1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/smpboot.h> 28 #include <linux/relay.h> 29 #include <linux/slab.h> 30 #include <linux/percpu-rwsem.h> 31 32 #include <trace/events/power.h> 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/cpuhp.h> 35 36 #include "smpboot.h" 37 38 /** 39 * cpuhp_cpu_state - Per cpu hotplug state storage 40 * @state: The current cpu state 41 * @target: The target state 42 * @thread: Pointer to the hotplug thread 43 * @should_run: Thread should execute 44 * @rollback: Perform a rollback 45 * @single: Single callback invocation 46 * @bringup: Single callback bringup or teardown selector 47 * @cb_state: The state for a single callback (install/uninstall) 48 * @result: Result of the operation 49 * @done_up: Signal completion to the issuer of the task for cpu-up 50 * @done_down: Signal completion to the issuer of the task for cpu-down 51 */ 52 struct cpuhp_cpu_state { 53 enum cpuhp_state state; 54 enum cpuhp_state target; 55 enum cpuhp_state fail; 56 #ifdef CONFIG_SMP 57 struct task_struct *thread; 58 bool should_run; 59 bool rollback; 60 bool single; 61 bool bringup; 62 struct hlist_node *node; 63 struct hlist_node *last; 64 enum cpuhp_state cb_state; 65 int result; 66 struct completion done_up; 67 struct completion done_down; 68 #endif 69 }; 70 71 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 72 .fail = CPUHP_INVALID, 73 }; 74 75 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 76 static struct lockdep_map cpuhp_state_up_map = 77 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 78 static struct lockdep_map cpuhp_state_down_map = 79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 80 81 82 static void inline cpuhp_lock_acquire(bool bringup) 83 { 84 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 85 } 86 87 static void inline cpuhp_lock_release(bool bringup) 88 { 89 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 90 } 91 #else 92 93 static void inline cpuhp_lock_acquire(bool bringup) { } 94 static void inline cpuhp_lock_release(bool bringup) { } 95 96 #endif 97 98 /** 99 * cpuhp_step - Hotplug state machine step 100 * @name: Name of the step 101 * @startup: Startup function of the step 102 * @teardown: Teardown function of the step 103 * @skip_onerr: Do not invoke the functions on error rollback 104 * Will go away once the notifiers are gone 105 * @cant_stop: Bringup/teardown can't be stopped at this step 106 */ 107 struct cpuhp_step { 108 const char *name; 109 union { 110 int (*single)(unsigned int cpu); 111 int (*multi)(unsigned int cpu, 112 struct hlist_node *node); 113 } startup; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } teardown; 119 struct hlist_head list; 120 bool skip_onerr; 121 bool cant_stop; 122 bool multi_instance; 123 }; 124 125 static DEFINE_MUTEX(cpuhp_state_mutex); 126 static struct cpuhp_step cpuhp_bp_states[]; 127 static struct cpuhp_step cpuhp_ap_states[]; 128 129 static bool cpuhp_is_ap_state(enum cpuhp_state state) 130 { 131 /* 132 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 133 * purposes as that state is handled explicitly in cpu_down. 134 */ 135 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 136 } 137 138 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 139 { 140 struct cpuhp_step *sp; 141 142 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; 143 return sp + state; 144 } 145 146 /** 147 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 148 * @cpu: The cpu for which the callback should be invoked 149 * @state: The state to do callbacks for 150 * @bringup: True if the bringup callback should be invoked 151 * @node: For multi-instance, do a single entry callback for install/remove 152 * @lastp: For multi-instance rollback, remember how far we got 153 * 154 * Called from cpu hotplug and from the state register machinery. 155 */ 156 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 157 bool bringup, struct hlist_node *node, 158 struct hlist_node **lastp) 159 { 160 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 161 struct cpuhp_step *step = cpuhp_get_step(state); 162 int (*cbm)(unsigned int cpu, struct hlist_node *node); 163 int (*cb)(unsigned int cpu); 164 int ret, cnt; 165 166 if (st->fail == state) { 167 st->fail = CPUHP_INVALID; 168 169 if (!(bringup ? step->startup.single : step->teardown.single)) 170 return 0; 171 172 return -EAGAIN; 173 } 174 175 if (!step->multi_instance) { 176 WARN_ON_ONCE(lastp && *lastp); 177 cb = bringup ? step->startup.single : step->teardown.single; 178 if (!cb) 179 return 0; 180 trace_cpuhp_enter(cpu, st->target, state, cb); 181 ret = cb(cpu); 182 trace_cpuhp_exit(cpu, st->state, state, ret); 183 return ret; 184 } 185 cbm = bringup ? step->startup.multi : step->teardown.multi; 186 if (!cbm) 187 return 0; 188 189 /* Single invocation for instance add/remove */ 190 if (node) { 191 WARN_ON_ONCE(lastp && *lastp); 192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 193 ret = cbm(cpu, node); 194 trace_cpuhp_exit(cpu, st->state, state, ret); 195 return ret; 196 } 197 198 /* State transition. Invoke on all instances */ 199 cnt = 0; 200 hlist_for_each(node, &step->list) { 201 if (lastp && node == *lastp) 202 break; 203 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 if (ret) { 208 if (!lastp) 209 goto err; 210 211 *lastp = node; 212 return ret; 213 } 214 cnt++; 215 } 216 if (lastp) 217 *lastp = NULL; 218 return 0; 219 err: 220 /* Rollback the instances if one failed */ 221 cbm = !bringup ? step->startup.multi : step->teardown.multi; 222 if (!cbm) 223 return ret; 224 225 hlist_for_each(node, &step->list) { 226 if (!cnt--) 227 break; 228 229 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 230 ret = cbm(cpu, node); 231 trace_cpuhp_exit(cpu, st->state, state, ret); 232 /* 233 * Rollback must not fail, 234 */ 235 WARN_ON_ONCE(ret); 236 } 237 return ret; 238 } 239 240 #ifdef CONFIG_SMP 241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 242 { 243 struct completion *done = bringup ? &st->done_up : &st->done_down; 244 wait_for_completion(done); 245 } 246 247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 complete(done); 251 } 252 253 /* 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 255 */ 256 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 257 { 258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 259 } 260 261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 262 static DEFINE_MUTEX(cpu_add_remove_lock); 263 bool cpuhp_tasks_frozen; 264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 266 /* 267 * The following two APIs (cpu_maps_update_begin/done) must be used when 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 269 */ 270 void cpu_maps_update_begin(void) 271 { 272 mutex_lock(&cpu_add_remove_lock); 273 } 274 275 void cpu_maps_update_done(void) 276 { 277 mutex_unlock(&cpu_add_remove_lock); 278 } 279 280 /* 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 282 * Should always be manipulated under cpu_add_remove_lock 283 */ 284 static int cpu_hotplug_disabled; 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 290 void cpus_read_lock(void) 291 { 292 percpu_down_read(&cpu_hotplug_lock); 293 } 294 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 296 void cpus_read_unlock(void) 297 { 298 percpu_up_read(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_unlock); 301 302 void cpus_write_lock(void) 303 { 304 percpu_down_write(&cpu_hotplug_lock); 305 } 306 307 void cpus_write_unlock(void) 308 { 309 percpu_up_write(&cpu_hotplug_lock); 310 } 311 312 void lockdep_assert_cpus_held(void) 313 { 314 percpu_rwsem_assert_held(&cpu_hotplug_lock); 315 } 316 317 /* 318 * Wait for currently running CPU hotplug operations to complete (if any) and 319 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 320 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 321 * hotplug path before performing hotplug operations. So acquiring that lock 322 * guarantees mutual exclusion from any currently running hotplug operations. 323 */ 324 void cpu_hotplug_disable(void) 325 { 326 cpu_maps_update_begin(); 327 cpu_hotplug_disabled++; 328 cpu_maps_update_done(); 329 } 330 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 331 332 static void __cpu_hotplug_enable(void) 333 { 334 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 335 return; 336 cpu_hotplug_disabled--; 337 } 338 339 void cpu_hotplug_enable(void) 340 { 341 cpu_maps_update_begin(); 342 __cpu_hotplug_enable(); 343 cpu_maps_update_done(); 344 } 345 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 346 #endif /* CONFIG_HOTPLUG_CPU */ 347 348 static inline enum cpuhp_state 349 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 350 { 351 enum cpuhp_state prev_state = st->state; 352 353 st->rollback = false; 354 st->last = NULL; 355 356 st->target = target; 357 st->single = false; 358 st->bringup = st->state < target; 359 360 return prev_state; 361 } 362 363 static inline void 364 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 365 { 366 st->rollback = true; 367 368 /* 369 * If we have st->last we need to undo partial multi_instance of this 370 * state first. Otherwise start undo at the previous state. 371 */ 372 if (!st->last) { 373 if (st->bringup) 374 st->state--; 375 else 376 st->state++; 377 } 378 379 st->target = prev_state; 380 st->bringup = !st->bringup; 381 } 382 383 /* Regular hotplug invocation of the AP hotplug thread */ 384 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 385 { 386 if (!st->single && st->state == st->target) 387 return; 388 389 st->result = 0; 390 /* 391 * Make sure the above stores are visible before should_run becomes 392 * true. Paired with the mb() above in cpuhp_thread_fun() 393 */ 394 smp_mb(); 395 st->should_run = true; 396 wake_up_process(st->thread); 397 wait_for_ap_thread(st, st->bringup); 398 } 399 400 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 401 { 402 enum cpuhp_state prev_state; 403 int ret; 404 405 prev_state = cpuhp_set_state(st, target); 406 __cpuhp_kick_ap(st); 407 if ((ret = st->result)) { 408 cpuhp_reset_state(st, prev_state); 409 __cpuhp_kick_ap(st); 410 } 411 412 return ret; 413 } 414 415 static int bringup_wait_for_ap(unsigned int cpu) 416 { 417 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 418 419 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 420 wait_for_ap_thread(st, true); 421 if (WARN_ON_ONCE((!cpu_online(cpu)))) 422 return -ECANCELED; 423 424 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 425 stop_machine_unpark(cpu); 426 kthread_unpark(st->thread); 427 428 if (st->target <= CPUHP_AP_ONLINE_IDLE) 429 return 0; 430 431 return cpuhp_kick_ap(st, st->target); 432 } 433 434 static int bringup_cpu(unsigned int cpu) 435 { 436 struct task_struct *idle = idle_thread_get(cpu); 437 int ret; 438 439 /* 440 * Some architectures have to walk the irq descriptors to 441 * setup the vector space for the cpu which comes online. 442 * Prevent irq alloc/free across the bringup. 443 */ 444 irq_lock_sparse(); 445 446 /* Arch-specific enabling code. */ 447 ret = __cpu_up(cpu, idle); 448 irq_unlock_sparse(); 449 if (ret) 450 return ret; 451 return bringup_wait_for_ap(cpu); 452 } 453 454 /* 455 * Hotplug state machine related functions 456 */ 457 458 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 459 { 460 for (st->state--; st->state > st->target; st->state--) { 461 struct cpuhp_step *step = cpuhp_get_step(st->state); 462 463 if (!step->skip_onerr) 464 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 465 } 466 } 467 468 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 469 enum cpuhp_state target) 470 { 471 enum cpuhp_state prev_state = st->state; 472 int ret = 0; 473 474 while (st->state < target) { 475 st->state++; 476 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 477 if (ret) { 478 st->target = prev_state; 479 undo_cpu_up(cpu, st); 480 break; 481 } 482 } 483 return ret; 484 } 485 486 /* 487 * The cpu hotplug threads manage the bringup and teardown of the cpus 488 */ 489 static void cpuhp_create(unsigned int cpu) 490 { 491 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 492 493 init_completion(&st->done_up); 494 init_completion(&st->done_down); 495 } 496 497 static int cpuhp_should_run(unsigned int cpu) 498 { 499 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 500 501 return st->should_run; 502 } 503 504 /* 505 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 506 * callbacks when a state gets [un]installed at runtime. 507 * 508 * Each invocation of this function by the smpboot thread does a single AP 509 * state callback. 510 * 511 * It has 3 modes of operation: 512 * - single: runs st->cb_state 513 * - up: runs ++st->state, while st->state < st->target 514 * - down: runs st->state--, while st->state > st->target 515 * 516 * When complete or on error, should_run is cleared and the completion is fired. 517 */ 518 static void cpuhp_thread_fun(unsigned int cpu) 519 { 520 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 521 bool bringup = st->bringup; 522 enum cpuhp_state state; 523 524 /* 525 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 526 * that if we see ->should_run we also see the rest of the state. 527 */ 528 smp_mb(); 529 530 if (WARN_ON_ONCE(!st->should_run)) 531 return; 532 533 cpuhp_lock_acquire(bringup); 534 535 if (st->single) { 536 state = st->cb_state; 537 st->should_run = false; 538 } else { 539 if (bringup) { 540 st->state++; 541 state = st->state; 542 st->should_run = (st->state < st->target); 543 WARN_ON_ONCE(st->state > st->target); 544 } else { 545 state = st->state; 546 st->state--; 547 st->should_run = (st->state > st->target); 548 WARN_ON_ONCE(st->state < st->target); 549 } 550 } 551 552 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 553 554 if (st->rollback) { 555 struct cpuhp_step *step = cpuhp_get_step(state); 556 if (step->skip_onerr) 557 goto next; 558 } 559 560 if (cpuhp_is_atomic_state(state)) { 561 local_irq_disable(); 562 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 563 local_irq_enable(); 564 565 /* 566 * STARTING/DYING must not fail! 567 */ 568 WARN_ON_ONCE(st->result); 569 } else { 570 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 571 } 572 573 if (st->result) { 574 /* 575 * If we fail on a rollback, we're up a creek without no 576 * paddle, no way forward, no way back. We loose, thanks for 577 * playing. 578 */ 579 WARN_ON_ONCE(st->rollback); 580 st->should_run = false; 581 } 582 583 next: 584 cpuhp_lock_release(bringup); 585 586 if (!st->should_run) 587 complete_ap_thread(st, bringup); 588 } 589 590 /* Invoke a single callback on a remote cpu */ 591 static int 592 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 593 struct hlist_node *node) 594 { 595 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 596 int ret; 597 598 if (!cpu_online(cpu)) 599 return 0; 600 601 cpuhp_lock_acquire(false); 602 cpuhp_lock_release(false); 603 604 cpuhp_lock_acquire(true); 605 cpuhp_lock_release(true); 606 607 /* 608 * If we are up and running, use the hotplug thread. For early calls 609 * we invoke the thread function directly. 610 */ 611 if (!st->thread) 612 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 613 614 st->rollback = false; 615 st->last = NULL; 616 617 st->node = node; 618 st->bringup = bringup; 619 st->cb_state = state; 620 st->single = true; 621 622 __cpuhp_kick_ap(st); 623 624 /* 625 * If we failed and did a partial, do a rollback. 626 */ 627 if ((ret = st->result) && st->last) { 628 st->rollback = true; 629 st->bringup = !bringup; 630 631 __cpuhp_kick_ap(st); 632 } 633 634 return ret; 635 } 636 637 static int cpuhp_kick_ap_work(unsigned int cpu) 638 { 639 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 640 enum cpuhp_state prev_state = st->state; 641 int ret; 642 643 cpuhp_lock_acquire(false); 644 cpuhp_lock_release(false); 645 646 cpuhp_lock_acquire(true); 647 cpuhp_lock_release(true); 648 649 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 650 ret = cpuhp_kick_ap(st, st->target); 651 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 652 653 return ret; 654 } 655 656 static struct smp_hotplug_thread cpuhp_threads = { 657 .store = &cpuhp_state.thread, 658 .create = &cpuhp_create, 659 .thread_should_run = cpuhp_should_run, 660 .thread_fn = cpuhp_thread_fun, 661 .thread_comm = "cpuhp/%u", 662 .selfparking = true, 663 }; 664 665 void __init cpuhp_threads_init(void) 666 { 667 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 668 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 669 } 670 671 #ifdef CONFIG_HOTPLUG_CPU 672 /** 673 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 674 * @cpu: a CPU id 675 * 676 * This function walks all processes, finds a valid mm struct for each one and 677 * then clears a corresponding bit in mm's cpumask. While this all sounds 678 * trivial, there are various non-obvious corner cases, which this function 679 * tries to solve in a safe manner. 680 * 681 * Also note that the function uses a somewhat relaxed locking scheme, so it may 682 * be called only for an already offlined CPU. 683 */ 684 void clear_tasks_mm_cpumask(int cpu) 685 { 686 struct task_struct *p; 687 688 /* 689 * This function is called after the cpu is taken down and marked 690 * offline, so its not like new tasks will ever get this cpu set in 691 * their mm mask. -- Peter Zijlstra 692 * Thus, we may use rcu_read_lock() here, instead of grabbing 693 * full-fledged tasklist_lock. 694 */ 695 WARN_ON(cpu_online(cpu)); 696 rcu_read_lock(); 697 for_each_process(p) { 698 struct task_struct *t; 699 700 /* 701 * Main thread might exit, but other threads may still have 702 * a valid mm. Find one. 703 */ 704 t = find_lock_task_mm(p); 705 if (!t) 706 continue; 707 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 708 task_unlock(t); 709 } 710 rcu_read_unlock(); 711 } 712 713 /* Take this CPU down. */ 714 static int take_cpu_down(void *_param) 715 { 716 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 717 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 718 int err, cpu = smp_processor_id(); 719 int ret; 720 721 /* Ensure this CPU doesn't handle any more interrupts. */ 722 err = __cpu_disable(); 723 if (err < 0) 724 return err; 725 726 /* 727 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 728 * do this step again. 729 */ 730 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 731 st->state--; 732 /* Invoke the former CPU_DYING callbacks */ 733 for (; st->state > target; st->state--) { 734 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 735 /* 736 * DYING must not fail! 737 */ 738 WARN_ON_ONCE(ret); 739 } 740 741 /* Give up timekeeping duties */ 742 tick_handover_do_timer(); 743 /* Park the stopper thread */ 744 stop_machine_park(cpu); 745 return 0; 746 } 747 748 static int takedown_cpu(unsigned int cpu) 749 { 750 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 751 int err; 752 753 /* Park the smpboot threads */ 754 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 755 smpboot_park_threads(cpu); 756 757 /* 758 * Prevent irq alloc/free while the dying cpu reorganizes the 759 * interrupt affinities. 760 */ 761 irq_lock_sparse(); 762 763 /* 764 * So now all preempt/rcu users must observe !cpu_active(). 765 */ 766 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 767 if (err) { 768 /* CPU refused to die */ 769 irq_unlock_sparse(); 770 /* Unpark the hotplug thread so we can rollback there */ 771 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 772 return err; 773 } 774 BUG_ON(cpu_online(cpu)); 775 776 /* 777 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all 778 * runnable tasks from the cpu, there's only the idle task left now 779 * that the migration thread is done doing the stop_machine thing. 780 * 781 * Wait for the stop thread to go away. 782 */ 783 wait_for_ap_thread(st, false); 784 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 785 786 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 787 irq_unlock_sparse(); 788 789 hotplug_cpu__broadcast_tick_pull(cpu); 790 /* This actually kills the CPU. */ 791 __cpu_die(cpu); 792 793 tick_cleanup_dead_cpu(cpu); 794 rcutree_migrate_callbacks(cpu); 795 return 0; 796 } 797 798 static void cpuhp_complete_idle_dead(void *arg) 799 { 800 struct cpuhp_cpu_state *st = arg; 801 802 complete_ap_thread(st, false); 803 } 804 805 void cpuhp_report_idle_dead(void) 806 { 807 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 808 809 BUG_ON(st->state != CPUHP_AP_OFFLINE); 810 rcu_report_dead(smp_processor_id()); 811 st->state = CPUHP_AP_IDLE_DEAD; 812 /* 813 * We cannot call complete after rcu_report_dead() so we delegate it 814 * to an online cpu. 815 */ 816 smp_call_function_single(cpumask_first(cpu_online_mask), 817 cpuhp_complete_idle_dead, st, 0); 818 } 819 820 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 821 { 822 for (st->state++; st->state < st->target; st->state++) { 823 struct cpuhp_step *step = cpuhp_get_step(st->state); 824 825 if (!step->skip_onerr) 826 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 827 } 828 } 829 830 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 831 enum cpuhp_state target) 832 { 833 enum cpuhp_state prev_state = st->state; 834 int ret = 0; 835 836 for (; st->state > target; st->state--) { 837 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 838 if (ret) { 839 st->target = prev_state; 840 undo_cpu_down(cpu, st); 841 break; 842 } 843 } 844 return ret; 845 } 846 847 /* Requires cpu_add_remove_lock to be held */ 848 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 849 enum cpuhp_state target) 850 { 851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 852 int prev_state, ret = 0; 853 854 if (num_online_cpus() == 1) 855 return -EBUSY; 856 857 if (!cpu_present(cpu)) 858 return -EINVAL; 859 860 cpus_write_lock(); 861 862 cpuhp_tasks_frozen = tasks_frozen; 863 864 prev_state = cpuhp_set_state(st, target); 865 /* 866 * If the current CPU state is in the range of the AP hotplug thread, 867 * then we need to kick the thread. 868 */ 869 if (st->state > CPUHP_TEARDOWN_CPU) { 870 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 871 ret = cpuhp_kick_ap_work(cpu); 872 /* 873 * The AP side has done the error rollback already. Just 874 * return the error code.. 875 */ 876 if (ret) 877 goto out; 878 879 /* 880 * We might have stopped still in the range of the AP hotplug 881 * thread. Nothing to do anymore. 882 */ 883 if (st->state > CPUHP_TEARDOWN_CPU) 884 goto out; 885 886 st->target = target; 887 } 888 /* 889 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 890 * to do the further cleanups. 891 */ 892 ret = cpuhp_down_callbacks(cpu, st, target); 893 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 894 cpuhp_reset_state(st, prev_state); 895 __cpuhp_kick_ap(st); 896 } 897 898 out: 899 cpus_write_unlock(); 900 return ret; 901 } 902 903 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 904 { 905 int err; 906 907 cpu_maps_update_begin(); 908 909 if (cpu_hotplug_disabled) { 910 err = -EBUSY; 911 goto out; 912 } 913 914 err = _cpu_down(cpu, 0, target); 915 916 out: 917 cpu_maps_update_done(); 918 return err; 919 } 920 921 int cpu_down(unsigned int cpu) 922 { 923 return do_cpu_down(cpu, CPUHP_OFFLINE); 924 } 925 EXPORT_SYMBOL(cpu_down); 926 927 #else 928 #define takedown_cpu NULL 929 #endif /*CONFIG_HOTPLUG_CPU*/ 930 931 /** 932 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 933 * @cpu: cpu that just started 934 * 935 * It must be called by the arch code on the new cpu, before the new cpu 936 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 937 */ 938 void notify_cpu_starting(unsigned int cpu) 939 { 940 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 941 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 942 int ret; 943 944 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 945 while (st->state < target) { 946 st->state++; 947 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 948 /* 949 * STARTING must not fail! 950 */ 951 WARN_ON_ONCE(ret); 952 } 953 } 954 955 /* 956 * Called from the idle task. Wake up the controlling task which brings the 957 * stopper and the hotplug thread of the upcoming CPU up and then delegates 958 * the rest of the online bringup to the hotplug thread. 959 */ 960 void cpuhp_online_idle(enum cpuhp_state state) 961 { 962 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 963 964 /* Happens for the boot cpu */ 965 if (state != CPUHP_AP_ONLINE_IDLE) 966 return; 967 968 st->state = CPUHP_AP_ONLINE_IDLE; 969 complete_ap_thread(st, true); 970 } 971 972 /* Requires cpu_add_remove_lock to be held */ 973 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 974 { 975 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 976 struct task_struct *idle; 977 int ret = 0; 978 979 cpus_write_lock(); 980 981 if (!cpu_present(cpu)) { 982 ret = -EINVAL; 983 goto out; 984 } 985 986 /* 987 * The caller of do_cpu_up might have raced with another 988 * caller. Ignore it for now. 989 */ 990 if (st->state >= target) 991 goto out; 992 993 if (st->state == CPUHP_OFFLINE) { 994 /* Let it fail before we try to bring the cpu up */ 995 idle = idle_thread_get(cpu); 996 if (IS_ERR(idle)) { 997 ret = PTR_ERR(idle); 998 goto out; 999 } 1000 } 1001 1002 cpuhp_tasks_frozen = tasks_frozen; 1003 1004 cpuhp_set_state(st, target); 1005 /* 1006 * If the current CPU state is in the range of the AP hotplug thread, 1007 * then we need to kick the thread once more. 1008 */ 1009 if (st->state > CPUHP_BRINGUP_CPU) { 1010 ret = cpuhp_kick_ap_work(cpu); 1011 /* 1012 * The AP side has done the error rollback already. Just 1013 * return the error code.. 1014 */ 1015 if (ret) 1016 goto out; 1017 } 1018 1019 /* 1020 * Try to reach the target state. We max out on the BP at 1021 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1022 * responsible for bringing it up to the target state. 1023 */ 1024 target = min((int)target, CPUHP_BRINGUP_CPU); 1025 ret = cpuhp_up_callbacks(cpu, st, target); 1026 out: 1027 cpus_write_unlock(); 1028 return ret; 1029 } 1030 1031 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1032 { 1033 int err = 0; 1034 1035 if (!cpu_possible(cpu)) { 1036 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1037 cpu); 1038 #if defined(CONFIG_IA64) 1039 pr_err("please check additional_cpus= boot parameter\n"); 1040 #endif 1041 return -EINVAL; 1042 } 1043 1044 err = try_online_node(cpu_to_node(cpu)); 1045 if (err) 1046 return err; 1047 1048 cpu_maps_update_begin(); 1049 1050 if (cpu_hotplug_disabled) { 1051 err = -EBUSY; 1052 goto out; 1053 } 1054 1055 err = _cpu_up(cpu, 0, target); 1056 out: 1057 cpu_maps_update_done(); 1058 return err; 1059 } 1060 1061 int cpu_up(unsigned int cpu) 1062 { 1063 return do_cpu_up(cpu, CPUHP_ONLINE); 1064 } 1065 EXPORT_SYMBOL_GPL(cpu_up); 1066 1067 #ifdef CONFIG_PM_SLEEP_SMP 1068 static cpumask_var_t frozen_cpus; 1069 1070 int freeze_secondary_cpus(int primary) 1071 { 1072 int cpu, error = 0; 1073 1074 cpu_maps_update_begin(); 1075 if (!cpu_online(primary)) 1076 primary = cpumask_first(cpu_online_mask); 1077 /* 1078 * We take down all of the non-boot CPUs in one shot to avoid races 1079 * with the userspace trying to use the CPU hotplug at the same time 1080 */ 1081 cpumask_clear(frozen_cpus); 1082 1083 pr_info("Disabling non-boot CPUs ...\n"); 1084 for_each_online_cpu(cpu) { 1085 if (cpu == primary) 1086 continue; 1087 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1088 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1089 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1090 if (!error) 1091 cpumask_set_cpu(cpu, frozen_cpus); 1092 else { 1093 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1094 break; 1095 } 1096 } 1097 1098 if (!error) 1099 BUG_ON(num_online_cpus() > 1); 1100 else 1101 pr_err("Non-boot CPUs are not disabled\n"); 1102 1103 /* 1104 * Make sure the CPUs won't be enabled by someone else. We need to do 1105 * this even in case of failure as all disable_nonboot_cpus() users are 1106 * supposed to do enable_nonboot_cpus() on the failure path. 1107 */ 1108 cpu_hotplug_disabled++; 1109 1110 cpu_maps_update_done(); 1111 return error; 1112 } 1113 1114 void __weak arch_enable_nonboot_cpus_begin(void) 1115 { 1116 } 1117 1118 void __weak arch_enable_nonboot_cpus_end(void) 1119 { 1120 } 1121 1122 void enable_nonboot_cpus(void) 1123 { 1124 int cpu, error; 1125 1126 /* Allow everyone to use the CPU hotplug again */ 1127 cpu_maps_update_begin(); 1128 __cpu_hotplug_enable(); 1129 if (cpumask_empty(frozen_cpus)) 1130 goto out; 1131 1132 pr_info("Enabling non-boot CPUs ...\n"); 1133 1134 arch_enable_nonboot_cpus_begin(); 1135 1136 for_each_cpu(cpu, frozen_cpus) { 1137 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1138 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1139 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1140 if (!error) { 1141 pr_info("CPU%d is up\n", cpu); 1142 continue; 1143 } 1144 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1145 } 1146 1147 arch_enable_nonboot_cpus_end(); 1148 1149 cpumask_clear(frozen_cpus); 1150 out: 1151 cpu_maps_update_done(); 1152 } 1153 1154 static int __init alloc_frozen_cpus(void) 1155 { 1156 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1157 return -ENOMEM; 1158 return 0; 1159 } 1160 core_initcall(alloc_frozen_cpus); 1161 1162 /* 1163 * When callbacks for CPU hotplug notifications are being executed, we must 1164 * ensure that the state of the system with respect to the tasks being frozen 1165 * or not, as reported by the notification, remains unchanged *throughout the 1166 * duration* of the execution of the callbacks. 1167 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1168 * 1169 * This synchronization is implemented by mutually excluding regular CPU 1170 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1171 * Hibernate notifications. 1172 */ 1173 static int 1174 cpu_hotplug_pm_callback(struct notifier_block *nb, 1175 unsigned long action, void *ptr) 1176 { 1177 switch (action) { 1178 1179 case PM_SUSPEND_PREPARE: 1180 case PM_HIBERNATION_PREPARE: 1181 cpu_hotplug_disable(); 1182 break; 1183 1184 case PM_POST_SUSPEND: 1185 case PM_POST_HIBERNATION: 1186 cpu_hotplug_enable(); 1187 break; 1188 1189 default: 1190 return NOTIFY_DONE; 1191 } 1192 1193 return NOTIFY_OK; 1194 } 1195 1196 1197 static int __init cpu_hotplug_pm_sync_init(void) 1198 { 1199 /* 1200 * cpu_hotplug_pm_callback has higher priority than x86 1201 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1202 * to disable cpu hotplug to avoid cpu hotplug race. 1203 */ 1204 pm_notifier(cpu_hotplug_pm_callback, 0); 1205 return 0; 1206 } 1207 core_initcall(cpu_hotplug_pm_sync_init); 1208 1209 #endif /* CONFIG_PM_SLEEP_SMP */ 1210 1211 int __boot_cpu_id; 1212 1213 #endif /* CONFIG_SMP */ 1214 1215 /* Boot processor state steps */ 1216 static struct cpuhp_step cpuhp_bp_states[] = { 1217 [CPUHP_OFFLINE] = { 1218 .name = "offline", 1219 .startup.single = NULL, 1220 .teardown.single = NULL, 1221 }, 1222 #ifdef CONFIG_SMP 1223 [CPUHP_CREATE_THREADS]= { 1224 .name = "threads:prepare", 1225 .startup.single = smpboot_create_threads, 1226 .teardown.single = NULL, 1227 .cant_stop = true, 1228 }, 1229 [CPUHP_PERF_PREPARE] = { 1230 .name = "perf:prepare", 1231 .startup.single = perf_event_init_cpu, 1232 .teardown.single = perf_event_exit_cpu, 1233 }, 1234 [CPUHP_WORKQUEUE_PREP] = { 1235 .name = "workqueue:prepare", 1236 .startup.single = workqueue_prepare_cpu, 1237 .teardown.single = NULL, 1238 }, 1239 [CPUHP_HRTIMERS_PREPARE] = { 1240 .name = "hrtimers:prepare", 1241 .startup.single = hrtimers_prepare_cpu, 1242 .teardown.single = hrtimers_dead_cpu, 1243 }, 1244 [CPUHP_SMPCFD_PREPARE] = { 1245 .name = "smpcfd:prepare", 1246 .startup.single = smpcfd_prepare_cpu, 1247 .teardown.single = smpcfd_dead_cpu, 1248 }, 1249 [CPUHP_RELAY_PREPARE] = { 1250 .name = "relay:prepare", 1251 .startup.single = relay_prepare_cpu, 1252 .teardown.single = NULL, 1253 }, 1254 [CPUHP_SLAB_PREPARE] = { 1255 .name = "slab:prepare", 1256 .startup.single = slab_prepare_cpu, 1257 .teardown.single = slab_dead_cpu, 1258 }, 1259 [CPUHP_RCUTREE_PREP] = { 1260 .name = "RCU/tree:prepare", 1261 .startup.single = rcutree_prepare_cpu, 1262 .teardown.single = rcutree_dead_cpu, 1263 }, 1264 /* 1265 * On the tear-down path, timers_dead_cpu() must be invoked 1266 * before blk_mq_queue_reinit_notify() from notify_dead(), 1267 * otherwise a RCU stall occurs. 1268 */ 1269 [CPUHP_TIMERS_DEAD] = { 1270 .name = "timers:dead", 1271 .startup.single = NULL, 1272 .teardown.single = timers_dead_cpu, 1273 }, 1274 /* Kicks the plugged cpu into life */ 1275 [CPUHP_BRINGUP_CPU] = { 1276 .name = "cpu:bringup", 1277 .startup.single = bringup_cpu, 1278 .teardown.single = NULL, 1279 .cant_stop = true, 1280 }, 1281 [CPUHP_AP_SMPCFD_DYING] = { 1282 .name = "smpcfd:dying", 1283 .startup.single = NULL, 1284 .teardown.single = smpcfd_dying_cpu, 1285 }, 1286 /* 1287 * Handled on controll processor until the plugged processor manages 1288 * this itself. 1289 */ 1290 [CPUHP_TEARDOWN_CPU] = { 1291 .name = "cpu:teardown", 1292 .startup.single = NULL, 1293 .teardown.single = takedown_cpu, 1294 .cant_stop = true, 1295 }, 1296 #else 1297 [CPUHP_BRINGUP_CPU] = { }, 1298 #endif 1299 }; 1300 1301 /* Application processor state steps */ 1302 static struct cpuhp_step cpuhp_ap_states[] = { 1303 #ifdef CONFIG_SMP 1304 /* Final state before CPU kills itself */ 1305 [CPUHP_AP_IDLE_DEAD] = { 1306 .name = "idle:dead", 1307 }, 1308 /* 1309 * Last state before CPU enters the idle loop to die. Transient state 1310 * for synchronization. 1311 */ 1312 [CPUHP_AP_OFFLINE] = { 1313 .name = "ap:offline", 1314 .cant_stop = true, 1315 }, 1316 /* First state is scheduler control. Interrupts are disabled */ 1317 [CPUHP_AP_SCHED_STARTING] = { 1318 .name = "sched:starting", 1319 .startup.single = sched_cpu_starting, 1320 .teardown.single = sched_cpu_dying, 1321 }, 1322 [CPUHP_AP_RCUTREE_DYING] = { 1323 .name = "RCU/tree:dying", 1324 .startup.single = NULL, 1325 .teardown.single = rcutree_dying_cpu, 1326 }, 1327 /* Entry state on starting. Interrupts enabled from here on. Transient 1328 * state for synchronsization */ 1329 [CPUHP_AP_ONLINE] = { 1330 .name = "ap:online", 1331 }, 1332 /* Handle smpboot threads park/unpark */ 1333 [CPUHP_AP_SMPBOOT_THREADS] = { 1334 .name = "smpboot/threads:online", 1335 .startup.single = smpboot_unpark_threads, 1336 .teardown.single = NULL, 1337 }, 1338 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1339 .name = "irq/affinity:online", 1340 .startup.single = irq_affinity_online_cpu, 1341 .teardown.single = NULL, 1342 }, 1343 [CPUHP_AP_PERF_ONLINE] = { 1344 .name = "perf:online", 1345 .startup.single = perf_event_init_cpu, 1346 .teardown.single = perf_event_exit_cpu, 1347 }, 1348 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1349 .name = "workqueue:online", 1350 .startup.single = workqueue_online_cpu, 1351 .teardown.single = workqueue_offline_cpu, 1352 }, 1353 [CPUHP_AP_RCUTREE_ONLINE] = { 1354 .name = "RCU/tree:online", 1355 .startup.single = rcutree_online_cpu, 1356 .teardown.single = rcutree_offline_cpu, 1357 }, 1358 #endif 1359 /* 1360 * The dynamically registered state space is here 1361 */ 1362 1363 #ifdef CONFIG_SMP 1364 /* Last state is scheduler control setting the cpu active */ 1365 [CPUHP_AP_ACTIVE] = { 1366 .name = "sched:active", 1367 .startup.single = sched_cpu_activate, 1368 .teardown.single = sched_cpu_deactivate, 1369 }, 1370 #endif 1371 1372 /* CPU is fully up and running. */ 1373 [CPUHP_ONLINE] = { 1374 .name = "online", 1375 .startup.single = NULL, 1376 .teardown.single = NULL, 1377 }, 1378 }; 1379 1380 /* Sanity check for callbacks */ 1381 static int cpuhp_cb_check(enum cpuhp_state state) 1382 { 1383 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1384 return -EINVAL; 1385 return 0; 1386 } 1387 1388 /* 1389 * Returns a free for dynamic slot assignment of the Online state. The states 1390 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1391 * by having no name assigned. 1392 */ 1393 static int cpuhp_reserve_state(enum cpuhp_state state) 1394 { 1395 enum cpuhp_state i, end; 1396 struct cpuhp_step *step; 1397 1398 switch (state) { 1399 case CPUHP_AP_ONLINE_DYN: 1400 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 1401 end = CPUHP_AP_ONLINE_DYN_END; 1402 break; 1403 case CPUHP_BP_PREPARE_DYN: 1404 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 1405 end = CPUHP_BP_PREPARE_DYN_END; 1406 break; 1407 default: 1408 return -EINVAL; 1409 } 1410 1411 for (i = state; i <= end; i++, step++) { 1412 if (!step->name) 1413 return i; 1414 } 1415 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1416 return -ENOSPC; 1417 } 1418 1419 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1420 int (*startup)(unsigned int cpu), 1421 int (*teardown)(unsigned int cpu), 1422 bool multi_instance) 1423 { 1424 /* (Un)Install the callbacks for further cpu hotplug operations */ 1425 struct cpuhp_step *sp; 1426 int ret = 0; 1427 1428 /* 1429 * If name is NULL, then the state gets removed. 1430 * 1431 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1432 * the first allocation from these dynamic ranges, so the removal 1433 * would trigger a new allocation and clear the wrong (already 1434 * empty) state, leaving the callbacks of the to be cleared state 1435 * dangling, which causes wreckage on the next hotplug operation. 1436 */ 1437 if (name && (state == CPUHP_AP_ONLINE_DYN || 1438 state == CPUHP_BP_PREPARE_DYN)) { 1439 ret = cpuhp_reserve_state(state); 1440 if (ret < 0) 1441 return ret; 1442 state = ret; 1443 } 1444 sp = cpuhp_get_step(state); 1445 if (name && sp->name) 1446 return -EBUSY; 1447 1448 sp->startup.single = startup; 1449 sp->teardown.single = teardown; 1450 sp->name = name; 1451 sp->multi_instance = multi_instance; 1452 INIT_HLIST_HEAD(&sp->list); 1453 return ret; 1454 } 1455 1456 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1457 { 1458 return cpuhp_get_step(state)->teardown.single; 1459 } 1460 1461 /* 1462 * Call the startup/teardown function for a step either on the AP or 1463 * on the current CPU. 1464 */ 1465 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1466 struct hlist_node *node) 1467 { 1468 struct cpuhp_step *sp = cpuhp_get_step(state); 1469 int ret; 1470 1471 /* 1472 * If there's nothing to do, we done. 1473 * Relies on the union for multi_instance. 1474 */ 1475 if ((bringup && !sp->startup.single) || 1476 (!bringup && !sp->teardown.single)) 1477 return 0; 1478 /* 1479 * The non AP bound callbacks can fail on bringup. On teardown 1480 * e.g. module removal we crash for now. 1481 */ 1482 #ifdef CONFIG_SMP 1483 if (cpuhp_is_ap_state(state)) 1484 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1485 else 1486 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1487 #else 1488 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1489 #endif 1490 BUG_ON(ret && !bringup); 1491 return ret; 1492 } 1493 1494 /* 1495 * Called from __cpuhp_setup_state on a recoverable failure. 1496 * 1497 * Note: The teardown callbacks for rollback are not allowed to fail! 1498 */ 1499 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1500 struct hlist_node *node) 1501 { 1502 int cpu; 1503 1504 /* Roll back the already executed steps on the other cpus */ 1505 for_each_present_cpu(cpu) { 1506 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1507 int cpustate = st->state; 1508 1509 if (cpu >= failedcpu) 1510 break; 1511 1512 /* Did we invoke the startup call on that cpu ? */ 1513 if (cpustate >= state) 1514 cpuhp_issue_call(cpu, state, false, node); 1515 } 1516 } 1517 1518 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1519 struct hlist_node *node, 1520 bool invoke) 1521 { 1522 struct cpuhp_step *sp; 1523 int cpu; 1524 int ret; 1525 1526 lockdep_assert_cpus_held(); 1527 1528 sp = cpuhp_get_step(state); 1529 if (sp->multi_instance == false) 1530 return -EINVAL; 1531 1532 mutex_lock(&cpuhp_state_mutex); 1533 1534 if (!invoke || !sp->startup.multi) 1535 goto add_node; 1536 1537 /* 1538 * Try to call the startup callback for each present cpu 1539 * depending on the hotplug state of the cpu. 1540 */ 1541 for_each_present_cpu(cpu) { 1542 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1543 int cpustate = st->state; 1544 1545 if (cpustate < state) 1546 continue; 1547 1548 ret = cpuhp_issue_call(cpu, state, true, node); 1549 if (ret) { 1550 if (sp->teardown.multi) 1551 cpuhp_rollback_install(cpu, state, node); 1552 goto unlock; 1553 } 1554 } 1555 add_node: 1556 ret = 0; 1557 hlist_add_head(node, &sp->list); 1558 unlock: 1559 mutex_unlock(&cpuhp_state_mutex); 1560 return ret; 1561 } 1562 1563 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1564 bool invoke) 1565 { 1566 int ret; 1567 1568 cpus_read_lock(); 1569 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1570 cpus_read_unlock(); 1571 return ret; 1572 } 1573 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1574 1575 /** 1576 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1577 * @state: The state to setup 1578 * @invoke: If true, the startup function is invoked for cpus where 1579 * cpu state >= @state 1580 * @startup: startup callback function 1581 * @teardown: teardown callback function 1582 * @multi_instance: State is set up for multiple instances which get 1583 * added afterwards. 1584 * 1585 * The caller needs to hold cpus read locked while calling this function. 1586 * Returns: 1587 * On success: 1588 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1589 * 0 for all other states 1590 * On failure: proper (negative) error code 1591 */ 1592 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1593 const char *name, bool invoke, 1594 int (*startup)(unsigned int cpu), 1595 int (*teardown)(unsigned int cpu), 1596 bool multi_instance) 1597 { 1598 int cpu, ret = 0; 1599 bool dynstate; 1600 1601 lockdep_assert_cpus_held(); 1602 1603 if (cpuhp_cb_check(state) || !name) 1604 return -EINVAL; 1605 1606 mutex_lock(&cpuhp_state_mutex); 1607 1608 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1609 multi_instance); 1610 1611 dynstate = state == CPUHP_AP_ONLINE_DYN; 1612 if (ret > 0 && dynstate) { 1613 state = ret; 1614 ret = 0; 1615 } 1616 1617 if (ret || !invoke || !startup) 1618 goto out; 1619 1620 /* 1621 * Try to call the startup callback for each present cpu 1622 * depending on the hotplug state of the cpu. 1623 */ 1624 for_each_present_cpu(cpu) { 1625 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1626 int cpustate = st->state; 1627 1628 if (cpustate < state) 1629 continue; 1630 1631 ret = cpuhp_issue_call(cpu, state, true, NULL); 1632 if (ret) { 1633 if (teardown) 1634 cpuhp_rollback_install(cpu, state, NULL); 1635 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1636 goto out; 1637 } 1638 } 1639 out: 1640 mutex_unlock(&cpuhp_state_mutex); 1641 /* 1642 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1643 * dynamically allocated state in case of success. 1644 */ 1645 if (!ret && dynstate) 1646 return state; 1647 return ret; 1648 } 1649 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1650 1651 int __cpuhp_setup_state(enum cpuhp_state state, 1652 const char *name, bool invoke, 1653 int (*startup)(unsigned int cpu), 1654 int (*teardown)(unsigned int cpu), 1655 bool multi_instance) 1656 { 1657 int ret; 1658 1659 cpus_read_lock(); 1660 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1661 teardown, multi_instance); 1662 cpus_read_unlock(); 1663 return ret; 1664 } 1665 EXPORT_SYMBOL(__cpuhp_setup_state); 1666 1667 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1668 struct hlist_node *node, bool invoke) 1669 { 1670 struct cpuhp_step *sp = cpuhp_get_step(state); 1671 int cpu; 1672 1673 BUG_ON(cpuhp_cb_check(state)); 1674 1675 if (!sp->multi_instance) 1676 return -EINVAL; 1677 1678 cpus_read_lock(); 1679 mutex_lock(&cpuhp_state_mutex); 1680 1681 if (!invoke || !cpuhp_get_teardown_cb(state)) 1682 goto remove; 1683 /* 1684 * Call the teardown callback for each present cpu depending 1685 * on the hotplug state of the cpu. This function is not 1686 * allowed to fail currently! 1687 */ 1688 for_each_present_cpu(cpu) { 1689 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1690 int cpustate = st->state; 1691 1692 if (cpustate >= state) 1693 cpuhp_issue_call(cpu, state, false, node); 1694 } 1695 1696 remove: 1697 hlist_del(node); 1698 mutex_unlock(&cpuhp_state_mutex); 1699 cpus_read_unlock(); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1704 1705 /** 1706 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1707 * @state: The state to remove 1708 * @invoke: If true, the teardown function is invoked for cpus where 1709 * cpu state >= @state 1710 * 1711 * The caller needs to hold cpus read locked while calling this function. 1712 * The teardown callback is currently not allowed to fail. Think 1713 * about module removal! 1714 */ 1715 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1716 { 1717 struct cpuhp_step *sp = cpuhp_get_step(state); 1718 int cpu; 1719 1720 BUG_ON(cpuhp_cb_check(state)); 1721 1722 lockdep_assert_cpus_held(); 1723 1724 mutex_lock(&cpuhp_state_mutex); 1725 if (sp->multi_instance) { 1726 WARN(!hlist_empty(&sp->list), 1727 "Error: Removing state %d which has instances left.\n", 1728 state); 1729 goto remove; 1730 } 1731 1732 if (!invoke || !cpuhp_get_teardown_cb(state)) 1733 goto remove; 1734 1735 /* 1736 * Call the teardown callback for each present cpu depending 1737 * on the hotplug state of the cpu. This function is not 1738 * allowed to fail currently! 1739 */ 1740 for_each_present_cpu(cpu) { 1741 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1742 int cpustate = st->state; 1743 1744 if (cpustate >= state) 1745 cpuhp_issue_call(cpu, state, false, NULL); 1746 } 1747 remove: 1748 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1749 mutex_unlock(&cpuhp_state_mutex); 1750 } 1751 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1752 1753 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1754 { 1755 cpus_read_lock(); 1756 __cpuhp_remove_state_cpuslocked(state, invoke); 1757 cpus_read_unlock(); 1758 } 1759 EXPORT_SYMBOL(__cpuhp_remove_state); 1760 1761 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1762 static ssize_t show_cpuhp_state(struct device *dev, 1763 struct device_attribute *attr, char *buf) 1764 { 1765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1766 1767 return sprintf(buf, "%d\n", st->state); 1768 } 1769 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1770 1771 static ssize_t write_cpuhp_target(struct device *dev, 1772 struct device_attribute *attr, 1773 const char *buf, size_t count) 1774 { 1775 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1776 struct cpuhp_step *sp; 1777 int target, ret; 1778 1779 ret = kstrtoint(buf, 10, &target); 1780 if (ret) 1781 return ret; 1782 1783 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1784 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1785 return -EINVAL; 1786 #else 1787 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1788 return -EINVAL; 1789 #endif 1790 1791 ret = lock_device_hotplug_sysfs(); 1792 if (ret) 1793 return ret; 1794 1795 mutex_lock(&cpuhp_state_mutex); 1796 sp = cpuhp_get_step(target); 1797 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1798 mutex_unlock(&cpuhp_state_mutex); 1799 if (ret) 1800 goto out; 1801 1802 if (st->state < target) 1803 ret = do_cpu_up(dev->id, target); 1804 else 1805 ret = do_cpu_down(dev->id, target); 1806 out: 1807 unlock_device_hotplug(); 1808 return ret ? ret : count; 1809 } 1810 1811 static ssize_t show_cpuhp_target(struct device *dev, 1812 struct device_attribute *attr, char *buf) 1813 { 1814 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1815 1816 return sprintf(buf, "%d\n", st->target); 1817 } 1818 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1819 1820 1821 static ssize_t write_cpuhp_fail(struct device *dev, 1822 struct device_attribute *attr, 1823 const char *buf, size_t count) 1824 { 1825 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1826 struct cpuhp_step *sp; 1827 int fail, ret; 1828 1829 ret = kstrtoint(buf, 10, &fail); 1830 if (ret) 1831 return ret; 1832 1833 /* 1834 * Cannot fail STARTING/DYING callbacks. 1835 */ 1836 if (cpuhp_is_atomic_state(fail)) 1837 return -EINVAL; 1838 1839 /* 1840 * Cannot fail anything that doesn't have callbacks. 1841 */ 1842 mutex_lock(&cpuhp_state_mutex); 1843 sp = cpuhp_get_step(fail); 1844 if (!sp->startup.single && !sp->teardown.single) 1845 ret = -EINVAL; 1846 mutex_unlock(&cpuhp_state_mutex); 1847 if (ret) 1848 return ret; 1849 1850 st->fail = fail; 1851 1852 return count; 1853 } 1854 1855 static ssize_t show_cpuhp_fail(struct device *dev, 1856 struct device_attribute *attr, char *buf) 1857 { 1858 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1859 1860 return sprintf(buf, "%d\n", st->fail); 1861 } 1862 1863 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1864 1865 static struct attribute *cpuhp_cpu_attrs[] = { 1866 &dev_attr_state.attr, 1867 &dev_attr_target.attr, 1868 &dev_attr_fail.attr, 1869 NULL 1870 }; 1871 1872 static const struct attribute_group cpuhp_cpu_attr_group = { 1873 .attrs = cpuhp_cpu_attrs, 1874 .name = "hotplug", 1875 NULL 1876 }; 1877 1878 static ssize_t show_cpuhp_states(struct device *dev, 1879 struct device_attribute *attr, char *buf) 1880 { 1881 ssize_t cur, res = 0; 1882 int i; 1883 1884 mutex_lock(&cpuhp_state_mutex); 1885 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1886 struct cpuhp_step *sp = cpuhp_get_step(i); 1887 1888 if (sp->name) { 1889 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1890 buf += cur; 1891 res += cur; 1892 } 1893 } 1894 mutex_unlock(&cpuhp_state_mutex); 1895 return res; 1896 } 1897 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1898 1899 static struct attribute *cpuhp_cpu_root_attrs[] = { 1900 &dev_attr_states.attr, 1901 NULL 1902 }; 1903 1904 static const struct attribute_group cpuhp_cpu_root_attr_group = { 1905 .attrs = cpuhp_cpu_root_attrs, 1906 .name = "hotplug", 1907 NULL 1908 }; 1909 1910 static int __init cpuhp_sysfs_init(void) 1911 { 1912 int cpu, ret; 1913 1914 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1915 &cpuhp_cpu_root_attr_group); 1916 if (ret) 1917 return ret; 1918 1919 for_each_possible_cpu(cpu) { 1920 struct device *dev = get_cpu_device(cpu); 1921 1922 if (!dev) 1923 continue; 1924 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1925 if (ret) 1926 return ret; 1927 } 1928 return 0; 1929 } 1930 device_initcall(cpuhp_sysfs_init); 1931 #endif 1932 1933 /* 1934 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1935 * represents all NR_CPUS bits binary values of 1<<nr. 1936 * 1937 * It is used by cpumask_of() to get a constant address to a CPU 1938 * mask value that has a single bit set only. 1939 */ 1940 1941 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1942 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1943 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1944 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1945 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1946 1947 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1948 1949 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1950 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1951 #if BITS_PER_LONG > 32 1952 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1953 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1954 #endif 1955 }; 1956 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1957 1958 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1959 EXPORT_SYMBOL(cpu_all_bits); 1960 1961 #ifdef CONFIG_INIT_ALL_POSSIBLE 1962 struct cpumask __cpu_possible_mask __read_mostly 1963 = {CPU_BITS_ALL}; 1964 #else 1965 struct cpumask __cpu_possible_mask __read_mostly; 1966 #endif 1967 EXPORT_SYMBOL(__cpu_possible_mask); 1968 1969 struct cpumask __cpu_online_mask __read_mostly; 1970 EXPORT_SYMBOL(__cpu_online_mask); 1971 1972 struct cpumask __cpu_present_mask __read_mostly; 1973 EXPORT_SYMBOL(__cpu_present_mask); 1974 1975 struct cpumask __cpu_active_mask __read_mostly; 1976 EXPORT_SYMBOL(__cpu_active_mask); 1977 1978 void init_cpu_present(const struct cpumask *src) 1979 { 1980 cpumask_copy(&__cpu_present_mask, src); 1981 } 1982 1983 void init_cpu_possible(const struct cpumask *src) 1984 { 1985 cpumask_copy(&__cpu_possible_mask, src); 1986 } 1987 1988 void init_cpu_online(const struct cpumask *src) 1989 { 1990 cpumask_copy(&__cpu_online_mask, src); 1991 } 1992 1993 /* 1994 * Activate the first processor. 1995 */ 1996 void __init boot_cpu_init(void) 1997 { 1998 int cpu = smp_processor_id(); 1999 2000 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2001 set_cpu_online(cpu, true); 2002 set_cpu_active(cpu, true); 2003 set_cpu_present(cpu, true); 2004 set_cpu_possible(cpu, true); 2005 2006 #ifdef CONFIG_SMP 2007 __boot_cpu_id = cpu; 2008 #endif 2009 } 2010 2011 /* 2012 * Must be called _AFTER_ setting up the per_cpu areas 2013 */ 2014 void __init boot_cpu_state_init(void) 2015 { 2016 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 2017 } 2018