 {
393 }
394 
395 #endif	/* CONFIG_HOTPLUG_CPU */
396 
397 /*
398  * Architectures that need SMT-specific errata handling during SMT hotplug
399  * should override this.
400  */
401 void __weak arch_smt_update(void) { }
402 
403 #ifdef CONFIG_HOTPLUG_SMT
404 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
405 
406 void __init cpu_smt_disable(bool force)
407 {
408 	if (!cpu_smt_possible())
409 		return;
410 
411 	if (force) {
412 		pr_info("SMT: Force disabled\n");
413 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
414 	} else {
415 		pr_info("SMT: disabled\n");
416 		cpu_smt_control = CPU_SMT_DISABLED;
417 	}
418 }
419 
420 /*
421  * The decision whether SMT is supported can only be done after the full
422  * CPU identification. Called from architecture code.
423  */
424 void __init cpu_smt_check_topology(void)
425 {
426 	if (!topology_smt_supported())
427 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
428 }
429 
430 static int __init smt_cmdline_disable(char *str)
431 {
432 	cpu_smt_disable(str && !strcmp(str, "force"));
433 	return 0;
434 }
435 early_param("nosmt", smt_cmdline_disable);
436 
437 static inline bool cpu_smt_allowed(unsigned int cpu)
438 {
439 	if (cpu_smt_control == CPU_SMT_ENABLED)
440 		return true;
441 
442 	if (topology_is_primary_thread(cpu))
443 		return true;
444 
445 	/*
446 	 * On x86 it's required to boot all logical CPUs at least once so
447 	 * that the init code can get a chance to set CR4.MCE on each
448 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
449 	 * core will shutdown the machine.
450 	 */
451 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
452 }
453 
454 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
455 bool cpu_smt_possible(void)
456 {
457 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
458 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
459 }
460 EXPORT_SYMBOL_GPL(cpu_smt_possible);
461 #else
462 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
463 #endif
464 
465 static inline enum cpuhp_state
466 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
467 {
468 	enum cpuhp_state prev_state = st->state;
469 	bool bringup = st->state < target;
470 
471 	st->rollback = false;
472 	st->last = NULL;
473 
474 	st->target = target;
475 	st->single = false;
476 	st->bringup = bringup;
477 	if (cpu_dying(st->cpu) != !bringup)
478 		set_cpu_dying(st->cpu, !bringup);
479 
480 	return prev_state;
481 }
482 
483 static inline void
484 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
485 {
486 	bool bringup = !st->bringup;
487 
488 	st->target = prev_state;
489 
490 	/*
491 	 * Already rolling back. No need invert the bringup value or to change
492 	 * the current state.
493 	 */
494 	if (st->rollback)
495 		return;
496 
497 	st->rollback = true;
498 
499 	/*
500 	 * If we have st->last we need to undo partial multi_instance of this
501 	 * state first. Otherwise start undo at the previous state.
502 	 */
503 	if (!st->last) {
504 		if (st->bringup)
505 			st->state--;
506 		else
507 			st->state++;
508 	}
509 
510 	st->bringup = bringup;
511 	if (cpu_dying(st->cpu) != !bringup)
512 		set_cpu_dying(st->cpu, !bringup);
513 }
514 
515 /* Regular hotplug invocation of the AP hotplug thread */
516 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
517 {
518 	if (!st->single && st->state == st->target)
519 		return;
520 
521 	st->result = 0;
522 	/*
523 	 * Make sure the above stores are visible before should_run becomes
524 	 * true. Paired with the mb() above in cpuhp_thread_fun()
525 	 */
526 	smp_mb();
527 	st->should_run = true;
528 	wake_up_process(st->thread);
529 	wait_for_ap_thread(st, st->bringup);
530 }
531 
532 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
533 {
534 	enum cpuhp_state prev_state;
535 	int ret;
536 
537 	prev_state = cpuhp_set_state(st, target);
538 	__cpuhp_kick_ap(st);
539 	if ((ret = st->result)) {
540 		cpuhp_reset_state(st, prev_state);
541 		__cpuhp_kick_ap(st);
542 	}
543 
544 	return ret;
545 }
546 
547 static int bringup_wait_for_ap(unsigned int cpu)
548 {
549 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550 
551 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
552 	wait_for_ap_thread(st, true);
553 	if (WARN_ON_ONCE((!cpu_online(cpu))))
554 		return -ECANCELED;
555 
556 	/* Unpark the hotplug thread of the target cpu */
557 	kthread_unpark(st->thread);
558 
559 	/*
560 	 * SMT soft disabling on X86 requires to bring the CPU out of the
561 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
562 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
563 	 * cpu_smt_allowed() check will now return false if this is not the
564 	 * primary sibling.
565 	 */
566 	if (!cpu_smt_allowed(cpu))
567 		return -ECANCELED;
568 
569 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
570 		return 0;
571 
572 	return cpuhp_kick_ap(st, st->target);
573 }
574 
575 static int bringup_cpu(unsigned int cpu)
576 {
577 	struct task_struct *idle = idle_thread_get(cpu);
578 	int ret;
579 
580 	/*
581 	 * Some architectures have to walk the irq descriptors to
582 	 * setup the vector space for the cpu which comes online.
583 	 * Prevent irq alloc/free across the bringup.
584 	 */
585 	irq_lock_sparse();
586 
587 	/* Arch-specific enabling code. */
588 	ret = __cpu_up(cpu, idle);
589 	irq_unlock_sparse();
590 	if (ret)
591 		return ret;
592 	return bringup_wait_for_ap(cpu);
593 }
594 
595 static int finish_cpu(unsigned int cpu)
596 {
597 	struct task_struct *idle = idle_thread_get(cpu);
598 	struct mm_struct *mm = idle->active_mm;
599 
600 	/*
601 	 * idle_task_exit() will have switched to &init_mm, now
602 	 * clean up any remaining active_mm state.
603 	 */
604 	if (mm != &init_mm)
605 		idle->active_mm = &init_mm;
606 	mmdrop(mm);
607 	return 0;
608 }
609 
610 /*
611  * Hotplug state machine related functions
612  */
613 
614 /*
615  * Get the next state to run. Empty ones will be skipped. Returns true if a
616  * state must be run.
617  *
618  * st->state will be modified ahead of time, to match state_to_run, as if it
619  * has already ran.
620  */
621 static bool cpuhp_next_state(bool bringup,
622 			     enum cpuhp_state *state_to_run,
623 			     struct cpuhp_cpu_state *st,
624 			     enum cpuhp_state target)
625 {
626 	do {
627 		if (bringup) {
628 			if (st->state >= target)
629 				return false;
630 
631 			*state_to_run = ++st->state;
632 		} else {
633 			if (st->state <= target)
634 				return false;
635 
636 			*state_to_run = st->state--;
637 		}
638 
639 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
640 			break;
641 	} while (true);
642 
643 	return true;
644 }
645 
646 static int cpuhp_invoke_callback_range(bool bringup,
647 				       unsigned int cpu,
648 				       struct cpuhp_cpu_state *st,
649 				       enum cpuhp_state target)
650 {
651 	enum cpuhp_state state;
652 	int err = 0;
653 
654 	while (cpuhp_next_state(bringup, &state, st, target)) {
655 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
656 		if (err)
657 			break;
658 	}
659 
660 	return err;
661 }
662 
663 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
664 {
665 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
666 		return true;
667 	/*
668 	 * When CPU hotplug is disabled, then taking the CPU down is not
669 	 * possible because takedown_cpu() and the architecture and
670 	 * subsystem specific mechanisms are not available. So the CPU
671 	 * which would be completely unplugged again needs to stay around
672 	 * in the current state.
673 	 */
674 	return st->state <= CPUHP_BRINGUP_CPU;
675 }
676 
677 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
678 			      enum cpuhp_state target)
679 {
680 	enum cpuhp_state prev_state = st->state;
681 	int ret = 0;
682 
683 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
684 	if (ret) {
685 		cpuhp_reset_state(st, prev_state);
686 		if (can_rollback_cpu(st))
687 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
688 							    prev_state));
689 	}
690 	return ret;
691 }
692 
693 /*
694  * The cpu hotplug threads manage the bringup and teardown of the cpus
695  */
696 static void cpuhp_create(unsigned int cpu)
697 {
698 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
699 
700 	init_completion(&st->done_up);
701 	init_completion(&st->done_down);
702 	st->cpu = cpu;
703 }
704 
705 static int cpuhp_should_run(unsigned int cpu)
706 {
707 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
708 
709 	return st->should_run;
710 }
711 
712 /*
713  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
714  * callbacks when a state gets [un]installed at runtime.
715  *
716  * Each invocation of this function by the smpboot thread does a single AP
717  * state callback.
718  *
719  * It has 3 modes of operation:
720  *  - single: runs st->cb_state
721  *  - up:     runs ++st->state, while st->state < st->target
722  *  - down:   runs st->state--, while st->state > st->target
723  *
724  * When complete or on error, should_run is cleared and the completion is fired.
725  */
726 static void cpuhp_thread_fun(unsigned int cpu)
727 {
728 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
729 	bool bringup = st->bringup;
730 	enum cpuhp_state state;
731 
732 	if (WARN_ON_ONCE(!st->should_run))
733 		return;
734 
735 	/*
736 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
737 	 * that if we see ->should_run we also see the rest of the state.
738 	 */
739 	smp_mb();
740 
741 	/*
742 	 * The BP holds the hotplug lock, but we're now running on the AP,
743 	 * ensure that anybody asserting the lock is held, will actually find
744 	 * it so.
745 	 */
746 	lockdep_acquire_cpus_lock();
747 	cpuhp_lock_acquire(bringup);
748 
749 	if (st->single) {
750 		state = st->cb_state;
751 		st->should_run = false;
752 	} else {
753 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
754 		if (!st->should_run)
755 			goto end;
756 	}
757 
758 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
759 
760 	if (cpuhp_is_atomic_state(state)) {
761 		local_irq_disable();
762 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
763 		local_irq_enable();
764 
765 		/*
766 		 * STARTING/DYING must not fail!
767 		 */
768 		WARN_ON_ONCE(st->result);
769 	} else {
770 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
771 	}
772 
773 	if (st->result) {
774 		/*
775 		 * If we fail on a rollback, we're up a creek without no
776 		 * paddle, no way forward, no way back. We loose, thanks for
777 		 * playing.
778 		 */
779 		WARN_ON_ONCE(st->rollback);
780 		st->should_run = false;
781 	}
782 
783 end:
784 	cpuhp_lock_release(bringup);
785 	lockdep_release_cpus_lock();
786 
787 	if (!st->should_run)
788 		complete_ap_thread(st, bringup);
789 }
790 
791 /* Invoke a single callback on a remote cpu */
792 static int
793 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
794 			 struct hlist_node *node)
795 {
796 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
797 	int ret;
798 
799 	if (!cpu_online(cpu))
800 		return 0;
801 
802 	cpuhp_lock_acquire(false);
803 	cpuhp_lock_release(false);
804 
805 	cpuhp_lock_acquire(true);
806 	cpuhp_lock_release(true);
807 
808 	/*
809 	 * If we are up and running, use the hotplug thread. For early calls
810 	 * we invoke the thread function directly.
811 	 */
812 	if (!st->thread)
813 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
814 
815 	st->rollback = false;
816 	st->last = NULL;
817 
818 	st->node = node;
819 	st->bringup = bringup;
820 	st->cb_state = state;
821 	st->single = true;
822 
823 	__cpuhp_kick_ap(st);
824 
825 	/*
826 	 * If we failed and did a partial, do a rollback.
827 	 */
828 	if ((ret = st->result) && st->last) {
829 		st->rollback = true;
830 		st->bringup = !bringup;
831 
832 		__cpuhp_kick_ap(st);
833 	}
834 
835 	/*
836 	 * Clean up the leftovers so the next hotplug operation wont use stale
837 	 * data.
838 	 */
839 	st->node = st->last = NULL;
840 	return ret;
841 }
842 
843 static int cpuhp_kick_ap_work(unsigned int cpu)
844 {
845 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
846 	enum cpuhp_state prev_state = st->state;
847 	int ret;
848 
849 	cpuhp_lock_acquire(false);
850 	cpuhp_lock_release(false);
851 
852 	cpuhp_lock_acquire(true);
853 	cpuhp_lock_release(true);
854 
855 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
856 	ret = cpuhp_kick_ap(st, st->target);
857 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
858 
859 	return ret;
860 }
861 
862 static struct smp_hotplug_thread cpuhp_threads = {
863 	.store			= &cpuhp_state.thread,
864 	.create			= &cpuhp_create,
865 	.thread_should_run	= cpuhp_should_run,
866 	.thread_fn		= cpuhp_thread_fun,
867 	.thread_comm		= "cpuhp/%u",
868 	.selfparking		= true,
869 };
870 
871 void __init cpuhp_threads_init(void)
872 {
873 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
874 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
875 }
876 
877 /*
878  *
879  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
880  * protected region.
881  *
882  * The operation is still serialized against concurrent CPU hotplug via
883  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
884  * serialized against other hotplug related activity like adding or
885  * removing of state callbacks and state instances, which invoke either the
886  * startup or the teardown callback of the affected state.
887  *
888  * This is required for subsystems which are unfixable vs. CPU hotplug and
889  * evade lock inversion problems by scheduling work which has to be
890  * completed _before_ cpu_up()/_cpu_down() returns.
891  *
892  * Don't even think about adding anything to this for any new code or even
893  * drivers. It's only purpose is to keep existing lock order trainwrecks
894  * working.
895  *
896  * For cpu_down() there might be valid reasons to finish cleanups which are
897  * not required to be done under cpu_hotplug_lock, but that's a different
898  * story and would be not invoked via this.
899  */
900 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
901 {
902 	/*
903 	 * cpusets delegate hotplug operations to a worker to "solve" the
904 	 * lock order problems. Wait for the worker, but only if tasks are
905 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
906 	 *
907 	 * The wait is required because otherwise the hotplug operation
908 	 * returns with inconsistent state, which could even be observed in
909 	 * user space when a new CPU is brought up. The CPU plug uevent
910 	 * would be delivered and user space reacting on it would fail to
911 	 * move tasks to the newly plugged CPU up to the point where the
912 	 * work has finished because up to that point the newly plugged CPU
913 	 * is not assignable in cpusets/cgroups. On unplug that's not
914 	 * necessarily a visible issue, but it is still inconsistent state,
915 	 * which is the real problem which needs to be "fixed". This can't
916 	 * prevent the transient state between scheduling the work and
917 	 * returning from waiting for it.
918 	 */
919 	if (!tasks_frozen)
920 		cpuset_wait_for_hotplug();
921 }
922 
923 #ifdef CONFIG_HOTPLUG_CPU
924 #ifndef arch_clear_mm_cpumask_cpu
925 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
926 #endif
927 
928 /**
929  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
930  * @cpu: a CPU id
931  *
932  * This function walks all processes, finds a valid mm struct for each one and
933  * then clears a corresponding bit in mm's cpumask.  While this all sounds
934  * trivial, there are various non-obvious corner cases, which this function
935  * tries to solve in a safe manner.
936  *
937  * Also note that the function uses a somewhat relaxed locking scheme, so it may
938  * be called only for an already offlined CPU.
939  */
940 void clear_tasks_mm_cpumask(int cpu)
941 {
942 	struct task_struct *p;
943 
944 	/*
945 	 * This function is called after the cpu is taken down and marked
946 	 * offline, so its not like new tasks will ever get this cpu set in
947 	 * their mm mask. -- Peter Zijlstra
948 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
949 	 * full-fledged tasklist_lock.
950 	 */
951 	WARN_ON(cpu_online(cpu));
952 	rcu_read_lock();
953 	for_each_process(p) {
954 		struct task_struct *t;
955 
956 		/*
957 		 * Main thread might exit, but other threads may still have
958 		 * a valid mm. Find one.
959 		 */
960 		t = find_lock_task_mm(p);
961 		if (!t)
962 			continue;
963 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
964 		task_unlock(t);
965 	}
966 	rcu_read_unlock();
967 }
968 
969 /* Take this CPU down. */
970 static int take_cpu_down(void *_param)
971 {
972 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
973 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
974 	int err, cpu = smp_processor_id();
975 	int ret;
976 
977 	/* Ensure this CPU doesn't handle any more interrupts. */
978 	err = __cpu_disable();
979 	if (err < 0)
980 		return err;
981 
982 	/*
983 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
984 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
985 	 */
986 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
987 
988 	/* Invoke the former CPU_DYING callbacks */
989 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
990 
991 	/*
992 	 * DYING must not fail!
993 	 */
994 	WARN_ON_ONCE(ret);
995 
996 	/* Give up timekeeping duties */
997 	tick_handover_do_timer();
998 	/* Remove CPU from timer broadcasting */
999 	tick_offline_cpu(cpu);
1000 	/* Park the stopper thread */
1001 	stop_machine_park(cpu);
1002 	return 0;
1003 }
1004 
1005 static int takedown_cpu(unsigned int cpu)
1006 {
1007 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008 	int err;
1009 
1010 	/* Park the smpboot threads */
1011 	kthread_park(st->thread);
1012 
1013 	/*
1014 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1015 	 * interrupt affinities.
1016 	 */
1017 	irq_lock_sparse();
1018 
1019 	/*
1020 	 * So now all preempt/rcu users must observe !cpu_active().
1021 	 */
1022 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1023 	if (err) {
1024 		/* CPU refused to die */
1025 		irq_unlock_sparse();
1026 		/* Unpark the hotplug thread so we can rollback there */
1027 		kthread_unpark(st->thread);
1028 		return err;
1029 	}
1030 	BUG_ON(cpu_online(cpu));
1031 
1032 	/*
1033 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034 	 * all runnable tasks from the CPU, there's only the idle task left now
1035 	 * that the migration thread is done doing the stop_machine thing.
1036 	 *
1037 	 * Wait for the stop thread to go away.
1038 	 */
1039 	wait_for_ap_thread(st, false);
1040 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1041 
1042 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043 	irq_unlock_sparse();
1044 
1045 	hotplug_cpu__broadcast_tick_pull(cpu);
1046 	/* This actually kills the CPU. */
1047 	__cpu_die(cpu);
1048 
1049 	tick_cleanup_dead_cpu(cpu);
1050 	rcutree_migrate_callbacks(cpu);
1051 	return 0;
1052 }
1053 
1054 static void cpuhp_complete_idle_dead(void *arg)
1055 {
1056 	struct cpuhp_cpu_state *st = arg;
1057 
1058 	complete_ap_thread(st, false);
1059 }
1060 
1061 void cpuhp_report_idle_dead(void)
1062 {
1063 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064 
1065 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1066 	rcu_report_dead(smp_processor_id());
1067 	st->state = CPUHP_AP_IDLE_DEAD;
1068 	/*
1069 	 * We cannot call complete after rcu_report_dead() so we delegate it
1070 	 * to an online cpu.
1071 	 */
1072 	smp_call_function_single(cpumask_first(cpu_online_mask),
1073 				 cpuhp_complete_idle_dead, st, 0);
1074 }
1075 
1076 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077 				enum cpuhp_state target)
1078 {
1079 	enum cpuhp_state prev_state = st->state;
1080 	int ret = 0;
1081 
1082 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1083 	if (ret) {
1084 
1085 		cpuhp_reset_state(st, prev_state);
1086 
1087 		if (st->state < prev_state)
1088 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1089 							    prev_state));
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 /* Requires cpu_add_remove_lock to be held */
1096 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097 			   enum cpuhp_state target)
1098 {
1099 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100 	int prev_state, ret = 0;
1101 
1102 	if (num_online_cpus() == 1)
1103 		return -EBUSY;
1104 
1105 	if (!cpu_present(cpu))
1106 		return -EINVAL;
1107 
1108 	cpus_write_lock();
1109 
1110 	cpuhp_tasks_frozen = tasks_frozen;
1111 
1112 	prev_state = cpuhp_set_state(st, target);
1113 	/*
1114 	 * If the current CPU state is in the range of the AP hotplug thread,
1115 	 * then we need to kick the thread.
1116 	 */
1117 	if (st->state > CPUHP_TEARDOWN_CPU) {
1118 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1119 		ret = cpuhp_kick_ap_work(cpu);
1120 		/*
1121 		 * The AP side has done the error rollback already. Just
1122 		 * return the error code..
1123 		 */
1124 		if (ret)
1125 			goto out;
1126 
1127 		/*
1128 		 * We might have stopped still in the range of the AP hotplug
1129 		 * thread. Nothing to do anymore.
1130 		 */
1131 		if (st->state > CPUHP_TEARDOWN_CPU)
1132 			goto out;
1133 
1134 		st->target = target;
1135 	}
1136 	/*
1137 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138 	 * to do the further cleanups.
1139 	 */
1140 	ret = cpuhp_down_callbacks(cpu, st, target);
1141 	if (ret && st->state < prev_state) {
1142 		if (st->state == CPUHP_TEARDOWN_CPU) {
1143 			cpuhp_reset_state(st, prev_state);
1144 			__cpuhp_kick_ap(st);
1145 		} else {
1146 			WARN(1, "DEAD callback error for CPU%d", cpu);
1147 		}
1148 	}
1149 
1150 out:
1151 	cpus_write_unlock();
1152 	/*
1153 	 * Do post unplug cleanup. This is still protected against
1154 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1155 	 */
1156 	lockup_detector_cleanup();
1157 	arch_smt_update();
1158 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1159 	return ret;
1160 }
1161 
1162 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1163 {
1164 	if (cpu_hotplug_disabled)
1165 		return -EBUSY;
1166 	return _cpu_down(cpu, 0, target);
1167 }
1168 
1169 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1170 {
1171 	int err;
1172 
1173 	cpu_maps_update_begin();
1174 	err = cpu_down_maps_locked(cpu, target);
1175 	cpu_maps_update_done();
1176 	return err;
1177 }
1178 
1179 /**
1180  * cpu_device_down - Bring down a cpu device
1181  * @dev: Pointer to the cpu device to offline
1182  *
1183  * This function is meant to be used by device core cpu subsystem only.
1184  *
1185  * Other subsystems should use remove_cpu() instead.
1186  */
1187 int cpu_device_down(struct device *dev)
1188 {
1189 	return cpu_down(dev->id, CPUHP_OFFLINE);
1190 }
1191 
1192 int remove_cpu(unsigned int cpu)
1193 {
1194 	int ret;
1195 
1196 	lock_device_hotplug();
1197 	ret = device_offline(get_cpu_device(cpu));
1198 	unlock_device_hotplug();
1199 
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(remove_cpu);
1203 
1204 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1205 {
1206 	unsigned int cpu;
1207 	int error;
1208 
1209 	cpu_maps_update_begin();
1210 
1211 	/*
1212 	 * Make certain the cpu I'm about to reboot on is online.
1213 	 *
1214 	 * This is inline to what migrate_to_reboot_cpu() already do.
1215 	 */
1216 	if (!cpu_online(primary_cpu))
1217 		primary_cpu = cpumask_first(cpu_online_mask);
1218 
1219 	for_each_online_cpu(cpu) {
1220 		if (cpu == primary_cpu)
1221 			continue;
1222 
1223 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224 		if (error) {
1225 			pr_err("Failed to offline CPU%d - error=%d",
1226 				cpu, error);
1227 			break;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * Ensure all but the reboot CPU are offline.
1233 	 */
1234 	BUG_ON(num_online_cpus() > 1);
1235 
1236 	/*
1237 	 * Make sure the CPUs won't be enabled by someone else after this
1238 	 * point. Kexec will reboot to a new kernel shortly resetting
1239 	 * everything along the way.
1240 	 */
1241 	cpu_hotplug_disabled++;
1242 
1243 	cpu_maps_update_done();
1244 }
1245 
1246 #else
1247 #define takedown_cpu		NULL
1248 #endif /*CONFIG_HOTPLUG_CPU*/
1249 
1250 /**
1251  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1252  * @cpu: cpu that just started
1253  *
1254  * It must be called by the arch code on the new cpu, before the new cpu
1255  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1256  */
1257 void notify_cpu_starting(unsigned int cpu)
1258 {
1259 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1261 	int ret;
1262 
1263 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1264 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1265 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1266 
1267 	/*
1268 	 * STARTING must not fail!
1269 	 */
1270 	WARN_ON_ONCE(ret);
1271 }
1272 
1273 /*
1274  * Called from the idle task. Wake up the controlling task which brings the
1275  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276  * online bringup to the hotplug thread.
1277  */
1278 void cpuhp_online_idle(enum cpuhp_state state)
1279 {
1280 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1281 
1282 	/* Happens for the boot cpu */
1283 	if (state != CPUHP_AP_ONLINE_IDLE)
1284 		return;
1285 
1286 	/*
1287 	 * Unpart the stopper thread before we start the idle loop (and start
1288 	 * scheduling); this ensures the stopper task is always available.
1289 	 */
1290 	stop_machine_unpark(smp_processor_id());
1291 
1292 	st->state = CPUHP_AP_ONLINE_IDLE;
1293 	complete_ap_thread(st, true);
1294 }
1295 
1296 /* Requires cpu_add_remove_lock to be held */
1297 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1298 {
1299 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300 	struct task_struct *idle;
1301 	int ret = 0;
1302 
1303 	cpus_write_lock();
1304 
1305 	if (!cpu_present(cpu)) {
1306 		ret = -EINVAL;
1307 		goto out;
1308 	}
1309 
1310 	/*
1311 	 * The caller of cpu_up() might have raced with another
1312 	 * caller. Nothing to do.
1313 	 */
1314 	if (st->state >= target)
1315 		goto out;
1316 
1317 	if (st->state == CPUHP_OFFLINE) {
1318 		/* Let it fail before we try to bring the cpu up */
1319 		idle = idle_thread_get(cpu);
1320 		if (IS_ERR(idle)) {
1321 			ret = PTR_ERR(idle);
1322 			goto out;
1323 		}
1324 	}
1325 
1326 	cpuhp_tasks_frozen = tasks_frozen;
1327 
1328 	cpuhp_set_state(st, target);
1329 	/*
1330 	 * If the current CPU state is in the range of the AP hotplug thread,
1331 	 * then we need to kick the thread once more.
1332 	 */
1333 	if (st->state > CPUHP_BRINGUP_CPU) {
1334 		ret = cpuhp_kick_ap_work(cpu);
1335 		/*
1336 		 * The AP side has done the error rollback already. Just
1337 		 * return the error code..
1338 		 */
1339 		if (ret)
1340 			goto out;
1341 	}
1342 
1343 	/*
1344 	 * Try to reach the target state. We max out on the BP at
1345 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1346 	 * responsible for bringing it up to the target state.
1347 	 */
1348 	target = min((int)target, CPUHP_BRINGUP_CPU);
1349 	ret = cpuhp_up_callbacks(cpu, st, target);
1350 out:
1351 	cpus_write_unlock();
1352 	arch_smt_update();
1353 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1354 	return ret;
1355 }
1356 
1357 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1358 {
1359 	int err = 0;
1360 
1361 	if (!cpu_possible(cpu)) {
1362 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1363 		       cpu);
1364 #if defined(CONFIG_IA64)
1365 		pr_err("please check additional_cpus= boot parameter\n");
1366 #endif
1367 		return -EINVAL;
1368 	}
1369 
1370 	err = try_online_node(cpu_to_node(cpu));
1371 	if (err)
1372 		return err;
1373 
1374 	cpu_maps_update_begin();
1375 
1376 	if (cpu_hotplug_disabled) {
1377 		err = -EBUSY;
1378 		goto out;
1379 	}
1380 	if (!cpu_smt_allowed(cpu)) {
1381 		err = -EPERM;
1382 		goto out;
1383 	}
1384 
1385 	err = _cpu_up(cpu, 0, target);
1386 out:
1387 	cpu_maps_update_done();
1388 	return err;
1389 }
1390 
1391 /**
1392  * cpu_device_up - Bring up a cpu device
1393  * @dev: Pointer to the cpu device to online
1394  *
1395  * This function is meant to be used by device core cpu subsystem only.
1396  *
1397  * Other subsystems should use add_cpu() instead.
1398  */
1399 int cpu_device_up(struct device *dev)
1400 {
1401 	return cpu_up(dev->id, CPUHP_ONLINE);
1402 }
1403 
1404 int add_cpu(unsigned int cpu)
1405 {
1406 	int ret;
1407 
1408 	lock_device_hotplug();
1409 	ret = device_online(get_cpu_device(cpu));
1410 	unlock_device_hotplug();
1411 
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(add_cpu);
1415 
1416 /**
1417  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1419  *
1420  * On some architectures like arm64, we can hibernate on any CPU, but on
1421  * wake up the CPU we hibernated on might be offline as a side effect of
1422  * using maxcpus= for example.
1423  */
1424 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1425 {
1426 	int ret;
1427 
1428 	if (!cpu_online(sleep_cpu)) {
1429 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1430 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1431 		if (ret) {
1432 			pr_err("Failed to bring hibernate-CPU up!\n");
1433 			return ret;
1434 		}
1435 	}
1436 	return 0;
1437 }
1438 
1439 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1440 {
1441 	unsigned int cpu;
1442 
1443 	for_each_present_cpu(cpu) {
1444 		if (num_online_cpus() >= setup_max_cpus)
1445 			break;
1446 		if (!cpu_online(cpu))
1447 			cpu_up(cpu, CPUHP_ONLINE);
1448 	}
1449 }
1450 
1451 #ifdef CONFIG_PM_SLEEP_SMP
1452 static cpumask_var_t frozen_cpus;
1453 
1454 int freeze_secondary_cpus(int primary)
1455 {
1456 	int cpu, error = 0;
1457 
1458 	cpu_maps_update_begin();
1459 	if (primary == -1) {
1460 		primary = cpumask_first(cpu_online_mask);
1461 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1463 	} else {
1464 		if (!cpu_online(primary))
1465 			primary = cpumask_first(cpu_online_mask);
1466 	}
1467 
1468 	/*
1469 	 * We take down all of the non-boot CPUs in one shot to avoid races
1470 	 * with the userspace trying to use the CPU hotplug at the same time
1471 	 */
1472 	cpumask_clear(frozen_cpus);
1473 
1474 	pr_info("Disabling non-boot CPUs ...\n");
1475 	for_each_online_cpu(cpu) {
1476 		if (cpu == primary)
1477 			continue;
1478 
1479 		if (pm_wakeup_pending()) {
1480 			pr_info("Wakeup pending. Abort CPU freeze\n");
1481 			error = -EBUSY;
1482 			break;
1483 		}
1484 
1485 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1486 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1487 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1488 		if (!error)
1489 			cpumask_set_cpu(cpu, frozen_cpus);
1490 		else {
1491 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1492 			break;
1493 		}
1494 	}
1495 
1496 	if (!error)
1497 		BUG_ON(num_online_cpus() > 1);
1498 	else
1499 		pr_err("Non-boot CPUs are not disabled\n");
1500 
1501 	/*
1502 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1503 	 * this even in case of failure as all freeze_secondary_cpus() users are
1504 	 * supposed to do thaw_secondary_cpus() on the failure path.
1505 	 */
1506 	cpu_hotplug_disabled++;
1507 
1508 	cpu_maps_update_done();
1509 	return error;
1510 }
1511 
1512 void __weak arch_thaw_secondary_cpus_begin(void)
1513 {
1514 }
1515 
1516 void __weak arch_thaw_secondary_cpus_end(void)
1517 {
1518 }
1519 
1520 void thaw_secondary_cpus(void)
1521 {
1522 	int cpu, error;
1523 
1524 	/* Allow everyone to use the CPU hotplug again */
1525 	cpu_maps_update_begin();
1526 	__cpu_hotplug_enable();
1527 	if (cpumask_empty(frozen_cpus))
1528 		goto out;
1529 
1530 	pr_info("Enabling non-boot CPUs ...\n");
1531 
1532 	arch_thaw_secondary_cpus_begin();
1533 
1534 	for_each_cpu(cpu, frozen_cpus) {
1535 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1536 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1537 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1538 		if (!error) {
1539 			pr_info("CPU%d is up\n", cpu);
1540 			continue;
1541 		}
1542 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1543 	}
1544 
1545 	arch_thaw_secondary_cpus_end();
1546 
1547 	cpumask_clear(frozen_cpus);
1548 out:
1549 	cpu_maps_update_done();
1550 }
1551 
1552 static int __init alloc_frozen_cpus(void)
1553 {
1554 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1555 		return -ENOMEM;
1556 	return 0;
1557 }
1558 core_initcall(alloc_frozen_cpus);
1559 
1560 /*
1561  * When callbacks for CPU hotplug notifications are being executed, we must
1562  * ensure that the state of the system with respect to the tasks being frozen
1563  * or not, as reported by the notification, remains unchanged *throughout the
1564  * duration* of the execution of the callbacks.
1565  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1566  *
1567  * This synchronization is implemented by mutually excluding regular CPU
1568  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569  * Hibernate notifications.
1570  */
1571 static int
1572 cpu_hotplug_pm_callback(struct notifier_block *nb,
1573 			unsigned long action, void *ptr)
1574 {
1575 	switch (action) {
1576 
1577 	case PM_SUSPEND_PREPARE:
1578 	case PM_HIBERNATION_PREPARE:
1579 		cpu_hotplug_disable();
1580 		break;
1581 
1582 	case PM_POST_SUSPEND:
1583 	case PM_POST_HIBERNATION:
1584 		cpu_hotplug_enable();
1585 		break;
1586 
1587 	default:
1588 		return NOTIFY_DONE;
1589 	}
1590 
1591 	return NOTIFY_OK;
1592 }
1593 
1594 
1595 static int __init cpu_hotplug_pm_sync_init(void)
1596 {
1597 	/*
1598 	 * cpu_hotplug_pm_callback has higher priority than x86
1599 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600 	 * to disable cpu hotplug to avoid cpu hotplug race.
1601 	 */
1602 	pm_notifier(cpu_hotplug_pm_callback, 0);
1603 	return 0;
1604 }
1605 core_initcall(cpu_hotplug_pm_sync_init);
1606 
1607 #endif /* CONFIG_PM_SLEEP_SMP */
1608 
1609 int __boot_cpu_id;
1610 
1611 #endif /* CONFIG_SMP */
1612 
1613 /* Boot processor state steps */
1614 static struct cpuhp_step cpuhp_hp_states[] = {
1615 	[CPUHP_OFFLINE] = {
1616 		.name			= "offline",
1617 		.startup.single		= NULL,
1618 		.teardown.single	= NULL,
1619 	},
1620 #ifdef CONFIG_SMP
1621 	[CPUHP_CREATE_THREADS]= {
1622 		.name			= "threads:prepare",
1623 		.startup.single		= smpboot_create_threads,
1624 		.teardown.single	= NULL,
1625 		.cant_stop		= true,
1626 	},
1627 	[CPUHP_PERF_PREPARE] = {
1628 		.name			= "perf:prepare",
1629 		.startup.single		= perf_event_init_cpu,
1630 		.teardown.single	= perf_event_exit_cpu,
1631 	},
1632 	[CPUHP_WORKQUEUE_PREP] = {
1633 		.name			= "workqueue:prepare",
1634 		.startup.single		= workqueue_prepare_cpu,
1635 		.teardown.single	= NULL,
1636 	},
1637 	[CPUHP_HRTIMERS_PREPARE] = {
1638 		.name			= "hrtimers:prepare",
1639 		.startup.single		= hrtimers_prepare_cpu,
1640 		.teardown.single	= hrtimers_dead_cpu,
1641 	},
1642 	[CPUHP_SMPCFD_PREPARE] = {
1643 		.name			= "smpcfd:prepare",
1644 		.startup.single		= smpcfd_prepare_cpu,
1645 		.teardown.single	= smpcfd_dead_cpu,
1646 	},
1647 	[CPUHP_RELAY_PREPARE] = {
1648 		.name			= "relay:prepare",
1649 		.startup.single		= relay_prepare_cpu,
1650 		.teardown.single	= NULL,
1651 	},
1652 	[CPUHP_SLAB_PREPARE] = {
1653 		.name			= "slab:prepare",
1654 		.startup.single		= slab_prepare_cpu,
1655 		.teardown.single	= slab_dead_cpu,
1656 	},
1657 	[CPUHP_RCUTREE_PREP] = {
1658 		.name			= "RCU/tree:prepare",
1659 		.startup.single		= rcutree_prepare_cpu,
1660 		.teardown.single	= rcutree_dead_cpu,
1661 	},
1662 	/*
1663 	 * On the tear-down path, timers_dead_cpu() must be invoked
1664 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665 	 * otherwise a RCU stall occurs.
1666 	 */
1667 	[CPUHP_TIMERS_PREPARE] = {
1668 		.name			= "timers:prepare",
1669 		.startup.single		= timers_prepare_cpu,
1670 		.teardown.single	= timers_dead_cpu,
1671 	},
1672 	/* Kicks the plugged cpu into life */
1673 	[CPUHP_BRINGUP_CPU] = {
1674 		.name			= "cpu:bringup",
1675 		.startup.single		= bringup_cpu,
1676 		.teardown.single	= finish_cpu,
1677 		.cant_stop		= true,
1678 	},
1679 	/* Final state before CPU kills itself */
1680 	[CPUHP_AP_IDLE_DEAD] = {
1681 		.name			= "idle:dead",
1682 	},
1683 	/*
1684 	 * Last state before CPU enters the idle loop to die. Transient state
1685 	 * for synchronization.
1686 	 */
1687 	[CPUHP_AP_OFFLINE] = {
1688 		.name			= "ap:offline",
1689 		.cant_stop		= true,
1690 	},
1691 	/* First state is scheduler control. Interrupts are disabled */
1692 	[CPUHP_AP_SCHED_STARTING] = {
1693 		.name			= "sched:starting",
1694 		.startup.single		= sched_cpu_starting,
1695 		.teardown.single	= sched_cpu_dying,
1696 	},
1697 	[CPUHP_AP_RCUTREE_DYING] = {
1698 		.name			= "RCU/tree:dying",
1699 		.startup.single		= NULL,
1700 		.teardown.single	= rcutree_dying_cpu,
1701 	},
1702 	[CPUHP_AP_SMPCFD_DYING] = {
1703 		.name			= "smpcfd:dying",
1704 		.startup.single		= NULL,
1705 		.teardown.single	= smpcfd_dying_cpu,
1706 	},
1707 	/* Entry state on starting. Interrupts enabled from here on. Transient
1708 	 * state for synchronsization */
1709 	[CPUHP_AP_ONLINE] = {
1710 		.name			= "ap:online",
1711 	},
1712 	/*
1713 	 * Handled on control processor until the plugged processor manages
1714 	 * this itself.
1715 	 */
1716 	[CPUHP_TEARDOWN_CPU] = {
1717 		.name			= "cpu:teardown",
1718 		.startup.single		= NULL,
1719 		.teardown.single	= takedown_cpu,
1720 		.cant_stop		= true,
1721 	},
1722 
1723 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724 		.name			= "sched:waitempty",
1725 		.startup.single		= NULL,
1726 		.teardown.single	= sched_cpu_wait_empty,
1727 	},
1728 
1729 	/* Handle smpboot threads park/unpark */
1730 	[CPUHP_AP_SMPBOOT_THREADS] = {
1731 		.name			= "smpboot/threads:online",
1732 		.startup.single		= smpboot_unpark_threads,
1733 		.teardown.single	= smpboot_park_threads,
1734 	},
1735 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736 		.name			= "irq/affinity:online",
1737 		.startup.single		= irq_affinity_online_cpu,
1738 		.teardown.single	= NULL,
1739 	},
1740 	[CPUHP_AP_PERF_ONLINE] = {
1741 		.name			= "perf:online",
1742 		.startup.single		= perf_event_init_cpu,
1743 		.teardown.single	= perf_event_exit_cpu,
1744 	},
1745 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1746 		.name			= "lockup_detector:online",
1747 		.startup.single		= lockup_detector_online_cpu,
1748 		.teardown.single	= lockup_detector_offline_cpu,
1749 	},
1750 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1751 		.name			= "workqueue:online",
1752 		.startup.single		= workqueue_online_cpu,
1753 		.teardown.single	= workqueue_offline_cpu,
1754 	},
1755 	[CPUHP_AP_RCUTREE_ONLINE] = {
1756 		.name			= "RCU/tree:online",
1757 		.startup.single		= rcutree_online_cpu,
1758 		.teardown.single	= rcutree_offline_cpu,
1759 	},
1760 #endif
1761 	/*
1762 	 * The dynamically registered state space is here
1763 	 */
1764 
1765 #ifdef CONFIG_SMP
1766 	/* Last state is scheduler control setting the cpu active */
1767 	[CPUHP_AP_ACTIVE] = {
1768 		.name			= "sched:active",
1769 		.startup.single		= sched_cpu_activate,
1770 		.teardown.single	= sched_cpu_deactivate,
1771 	},
1772 #endif
1773 
1774 	/* CPU is fully up and running. */
1775 	[CPUHP_ONLINE] = {
1776 		.name			= "online",
1777 		.startup.single		= NULL,
1778 		.teardown.single	= NULL,
1779 	},
1780 };
1781 
1782 /* Sanity check for callbacks */
1783 static int cpuhp_cb_check(enum cpuhp_state state)
1784 {
1785 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1786 		return -EINVAL;
1787 	return 0;
1788 }
1789 
1790 /*
1791  * Returns a free for dynamic slot assignment of the Online state. The states
1792  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793  * by having no name assigned.
1794  */
1795 static int cpuhp_reserve_state(enum cpuhp_state state)
1796 {
1797 	enum cpuhp_state i, end;
1798 	struct cpuhp_step *step;
1799 
1800 	switch (state) {
1801 	case CPUHP_AP_ONLINE_DYN:
1802 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1803 		end = CPUHP_AP_ONLINE_DYN_END;
1804 		break;
1805 	case CPUHP_BP_PREPARE_DYN:
1806 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1807 		end = CPUHP_BP_PREPARE_DYN_END;
1808 		break;
1809 	default:
1810 		return -EINVAL;
1811 	}
1812 
1813 	for (i = state; i <= end; i++, step++) {
1814 		if (!step->name)
1815 			return i;
1816 	}
1817 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1818 	return -ENOSPC;
1819 }
1820 
1821 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822 				 int (*startup)(unsigned int cpu),
1823 				 int (*teardown)(unsigned int cpu),
1824 				 bool multi_instance)
1825 {
1826 	/* (Un)Install the callbacks for further cpu hotplug operations */
1827 	struct cpuhp_step *sp;
1828 	int ret = 0;
1829 
1830 	/*
1831 	 * If name is NULL, then the state gets removed.
1832 	 *
1833 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834 	 * the first allocation from these dynamic ranges, so the removal
1835 	 * would trigger a new allocation and clear the wrong (already
1836 	 * empty) state, leaving the callbacks of the to be cleared state
1837 	 * dangling, which causes wreckage on the next hotplug operation.
1838 	 */
1839 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840 		     state == CPUHP_BP_PREPARE_DYN)) {
1841 		ret = cpuhp_reserve_state(state);
1842 		if (ret < 0)
1843 			return ret;
1844 		state = ret;
1845 	}
1846 	sp = cpuhp_get_step(state);
1847 	if (name && sp->name)
1848 		return -EBUSY;
1849 
1850 	sp->startup.single = startup;
1851 	sp->teardown.single = teardown;
1852 	sp->name = name;
1853 	sp->multi_instance = multi_instance;
1854 	INIT_HLIST_HEAD(&sp->list);
1855 	return ret;
1856 }
1857 
1858 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1859 {
1860 	return cpuhp_get_step(state)->teardown.single;
1861 }
1862 
1863 /*
1864  * Call the startup/teardown function for a step either on the AP or
1865  * on the current CPU.
1866  */
1867 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868 			    struct hlist_node *node)
1869 {
1870 	struct cpuhp_step *sp = cpuhp_get_step(state);
1871 	int ret;
1872 
1873 	/*
1874 	 * If there's nothing to do, we done.
1875 	 * Relies on the union for multi_instance.
1876 	 */
1877 	if (cpuhp_step_empty(bringup, sp))
1878 		return 0;
1879 	/*
1880 	 * The non AP bound callbacks can fail on bringup. On teardown
1881 	 * e.g. module removal we crash for now.
1882 	 */
1883 #ifdef CONFIG_SMP
1884 	if (cpuhp_is_ap_state(state))
1885 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1886 	else
1887 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1888 #else
1889 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1890 #endif
1891 	BUG_ON(ret && !bringup);
1892 	return ret;
1893 }
1894 
1895 /*
1896  * Called from __cpuhp_setup_state on a recoverable failure.
1897  *
1898  * Note: The teardown callbacks for rollback are not allowed to fail!
1899  */
1900 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1901 				   struct hlist_node *node)
1902 {
1903 	int cpu;
1904 
1905 	/* Roll back the already executed steps on the other cpus */
1906 	for_each_present_cpu(cpu) {
1907 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908 		int cpustate = st->state;
1909 
1910 		if (cpu >= failedcpu)
1911 			break;
1912 
1913 		/* Did we invoke the startup call on that cpu ? */
1914 		if (cpustate >= state)
1915 			cpuhp_issue_call(cpu, state, false, node);
1916 	}
1917 }
1918 
1919 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920 					  struct hlist_node *node,
1921 					  bool invoke)
1922 {
1923 	struct cpuhp_step *sp;
1924 	int cpu;
1925 	int ret;
1926 
1927 	lockdep_assert_cpus_held();
1928 
1929 	sp = cpuhp_get_step(state);
1930 	if (sp->multi_instance == false)
1931 		return -EINVAL;
1932 
1933 	mutex_lock(&cpuhp_state_mutex);
1934 
1935 	if (!invoke || !sp->startup.multi)
1936 		goto add_node;
1937 
1938 	/*
1939 	 * Try to call the startup callback for each present cpu
1940 	 * depending on the hotplug state of the cpu.
1941 	 */
1942 	for_each_present_cpu(cpu) {
1943 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944 		int cpustate = st->state;
1945 
1946 		if (cpustate < state)
1947 			continue;
1948 
1949 		ret = cpuhp_issue_call(cpu, state, true, node);
1950 		if (ret) {
1951 			if (sp->teardown.multi)
1952 				cpuhp_rollback_install(cpu, state, node);
1953 			goto unlock;
1954 		}
1955 	}
1956 add_node:
1957 	ret = 0;
1958 	hlist_add_head(node, &sp->list);
1959 unlock:
1960 	mutex_unlock(&cpuhp_state_mutex);
1961 	return ret;
1962 }
1963 
1964 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1965 			       bool invoke)
1966 {
1967 	int ret;
1968 
1969 	cpus_read_lock();
1970 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1971 	cpus_read_unlock();
1972 	return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1975 
1976 /**
1977  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1978  * @state:		The state to setup
1979  * @invoke:		If true, the startup function is invoked for cpus where
1980  *			cpu state >= @state
1981  * @startup:		startup callback function
1982  * @teardown:		teardown callback function
1983  * @multi_instance:	State is set up for multiple instances which get
1984  *			added afterwards.
1985  *
1986  * The caller needs to hold cpus read locked while calling this function.
1987  * Returns:
1988  *   On success:
1989  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990  *      0 for all other states
1991  *   On failure: proper (negative) error code
1992  */
1993 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994 				   const char *name, bool invoke,
1995 				   int (*startup)(unsigned int cpu),
1996 				   int (*teardown)(unsigned int cpu),
1997 				   bool multi_instance)
1998 {
1999 	int cpu, ret = 0;
2000 	bool dynstate;
2001 
2002 	lockdep_assert_cpus_held();
2003 
2004 	if (cpuhp_cb_check(state) || !name)
2005 		return -EINVAL;
2006 
2007 	mutex_lock(&cpuhp_state_mutex);
2008 
2009 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2010 				    multi_instance);
2011 
2012 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2013 	if (ret > 0 && dynstate) {
2014 		state = ret;
2015 		ret = 0;
2016 	}
2017 
2018 	if (ret || !invoke || !startup)
2019 		goto out;
2020 
2021 	/*
2022 	 * Try to call the startup callback for each present cpu
2023 	 * depending on the hotplug state of the cpu.
2024 	 */
2025 	for_each_present_cpu(cpu) {
2026 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027 		int cpustate = st->state;
2028 
2029 		if (cpustate < state)
2030 			continue;
2031 
2032 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2033 		if (ret) {
2034 			if (teardown)
2035 				cpuhp_rollback_install(cpu, state, NULL);
2036 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2037 			goto out;
2038 		}
2039 	}
2040 out:
2041 	mutex_unlock(&cpuhp_state_mutex);
2042 	/*
2043 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044 	 * dynamically allocated state in case of success.
2045 	 */
2046 	if (!ret && dynstate)
2047 		return state;
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2051 
2052 int __cpuhp_setup_state(enum cpuhp_state state,
2053 			const char *name, bool invoke,
2054 			int (*startup)(unsigned int cpu),
2055 			int (*teardown)(unsigned int cpu),
2056 			bool multi_instance)
2057 {
2058 	int ret;
2059 
2060 	cpus_read_lock();
2061 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062 					     teardown, multi_instance);
2063 	cpus_read_unlock();
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL(__cpuhp_setup_state);
2067 
2068 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069 				  struct hlist_node *node, bool invoke)
2070 {
2071 	struct cpuhp_step *sp = cpuhp_get_step(state);
2072 	int cpu;
2073 
2074 	BUG_ON(cpuhp_cb_check(state));
2075 
2076 	if (!sp->multi_instance)
2077 		return -EINVAL;
2078 
2079 	cpus_read_lock();
2080 	mutex_lock(&cpuhp_state_mutex);
2081 
2082 	if (!invoke || !cpuhp_get_teardown_cb(state))
2083 		goto remove;
2084 	/*
2085 	 * Call the teardown callback for each present cpu depending
2086 	 * on the hotplug state of the cpu. This function is not
2087 	 * allowed to fail currently!
2088 	 */
2089 	for_each_present_cpu(cpu) {
2090 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091 		int cpustate = st->state;
2092 
2093 		if (cpustate >= state)
2094 			cpuhp_issue_call(cpu, state, false, node);
2095 	}
2096 
2097 remove:
2098 	hlist_del(node);
2099 	mutex_unlock(&cpuhp_state_mutex);
2100 	cpus_read_unlock();
2101 
2102 	return 0;
2103 }
2104 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2105 
2106 /**
2107  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2108  * @state:	The state to remove
2109  * @invoke:	If true, the teardown function is invoked for cpus where
2110  *		cpu state >= @state
2111  *
2112  * The caller needs to hold cpus read locked while calling this function.
2113  * The teardown callback is currently not allowed to fail. Think
2114  * about module removal!
2115  */
2116 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2117 {
2118 	struct cpuhp_step *sp = cpuhp_get_step(state);
2119 	int cpu;
2120 
2121 	BUG_ON(cpuhp_cb_check(state));
2122 
2123 	lockdep_assert_cpus_held();
2124 
2125 	mutex_lock(&cpuhp_state_mutex);
2126 	if (sp->multi_instance) {
2127 		WARN(!hlist_empty(&sp->list),
2128 		     "Error: Removing state %d which has instances left.\n",
2129 		     state);
2130 		goto remove;
2131 	}
2132 
2133 	if (!invoke || !cpuhp_get_teardown_cb(state))
2134 		goto remove;
2135 
2136 	/*
2137 	 * Call the teardown callback for each present cpu depending
2138 	 * on the hotplug state of the cpu. This function is not
2139 	 * allowed to fail currently!
2140 	 */
2141 	for_each_present_cpu(cpu) {
2142 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143 		int cpustate = st->state;
2144 
2145 		if (cpustate >= state)
2146 			cpuhp_issue_call(cpu, state, false, NULL);
2147 	}
2148 remove:
2149 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2150 	mutex_unlock(&cpuhp_state_mutex);
2151 }
2152 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2153 
2154 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2155 {
2156 	cpus_read_lock();
2157 	__cpuhp_remove_state_cpuslocked(state, invoke);
2158 	cpus_read_unlock();
2159 }
2160 EXPORT_SYMBOL(__cpuhp_remove_state);
2161 
2162 #ifdef CONFIG_HOTPLUG_SMT
2163 static void cpuhp_offline_cpu_device(unsigned int cpu)
2164 {
2165 	struct device *dev = get_cpu_device(cpu);
2166 
2167 	dev->offline = true;
2168 	/* Tell user space about the state change */
2169 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2170 }
2171 
2172 static void cpuhp_online_cpu_device(unsigned int cpu)
2173 {
2174 	struct device *dev = get_cpu_device(cpu);
2175 
2176 	dev->offline = false;
2177 	/* Tell user space about the state change */
2178 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2179 }
2180 
2181 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2182 {
2183 	int cpu, ret = 0;
2184 
2185 	cpu_maps_update_begin();
2186 	for_each_online_cpu(cpu) {
2187 		if (topology_is_primary_thread(cpu))
2188 			continue;
2189 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2190 		if (ret)
2191 			break;
2192 		/*
2193 		 * As this needs to hold the cpu maps lock it's impossible
2194 		 * to call device_offline() because that ends up calling
2195 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2196 		 * needs to be held as this might race against in kernel
2197 		 * abusers of the hotplug machinery (thermal management).
2198 		 *
2199 		 * So nothing would update device:offline state. That would
2200 		 * leave the sysfs entry stale and prevent onlining after
2201 		 * smt control has been changed to 'off' again. This is
2202 		 * called under the sysfs hotplug lock, so it is properly
2203 		 * serialized against the regular offline usage.
2204 		 */
2205 		cpuhp_offline_cpu_device(cpu);
2206 	}
2207 	if (!ret)
2208 		cpu_smt_control = ctrlval;
2209 	cpu_maps_update_done();
2210 	return ret;
2211 }
2212 
2213 int cpuhp_smt_enable(void)
2214 {
2215 	int cpu, ret = 0;
2216 
2217 	cpu_maps_update_begin();
2218 	cpu_smt_control = CPU_SMT_ENABLED;
2219 	for_each_present_cpu(cpu) {
2220 		/* Skip online CPUs and CPUs on offline nodes */
2221 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2222 			continue;
2223 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2224 		if (ret)
2225 			break;
2226 		/* See comment in cpuhp_smt_disable() */
2227 		cpuhp_online_cpu_device(cpu);
2228 	}
2229 	cpu_maps_update_done();
2230 	return ret;
2231 }
2232 #endif
2233 
2234 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235 static ssize_t show_cpuhp_state(struct device *dev,
2236 				struct device_attribute *attr, char *buf)
2237 {
2238 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239 
2240 	return sprintf(buf, "%d\n", st->state);
2241 }
2242 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2243 
2244 static ssize_t write_cpuhp_target(struct device *dev,
2245 				  struct device_attribute *attr,
2246 				  const char *buf, size_t count)
2247 {
2248 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249 	struct cpuhp_step *sp;
2250 	int target, ret;
2251 
2252 	ret = kstrtoint(buf, 10, &target);
2253 	if (ret)
2254 		return ret;
2255 
2256 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2258 		return -EINVAL;
2259 #else
2260 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2261 		return -EINVAL;
2262 #endif
2263 
2264 	ret = lock_device_hotplug_sysfs();
2265 	if (ret)
2266 		return ret;
2267 
2268 	mutex_lock(&cpuhp_state_mutex);
2269 	sp = cpuhp_get_step(target);
2270 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271 	mutex_unlock(&cpuhp_state_mutex);
2272 	if (ret)
2273 		goto out;
2274 
2275 	if (st->state < target)
2276 		ret = cpu_up(dev->id, target);
2277 	else
2278 		ret = cpu_down(dev->id, target);
2279 out:
2280 	unlock_device_hotplug();
2281 	return ret ? ret : count;
2282 }
2283 
2284 static ssize_t show_cpuhp_target(struct device *dev,
2285 				 struct device_attribute *attr, char *buf)
2286 {
2287 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2288 
2289 	return sprintf(buf, "%d\n", st->target);
2290 }
2291 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2292 
2293 
2294 static ssize_t write_cpuhp_fail(struct device *dev,
2295 				struct device_attribute *attr,
2296 				const char *buf, size_t count)
2297 {
2298 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299 	struct cpuhp_step *sp;
2300 	int fail, ret;
2301 
2302 	ret = kstrtoint(buf, 10, &fail);
2303 	if (ret)
2304 		return ret;
2305 
2306 	if (fail == CPUHP_INVALID) {
2307 		st->fail = fail;
2308 		return count;
2309 	}
2310 
2311 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2312 		return -EINVAL;
2313 
2314 	/*
2315 	 * Cannot fail STARTING/DYING callbacks.
2316 	 */
2317 	if (cpuhp_is_atomic_state(fail))
2318 		return -EINVAL;
2319 
2320 	/*
2321 	 * DEAD callbacks cannot fail...
2322 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323 	 * triggering STARTING callbacks, a failure in this state would
2324 	 * hinder rollback.
2325 	 */
2326 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2327 		return -EINVAL;
2328 
2329 	/*
2330 	 * Cannot fail anything that doesn't have callbacks.
2331 	 */
2332 	mutex_lock(&cpuhp_state_mutex);
2333 	sp = cpuhp_get_step(fail);
2334 	if (!sp->startup.single && !sp->teardown.single)
2335 		ret = -EINVAL;
2336 	mutex_unlock(&cpuhp_state_mutex);
2337 	if (ret)
2338 		return ret;
2339 
2340 	st->fail = fail;
2341 
2342 	return count;
2343 }
2344 
2345 static ssize_t show_cpuhp_fail(struct device *dev,
2346 			       struct device_attribute *attr, char *buf)
2347 {
2348 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349 
2350 	return sprintf(buf, "%d\n", st->fail);
2351 }
2352 
2353 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2354 
2355 static struct attribute *cpuhp_cpu_attrs[] = {
2356 	&dev_attr_state.attr,
2357 	&dev_attr_target.attr,
2358 	&dev_attr_fail.attr,
2359 	NULL
2360 };
2361 
2362 static const struct attribute_group cpuhp_cpu_attr_group = {
2363 	.attrs = cpuhp_cpu_attrs,
2364 	.name = "hotplug",
2365 	NULL
2366 };
2367 
2368 static ssize_t show_cpuhp_states(struct device *dev,
2369 				 struct device_attribute *attr, char *buf)
2370 {
2371 	ssize_t cur, res = 0;
2372 	int i;
2373 
2374 	mutex_lock(&cpuhp_state_mutex);
2375 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2376 		struct cpuhp_step *sp = cpuhp_get_step(i);
2377 
2378 		if (sp->name) {
2379 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2380 			buf += cur;
2381 			res += cur;
2382 		}
2383 	}
2384 	mutex_unlock(&cpuhp_state_mutex);
2385 	return res;
2386 }
2387 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2388 
2389 static struct attribute *cpuhp_cpu_root_attrs[] = {
2390 	&dev_attr_states.attr,
2391 	NULL
2392 };
2393 
2394 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2395 	.attrs = cpuhp_cpu_root_attrs,
2396 	.name = "hotplug",
2397 	NULL
2398 };
2399 
2400 #ifdef CONFIG_HOTPLUG_SMT
2401 
2402 static ssize_t
2403 __store_smt_control(struct device *dev, struct device_attribute *attr,
2404 		    const char *buf, size_t count)
2405 {
2406 	int ctrlval, ret;
2407 
2408 	if (sysfs_streq(buf, "on"))
2409 		ctrlval = CPU_SMT_ENABLED;
2410 	else if (sysfs_streq(buf, "off"))
2411 		ctrlval = CPU_SMT_DISABLED;
2412 	else if (sysfs_streq(buf, "forceoff"))
2413 		ctrlval = CPU_SMT_FORCE_DISABLED;
2414 	else
2415 		return -EINVAL;
2416 
2417 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2418 		return -EPERM;
2419 
2420 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2421 		return -ENODEV;
2422 
2423 	ret = lock_device_hotplug_sysfs();
2424 	if (ret)
2425 		return ret;
2426 
2427 	if (ctrlval != cpu_smt_control) {
2428 		switch (ctrlval) {
2429 		case CPU_SMT_ENABLED:
2430 			ret = cpuhp_smt_enable();
2431 			break;
2432 		case CPU_SMT_DISABLED:
2433 		case CPU_SMT_FORCE_DISABLED:
2434 			ret = cpuhp_smt_disable(ctrlval);
2435 			break;
2436 		}
2437 	}
2438 
2439 	unlock_device_hotplug();
2440 	return ret ? ret : count;
2441 }
2442 
2443 #else /* !CONFIG_HOTPLUG_SMT */
2444 static ssize_t
2445 __store_smt_control(struct device *dev, struct device_attribute *attr,
2446 		    const char *buf, size_t count)
2447 {
2448 	return -ENODEV;
2449 }
2450 #endif /* CONFIG_HOTPLUG_SMT */
2451 
2452 static const char *smt_states[] = {
2453 	[CPU_SMT_ENABLED]		= "on",
2454 	[CPU_SMT_DISABLED]		= "off",
2455 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2456 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2457 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2458 };
2459 
2460 static ssize_t
2461 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2462 {
2463 	const char *state = smt_states[cpu_smt_control];
2464 
2465 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2466 }
2467 
2468 static ssize_t
2469 store_smt_control(struct device *dev, struct device_attribute *attr,
2470 		  const char *buf, size_t count)
2471 {
2472 	return __store_smt_control(dev, attr, buf, count);
2473 }
2474 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2475 
2476 static ssize_t
2477 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2478 {
2479 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2480 }
2481 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2482 
2483 static struct attribute *cpuhp_smt_attrs[] = {
2484 	&dev_attr_control.attr,
2485 	&dev_attr_active.attr,
2486 	NULL
2487 };
2488 
2489 static const struct attribute_group cpuhp_smt_attr_group = {
2490 	.attrs = cpuhp_smt_attrs,
2491 	.name = "smt",
2492 	NULL
2493 };
2494 
2495 static int __init cpu_smt_sysfs_init(void)
2496 {
2497 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498 				  &cpuhp_smt_attr_group);
2499 }
2500 
2501 static int __init cpuhp_sysfs_init(void)
2502 {
2503 	int cpu, ret;
2504 
2505 	ret = cpu_smt_sysfs_init();
2506 	if (ret)
2507 		return ret;
2508 
2509 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510 				 &cpuhp_cpu_root_attr_group);
2511 	if (ret)
2512 		return ret;
2513 
2514 	for_each_possible_cpu(cpu) {
2515 		struct device *dev = get_cpu_device(cpu);
2516 
2517 		if (!dev)
2518 			continue;
2519 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2520 		if (ret)
2521 			return ret;
2522 	}
2523 	return 0;
2524 }
2525 device_initcall(cpuhp_sysfs_init);
2526 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2527 
2528 /*
2529  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530  * represents all NR_CPUS bits binary values of 1<<nr.
2531  *
2532  * It is used by cpumask_of() to get a constant address to a CPU
2533  * mask value that has a single bit set only.
2534  */
2535 
2536 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2537 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2538 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2541 
2542 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2543 
2544 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2545 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2546 #if BITS_PER_LONG > 32
2547 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2548 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2549 #endif
2550 };
2551 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2552 
2553 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554 EXPORT_SYMBOL(cpu_all_bits);
2555 
2556 #ifdef CONFIG_INIT_ALL_POSSIBLE
2557 struct cpumask __cpu_possible_mask __read_mostly
2558 	= {CPU_BITS_ALL};
2559 #else
2560 struct cpumask __cpu_possible_mask __read_mostly;
2561 #endif
2562 EXPORT_SYMBOL(__cpu_possible_mask);
2563 
2564 struct cpumask __cpu_online_mask __read_mostly;
2565 EXPORT_SYMBOL(__cpu_online_mask);
2566 
2567 struct cpumask __cpu_present_mask __read_mostly;
2568 EXPORT_SYMBOL(__cpu_present_mask);
2569 
2570 struct cpumask __cpu_active_mask __read_mostly;
2571 EXPORT_SYMBOL(__cpu_active_mask);
2572 
2573 struct cpumask __cpu_dying_mask __read_mostly;
2574 EXPORT_SYMBOL(__cpu_dying_mask);
2575 
2576 atomic_t __num_online_cpus __read_mostly;
2577 EXPORT_SYMBOL(__num_online_cpus);
2578 
2579 void init_cpu_present(const struct cpumask *src)
2580 {
2581 	cpumask_copy(&__cpu_present_mask, src);
2582 }
2583 
2584 void init_cpu_possible(const struct cpumask *src)
2585 {
2586 	cpumask_copy(&__cpu_possible_mask, src);
2587 }
2588 
2589 void init_cpu_online(const struct cpumask *src)
2590 {
2591 	cpumask_copy(&__cpu_online_mask, src);
2592 }
2593 
2594 void set_cpu_online(unsigned int cpu, bool online)
2595 {
2596 	/*
2597 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2598 	 * function by the reboot and kexec code which invoke it from
2599 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600 	 * regular CPU hotplug is properly serialized.
2601 	 *
2602 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2603 	 * does not protect readers which are not serialized against
2604 	 * concurrent hotplug operations.
2605 	 */
2606 	if (online) {
2607 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608 			atomic_inc(&__num_online_cpus);
2609 	} else {
2610 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611 			atomic_dec(&__num_online_cpus);
2612 	}
2613 }
2614 
2615 /*
2616  * Activate the first processor.
2617  */
2618 void __init boot_cpu_init(void)
2619 {
2620 	int cpu = smp_processor_id();
2621 
2622 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623 	set_cpu_online(cpu, true);
2624 	set_cpu_active(cpu, true);
2625 	set_cpu_present(cpu, true);
2626 	set_cpu_possible(cpu, true);
2627 
2628 #ifdef CONFIG_SMP
2629 	__boot_cpu_id = cpu;
2630 #endif
2631 }
2632 
2633 /*
2634  * Must be called _AFTER_ setting up the per_cpu areas
2635  */
2636 void __init boot_cpu_hotplug_init(void)
2637 {
2638 #ifdef CONFIG_SMP
2639 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2640 #endif
2641 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2642 }
2643 
2644 /*
2645  * These are used for a global "mitigations=" cmdline option for toggling
2646  * optional CPU mitigations.
2647  */
2648 enum cpu_mitigations {
2649 	CPU_MITIGATIONS_OFF,
2650 	CPU_MITIGATIONS_AUTO,
2651 	CPU_MITIGATIONS_AUTO_NOSMT,
2652 };
2653 
2654 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655 	CPU_MITIGATIONS_AUTO;
2656 
2657 static int __init mitigations_parse_cmdline(char *arg)
2658 {
2659 	if (!strcmp(arg, "off"))
2660 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2661 	else if (!strcmp(arg, "auto"))
2662 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663 	else if (!strcmp(arg, "auto,nosmt"))
2664 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2665 	else
2666 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2667 			arg);
2668 
2669 	return 0;
2670 }
2671 early_param("mitigations", mitigations_parse_cmdline);
2672 
2673 /* mitigations=off */
2674 bool cpu_mitigations_off(void)
2675 {
2676 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2677 }
2678 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2679 
2680 /* mitigations=auto,nosmt */
2681 bool cpu_mitigations_auto_nosmt(void)
2682 {
2683 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2684 }
2685 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2686