xref: /openbmc/linux/kernel/cpu.c (revision 8cb5d748)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31 
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35 
36 #include "smpboot.h"
37 
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:	The current cpu state
41  * @target:	The target state
42  * @thread:	Pointer to the hotplug thread
43  * @should_run:	Thread should execute
44  * @rollback:	Perform a rollback
45  * @single:	Single callback invocation
46  * @bringup:	Single callback bringup or teardown selector
47  * @cb_state:	The state for a single callback (install/uninstall)
48  * @result:	Result of the operation
49  * @done_up:	Signal completion to the issuer of the task for cpu-up
50  * @done_down:	Signal completion to the issuer of the task for cpu-down
51  */
52 struct cpuhp_cpu_state {
53 	enum cpuhp_state	state;
54 	enum cpuhp_state	target;
55 	enum cpuhp_state	fail;
56 #ifdef CONFIG_SMP
57 	struct task_struct	*thread;
58 	bool			should_run;
59 	bool			rollback;
60 	bool			single;
61 	bool			bringup;
62 	struct hlist_node	*node;
63 	struct hlist_node	*last;
64 	enum cpuhp_state	cb_state;
65 	int			result;
66 	struct completion	done_up;
67 	struct completion	done_down;
68 #endif
69 };
70 
71 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
72 	.fail = CPUHP_INVALID,
73 };
74 
75 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
76 static struct lockdep_map cpuhp_state_up_map =
77 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
78 static struct lockdep_map cpuhp_state_down_map =
79 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
80 
81 
82 static void inline cpuhp_lock_acquire(bool bringup)
83 {
84 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
85 }
86 
87 static void inline cpuhp_lock_release(bool bringup)
88 {
89 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
90 }
91 #else
92 
93 static void inline cpuhp_lock_acquire(bool bringup) { }
94 static void inline cpuhp_lock_release(bool bringup) { }
95 
96 #endif
97 
98 /**
99  * cpuhp_step - Hotplug state machine step
100  * @name:	Name of the step
101  * @startup:	Startup function of the step
102  * @teardown:	Teardown function of the step
103  * @skip_onerr:	Do not invoke the functions on error rollback
104  *		Will go away once the notifiers	are gone
105  * @cant_stop:	Bringup/teardown can't be stopped at this step
106  */
107 struct cpuhp_step {
108 	const char		*name;
109 	union {
110 		int		(*single)(unsigned int cpu);
111 		int		(*multi)(unsigned int cpu,
112 					 struct hlist_node *node);
113 	} startup;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} teardown;
119 	struct hlist_head	list;
120 	bool			skip_onerr;
121 	bool			cant_stop;
122 	bool			multi_instance;
123 };
124 
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_bp_states[];
127 static struct cpuhp_step cpuhp_ap_states[];
128 
129 static bool cpuhp_is_ap_state(enum cpuhp_state state)
130 {
131 	/*
132 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
133 	 * purposes as that state is handled explicitly in cpu_down.
134 	 */
135 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
136 }
137 
138 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
139 {
140 	struct cpuhp_step *sp;
141 
142 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
143 	return sp + state;
144 }
145 
146 /**
147  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
148  * @cpu:	The cpu for which the callback should be invoked
149  * @state:	The state to do callbacks for
150  * @bringup:	True if the bringup callback should be invoked
151  * @node:	For multi-instance, do a single entry callback for install/remove
152  * @lastp:	For multi-instance rollback, remember how far we got
153  *
154  * Called from cpu hotplug and from the state register machinery.
155  */
156 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
157 				 bool bringup, struct hlist_node *node,
158 				 struct hlist_node **lastp)
159 {
160 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
161 	struct cpuhp_step *step = cpuhp_get_step(state);
162 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
163 	int (*cb)(unsigned int cpu);
164 	int ret, cnt;
165 
166 	if (st->fail == state) {
167 		st->fail = CPUHP_INVALID;
168 
169 		if (!(bringup ? step->startup.single : step->teardown.single))
170 			return 0;
171 
172 		return -EAGAIN;
173 	}
174 
175 	if (!step->multi_instance) {
176 		WARN_ON_ONCE(lastp && *lastp);
177 		cb = bringup ? step->startup.single : step->teardown.single;
178 		if (!cb)
179 			return 0;
180 		trace_cpuhp_enter(cpu, st->target, state, cb);
181 		ret = cb(cpu);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 	cbm = bringup ? step->startup.multi : step->teardown.multi;
186 	if (!cbm)
187 		return 0;
188 
189 	/* Single invocation for instance add/remove */
190 	if (node) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		return ret;
196 	}
197 
198 	/* State transition. Invoke on all instances */
199 	cnt = 0;
200 	hlist_for_each(node, &step->list) {
201 		if (lastp && node == *lastp)
202 			break;
203 
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		if (ret) {
208 			if (!lastp)
209 				goto err;
210 
211 			*lastp = node;
212 			return ret;
213 		}
214 		cnt++;
215 	}
216 	if (lastp)
217 		*lastp = NULL;
218 	return 0;
219 err:
220 	/* Rollback the instances if one failed */
221 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
222 	if (!cbm)
223 		return ret;
224 
225 	hlist_for_each(node, &step->list) {
226 		if (!cnt--)
227 			break;
228 
229 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
230 		ret = cbm(cpu, node);
231 		trace_cpuhp_exit(cpu, st->state, state, ret);
232 		/*
233 		 * Rollback must not fail,
234 		 */
235 		WARN_ON_ONCE(ret);
236 	}
237 	return ret;
238 }
239 
240 #ifdef CONFIG_SMP
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 	struct completion *done = bringup ? &st->done_up : &st->done_down;
244 	wait_for_completion(done);
245 }
246 
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	complete(done);
251 }
252 
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260 
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
270 void cpu_maps_update_begin(void)
271 {
272 	mutex_lock(&cpu_add_remove_lock);
273 }
274 
275 void cpu_maps_update_done(void)
276 {
277 	mutex_unlock(&cpu_add_remove_lock);
278 }
279 
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289 
290 void cpus_read_lock(void)
291 {
292 	percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295 
296 void cpus_read_unlock(void)
297 {
298 	percpu_up_read(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_unlock);
301 
302 void cpus_write_lock(void)
303 {
304 	percpu_down_write(&cpu_hotplug_lock);
305 }
306 
307 void cpus_write_unlock(void)
308 {
309 	percpu_up_write(&cpu_hotplug_lock);
310 }
311 
312 void lockdep_assert_cpus_held(void)
313 {
314 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
315 }
316 
317 /*
318  * Wait for currently running CPU hotplug operations to complete (if any) and
319  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
320  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
321  * hotplug path before performing hotplug operations. So acquiring that lock
322  * guarantees mutual exclusion from any currently running hotplug operations.
323  */
324 void cpu_hotplug_disable(void)
325 {
326 	cpu_maps_update_begin();
327 	cpu_hotplug_disabled++;
328 	cpu_maps_update_done();
329 }
330 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
331 
332 static void __cpu_hotplug_enable(void)
333 {
334 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
335 		return;
336 	cpu_hotplug_disabled--;
337 }
338 
339 void cpu_hotplug_enable(void)
340 {
341 	cpu_maps_update_begin();
342 	__cpu_hotplug_enable();
343 	cpu_maps_update_done();
344 }
345 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
346 #endif	/* CONFIG_HOTPLUG_CPU */
347 
348 static inline enum cpuhp_state
349 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
350 {
351 	enum cpuhp_state prev_state = st->state;
352 
353 	st->rollback = false;
354 	st->last = NULL;
355 
356 	st->target = target;
357 	st->single = false;
358 	st->bringup = st->state < target;
359 
360 	return prev_state;
361 }
362 
363 static inline void
364 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
365 {
366 	st->rollback = true;
367 
368 	/*
369 	 * If we have st->last we need to undo partial multi_instance of this
370 	 * state first. Otherwise start undo at the previous state.
371 	 */
372 	if (!st->last) {
373 		if (st->bringup)
374 			st->state--;
375 		else
376 			st->state++;
377 	}
378 
379 	st->target = prev_state;
380 	st->bringup = !st->bringup;
381 }
382 
383 /* Regular hotplug invocation of the AP hotplug thread */
384 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
385 {
386 	if (!st->single && st->state == st->target)
387 		return;
388 
389 	st->result = 0;
390 	/*
391 	 * Make sure the above stores are visible before should_run becomes
392 	 * true. Paired with the mb() above in cpuhp_thread_fun()
393 	 */
394 	smp_mb();
395 	st->should_run = true;
396 	wake_up_process(st->thread);
397 	wait_for_ap_thread(st, st->bringup);
398 }
399 
400 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
401 {
402 	enum cpuhp_state prev_state;
403 	int ret;
404 
405 	prev_state = cpuhp_set_state(st, target);
406 	__cpuhp_kick_ap(st);
407 	if ((ret = st->result)) {
408 		cpuhp_reset_state(st, prev_state);
409 		__cpuhp_kick_ap(st);
410 	}
411 
412 	return ret;
413 }
414 
415 static int bringup_wait_for_ap(unsigned int cpu)
416 {
417 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
418 
419 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
420 	wait_for_ap_thread(st, true);
421 	if (WARN_ON_ONCE((!cpu_online(cpu))))
422 		return -ECANCELED;
423 
424 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
425 	stop_machine_unpark(cpu);
426 	kthread_unpark(st->thread);
427 
428 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
429 		return 0;
430 
431 	return cpuhp_kick_ap(st, st->target);
432 }
433 
434 static int bringup_cpu(unsigned int cpu)
435 {
436 	struct task_struct *idle = idle_thread_get(cpu);
437 	int ret;
438 
439 	/*
440 	 * Some architectures have to walk the irq descriptors to
441 	 * setup the vector space for the cpu which comes online.
442 	 * Prevent irq alloc/free across the bringup.
443 	 */
444 	irq_lock_sparse();
445 
446 	/* Arch-specific enabling code. */
447 	ret = __cpu_up(cpu, idle);
448 	irq_unlock_sparse();
449 	if (ret)
450 		return ret;
451 	return bringup_wait_for_ap(cpu);
452 }
453 
454 /*
455  * Hotplug state machine related functions
456  */
457 
458 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
459 {
460 	for (st->state--; st->state > st->target; st->state--) {
461 		struct cpuhp_step *step = cpuhp_get_step(st->state);
462 
463 		if (!step->skip_onerr)
464 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
465 	}
466 }
467 
468 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
469 			      enum cpuhp_state target)
470 {
471 	enum cpuhp_state prev_state = st->state;
472 	int ret = 0;
473 
474 	while (st->state < target) {
475 		st->state++;
476 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
477 		if (ret) {
478 			st->target = prev_state;
479 			undo_cpu_up(cpu, st);
480 			break;
481 		}
482 	}
483 	return ret;
484 }
485 
486 /*
487  * The cpu hotplug threads manage the bringup and teardown of the cpus
488  */
489 static void cpuhp_create(unsigned int cpu)
490 {
491 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
492 
493 	init_completion(&st->done_up);
494 	init_completion(&st->done_down);
495 }
496 
497 static int cpuhp_should_run(unsigned int cpu)
498 {
499 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
500 
501 	return st->should_run;
502 }
503 
504 /*
505  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
506  * callbacks when a state gets [un]installed at runtime.
507  *
508  * Each invocation of this function by the smpboot thread does a single AP
509  * state callback.
510  *
511  * It has 3 modes of operation:
512  *  - single: runs st->cb_state
513  *  - up:     runs ++st->state, while st->state < st->target
514  *  - down:   runs st->state--, while st->state > st->target
515  *
516  * When complete or on error, should_run is cleared and the completion is fired.
517  */
518 static void cpuhp_thread_fun(unsigned int cpu)
519 {
520 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
521 	bool bringup = st->bringup;
522 	enum cpuhp_state state;
523 
524 	/*
525 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
526 	 * that if we see ->should_run we also see the rest of the state.
527 	 */
528 	smp_mb();
529 
530 	if (WARN_ON_ONCE(!st->should_run))
531 		return;
532 
533 	cpuhp_lock_acquire(bringup);
534 
535 	if (st->single) {
536 		state = st->cb_state;
537 		st->should_run = false;
538 	} else {
539 		if (bringup) {
540 			st->state++;
541 			state = st->state;
542 			st->should_run = (st->state < st->target);
543 			WARN_ON_ONCE(st->state > st->target);
544 		} else {
545 			state = st->state;
546 			st->state--;
547 			st->should_run = (st->state > st->target);
548 			WARN_ON_ONCE(st->state < st->target);
549 		}
550 	}
551 
552 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
553 
554 	if (st->rollback) {
555 		struct cpuhp_step *step = cpuhp_get_step(state);
556 		if (step->skip_onerr)
557 			goto next;
558 	}
559 
560 	if (cpuhp_is_atomic_state(state)) {
561 		local_irq_disable();
562 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
563 		local_irq_enable();
564 
565 		/*
566 		 * STARTING/DYING must not fail!
567 		 */
568 		WARN_ON_ONCE(st->result);
569 	} else {
570 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
571 	}
572 
573 	if (st->result) {
574 		/*
575 		 * If we fail on a rollback, we're up a creek without no
576 		 * paddle, no way forward, no way back. We loose, thanks for
577 		 * playing.
578 		 */
579 		WARN_ON_ONCE(st->rollback);
580 		st->should_run = false;
581 	}
582 
583 next:
584 	cpuhp_lock_release(bringup);
585 
586 	if (!st->should_run)
587 		complete_ap_thread(st, bringup);
588 }
589 
590 /* Invoke a single callback on a remote cpu */
591 static int
592 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
593 			 struct hlist_node *node)
594 {
595 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
596 	int ret;
597 
598 	if (!cpu_online(cpu))
599 		return 0;
600 
601 	cpuhp_lock_acquire(false);
602 	cpuhp_lock_release(false);
603 
604 	cpuhp_lock_acquire(true);
605 	cpuhp_lock_release(true);
606 
607 	/*
608 	 * If we are up and running, use the hotplug thread. For early calls
609 	 * we invoke the thread function directly.
610 	 */
611 	if (!st->thread)
612 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
613 
614 	st->rollback = false;
615 	st->last = NULL;
616 
617 	st->node = node;
618 	st->bringup = bringup;
619 	st->cb_state = state;
620 	st->single = true;
621 
622 	__cpuhp_kick_ap(st);
623 
624 	/*
625 	 * If we failed and did a partial, do a rollback.
626 	 */
627 	if ((ret = st->result) && st->last) {
628 		st->rollback = true;
629 		st->bringup = !bringup;
630 
631 		__cpuhp_kick_ap(st);
632 	}
633 
634 	return ret;
635 }
636 
637 static int cpuhp_kick_ap_work(unsigned int cpu)
638 {
639 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
640 	enum cpuhp_state prev_state = st->state;
641 	int ret;
642 
643 	cpuhp_lock_acquire(false);
644 	cpuhp_lock_release(false);
645 
646 	cpuhp_lock_acquire(true);
647 	cpuhp_lock_release(true);
648 
649 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
650 	ret = cpuhp_kick_ap(st, st->target);
651 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
652 
653 	return ret;
654 }
655 
656 static struct smp_hotplug_thread cpuhp_threads = {
657 	.store			= &cpuhp_state.thread,
658 	.create			= &cpuhp_create,
659 	.thread_should_run	= cpuhp_should_run,
660 	.thread_fn		= cpuhp_thread_fun,
661 	.thread_comm		= "cpuhp/%u",
662 	.selfparking		= true,
663 };
664 
665 void __init cpuhp_threads_init(void)
666 {
667 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
668 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
669 }
670 
671 #ifdef CONFIG_HOTPLUG_CPU
672 /**
673  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
674  * @cpu: a CPU id
675  *
676  * This function walks all processes, finds a valid mm struct for each one and
677  * then clears a corresponding bit in mm's cpumask.  While this all sounds
678  * trivial, there are various non-obvious corner cases, which this function
679  * tries to solve in a safe manner.
680  *
681  * Also note that the function uses a somewhat relaxed locking scheme, so it may
682  * be called only for an already offlined CPU.
683  */
684 void clear_tasks_mm_cpumask(int cpu)
685 {
686 	struct task_struct *p;
687 
688 	/*
689 	 * This function is called after the cpu is taken down and marked
690 	 * offline, so its not like new tasks will ever get this cpu set in
691 	 * their mm mask. -- Peter Zijlstra
692 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
693 	 * full-fledged tasklist_lock.
694 	 */
695 	WARN_ON(cpu_online(cpu));
696 	rcu_read_lock();
697 	for_each_process(p) {
698 		struct task_struct *t;
699 
700 		/*
701 		 * Main thread might exit, but other threads may still have
702 		 * a valid mm. Find one.
703 		 */
704 		t = find_lock_task_mm(p);
705 		if (!t)
706 			continue;
707 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
708 		task_unlock(t);
709 	}
710 	rcu_read_unlock();
711 }
712 
713 /* Take this CPU down. */
714 static int take_cpu_down(void *_param)
715 {
716 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
717 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
718 	int err, cpu = smp_processor_id();
719 	int ret;
720 
721 	/* Ensure this CPU doesn't handle any more interrupts. */
722 	err = __cpu_disable();
723 	if (err < 0)
724 		return err;
725 
726 	/*
727 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
728 	 * do this step again.
729 	 */
730 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
731 	st->state--;
732 	/* Invoke the former CPU_DYING callbacks */
733 	for (; st->state > target; st->state--) {
734 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
735 		/*
736 		 * DYING must not fail!
737 		 */
738 		WARN_ON_ONCE(ret);
739 	}
740 
741 	/* Give up timekeeping duties */
742 	tick_handover_do_timer();
743 	/* Park the stopper thread */
744 	stop_machine_park(cpu);
745 	return 0;
746 }
747 
748 static int takedown_cpu(unsigned int cpu)
749 {
750 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
751 	int err;
752 
753 	/* Park the smpboot threads */
754 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
755 	smpboot_park_threads(cpu);
756 
757 	/*
758 	 * Prevent irq alloc/free while the dying cpu reorganizes the
759 	 * interrupt affinities.
760 	 */
761 	irq_lock_sparse();
762 
763 	/*
764 	 * So now all preempt/rcu users must observe !cpu_active().
765 	 */
766 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
767 	if (err) {
768 		/* CPU refused to die */
769 		irq_unlock_sparse();
770 		/* Unpark the hotplug thread so we can rollback there */
771 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
772 		return err;
773 	}
774 	BUG_ON(cpu_online(cpu));
775 
776 	/*
777 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
778 	 * runnable tasks from the cpu, there's only the idle task left now
779 	 * that the migration thread is done doing the stop_machine thing.
780 	 *
781 	 * Wait for the stop thread to go away.
782 	 */
783 	wait_for_ap_thread(st, false);
784 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
785 
786 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
787 	irq_unlock_sparse();
788 
789 	hotplug_cpu__broadcast_tick_pull(cpu);
790 	/* This actually kills the CPU. */
791 	__cpu_die(cpu);
792 
793 	tick_cleanup_dead_cpu(cpu);
794 	rcutree_migrate_callbacks(cpu);
795 	return 0;
796 }
797 
798 static void cpuhp_complete_idle_dead(void *arg)
799 {
800 	struct cpuhp_cpu_state *st = arg;
801 
802 	complete_ap_thread(st, false);
803 }
804 
805 void cpuhp_report_idle_dead(void)
806 {
807 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
808 
809 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
810 	rcu_report_dead(smp_processor_id());
811 	st->state = CPUHP_AP_IDLE_DEAD;
812 	/*
813 	 * We cannot call complete after rcu_report_dead() so we delegate it
814 	 * to an online cpu.
815 	 */
816 	smp_call_function_single(cpumask_first(cpu_online_mask),
817 				 cpuhp_complete_idle_dead, st, 0);
818 }
819 
820 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
821 {
822 	for (st->state++; st->state < st->target; st->state++) {
823 		struct cpuhp_step *step = cpuhp_get_step(st->state);
824 
825 		if (!step->skip_onerr)
826 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
827 	}
828 }
829 
830 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
831 				enum cpuhp_state target)
832 {
833 	enum cpuhp_state prev_state = st->state;
834 	int ret = 0;
835 
836 	for (; st->state > target; st->state--) {
837 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
838 		if (ret) {
839 			st->target = prev_state;
840 			undo_cpu_down(cpu, st);
841 			break;
842 		}
843 	}
844 	return ret;
845 }
846 
847 /* Requires cpu_add_remove_lock to be held */
848 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
849 			   enum cpuhp_state target)
850 {
851 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 	int prev_state, ret = 0;
853 
854 	if (num_online_cpus() == 1)
855 		return -EBUSY;
856 
857 	if (!cpu_present(cpu))
858 		return -EINVAL;
859 
860 	cpus_write_lock();
861 
862 	cpuhp_tasks_frozen = tasks_frozen;
863 
864 	prev_state = cpuhp_set_state(st, target);
865 	/*
866 	 * If the current CPU state is in the range of the AP hotplug thread,
867 	 * then we need to kick the thread.
868 	 */
869 	if (st->state > CPUHP_TEARDOWN_CPU) {
870 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
871 		ret = cpuhp_kick_ap_work(cpu);
872 		/*
873 		 * The AP side has done the error rollback already. Just
874 		 * return the error code..
875 		 */
876 		if (ret)
877 			goto out;
878 
879 		/*
880 		 * We might have stopped still in the range of the AP hotplug
881 		 * thread. Nothing to do anymore.
882 		 */
883 		if (st->state > CPUHP_TEARDOWN_CPU)
884 			goto out;
885 
886 		st->target = target;
887 	}
888 	/*
889 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
890 	 * to do the further cleanups.
891 	 */
892 	ret = cpuhp_down_callbacks(cpu, st, target);
893 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
894 		cpuhp_reset_state(st, prev_state);
895 		__cpuhp_kick_ap(st);
896 	}
897 
898 out:
899 	cpus_write_unlock();
900 	return ret;
901 }
902 
903 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
904 {
905 	int err;
906 
907 	cpu_maps_update_begin();
908 
909 	if (cpu_hotplug_disabled) {
910 		err = -EBUSY;
911 		goto out;
912 	}
913 
914 	err = _cpu_down(cpu, 0, target);
915 
916 out:
917 	cpu_maps_update_done();
918 	return err;
919 }
920 
921 int cpu_down(unsigned int cpu)
922 {
923 	return do_cpu_down(cpu, CPUHP_OFFLINE);
924 }
925 EXPORT_SYMBOL(cpu_down);
926 
927 #else
928 #define takedown_cpu		NULL
929 #endif /*CONFIG_HOTPLUG_CPU*/
930 
931 /**
932  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
933  * @cpu: cpu that just started
934  *
935  * It must be called by the arch code on the new cpu, before the new cpu
936  * enables interrupts and before the "boot" cpu returns from __cpu_up().
937  */
938 void notify_cpu_starting(unsigned int cpu)
939 {
940 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
941 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
942 	int ret;
943 
944 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
945 	while (st->state < target) {
946 		st->state++;
947 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
948 		/*
949 		 * STARTING must not fail!
950 		 */
951 		WARN_ON_ONCE(ret);
952 	}
953 }
954 
955 /*
956  * Called from the idle task. Wake up the controlling task which brings the
957  * stopper and the hotplug thread of the upcoming CPU up and then delegates
958  * the rest of the online bringup to the hotplug thread.
959  */
960 void cpuhp_online_idle(enum cpuhp_state state)
961 {
962 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
963 
964 	/* Happens for the boot cpu */
965 	if (state != CPUHP_AP_ONLINE_IDLE)
966 		return;
967 
968 	st->state = CPUHP_AP_ONLINE_IDLE;
969 	complete_ap_thread(st, true);
970 }
971 
972 /* Requires cpu_add_remove_lock to be held */
973 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
974 {
975 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
976 	struct task_struct *idle;
977 	int ret = 0;
978 
979 	cpus_write_lock();
980 
981 	if (!cpu_present(cpu)) {
982 		ret = -EINVAL;
983 		goto out;
984 	}
985 
986 	/*
987 	 * The caller of do_cpu_up might have raced with another
988 	 * caller. Ignore it for now.
989 	 */
990 	if (st->state >= target)
991 		goto out;
992 
993 	if (st->state == CPUHP_OFFLINE) {
994 		/* Let it fail before we try to bring the cpu up */
995 		idle = idle_thread_get(cpu);
996 		if (IS_ERR(idle)) {
997 			ret = PTR_ERR(idle);
998 			goto out;
999 		}
1000 	}
1001 
1002 	cpuhp_tasks_frozen = tasks_frozen;
1003 
1004 	cpuhp_set_state(st, target);
1005 	/*
1006 	 * If the current CPU state is in the range of the AP hotplug thread,
1007 	 * then we need to kick the thread once more.
1008 	 */
1009 	if (st->state > CPUHP_BRINGUP_CPU) {
1010 		ret = cpuhp_kick_ap_work(cpu);
1011 		/*
1012 		 * The AP side has done the error rollback already. Just
1013 		 * return the error code..
1014 		 */
1015 		if (ret)
1016 			goto out;
1017 	}
1018 
1019 	/*
1020 	 * Try to reach the target state. We max out on the BP at
1021 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1022 	 * responsible for bringing it up to the target state.
1023 	 */
1024 	target = min((int)target, CPUHP_BRINGUP_CPU);
1025 	ret = cpuhp_up_callbacks(cpu, st, target);
1026 out:
1027 	cpus_write_unlock();
1028 	return ret;
1029 }
1030 
1031 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1032 {
1033 	int err = 0;
1034 
1035 	if (!cpu_possible(cpu)) {
1036 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1037 		       cpu);
1038 #if defined(CONFIG_IA64)
1039 		pr_err("please check additional_cpus= boot parameter\n");
1040 #endif
1041 		return -EINVAL;
1042 	}
1043 
1044 	err = try_online_node(cpu_to_node(cpu));
1045 	if (err)
1046 		return err;
1047 
1048 	cpu_maps_update_begin();
1049 
1050 	if (cpu_hotplug_disabled) {
1051 		err = -EBUSY;
1052 		goto out;
1053 	}
1054 
1055 	err = _cpu_up(cpu, 0, target);
1056 out:
1057 	cpu_maps_update_done();
1058 	return err;
1059 }
1060 
1061 int cpu_up(unsigned int cpu)
1062 {
1063 	return do_cpu_up(cpu, CPUHP_ONLINE);
1064 }
1065 EXPORT_SYMBOL_GPL(cpu_up);
1066 
1067 #ifdef CONFIG_PM_SLEEP_SMP
1068 static cpumask_var_t frozen_cpus;
1069 
1070 int freeze_secondary_cpus(int primary)
1071 {
1072 	int cpu, error = 0;
1073 
1074 	cpu_maps_update_begin();
1075 	if (!cpu_online(primary))
1076 		primary = cpumask_first(cpu_online_mask);
1077 	/*
1078 	 * We take down all of the non-boot CPUs in one shot to avoid races
1079 	 * with the userspace trying to use the CPU hotplug at the same time
1080 	 */
1081 	cpumask_clear(frozen_cpus);
1082 
1083 	pr_info("Disabling non-boot CPUs ...\n");
1084 	for_each_online_cpu(cpu) {
1085 		if (cpu == primary)
1086 			continue;
1087 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1088 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1089 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1090 		if (!error)
1091 			cpumask_set_cpu(cpu, frozen_cpus);
1092 		else {
1093 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1094 			break;
1095 		}
1096 	}
1097 
1098 	if (!error)
1099 		BUG_ON(num_online_cpus() > 1);
1100 	else
1101 		pr_err("Non-boot CPUs are not disabled\n");
1102 
1103 	/*
1104 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1105 	 * this even in case of failure as all disable_nonboot_cpus() users are
1106 	 * supposed to do enable_nonboot_cpus() on the failure path.
1107 	 */
1108 	cpu_hotplug_disabled++;
1109 
1110 	cpu_maps_update_done();
1111 	return error;
1112 }
1113 
1114 void __weak arch_enable_nonboot_cpus_begin(void)
1115 {
1116 }
1117 
1118 void __weak arch_enable_nonboot_cpus_end(void)
1119 {
1120 }
1121 
1122 void enable_nonboot_cpus(void)
1123 {
1124 	int cpu, error;
1125 
1126 	/* Allow everyone to use the CPU hotplug again */
1127 	cpu_maps_update_begin();
1128 	__cpu_hotplug_enable();
1129 	if (cpumask_empty(frozen_cpus))
1130 		goto out;
1131 
1132 	pr_info("Enabling non-boot CPUs ...\n");
1133 
1134 	arch_enable_nonboot_cpus_begin();
1135 
1136 	for_each_cpu(cpu, frozen_cpus) {
1137 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1138 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1139 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1140 		if (!error) {
1141 			pr_info("CPU%d is up\n", cpu);
1142 			continue;
1143 		}
1144 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1145 	}
1146 
1147 	arch_enable_nonboot_cpus_end();
1148 
1149 	cpumask_clear(frozen_cpus);
1150 out:
1151 	cpu_maps_update_done();
1152 }
1153 
1154 static int __init alloc_frozen_cpus(void)
1155 {
1156 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1157 		return -ENOMEM;
1158 	return 0;
1159 }
1160 core_initcall(alloc_frozen_cpus);
1161 
1162 /*
1163  * When callbacks for CPU hotplug notifications are being executed, we must
1164  * ensure that the state of the system with respect to the tasks being frozen
1165  * or not, as reported by the notification, remains unchanged *throughout the
1166  * duration* of the execution of the callbacks.
1167  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1168  *
1169  * This synchronization is implemented by mutually excluding regular CPU
1170  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1171  * Hibernate notifications.
1172  */
1173 static int
1174 cpu_hotplug_pm_callback(struct notifier_block *nb,
1175 			unsigned long action, void *ptr)
1176 {
1177 	switch (action) {
1178 
1179 	case PM_SUSPEND_PREPARE:
1180 	case PM_HIBERNATION_PREPARE:
1181 		cpu_hotplug_disable();
1182 		break;
1183 
1184 	case PM_POST_SUSPEND:
1185 	case PM_POST_HIBERNATION:
1186 		cpu_hotplug_enable();
1187 		break;
1188 
1189 	default:
1190 		return NOTIFY_DONE;
1191 	}
1192 
1193 	return NOTIFY_OK;
1194 }
1195 
1196 
1197 static int __init cpu_hotplug_pm_sync_init(void)
1198 {
1199 	/*
1200 	 * cpu_hotplug_pm_callback has higher priority than x86
1201 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1202 	 * to disable cpu hotplug to avoid cpu hotplug race.
1203 	 */
1204 	pm_notifier(cpu_hotplug_pm_callback, 0);
1205 	return 0;
1206 }
1207 core_initcall(cpu_hotplug_pm_sync_init);
1208 
1209 #endif /* CONFIG_PM_SLEEP_SMP */
1210 
1211 int __boot_cpu_id;
1212 
1213 #endif /* CONFIG_SMP */
1214 
1215 /* Boot processor state steps */
1216 static struct cpuhp_step cpuhp_bp_states[] = {
1217 	[CPUHP_OFFLINE] = {
1218 		.name			= "offline",
1219 		.startup.single		= NULL,
1220 		.teardown.single	= NULL,
1221 	},
1222 #ifdef CONFIG_SMP
1223 	[CPUHP_CREATE_THREADS]= {
1224 		.name			= "threads:prepare",
1225 		.startup.single		= smpboot_create_threads,
1226 		.teardown.single	= NULL,
1227 		.cant_stop		= true,
1228 	},
1229 	[CPUHP_PERF_PREPARE] = {
1230 		.name			= "perf:prepare",
1231 		.startup.single		= perf_event_init_cpu,
1232 		.teardown.single	= perf_event_exit_cpu,
1233 	},
1234 	[CPUHP_WORKQUEUE_PREP] = {
1235 		.name			= "workqueue:prepare",
1236 		.startup.single		= workqueue_prepare_cpu,
1237 		.teardown.single	= NULL,
1238 	},
1239 	[CPUHP_HRTIMERS_PREPARE] = {
1240 		.name			= "hrtimers:prepare",
1241 		.startup.single		= hrtimers_prepare_cpu,
1242 		.teardown.single	= hrtimers_dead_cpu,
1243 	},
1244 	[CPUHP_SMPCFD_PREPARE] = {
1245 		.name			= "smpcfd:prepare",
1246 		.startup.single		= smpcfd_prepare_cpu,
1247 		.teardown.single	= smpcfd_dead_cpu,
1248 	},
1249 	[CPUHP_RELAY_PREPARE] = {
1250 		.name			= "relay:prepare",
1251 		.startup.single		= relay_prepare_cpu,
1252 		.teardown.single	= NULL,
1253 	},
1254 	[CPUHP_SLAB_PREPARE] = {
1255 		.name			= "slab:prepare",
1256 		.startup.single		= slab_prepare_cpu,
1257 		.teardown.single	= slab_dead_cpu,
1258 	},
1259 	[CPUHP_RCUTREE_PREP] = {
1260 		.name			= "RCU/tree:prepare",
1261 		.startup.single		= rcutree_prepare_cpu,
1262 		.teardown.single	= rcutree_dead_cpu,
1263 	},
1264 	/*
1265 	 * On the tear-down path, timers_dead_cpu() must be invoked
1266 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1267 	 * otherwise a RCU stall occurs.
1268 	 */
1269 	[CPUHP_TIMERS_DEAD] = {
1270 		.name			= "timers:dead",
1271 		.startup.single		= NULL,
1272 		.teardown.single	= timers_dead_cpu,
1273 	},
1274 	/* Kicks the plugged cpu into life */
1275 	[CPUHP_BRINGUP_CPU] = {
1276 		.name			= "cpu:bringup",
1277 		.startup.single		= bringup_cpu,
1278 		.teardown.single	= NULL,
1279 		.cant_stop		= true,
1280 	},
1281 	[CPUHP_AP_SMPCFD_DYING] = {
1282 		.name			= "smpcfd:dying",
1283 		.startup.single		= NULL,
1284 		.teardown.single	= smpcfd_dying_cpu,
1285 	},
1286 	/*
1287 	 * Handled on controll processor until the plugged processor manages
1288 	 * this itself.
1289 	 */
1290 	[CPUHP_TEARDOWN_CPU] = {
1291 		.name			= "cpu:teardown",
1292 		.startup.single		= NULL,
1293 		.teardown.single	= takedown_cpu,
1294 		.cant_stop		= true,
1295 	},
1296 #else
1297 	[CPUHP_BRINGUP_CPU] = { },
1298 #endif
1299 };
1300 
1301 /* Application processor state steps */
1302 static struct cpuhp_step cpuhp_ap_states[] = {
1303 #ifdef CONFIG_SMP
1304 	/* Final state before CPU kills itself */
1305 	[CPUHP_AP_IDLE_DEAD] = {
1306 		.name			= "idle:dead",
1307 	},
1308 	/*
1309 	 * Last state before CPU enters the idle loop to die. Transient state
1310 	 * for synchronization.
1311 	 */
1312 	[CPUHP_AP_OFFLINE] = {
1313 		.name			= "ap:offline",
1314 		.cant_stop		= true,
1315 	},
1316 	/* First state is scheduler control. Interrupts are disabled */
1317 	[CPUHP_AP_SCHED_STARTING] = {
1318 		.name			= "sched:starting",
1319 		.startup.single		= sched_cpu_starting,
1320 		.teardown.single	= sched_cpu_dying,
1321 	},
1322 	[CPUHP_AP_RCUTREE_DYING] = {
1323 		.name			= "RCU/tree:dying",
1324 		.startup.single		= NULL,
1325 		.teardown.single	= rcutree_dying_cpu,
1326 	},
1327 	/* Entry state on starting. Interrupts enabled from here on. Transient
1328 	 * state for synchronsization */
1329 	[CPUHP_AP_ONLINE] = {
1330 		.name			= "ap:online",
1331 	},
1332 	/* Handle smpboot threads park/unpark */
1333 	[CPUHP_AP_SMPBOOT_THREADS] = {
1334 		.name			= "smpboot/threads:online",
1335 		.startup.single		= smpboot_unpark_threads,
1336 		.teardown.single	= NULL,
1337 	},
1338 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1339 		.name			= "irq/affinity:online",
1340 		.startup.single		= irq_affinity_online_cpu,
1341 		.teardown.single	= NULL,
1342 	},
1343 	[CPUHP_AP_PERF_ONLINE] = {
1344 		.name			= "perf:online",
1345 		.startup.single		= perf_event_init_cpu,
1346 		.teardown.single	= perf_event_exit_cpu,
1347 	},
1348 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1349 		.name			= "workqueue:online",
1350 		.startup.single		= workqueue_online_cpu,
1351 		.teardown.single	= workqueue_offline_cpu,
1352 	},
1353 	[CPUHP_AP_RCUTREE_ONLINE] = {
1354 		.name			= "RCU/tree:online",
1355 		.startup.single		= rcutree_online_cpu,
1356 		.teardown.single	= rcutree_offline_cpu,
1357 	},
1358 #endif
1359 	/*
1360 	 * The dynamically registered state space is here
1361 	 */
1362 
1363 #ifdef CONFIG_SMP
1364 	/* Last state is scheduler control setting the cpu active */
1365 	[CPUHP_AP_ACTIVE] = {
1366 		.name			= "sched:active",
1367 		.startup.single		= sched_cpu_activate,
1368 		.teardown.single	= sched_cpu_deactivate,
1369 	},
1370 #endif
1371 
1372 	/* CPU is fully up and running. */
1373 	[CPUHP_ONLINE] = {
1374 		.name			= "online",
1375 		.startup.single		= NULL,
1376 		.teardown.single	= NULL,
1377 	},
1378 };
1379 
1380 /* Sanity check for callbacks */
1381 static int cpuhp_cb_check(enum cpuhp_state state)
1382 {
1383 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1384 		return -EINVAL;
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Returns a free for dynamic slot assignment of the Online state. The states
1390  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1391  * by having no name assigned.
1392  */
1393 static int cpuhp_reserve_state(enum cpuhp_state state)
1394 {
1395 	enum cpuhp_state i, end;
1396 	struct cpuhp_step *step;
1397 
1398 	switch (state) {
1399 	case CPUHP_AP_ONLINE_DYN:
1400 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1401 		end = CPUHP_AP_ONLINE_DYN_END;
1402 		break;
1403 	case CPUHP_BP_PREPARE_DYN:
1404 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1405 		end = CPUHP_BP_PREPARE_DYN_END;
1406 		break;
1407 	default:
1408 		return -EINVAL;
1409 	}
1410 
1411 	for (i = state; i <= end; i++, step++) {
1412 		if (!step->name)
1413 			return i;
1414 	}
1415 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1416 	return -ENOSPC;
1417 }
1418 
1419 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1420 				 int (*startup)(unsigned int cpu),
1421 				 int (*teardown)(unsigned int cpu),
1422 				 bool multi_instance)
1423 {
1424 	/* (Un)Install the callbacks for further cpu hotplug operations */
1425 	struct cpuhp_step *sp;
1426 	int ret = 0;
1427 
1428 	/*
1429 	 * If name is NULL, then the state gets removed.
1430 	 *
1431 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1432 	 * the first allocation from these dynamic ranges, so the removal
1433 	 * would trigger a new allocation and clear the wrong (already
1434 	 * empty) state, leaving the callbacks of the to be cleared state
1435 	 * dangling, which causes wreckage on the next hotplug operation.
1436 	 */
1437 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1438 		     state == CPUHP_BP_PREPARE_DYN)) {
1439 		ret = cpuhp_reserve_state(state);
1440 		if (ret < 0)
1441 			return ret;
1442 		state = ret;
1443 	}
1444 	sp = cpuhp_get_step(state);
1445 	if (name && sp->name)
1446 		return -EBUSY;
1447 
1448 	sp->startup.single = startup;
1449 	sp->teardown.single = teardown;
1450 	sp->name = name;
1451 	sp->multi_instance = multi_instance;
1452 	INIT_HLIST_HEAD(&sp->list);
1453 	return ret;
1454 }
1455 
1456 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1457 {
1458 	return cpuhp_get_step(state)->teardown.single;
1459 }
1460 
1461 /*
1462  * Call the startup/teardown function for a step either on the AP or
1463  * on the current CPU.
1464  */
1465 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1466 			    struct hlist_node *node)
1467 {
1468 	struct cpuhp_step *sp = cpuhp_get_step(state);
1469 	int ret;
1470 
1471 	/*
1472 	 * If there's nothing to do, we done.
1473 	 * Relies on the union for multi_instance.
1474 	 */
1475 	if ((bringup && !sp->startup.single) ||
1476 	    (!bringup && !sp->teardown.single))
1477 		return 0;
1478 	/*
1479 	 * The non AP bound callbacks can fail on bringup. On teardown
1480 	 * e.g. module removal we crash for now.
1481 	 */
1482 #ifdef CONFIG_SMP
1483 	if (cpuhp_is_ap_state(state))
1484 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1485 	else
1486 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1487 #else
1488 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1489 #endif
1490 	BUG_ON(ret && !bringup);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * Called from __cpuhp_setup_state on a recoverable failure.
1496  *
1497  * Note: The teardown callbacks for rollback are not allowed to fail!
1498  */
1499 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1500 				   struct hlist_node *node)
1501 {
1502 	int cpu;
1503 
1504 	/* Roll back the already executed steps on the other cpus */
1505 	for_each_present_cpu(cpu) {
1506 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1507 		int cpustate = st->state;
1508 
1509 		if (cpu >= failedcpu)
1510 			break;
1511 
1512 		/* Did we invoke the startup call on that cpu ? */
1513 		if (cpustate >= state)
1514 			cpuhp_issue_call(cpu, state, false, node);
1515 	}
1516 }
1517 
1518 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1519 					  struct hlist_node *node,
1520 					  bool invoke)
1521 {
1522 	struct cpuhp_step *sp;
1523 	int cpu;
1524 	int ret;
1525 
1526 	lockdep_assert_cpus_held();
1527 
1528 	sp = cpuhp_get_step(state);
1529 	if (sp->multi_instance == false)
1530 		return -EINVAL;
1531 
1532 	mutex_lock(&cpuhp_state_mutex);
1533 
1534 	if (!invoke || !sp->startup.multi)
1535 		goto add_node;
1536 
1537 	/*
1538 	 * Try to call the startup callback for each present cpu
1539 	 * depending on the hotplug state of the cpu.
1540 	 */
1541 	for_each_present_cpu(cpu) {
1542 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1543 		int cpustate = st->state;
1544 
1545 		if (cpustate < state)
1546 			continue;
1547 
1548 		ret = cpuhp_issue_call(cpu, state, true, node);
1549 		if (ret) {
1550 			if (sp->teardown.multi)
1551 				cpuhp_rollback_install(cpu, state, node);
1552 			goto unlock;
1553 		}
1554 	}
1555 add_node:
1556 	ret = 0;
1557 	hlist_add_head(node, &sp->list);
1558 unlock:
1559 	mutex_unlock(&cpuhp_state_mutex);
1560 	return ret;
1561 }
1562 
1563 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1564 			       bool invoke)
1565 {
1566 	int ret;
1567 
1568 	cpus_read_lock();
1569 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1570 	cpus_read_unlock();
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1574 
1575 /**
1576  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1577  * @state:		The state to setup
1578  * @invoke:		If true, the startup function is invoked for cpus where
1579  *			cpu state >= @state
1580  * @startup:		startup callback function
1581  * @teardown:		teardown callback function
1582  * @multi_instance:	State is set up for multiple instances which get
1583  *			added afterwards.
1584  *
1585  * The caller needs to hold cpus read locked while calling this function.
1586  * Returns:
1587  *   On success:
1588  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1589  *      0 for all other states
1590  *   On failure: proper (negative) error code
1591  */
1592 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1593 				   const char *name, bool invoke,
1594 				   int (*startup)(unsigned int cpu),
1595 				   int (*teardown)(unsigned int cpu),
1596 				   bool multi_instance)
1597 {
1598 	int cpu, ret = 0;
1599 	bool dynstate;
1600 
1601 	lockdep_assert_cpus_held();
1602 
1603 	if (cpuhp_cb_check(state) || !name)
1604 		return -EINVAL;
1605 
1606 	mutex_lock(&cpuhp_state_mutex);
1607 
1608 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1609 				    multi_instance);
1610 
1611 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1612 	if (ret > 0 && dynstate) {
1613 		state = ret;
1614 		ret = 0;
1615 	}
1616 
1617 	if (ret || !invoke || !startup)
1618 		goto out;
1619 
1620 	/*
1621 	 * Try to call the startup callback for each present cpu
1622 	 * depending on the hotplug state of the cpu.
1623 	 */
1624 	for_each_present_cpu(cpu) {
1625 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1626 		int cpustate = st->state;
1627 
1628 		if (cpustate < state)
1629 			continue;
1630 
1631 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1632 		if (ret) {
1633 			if (teardown)
1634 				cpuhp_rollback_install(cpu, state, NULL);
1635 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1636 			goto out;
1637 		}
1638 	}
1639 out:
1640 	mutex_unlock(&cpuhp_state_mutex);
1641 	/*
1642 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1643 	 * dynamically allocated state in case of success.
1644 	 */
1645 	if (!ret && dynstate)
1646 		return state;
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1650 
1651 int __cpuhp_setup_state(enum cpuhp_state state,
1652 			const char *name, bool invoke,
1653 			int (*startup)(unsigned int cpu),
1654 			int (*teardown)(unsigned int cpu),
1655 			bool multi_instance)
1656 {
1657 	int ret;
1658 
1659 	cpus_read_lock();
1660 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1661 					     teardown, multi_instance);
1662 	cpus_read_unlock();
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL(__cpuhp_setup_state);
1666 
1667 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1668 				  struct hlist_node *node, bool invoke)
1669 {
1670 	struct cpuhp_step *sp = cpuhp_get_step(state);
1671 	int cpu;
1672 
1673 	BUG_ON(cpuhp_cb_check(state));
1674 
1675 	if (!sp->multi_instance)
1676 		return -EINVAL;
1677 
1678 	cpus_read_lock();
1679 	mutex_lock(&cpuhp_state_mutex);
1680 
1681 	if (!invoke || !cpuhp_get_teardown_cb(state))
1682 		goto remove;
1683 	/*
1684 	 * Call the teardown callback for each present cpu depending
1685 	 * on the hotplug state of the cpu. This function is not
1686 	 * allowed to fail currently!
1687 	 */
1688 	for_each_present_cpu(cpu) {
1689 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1690 		int cpustate = st->state;
1691 
1692 		if (cpustate >= state)
1693 			cpuhp_issue_call(cpu, state, false, node);
1694 	}
1695 
1696 remove:
1697 	hlist_del(node);
1698 	mutex_unlock(&cpuhp_state_mutex);
1699 	cpus_read_unlock();
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1704 
1705 /**
1706  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1707  * @state:	The state to remove
1708  * @invoke:	If true, the teardown function is invoked for cpus where
1709  *		cpu state >= @state
1710  *
1711  * The caller needs to hold cpus read locked while calling this function.
1712  * The teardown callback is currently not allowed to fail. Think
1713  * about module removal!
1714  */
1715 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1716 {
1717 	struct cpuhp_step *sp = cpuhp_get_step(state);
1718 	int cpu;
1719 
1720 	BUG_ON(cpuhp_cb_check(state));
1721 
1722 	lockdep_assert_cpus_held();
1723 
1724 	mutex_lock(&cpuhp_state_mutex);
1725 	if (sp->multi_instance) {
1726 		WARN(!hlist_empty(&sp->list),
1727 		     "Error: Removing state %d which has instances left.\n",
1728 		     state);
1729 		goto remove;
1730 	}
1731 
1732 	if (!invoke || !cpuhp_get_teardown_cb(state))
1733 		goto remove;
1734 
1735 	/*
1736 	 * Call the teardown callback for each present cpu depending
1737 	 * on the hotplug state of the cpu. This function is not
1738 	 * allowed to fail currently!
1739 	 */
1740 	for_each_present_cpu(cpu) {
1741 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1742 		int cpustate = st->state;
1743 
1744 		if (cpustate >= state)
1745 			cpuhp_issue_call(cpu, state, false, NULL);
1746 	}
1747 remove:
1748 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1749 	mutex_unlock(&cpuhp_state_mutex);
1750 }
1751 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1752 
1753 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1754 {
1755 	cpus_read_lock();
1756 	__cpuhp_remove_state_cpuslocked(state, invoke);
1757 	cpus_read_unlock();
1758 }
1759 EXPORT_SYMBOL(__cpuhp_remove_state);
1760 
1761 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1762 static ssize_t show_cpuhp_state(struct device *dev,
1763 				struct device_attribute *attr, char *buf)
1764 {
1765 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1766 
1767 	return sprintf(buf, "%d\n", st->state);
1768 }
1769 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1770 
1771 static ssize_t write_cpuhp_target(struct device *dev,
1772 				  struct device_attribute *attr,
1773 				  const char *buf, size_t count)
1774 {
1775 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1776 	struct cpuhp_step *sp;
1777 	int target, ret;
1778 
1779 	ret = kstrtoint(buf, 10, &target);
1780 	if (ret)
1781 		return ret;
1782 
1783 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1784 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1785 		return -EINVAL;
1786 #else
1787 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1788 		return -EINVAL;
1789 #endif
1790 
1791 	ret = lock_device_hotplug_sysfs();
1792 	if (ret)
1793 		return ret;
1794 
1795 	mutex_lock(&cpuhp_state_mutex);
1796 	sp = cpuhp_get_step(target);
1797 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1798 	mutex_unlock(&cpuhp_state_mutex);
1799 	if (ret)
1800 		goto out;
1801 
1802 	if (st->state < target)
1803 		ret = do_cpu_up(dev->id, target);
1804 	else
1805 		ret = do_cpu_down(dev->id, target);
1806 out:
1807 	unlock_device_hotplug();
1808 	return ret ? ret : count;
1809 }
1810 
1811 static ssize_t show_cpuhp_target(struct device *dev,
1812 				 struct device_attribute *attr, char *buf)
1813 {
1814 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1815 
1816 	return sprintf(buf, "%d\n", st->target);
1817 }
1818 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1819 
1820 
1821 static ssize_t write_cpuhp_fail(struct device *dev,
1822 				struct device_attribute *attr,
1823 				const char *buf, size_t count)
1824 {
1825 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1826 	struct cpuhp_step *sp;
1827 	int fail, ret;
1828 
1829 	ret = kstrtoint(buf, 10, &fail);
1830 	if (ret)
1831 		return ret;
1832 
1833 	/*
1834 	 * Cannot fail STARTING/DYING callbacks.
1835 	 */
1836 	if (cpuhp_is_atomic_state(fail))
1837 		return -EINVAL;
1838 
1839 	/*
1840 	 * Cannot fail anything that doesn't have callbacks.
1841 	 */
1842 	mutex_lock(&cpuhp_state_mutex);
1843 	sp = cpuhp_get_step(fail);
1844 	if (!sp->startup.single && !sp->teardown.single)
1845 		ret = -EINVAL;
1846 	mutex_unlock(&cpuhp_state_mutex);
1847 	if (ret)
1848 		return ret;
1849 
1850 	st->fail = fail;
1851 
1852 	return count;
1853 }
1854 
1855 static ssize_t show_cpuhp_fail(struct device *dev,
1856 			       struct device_attribute *attr, char *buf)
1857 {
1858 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1859 
1860 	return sprintf(buf, "%d\n", st->fail);
1861 }
1862 
1863 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1864 
1865 static struct attribute *cpuhp_cpu_attrs[] = {
1866 	&dev_attr_state.attr,
1867 	&dev_attr_target.attr,
1868 	&dev_attr_fail.attr,
1869 	NULL
1870 };
1871 
1872 static const struct attribute_group cpuhp_cpu_attr_group = {
1873 	.attrs = cpuhp_cpu_attrs,
1874 	.name = "hotplug",
1875 	NULL
1876 };
1877 
1878 static ssize_t show_cpuhp_states(struct device *dev,
1879 				 struct device_attribute *attr, char *buf)
1880 {
1881 	ssize_t cur, res = 0;
1882 	int i;
1883 
1884 	mutex_lock(&cpuhp_state_mutex);
1885 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1886 		struct cpuhp_step *sp = cpuhp_get_step(i);
1887 
1888 		if (sp->name) {
1889 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1890 			buf += cur;
1891 			res += cur;
1892 		}
1893 	}
1894 	mutex_unlock(&cpuhp_state_mutex);
1895 	return res;
1896 }
1897 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1898 
1899 static struct attribute *cpuhp_cpu_root_attrs[] = {
1900 	&dev_attr_states.attr,
1901 	NULL
1902 };
1903 
1904 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1905 	.attrs = cpuhp_cpu_root_attrs,
1906 	.name = "hotplug",
1907 	NULL
1908 };
1909 
1910 static int __init cpuhp_sysfs_init(void)
1911 {
1912 	int cpu, ret;
1913 
1914 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1915 				 &cpuhp_cpu_root_attr_group);
1916 	if (ret)
1917 		return ret;
1918 
1919 	for_each_possible_cpu(cpu) {
1920 		struct device *dev = get_cpu_device(cpu);
1921 
1922 		if (!dev)
1923 			continue;
1924 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1925 		if (ret)
1926 			return ret;
1927 	}
1928 	return 0;
1929 }
1930 device_initcall(cpuhp_sysfs_init);
1931 #endif
1932 
1933 /*
1934  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1935  * represents all NR_CPUS bits binary values of 1<<nr.
1936  *
1937  * It is used by cpumask_of() to get a constant address to a CPU
1938  * mask value that has a single bit set only.
1939  */
1940 
1941 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1942 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1943 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1944 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1945 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1946 
1947 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1948 
1949 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1950 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1951 #if BITS_PER_LONG > 32
1952 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1953 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1954 #endif
1955 };
1956 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1957 
1958 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1959 EXPORT_SYMBOL(cpu_all_bits);
1960 
1961 #ifdef CONFIG_INIT_ALL_POSSIBLE
1962 struct cpumask __cpu_possible_mask __read_mostly
1963 	= {CPU_BITS_ALL};
1964 #else
1965 struct cpumask __cpu_possible_mask __read_mostly;
1966 #endif
1967 EXPORT_SYMBOL(__cpu_possible_mask);
1968 
1969 struct cpumask __cpu_online_mask __read_mostly;
1970 EXPORT_SYMBOL(__cpu_online_mask);
1971 
1972 struct cpumask __cpu_present_mask __read_mostly;
1973 EXPORT_SYMBOL(__cpu_present_mask);
1974 
1975 struct cpumask __cpu_active_mask __read_mostly;
1976 EXPORT_SYMBOL(__cpu_active_mask);
1977 
1978 void init_cpu_present(const struct cpumask *src)
1979 {
1980 	cpumask_copy(&__cpu_present_mask, src);
1981 }
1982 
1983 void init_cpu_possible(const struct cpumask *src)
1984 {
1985 	cpumask_copy(&__cpu_possible_mask, src);
1986 }
1987 
1988 void init_cpu_online(const struct cpumask *src)
1989 {
1990 	cpumask_copy(&__cpu_online_mask, src);
1991 }
1992 
1993 /*
1994  * Activate the first processor.
1995  */
1996 void __init boot_cpu_init(void)
1997 {
1998 	int cpu = smp_processor_id();
1999 
2000 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2001 	set_cpu_online(cpu, true);
2002 	set_cpu_active(cpu, true);
2003 	set_cpu_present(cpu, true);
2004 	set_cpu_possible(cpu, true);
2005 
2006 #ifdef CONFIG_SMP
2007 	__boot_cpu_id = cpu;
2008 #endif
2009 }
2010 
2011 /*
2012  * Must be called _AFTER_ setting up the per_cpu areas
2013  */
2014 void __init boot_cpu_state_init(void)
2015 {
2016 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2017 }
2018