1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 36 #include <trace/events/power.h> 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/cpuhp.h> 39 40 #include "smpboot.h" 41 42 /** 43 * cpuhp_cpu_state - Per cpu hotplug state storage 44 * @state: The current cpu state 45 * @target: The target state 46 * @thread: Pointer to the hotplug thread 47 * @should_run: Thread should execute 48 * @rollback: Perform a rollback 49 * @single: Single callback invocation 50 * @bringup: Single callback bringup or teardown selector 51 * @cb_state: The state for a single callback (install/uninstall) 52 * @result: Result of the operation 53 * @done_up: Signal completion to the issuer of the task for cpu-up 54 * @done_down: Signal completion to the issuer of the task for cpu-down 55 */ 56 struct cpuhp_cpu_state { 57 enum cpuhp_state state; 58 enum cpuhp_state target; 59 enum cpuhp_state fail; 60 #ifdef CONFIG_SMP 61 struct task_struct *thread; 62 bool should_run; 63 bool rollback; 64 bool single; 65 bool bringup; 66 struct hlist_node *node; 67 struct hlist_node *last; 68 enum cpuhp_state cb_state; 69 int result; 70 struct completion done_up; 71 struct completion done_down; 72 #endif 73 }; 74 75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 76 .fail = CPUHP_INVALID, 77 }; 78 79 #ifdef CONFIG_SMP 80 cpumask_t cpus_booted_once_mask; 81 #endif 82 83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 84 static struct lockdep_map cpuhp_state_up_map = 85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 86 static struct lockdep_map cpuhp_state_down_map = 87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 88 89 90 static inline void cpuhp_lock_acquire(bool bringup) 91 { 92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 93 } 94 95 static inline void cpuhp_lock_release(bool bringup) 96 { 97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 98 } 99 #else 100 101 static inline void cpuhp_lock_acquire(bool bringup) { } 102 static inline void cpuhp_lock_release(bool bringup) { } 103 104 #endif 105 106 /** 107 * cpuhp_step - Hotplug state machine step 108 * @name: Name of the step 109 * @startup: Startup function of the step 110 * @teardown: Teardown function of the step 111 * @cant_stop: Bringup/teardown can't be stopped at this step 112 */ 113 struct cpuhp_step { 114 const char *name; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } startup; 120 union { 121 int (*single)(unsigned int cpu); 122 int (*multi)(unsigned int cpu, 123 struct hlist_node *node); 124 } teardown; 125 struct hlist_head list; 126 bool cant_stop; 127 bool multi_instance; 128 }; 129 130 static DEFINE_MUTEX(cpuhp_state_mutex); 131 static struct cpuhp_step cpuhp_hp_states[]; 132 133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 134 { 135 return cpuhp_hp_states + state; 136 } 137 138 /** 139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 140 * @cpu: The cpu for which the callback should be invoked 141 * @state: The state to do callbacks for 142 * @bringup: True if the bringup callback should be invoked 143 * @node: For multi-instance, do a single entry callback for install/remove 144 * @lastp: For multi-instance rollback, remember how far we got 145 * 146 * Called from cpu hotplug and from the state register machinery. 147 */ 148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 149 bool bringup, struct hlist_node *node, 150 struct hlist_node **lastp) 151 { 152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 153 struct cpuhp_step *step = cpuhp_get_step(state); 154 int (*cbm)(unsigned int cpu, struct hlist_node *node); 155 int (*cb)(unsigned int cpu); 156 int ret, cnt; 157 158 if (st->fail == state) { 159 st->fail = CPUHP_INVALID; 160 161 if (!(bringup ? step->startup.single : step->teardown.single)) 162 return 0; 163 164 return -EAGAIN; 165 } 166 167 if (!step->multi_instance) { 168 WARN_ON_ONCE(lastp && *lastp); 169 cb = bringup ? step->startup.single : step->teardown.single; 170 if (!cb) 171 return 0; 172 trace_cpuhp_enter(cpu, st->target, state, cb); 173 ret = cb(cpu); 174 trace_cpuhp_exit(cpu, st->state, state, ret); 175 return ret; 176 } 177 cbm = bringup ? step->startup.multi : step->teardown.multi; 178 if (!cbm) 179 return 0; 180 181 /* Single invocation for instance add/remove */ 182 if (node) { 183 WARN_ON_ONCE(lastp && *lastp); 184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 185 ret = cbm(cpu, node); 186 trace_cpuhp_exit(cpu, st->state, state, ret); 187 return ret; 188 } 189 190 /* State transition. Invoke on all instances */ 191 cnt = 0; 192 hlist_for_each(node, &step->list) { 193 if (lastp && node == *lastp) 194 break; 195 196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 197 ret = cbm(cpu, node); 198 trace_cpuhp_exit(cpu, st->state, state, ret); 199 if (ret) { 200 if (!lastp) 201 goto err; 202 203 *lastp = node; 204 return ret; 205 } 206 cnt++; 207 } 208 if (lastp) 209 *lastp = NULL; 210 return 0; 211 err: 212 /* Rollback the instances if one failed */ 213 cbm = !bringup ? step->startup.multi : step->teardown.multi; 214 if (!cbm) 215 return ret; 216 217 hlist_for_each(node, &step->list) { 218 if (!cnt--) 219 break; 220 221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 222 ret = cbm(cpu, node); 223 trace_cpuhp_exit(cpu, st->state, state, ret); 224 /* 225 * Rollback must not fail, 226 */ 227 WARN_ON_ONCE(ret); 228 } 229 return ret; 230 } 231 232 #ifdef CONFIG_SMP 233 static bool cpuhp_is_ap_state(enum cpuhp_state state) 234 { 235 /* 236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 237 * purposes as that state is handled explicitly in cpu_down. 238 */ 239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 240 } 241 242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 243 { 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 245 wait_for_completion(done); 246 } 247 248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 249 { 250 struct completion *done = bringup ? &st->done_up : &st->done_down; 251 complete(done); 252 } 253 254 /* 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 256 */ 257 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 258 { 259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 260 } 261 262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 263 static DEFINE_MUTEX(cpu_add_remove_lock); 264 bool cpuhp_tasks_frozen; 265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 266 267 /* 268 * The following two APIs (cpu_maps_update_begin/done) must be used when 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 270 */ 271 void cpu_maps_update_begin(void) 272 { 273 mutex_lock(&cpu_add_remove_lock); 274 } 275 276 void cpu_maps_update_done(void) 277 { 278 mutex_unlock(&cpu_add_remove_lock); 279 } 280 281 /* 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 283 * Should always be manipulated under cpu_add_remove_lock 284 */ 285 static int cpu_hotplug_disabled; 286 287 #ifdef CONFIG_HOTPLUG_CPU 288 289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 290 291 void cpus_read_lock(void) 292 { 293 percpu_down_read(&cpu_hotplug_lock); 294 } 295 EXPORT_SYMBOL_GPL(cpus_read_lock); 296 297 int cpus_read_trylock(void) 298 { 299 return percpu_down_read_trylock(&cpu_hotplug_lock); 300 } 301 EXPORT_SYMBOL_GPL(cpus_read_trylock); 302 303 void cpus_read_unlock(void) 304 { 305 percpu_up_read(&cpu_hotplug_lock); 306 } 307 EXPORT_SYMBOL_GPL(cpus_read_unlock); 308 309 void cpus_write_lock(void) 310 { 311 percpu_down_write(&cpu_hotplug_lock); 312 } 313 314 void cpus_write_unlock(void) 315 { 316 percpu_up_write(&cpu_hotplug_lock); 317 } 318 319 void lockdep_assert_cpus_held(void) 320 { 321 /* 322 * We can't have hotplug operations before userspace starts running, 323 * and some init codepaths will knowingly not take the hotplug lock. 324 * This is all valid, so mute lockdep until it makes sense to report 325 * unheld locks. 326 */ 327 if (system_state < SYSTEM_RUNNING) 328 return; 329 330 percpu_rwsem_assert_held(&cpu_hotplug_lock); 331 } 332 333 #ifdef CONFIG_LOCKDEP 334 int lockdep_is_cpus_held(void) 335 { 336 return percpu_rwsem_is_held(&cpu_hotplug_lock); 337 } 338 #endif 339 340 static void lockdep_acquire_cpus_lock(void) 341 { 342 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 343 } 344 345 static void lockdep_release_cpus_lock(void) 346 { 347 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 348 } 349 350 /* 351 * Wait for currently running CPU hotplug operations to complete (if any) and 352 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 353 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 354 * hotplug path before performing hotplug operations. So acquiring that lock 355 * guarantees mutual exclusion from any currently running hotplug operations. 356 */ 357 void cpu_hotplug_disable(void) 358 { 359 cpu_maps_update_begin(); 360 cpu_hotplug_disabled++; 361 cpu_maps_update_done(); 362 } 363 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 364 365 static void __cpu_hotplug_enable(void) 366 { 367 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 368 return; 369 cpu_hotplug_disabled--; 370 } 371 372 void cpu_hotplug_enable(void) 373 { 374 cpu_maps_update_begin(); 375 __cpu_hotplug_enable(); 376 cpu_maps_update_done(); 377 } 378 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 379 380 #else 381 382 static void lockdep_acquire_cpus_lock(void) 383 { 384 } 385 386 static void lockdep_release_cpus_lock(void) 387 { 388 } 389 390 #endif /* CONFIG_HOTPLUG_CPU */ 391 392 /* 393 * Architectures that need SMT-specific errata handling during SMT hotplug 394 * should override this. 395 */ 396 void __weak arch_smt_update(void) { } 397 398 #ifdef CONFIG_HOTPLUG_SMT 399 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 400 401 void __init cpu_smt_disable(bool force) 402 { 403 if (!cpu_smt_possible()) 404 return; 405 406 if (force) { 407 pr_info("SMT: Force disabled\n"); 408 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 409 } else { 410 pr_info("SMT: disabled\n"); 411 cpu_smt_control = CPU_SMT_DISABLED; 412 } 413 } 414 415 /* 416 * The decision whether SMT is supported can only be done after the full 417 * CPU identification. Called from architecture code. 418 */ 419 void __init cpu_smt_check_topology(void) 420 { 421 if (!topology_smt_supported()) 422 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 423 } 424 425 static int __init smt_cmdline_disable(char *str) 426 { 427 cpu_smt_disable(str && !strcmp(str, "force")); 428 return 0; 429 } 430 early_param("nosmt", smt_cmdline_disable); 431 432 static inline bool cpu_smt_allowed(unsigned int cpu) 433 { 434 if (cpu_smt_control == CPU_SMT_ENABLED) 435 return true; 436 437 if (topology_is_primary_thread(cpu)) 438 return true; 439 440 /* 441 * On x86 it's required to boot all logical CPUs at least once so 442 * that the init code can get a chance to set CR4.MCE on each 443 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 444 * core will shutdown the machine. 445 */ 446 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 447 } 448 449 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 450 bool cpu_smt_possible(void) 451 { 452 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 453 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 454 } 455 EXPORT_SYMBOL_GPL(cpu_smt_possible); 456 #else 457 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 458 #endif 459 460 static inline enum cpuhp_state 461 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 462 { 463 enum cpuhp_state prev_state = st->state; 464 465 st->rollback = false; 466 st->last = NULL; 467 468 st->target = target; 469 st->single = false; 470 st->bringup = st->state < target; 471 472 return prev_state; 473 } 474 475 static inline void 476 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 477 { 478 st->rollback = true; 479 480 /* 481 * If we have st->last we need to undo partial multi_instance of this 482 * state first. Otherwise start undo at the previous state. 483 */ 484 if (!st->last) { 485 if (st->bringup) 486 st->state--; 487 else 488 st->state++; 489 } 490 491 st->target = prev_state; 492 st->bringup = !st->bringup; 493 } 494 495 /* Regular hotplug invocation of the AP hotplug thread */ 496 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 497 { 498 if (!st->single && st->state == st->target) 499 return; 500 501 st->result = 0; 502 /* 503 * Make sure the above stores are visible before should_run becomes 504 * true. Paired with the mb() above in cpuhp_thread_fun() 505 */ 506 smp_mb(); 507 st->should_run = true; 508 wake_up_process(st->thread); 509 wait_for_ap_thread(st, st->bringup); 510 } 511 512 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 513 { 514 enum cpuhp_state prev_state; 515 int ret; 516 517 prev_state = cpuhp_set_state(st, target); 518 __cpuhp_kick_ap(st); 519 if ((ret = st->result)) { 520 cpuhp_reset_state(st, prev_state); 521 __cpuhp_kick_ap(st); 522 } 523 524 return ret; 525 } 526 527 static int bringup_wait_for_ap(unsigned int cpu) 528 { 529 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 530 531 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 532 wait_for_ap_thread(st, true); 533 if (WARN_ON_ONCE((!cpu_online(cpu)))) 534 return -ECANCELED; 535 536 /* Unpark the hotplug thread of the target cpu */ 537 kthread_unpark(st->thread); 538 539 /* 540 * SMT soft disabling on X86 requires to bring the CPU out of the 541 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 542 * CPU marked itself as booted_once in notify_cpu_starting() so the 543 * cpu_smt_allowed() check will now return false if this is not the 544 * primary sibling. 545 */ 546 if (!cpu_smt_allowed(cpu)) 547 return -ECANCELED; 548 549 if (st->target <= CPUHP_AP_ONLINE_IDLE) 550 return 0; 551 552 return cpuhp_kick_ap(st, st->target); 553 } 554 555 static int bringup_cpu(unsigned int cpu) 556 { 557 struct task_struct *idle = idle_thread_get(cpu); 558 int ret; 559 560 /* 561 * Some architectures have to walk the irq descriptors to 562 * setup the vector space for the cpu which comes online. 563 * Prevent irq alloc/free across the bringup. 564 */ 565 irq_lock_sparse(); 566 567 /* Arch-specific enabling code. */ 568 ret = __cpu_up(cpu, idle); 569 irq_unlock_sparse(); 570 if (ret) 571 return ret; 572 return bringup_wait_for_ap(cpu); 573 } 574 575 static int finish_cpu(unsigned int cpu) 576 { 577 struct task_struct *idle = idle_thread_get(cpu); 578 struct mm_struct *mm = idle->active_mm; 579 580 /* 581 * idle_task_exit() will have switched to &init_mm, now 582 * clean up any remaining active_mm state. 583 */ 584 if (mm != &init_mm) 585 idle->active_mm = &init_mm; 586 mmdrop(mm); 587 return 0; 588 } 589 590 /* 591 * Hotplug state machine related functions 592 */ 593 594 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 595 { 596 for (st->state--; st->state > st->target; st->state--) 597 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 598 } 599 600 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 601 { 602 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 603 return true; 604 /* 605 * When CPU hotplug is disabled, then taking the CPU down is not 606 * possible because takedown_cpu() and the architecture and 607 * subsystem specific mechanisms are not available. So the CPU 608 * which would be completely unplugged again needs to stay around 609 * in the current state. 610 */ 611 return st->state <= CPUHP_BRINGUP_CPU; 612 } 613 614 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 615 enum cpuhp_state target) 616 { 617 enum cpuhp_state prev_state = st->state; 618 int ret = 0; 619 620 while (st->state < target) { 621 st->state++; 622 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 623 if (ret) { 624 if (can_rollback_cpu(st)) { 625 st->target = prev_state; 626 undo_cpu_up(cpu, st); 627 } 628 break; 629 } 630 } 631 return ret; 632 } 633 634 /* 635 * The cpu hotplug threads manage the bringup and teardown of the cpus 636 */ 637 static void cpuhp_create(unsigned int cpu) 638 { 639 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 640 641 init_completion(&st->done_up); 642 init_completion(&st->done_down); 643 } 644 645 static int cpuhp_should_run(unsigned int cpu) 646 { 647 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 648 649 return st->should_run; 650 } 651 652 /* 653 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 654 * callbacks when a state gets [un]installed at runtime. 655 * 656 * Each invocation of this function by the smpboot thread does a single AP 657 * state callback. 658 * 659 * It has 3 modes of operation: 660 * - single: runs st->cb_state 661 * - up: runs ++st->state, while st->state < st->target 662 * - down: runs st->state--, while st->state > st->target 663 * 664 * When complete or on error, should_run is cleared and the completion is fired. 665 */ 666 static void cpuhp_thread_fun(unsigned int cpu) 667 { 668 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 669 bool bringup = st->bringup; 670 enum cpuhp_state state; 671 672 if (WARN_ON_ONCE(!st->should_run)) 673 return; 674 675 /* 676 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 677 * that if we see ->should_run we also see the rest of the state. 678 */ 679 smp_mb(); 680 681 /* 682 * The BP holds the hotplug lock, but we're now running on the AP, 683 * ensure that anybody asserting the lock is held, will actually find 684 * it so. 685 */ 686 lockdep_acquire_cpus_lock(); 687 cpuhp_lock_acquire(bringup); 688 689 if (st->single) { 690 state = st->cb_state; 691 st->should_run = false; 692 } else { 693 if (bringup) { 694 st->state++; 695 state = st->state; 696 st->should_run = (st->state < st->target); 697 WARN_ON_ONCE(st->state > st->target); 698 } else { 699 state = st->state; 700 st->state--; 701 st->should_run = (st->state > st->target); 702 WARN_ON_ONCE(st->state < st->target); 703 } 704 } 705 706 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 707 708 if (cpuhp_is_atomic_state(state)) { 709 local_irq_disable(); 710 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 711 local_irq_enable(); 712 713 /* 714 * STARTING/DYING must not fail! 715 */ 716 WARN_ON_ONCE(st->result); 717 } else { 718 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 719 } 720 721 if (st->result) { 722 /* 723 * If we fail on a rollback, we're up a creek without no 724 * paddle, no way forward, no way back. We loose, thanks for 725 * playing. 726 */ 727 WARN_ON_ONCE(st->rollback); 728 st->should_run = false; 729 } 730 731 cpuhp_lock_release(bringup); 732 lockdep_release_cpus_lock(); 733 734 if (!st->should_run) 735 complete_ap_thread(st, bringup); 736 } 737 738 /* Invoke a single callback on a remote cpu */ 739 static int 740 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 741 struct hlist_node *node) 742 { 743 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 744 int ret; 745 746 if (!cpu_online(cpu)) 747 return 0; 748 749 cpuhp_lock_acquire(false); 750 cpuhp_lock_release(false); 751 752 cpuhp_lock_acquire(true); 753 cpuhp_lock_release(true); 754 755 /* 756 * If we are up and running, use the hotplug thread. For early calls 757 * we invoke the thread function directly. 758 */ 759 if (!st->thread) 760 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 761 762 st->rollback = false; 763 st->last = NULL; 764 765 st->node = node; 766 st->bringup = bringup; 767 st->cb_state = state; 768 st->single = true; 769 770 __cpuhp_kick_ap(st); 771 772 /* 773 * If we failed and did a partial, do a rollback. 774 */ 775 if ((ret = st->result) && st->last) { 776 st->rollback = true; 777 st->bringup = !bringup; 778 779 __cpuhp_kick_ap(st); 780 } 781 782 /* 783 * Clean up the leftovers so the next hotplug operation wont use stale 784 * data. 785 */ 786 st->node = st->last = NULL; 787 return ret; 788 } 789 790 static int cpuhp_kick_ap_work(unsigned int cpu) 791 { 792 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 793 enum cpuhp_state prev_state = st->state; 794 int ret; 795 796 cpuhp_lock_acquire(false); 797 cpuhp_lock_release(false); 798 799 cpuhp_lock_acquire(true); 800 cpuhp_lock_release(true); 801 802 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 803 ret = cpuhp_kick_ap(st, st->target); 804 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 805 806 return ret; 807 } 808 809 static struct smp_hotplug_thread cpuhp_threads = { 810 .store = &cpuhp_state.thread, 811 .create = &cpuhp_create, 812 .thread_should_run = cpuhp_should_run, 813 .thread_fn = cpuhp_thread_fun, 814 .thread_comm = "cpuhp/%u", 815 .selfparking = true, 816 }; 817 818 void __init cpuhp_threads_init(void) 819 { 820 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 821 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 822 } 823 824 #ifdef CONFIG_HOTPLUG_CPU 825 #ifndef arch_clear_mm_cpumask_cpu 826 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 827 #endif 828 829 /** 830 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 831 * @cpu: a CPU id 832 * 833 * This function walks all processes, finds a valid mm struct for each one and 834 * then clears a corresponding bit in mm's cpumask. While this all sounds 835 * trivial, there are various non-obvious corner cases, which this function 836 * tries to solve in a safe manner. 837 * 838 * Also note that the function uses a somewhat relaxed locking scheme, so it may 839 * be called only for an already offlined CPU. 840 */ 841 void clear_tasks_mm_cpumask(int cpu) 842 { 843 struct task_struct *p; 844 845 /* 846 * This function is called after the cpu is taken down and marked 847 * offline, so its not like new tasks will ever get this cpu set in 848 * their mm mask. -- Peter Zijlstra 849 * Thus, we may use rcu_read_lock() here, instead of grabbing 850 * full-fledged tasklist_lock. 851 */ 852 WARN_ON(cpu_online(cpu)); 853 rcu_read_lock(); 854 for_each_process(p) { 855 struct task_struct *t; 856 857 /* 858 * Main thread might exit, but other threads may still have 859 * a valid mm. Find one. 860 */ 861 t = find_lock_task_mm(p); 862 if (!t) 863 continue; 864 arch_clear_mm_cpumask_cpu(cpu, t->mm); 865 task_unlock(t); 866 } 867 rcu_read_unlock(); 868 } 869 870 /* Take this CPU down. */ 871 static int take_cpu_down(void *_param) 872 { 873 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 874 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 875 int err, cpu = smp_processor_id(); 876 int ret; 877 878 /* Ensure this CPU doesn't handle any more interrupts. */ 879 err = __cpu_disable(); 880 if (err < 0) 881 return err; 882 883 /* 884 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 885 * do this step again. 886 */ 887 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 888 st->state--; 889 /* Invoke the former CPU_DYING callbacks */ 890 for (; st->state > target; st->state--) { 891 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 892 /* 893 * DYING must not fail! 894 */ 895 WARN_ON_ONCE(ret); 896 } 897 898 /* Give up timekeeping duties */ 899 tick_handover_do_timer(); 900 /* Remove CPU from timer broadcasting */ 901 tick_offline_cpu(cpu); 902 /* Park the stopper thread */ 903 stop_machine_park(cpu); 904 return 0; 905 } 906 907 static int takedown_cpu(unsigned int cpu) 908 { 909 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 910 int err; 911 912 /* Park the smpboot threads */ 913 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 914 915 /* 916 * Prevent irq alloc/free while the dying cpu reorganizes the 917 * interrupt affinities. 918 */ 919 irq_lock_sparse(); 920 921 /* 922 * So now all preempt/rcu users must observe !cpu_active(). 923 */ 924 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 925 if (err) { 926 /* CPU refused to die */ 927 irq_unlock_sparse(); 928 /* Unpark the hotplug thread so we can rollback there */ 929 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 930 return err; 931 } 932 BUG_ON(cpu_online(cpu)); 933 934 /* 935 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 936 * all runnable tasks from the CPU, there's only the idle task left now 937 * that the migration thread is done doing the stop_machine thing. 938 * 939 * Wait for the stop thread to go away. 940 */ 941 wait_for_ap_thread(st, false); 942 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 943 944 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 945 irq_unlock_sparse(); 946 947 hotplug_cpu__broadcast_tick_pull(cpu); 948 /* This actually kills the CPU. */ 949 __cpu_die(cpu); 950 951 tick_cleanup_dead_cpu(cpu); 952 rcutree_migrate_callbacks(cpu); 953 return 0; 954 } 955 956 static void cpuhp_complete_idle_dead(void *arg) 957 { 958 struct cpuhp_cpu_state *st = arg; 959 960 complete_ap_thread(st, false); 961 } 962 963 void cpuhp_report_idle_dead(void) 964 { 965 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 966 967 BUG_ON(st->state != CPUHP_AP_OFFLINE); 968 rcu_report_dead(smp_processor_id()); 969 st->state = CPUHP_AP_IDLE_DEAD; 970 /* 971 * We cannot call complete after rcu_report_dead() so we delegate it 972 * to an online cpu. 973 */ 974 smp_call_function_single(cpumask_first(cpu_online_mask), 975 cpuhp_complete_idle_dead, st, 0); 976 } 977 978 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 979 { 980 for (st->state++; st->state < st->target; st->state++) 981 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 982 } 983 984 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 985 enum cpuhp_state target) 986 { 987 enum cpuhp_state prev_state = st->state; 988 int ret = 0; 989 990 for (; st->state > target; st->state--) { 991 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 992 if (ret) { 993 st->target = prev_state; 994 if (st->state < prev_state) 995 undo_cpu_down(cpu, st); 996 break; 997 } 998 } 999 return ret; 1000 } 1001 1002 /* Requires cpu_add_remove_lock to be held */ 1003 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1004 enum cpuhp_state target) 1005 { 1006 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1007 int prev_state, ret = 0; 1008 1009 if (num_online_cpus() == 1) 1010 return -EBUSY; 1011 1012 if (!cpu_present(cpu)) 1013 return -EINVAL; 1014 1015 cpus_write_lock(); 1016 1017 cpuhp_tasks_frozen = tasks_frozen; 1018 1019 prev_state = cpuhp_set_state(st, target); 1020 /* 1021 * If the current CPU state is in the range of the AP hotplug thread, 1022 * then we need to kick the thread. 1023 */ 1024 if (st->state > CPUHP_TEARDOWN_CPU) { 1025 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1026 ret = cpuhp_kick_ap_work(cpu); 1027 /* 1028 * The AP side has done the error rollback already. Just 1029 * return the error code.. 1030 */ 1031 if (ret) 1032 goto out; 1033 1034 /* 1035 * We might have stopped still in the range of the AP hotplug 1036 * thread. Nothing to do anymore. 1037 */ 1038 if (st->state > CPUHP_TEARDOWN_CPU) 1039 goto out; 1040 1041 st->target = target; 1042 } 1043 /* 1044 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1045 * to do the further cleanups. 1046 */ 1047 ret = cpuhp_down_callbacks(cpu, st, target); 1048 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1049 cpuhp_reset_state(st, prev_state); 1050 __cpuhp_kick_ap(st); 1051 } 1052 1053 out: 1054 cpus_write_unlock(); 1055 /* 1056 * Do post unplug cleanup. This is still protected against 1057 * concurrent CPU hotplug via cpu_add_remove_lock. 1058 */ 1059 lockup_detector_cleanup(); 1060 arch_smt_update(); 1061 return ret; 1062 } 1063 1064 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1065 { 1066 if (cpu_hotplug_disabled) 1067 return -EBUSY; 1068 return _cpu_down(cpu, 0, target); 1069 } 1070 1071 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1072 { 1073 int err; 1074 1075 cpu_maps_update_begin(); 1076 err = cpu_down_maps_locked(cpu, target); 1077 cpu_maps_update_done(); 1078 return err; 1079 } 1080 1081 /** 1082 * cpu_device_down - Bring down a cpu device 1083 * @dev: Pointer to the cpu device to offline 1084 * 1085 * This function is meant to be used by device core cpu subsystem only. 1086 * 1087 * Other subsystems should use remove_cpu() instead. 1088 */ 1089 int cpu_device_down(struct device *dev) 1090 { 1091 return cpu_down(dev->id, CPUHP_OFFLINE); 1092 } 1093 1094 int remove_cpu(unsigned int cpu) 1095 { 1096 int ret; 1097 1098 lock_device_hotplug(); 1099 ret = device_offline(get_cpu_device(cpu)); 1100 unlock_device_hotplug(); 1101 1102 return ret; 1103 } 1104 EXPORT_SYMBOL_GPL(remove_cpu); 1105 1106 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1107 { 1108 unsigned int cpu; 1109 int error; 1110 1111 cpu_maps_update_begin(); 1112 1113 /* 1114 * Make certain the cpu I'm about to reboot on is online. 1115 * 1116 * This is inline to what migrate_to_reboot_cpu() already do. 1117 */ 1118 if (!cpu_online(primary_cpu)) 1119 primary_cpu = cpumask_first(cpu_online_mask); 1120 1121 for_each_online_cpu(cpu) { 1122 if (cpu == primary_cpu) 1123 continue; 1124 1125 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1126 if (error) { 1127 pr_err("Failed to offline CPU%d - error=%d", 1128 cpu, error); 1129 break; 1130 } 1131 } 1132 1133 /* 1134 * Ensure all but the reboot CPU are offline. 1135 */ 1136 BUG_ON(num_online_cpus() > 1); 1137 1138 /* 1139 * Make sure the CPUs won't be enabled by someone else after this 1140 * point. Kexec will reboot to a new kernel shortly resetting 1141 * everything along the way. 1142 */ 1143 cpu_hotplug_disabled++; 1144 1145 cpu_maps_update_done(); 1146 } 1147 1148 #else 1149 #define takedown_cpu NULL 1150 #endif /*CONFIG_HOTPLUG_CPU*/ 1151 1152 /** 1153 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1154 * @cpu: cpu that just started 1155 * 1156 * It must be called by the arch code on the new cpu, before the new cpu 1157 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1158 */ 1159 void notify_cpu_starting(unsigned int cpu) 1160 { 1161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1162 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1163 int ret; 1164 1165 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1166 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1167 while (st->state < target) { 1168 st->state++; 1169 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1170 /* 1171 * STARTING must not fail! 1172 */ 1173 WARN_ON_ONCE(ret); 1174 } 1175 } 1176 1177 /* 1178 * Called from the idle task. Wake up the controlling task which brings the 1179 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1180 * online bringup to the hotplug thread. 1181 */ 1182 void cpuhp_online_idle(enum cpuhp_state state) 1183 { 1184 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1185 1186 /* Happens for the boot cpu */ 1187 if (state != CPUHP_AP_ONLINE_IDLE) 1188 return; 1189 1190 /* 1191 * Unpart the stopper thread before we start the idle loop (and start 1192 * scheduling); this ensures the stopper task is always available. 1193 */ 1194 stop_machine_unpark(smp_processor_id()); 1195 1196 st->state = CPUHP_AP_ONLINE_IDLE; 1197 complete_ap_thread(st, true); 1198 } 1199 1200 /* Requires cpu_add_remove_lock to be held */ 1201 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1202 { 1203 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1204 struct task_struct *idle; 1205 int ret = 0; 1206 1207 cpus_write_lock(); 1208 1209 if (!cpu_present(cpu)) { 1210 ret = -EINVAL; 1211 goto out; 1212 } 1213 1214 /* 1215 * The caller of cpu_up() might have raced with another 1216 * caller. Nothing to do. 1217 */ 1218 if (st->state >= target) 1219 goto out; 1220 1221 if (st->state == CPUHP_OFFLINE) { 1222 /* Let it fail before we try to bring the cpu up */ 1223 idle = idle_thread_get(cpu); 1224 if (IS_ERR(idle)) { 1225 ret = PTR_ERR(idle); 1226 goto out; 1227 } 1228 } 1229 1230 cpuhp_tasks_frozen = tasks_frozen; 1231 1232 cpuhp_set_state(st, target); 1233 /* 1234 * If the current CPU state is in the range of the AP hotplug thread, 1235 * then we need to kick the thread once more. 1236 */ 1237 if (st->state > CPUHP_BRINGUP_CPU) { 1238 ret = cpuhp_kick_ap_work(cpu); 1239 /* 1240 * The AP side has done the error rollback already. Just 1241 * return the error code.. 1242 */ 1243 if (ret) 1244 goto out; 1245 } 1246 1247 /* 1248 * Try to reach the target state. We max out on the BP at 1249 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1250 * responsible for bringing it up to the target state. 1251 */ 1252 target = min((int)target, CPUHP_BRINGUP_CPU); 1253 ret = cpuhp_up_callbacks(cpu, st, target); 1254 out: 1255 cpus_write_unlock(); 1256 arch_smt_update(); 1257 return ret; 1258 } 1259 1260 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1261 { 1262 int err = 0; 1263 1264 if (!cpu_possible(cpu)) { 1265 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1266 cpu); 1267 #if defined(CONFIG_IA64) 1268 pr_err("please check additional_cpus= boot parameter\n"); 1269 #endif 1270 return -EINVAL; 1271 } 1272 1273 err = try_online_node(cpu_to_node(cpu)); 1274 if (err) 1275 return err; 1276 1277 cpu_maps_update_begin(); 1278 1279 if (cpu_hotplug_disabled) { 1280 err = -EBUSY; 1281 goto out; 1282 } 1283 if (!cpu_smt_allowed(cpu)) { 1284 err = -EPERM; 1285 goto out; 1286 } 1287 1288 err = _cpu_up(cpu, 0, target); 1289 out: 1290 cpu_maps_update_done(); 1291 return err; 1292 } 1293 1294 /** 1295 * cpu_device_up - Bring up a cpu device 1296 * @dev: Pointer to the cpu device to online 1297 * 1298 * This function is meant to be used by device core cpu subsystem only. 1299 * 1300 * Other subsystems should use add_cpu() instead. 1301 */ 1302 int cpu_device_up(struct device *dev) 1303 { 1304 return cpu_up(dev->id, CPUHP_ONLINE); 1305 } 1306 1307 int add_cpu(unsigned int cpu) 1308 { 1309 int ret; 1310 1311 lock_device_hotplug(); 1312 ret = device_online(get_cpu_device(cpu)); 1313 unlock_device_hotplug(); 1314 1315 return ret; 1316 } 1317 EXPORT_SYMBOL_GPL(add_cpu); 1318 1319 /** 1320 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1321 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1322 * 1323 * On some architectures like arm64, we can hibernate on any CPU, but on 1324 * wake up the CPU we hibernated on might be offline as a side effect of 1325 * using maxcpus= for example. 1326 */ 1327 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1328 { 1329 int ret; 1330 1331 if (!cpu_online(sleep_cpu)) { 1332 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1333 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1334 if (ret) { 1335 pr_err("Failed to bring hibernate-CPU up!\n"); 1336 return ret; 1337 } 1338 } 1339 return 0; 1340 } 1341 1342 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1343 { 1344 unsigned int cpu; 1345 1346 for_each_present_cpu(cpu) { 1347 if (num_online_cpus() >= setup_max_cpus) 1348 break; 1349 if (!cpu_online(cpu)) 1350 cpu_up(cpu, CPUHP_ONLINE); 1351 } 1352 } 1353 1354 #ifdef CONFIG_PM_SLEEP_SMP 1355 static cpumask_var_t frozen_cpus; 1356 1357 int freeze_secondary_cpus(int primary) 1358 { 1359 int cpu, error = 0; 1360 1361 cpu_maps_update_begin(); 1362 if (primary == -1) { 1363 primary = cpumask_first(cpu_online_mask); 1364 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1365 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1366 } else { 1367 if (!cpu_online(primary)) 1368 primary = cpumask_first(cpu_online_mask); 1369 } 1370 1371 /* 1372 * We take down all of the non-boot CPUs in one shot to avoid races 1373 * with the userspace trying to use the CPU hotplug at the same time 1374 */ 1375 cpumask_clear(frozen_cpus); 1376 1377 pr_info("Disabling non-boot CPUs ...\n"); 1378 for_each_online_cpu(cpu) { 1379 if (cpu == primary) 1380 continue; 1381 1382 if (pm_wakeup_pending()) { 1383 pr_info("Wakeup pending. Abort CPU freeze\n"); 1384 error = -EBUSY; 1385 break; 1386 } 1387 1388 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1389 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1390 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1391 if (!error) 1392 cpumask_set_cpu(cpu, frozen_cpus); 1393 else { 1394 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1395 break; 1396 } 1397 } 1398 1399 if (!error) 1400 BUG_ON(num_online_cpus() > 1); 1401 else 1402 pr_err("Non-boot CPUs are not disabled\n"); 1403 1404 /* 1405 * Make sure the CPUs won't be enabled by someone else. We need to do 1406 * this even in case of failure as all freeze_secondary_cpus() users are 1407 * supposed to do thaw_secondary_cpus() on the failure path. 1408 */ 1409 cpu_hotplug_disabled++; 1410 1411 cpu_maps_update_done(); 1412 return error; 1413 } 1414 1415 void __weak arch_thaw_secondary_cpus_begin(void) 1416 { 1417 } 1418 1419 void __weak arch_thaw_secondary_cpus_end(void) 1420 { 1421 } 1422 1423 void thaw_secondary_cpus(void) 1424 { 1425 int cpu, error; 1426 1427 /* Allow everyone to use the CPU hotplug again */ 1428 cpu_maps_update_begin(); 1429 __cpu_hotplug_enable(); 1430 if (cpumask_empty(frozen_cpus)) 1431 goto out; 1432 1433 pr_info("Enabling non-boot CPUs ...\n"); 1434 1435 arch_thaw_secondary_cpus_begin(); 1436 1437 for_each_cpu(cpu, frozen_cpus) { 1438 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1439 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1440 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1441 if (!error) { 1442 pr_info("CPU%d is up\n", cpu); 1443 continue; 1444 } 1445 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1446 } 1447 1448 arch_thaw_secondary_cpus_end(); 1449 1450 cpumask_clear(frozen_cpus); 1451 out: 1452 cpu_maps_update_done(); 1453 } 1454 1455 static int __init alloc_frozen_cpus(void) 1456 { 1457 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1458 return -ENOMEM; 1459 return 0; 1460 } 1461 core_initcall(alloc_frozen_cpus); 1462 1463 /* 1464 * When callbacks for CPU hotplug notifications are being executed, we must 1465 * ensure that the state of the system with respect to the tasks being frozen 1466 * or not, as reported by the notification, remains unchanged *throughout the 1467 * duration* of the execution of the callbacks. 1468 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1469 * 1470 * This synchronization is implemented by mutually excluding regular CPU 1471 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1472 * Hibernate notifications. 1473 */ 1474 static int 1475 cpu_hotplug_pm_callback(struct notifier_block *nb, 1476 unsigned long action, void *ptr) 1477 { 1478 switch (action) { 1479 1480 case PM_SUSPEND_PREPARE: 1481 case PM_HIBERNATION_PREPARE: 1482 cpu_hotplug_disable(); 1483 break; 1484 1485 case PM_POST_SUSPEND: 1486 case PM_POST_HIBERNATION: 1487 cpu_hotplug_enable(); 1488 break; 1489 1490 default: 1491 return NOTIFY_DONE; 1492 } 1493 1494 return NOTIFY_OK; 1495 } 1496 1497 1498 static int __init cpu_hotplug_pm_sync_init(void) 1499 { 1500 /* 1501 * cpu_hotplug_pm_callback has higher priority than x86 1502 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1503 * to disable cpu hotplug to avoid cpu hotplug race. 1504 */ 1505 pm_notifier(cpu_hotplug_pm_callback, 0); 1506 return 0; 1507 } 1508 core_initcall(cpu_hotplug_pm_sync_init); 1509 1510 #endif /* CONFIG_PM_SLEEP_SMP */ 1511 1512 int __boot_cpu_id; 1513 1514 #endif /* CONFIG_SMP */ 1515 1516 /* Boot processor state steps */ 1517 static struct cpuhp_step cpuhp_hp_states[] = { 1518 [CPUHP_OFFLINE] = { 1519 .name = "offline", 1520 .startup.single = NULL, 1521 .teardown.single = NULL, 1522 }, 1523 #ifdef CONFIG_SMP 1524 [CPUHP_CREATE_THREADS]= { 1525 .name = "threads:prepare", 1526 .startup.single = smpboot_create_threads, 1527 .teardown.single = NULL, 1528 .cant_stop = true, 1529 }, 1530 [CPUHP_PERF_PREPARE] = { 1531 .name = "perf:prepare", 1532 .startup.single = perf_event_init_cpu, 1533 .teardown.single = perf_event_exit_cpu, 1534 }, 1535 [CPUHP_WORKQUEUE_PREP] = { 1536 .name = "workqueue:prepare", 1537 .startup.single = workqueue_prepare_cpu, 1538 .teardown.single = NULL, 1539 }, 1540 [CPUHP_HRTIMERS_PREPARE] = { 1541 .name = "hrtimers:prepare", 1542 .startup.single = hrtimers_prepare_cpu, 1543 .teardown.single = hrtimers_dead_cpu, 1544 }, 1545 [CPUHP_SMPCFD_PREPARE] = { 1546 .name = "smpcfd:prepare", 1547 .startup.single = smpcfd_prepare_cpu, 1548 .teardown.single = smpcfd_dead_cpu, 1549 }, 1550 [CPUHP_RELAY_PREPARE] = { 1551 .name = "relay:prepare", 1552 .startup.single = relay_prepare_cpu, 1553 .teardown.single = NULL, 1554 }, 1555 [CPUHP_SLAB_PREPARE] = { 1556 .name = "slab:prepare", 1557 .startup.single = slab_prepare_cpu, 1558 .teardown.single = slab_dead_cpu, 1559 }, 1560 [CPUHP_RCUTREE_PREP] = { 1561 .name = "RCU/tree:prepare", 1562 .startup.single = rcutree_prepare_cpu, 1563 .teardown.single = rcutree_dead_cpu, 1564 }, 1565 /* 1566 * On the tear-down path, timers_dead_cpu() must be invoked 1567 * before blk_mq_queue_reinit_notify() from notify_dead(), 1568 * otherwise a RCU stall occurs. 1569 */ 1570 [CPUHP_TIMERS_PREPARE] = { 1571 .name = "timers:prepare", 1572 .startup.single = timers_prepare_cpu, 1573 .teardown.single = timers_dead_cpu, 1574 }, 1575 /* Kicks the plugged cpu into life */ 1576 [CPUHP_BRINGUP_CPU] = { 1577 .name = "cpu:bringup", 1578 .startup.single = bringup_cpu, 1579 .teardown.single = finish_cpu, 1580 .cant_stop = true, 1581 }, 1582 /* Final state before CPU kills itself */ 1583 [CPUHP_AP_IDLE_DEAD] = { 1584 .name = "idle:dead", 1585 }, 1586 /* 1587 * Last state before CPU enters the idle loop to die. Transient state 1588 * for synchronization. 1589 */ 1590 [CPUHP_AP_OFFLINE] = { 1591 .name = "ap:offline", 1592 .cant_stop = true, 1593 }, 1594 /* First state is scheduler control. Interrupts are disabled */ 1595 [CPUHP_AP_SCHED_STARTING] = { 1596 .name = "sched:starting", 1597 .startup.single = sched_cpu_starting, 1598 .teardown.single = sched_cpu_dying, 1599 }, 1600 [CPUHP_AP_RCUTREE_DYING] = { 1601 .name = "RCU/tree:dying", 1602 .startup.single = NULL, 1603 .teardown.single = rcutree_dying_cpu, 1604 }, 1605 [CPUHP_AP_SMPCFD_DYING] = { 1606 .name = "smpcfd:dying", 1607 .startup.single = NULL, 1608 .teardown.single = smpcfd_dying_cpu, 1609 }, 1610 /* Entry state on starting. Interrupts enabled from here on. Transient 1611 * state for synchronsization */ 1612 [CPUHP_AP_ONLINE] = { 1613 .name = "ap:online", 1614 }, 1615 /* 1616 * Handled on control processor until the plugged processor manages 1617 * this itself. 1618 */ 1619 [CPUHP_TEARDOWN_CPU] = { 1620 .name = "cpu:teardown", 1621 .startup.single = NULL, 1622 .teardown.single = takedown_cpu, 1623 .cant_stop = true, 1624 }, 1625 1626 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1627 .name = "sched:waitempty", 1628 .startup.single = NULL, 1629 .teardown.single = sched_cpu_wait_empty, 1630 }, 1631 1632 /* Handle smpboot threads park/unpark */ 1633 [CPUHP_AP_SMPBOOT_THREADS] = { 1634 .name = "smpboot/threads:online", 1635 .startup.single = smpboot_unpark_threads, 1636 .teardown.single = smpboot_park_threads, 1637 }, 1638 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1639 .name = "irq/affinity:online", 1640 .startup.single = irq_affinity_online_cpu, 1641 .teardown.single = NULL, 1642 }, 1643 [CPUHP_AP_PERF_ONLINE] = { 1644 .name = "perf:online", 1645 .startup.single = perf_event_init_cpu, 1646 .teardown.single = perf_event_exit_cpu, 1647 }, 1648 [CPUHP_AP_WATCHDOG_ONLINE] = { 1649 .name = "lockup_detector:online", 1650 .startup.single = lockup_detector_online_cpu, 1651 .teardown.single = lockup_detector_offline_cpu, 1652 }, 1653 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1654 .name = "workqueue:online", 1655 .startup.single = workqueue_online_cpu, 1656 .teardown.single = workqueue_offline_cpu, 1657 }, 1658 [CPUHP_AP_RCUTREE_ONLINE] = { 1659 .name = "RCU/tree:online", 1660 .startup.single = rcutree_online_cpu, 1661 .teardown.single = rcutree_offline_cpu, 1662 }, 1663 #endif 1664 /* 1665 * The dynamically registered state space is here 1666 */ 1667 1668 #ifdef CONFIG_SMP 1669 /* Last state is scheduler control setting the cpu active */ 1670 [CPUHP_AP_ACTIVE] = { 1671 .name = "sched:active", 1672 .startup.single = sched_cpu_activate, 1673 .teardown.single = sched_cpu_deactivate, 1674 }, 1675 #endif 1676 1677 /* CPU is fully up and running. */ 1678 [CPUHP_ONLINE] = { 1679 .name = "online", 1680 .startup.single = NULL, 1681 .teardown.single = NULL, 1682 }, 1683 }; 1684 1685 /* Sanity check for callbacks */ 1686 static int cpuhp_cb_check(enum cpuhp_state state) 1687 { 1688 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1689 return -EINVAL; 1690 return 0; 1691 } 1692 1693 /* 1694 * Returns a free for dynamic slot assignment of the Online state. The states 1695 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1696 * by having no name assigned. 1697 */ 1698 static int cpuhp_reserve_state(enum cpuhp_state state) 1699 { 1700 enum cpuhp_state i, end; 1701 struct cpuhp_step *step; 1702 1703 switch (state) { 1704 case CPUHP_AP_ONLINE_DYN: 1705 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1706 end = CPUHP_AP_ONLINE_DYN_END; 1707 break; 1708 case CPUHP_BP_PREPARE_DYN: 1709 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1710 end = CPUHP_BP_PREPARE_DYN_END; 1711 break; 1712 default: 1713 return -EINVAL; 1714 } 1715 1716 for (i = state; i <= end; i++, step++) { 1717 if (!step->name) 1718 return i; 1719 } 1720 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1721 return -ENOSPC; 1722 } 1723 1724 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1725 int (*startup)(unsigned int cpu), 1726 int (*teardown)(unsigned int cpu), 1727 bool multi_instance) 1728 { 1729 /* (Un)Install the callbacks for further cpu hotplug operations */ 1730 struct cpuhp_step *sp; 1731 int ret = 0; 1732 1733 /* 1734 * If name is NULL, then the state gets removed. 1735 * 1736 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1737 * the first allocation from these dynamic ranges, so the removal 1738 * would trigger a new allocation and clear the wrong (already 1739 * empty) state, leaving the callbacks of the to be cleared state 1740 * dangling, which causes wreckage on the next hotplug operation. 1741 */ 1742 if (name && (state == CPUHP_AP_ONLINE_DYN || 1743 state == CPUHP_BP_PREPARE_DYN)) { 1744 ret = cpuhp_reserve_state(state); 1745 if (ret < 0) 1746 return ret; 1747 state = ret; 1748 } 1749 sp = cpuhp_get_step(state); 1750 if (name && sp->name) 1751 return -EBUSY; 1752 1753 sp->startup.single = startup; 1754 sp->teardown.single = teardown; 1755 sp->name = name; 1756 sp->multi_instance = multi_instance; 1757 INIT_HLIST_HEAD(&sp->list); 1758 return ret; 1759 } 1760 1761 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1762 { 1763 return cpuhp_get_step(state)->teardown.single; 1764 } 1765 1766 /* 1767 * Call the startup/teardown function for a step either on the AP or 1768 * on the current CPU. 1769 */ 1770 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1771 struct hlist_node *node) 1772 { 1773 struct cpuhp_step *sp = cpuhp_get_step(state); 1774 int ret; 1775 1776 /* 1777 * If there's nothing to do, we done. 1778 * Relies on the union for multi_instance. 1779 */ 1780 if ((bringup && !sp->startup.single) || 1781 (!bringup && !sp->teardown.single)) 1782 return 0; 1783 /* 1784 * The non AP bound callbacks can fail on bringup. On teardown 1785 * e.g. module removal we crash for now. 1786 */ 1787 #ifdef CONFIG_SMP 1788 if (cpuhp_is_ap_state(state)) 1789 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1790 else 1791 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1792 #else 1793 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1794 #endif 1795 BUG_ON(ret && !bringup); 1796 return ret; 1797 } 1798 1799 /* 1800 * Called from __cpuhp_setup_state on a recoverable failure. 1801 * 1802 * Note: The teardown callbacks for rollback are not allowed to fail! 1803 */ 1804 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1805 struct hlist_node *node) 1806 { 1807 int cpu; 1808 1809 /* Roll back the already executed steps on the other cpus */ 1810 for_each_present_cpu(cpu) { 1811 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1812 int cpustate = st->state; 1813 1814 if (cpu >= failedcpu) 1815 break; 1816 1817 /* Did we invoke the startup call on that cpu ? */ 1818 if (cpustate >= state) 1819 cpuhp_issue_call(cpu, state, false, node); 1820 } 1821 } 1822 1823 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1824 struct hlist_node *node, 1825 bool invoke) 1826 { 1827 struct cpuhp_step *sp; 1828 int cpu; 1829 int ret; 1830 1831 lockdep_assert_cpus_held(); 1832 1833 sp = cpuhp_get_step(state); 1834 if (sp->multi_instance == false) 1835 return -EINVAL; 1836 1837 mutex_lock(&cpuhp_state_mutex); 1838 1839 if (!invoke || !sp->startup.multi) 1840 goto add_node; 1841 1842 /* 1843 * Try to call the startup callback for each present cpu 1844 * depending on the hotplug state of the cpu. 1845 */ 1846 for_each_present_cpu(cpu) { 1847 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1848 int cpustate = st->state; 1849 1850 if (cpustate < state) 1851 continue; 1852 1853 ret = cpuhp_issue_call(cpu, state, true, node); 1854 if (ret) { 1855 if (sp->teardown.multi) 1856 cpuhp_rollback_install(cpu, state, node); 1857 goto unlock; 1858 } 1859 } 1860 add_node: 1861 ret = 0; 1862 hlist_add_head(node, &sp->list); 1863 unlock: 1864 mutex_unlock(&cpuhp_state_mutex); 1865 return ret; 1866 } 1867 1868 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1869 bool invoke) 1870 { 1871 int ret; 1872 1873 cpus_read_lock(); 1874 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1875 cpus_read_unlock(); 1876 return ret; 1877 } 1878 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1879 1880 /** 1881 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1882 * @state: The state to setup 1883 * @invoke: If true, the startup function is invoked for cpus where 1884 * cpu state >= @state 1885 * @startup: startup callback function 1886 * @teardown: teardown callback function 1887 * @multi_instance: State is set up for multiple instances which get 1888 * added afterwards. 1889 * 1890 * The caller needs to hold cpus read locked while calling this function. 1891 * Returns: 1892 * On success: 1893 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1894 * 0 for all other states 1895 * On failure: proper (negative) error code 1896 */ 1897 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1898 const char *name, bool invoke, 1899 int (*startup)(unsigned int cpu), 1900 int (*teardown)(unsigned int cpu), 1901 bool multi_instance) 1902 { 1903 int cpu, ret = 0; 1904 bool dynstate; 1905 1906 lockdep_assert_cpus_held(); 1907 1908 if (cpuhp_cb_check(state) || !name) 1909 return -EINVAL; 1910 1911 mutex_lock(&cpuhp_state_mutex); 1912 1913 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1914 multi_instance); 1915 1916 dynstate = state == CPUHP_AP_ONLINE_DYN; 1917 if (ret > 0 && dynstate) { 1918 state = ret; 1919 ret = 0; 1920 } 1921 1922 if (ret || !invoke || !startup) 1923 goto out; 1924 1925 /* 1926 * Try to call the startup callback for each present cpu 1927 * depending on the hotplug state of the cpu. 1928 */ 1929 for_each_present_cpu(cpu) { 1930 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1931 int cpustate = st->state; 1932 1933 if (cpustate < state) 1934 continue; 1935 1936 ret = cpuhp_issue_call(cpu, state, true, NULL); 1937 if (ret) { 1938 if (teardown) 1939 cpuhp_rollback_install(cpu, state, NULL); 1940 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1941 goto out; 1942 } 1943 } 1944 out: 1945 mutex_unlock(&cpuhp_state_mutex); 1946 /* 1947 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1948 * dynamically allocated state in case of success. 1949 */ 1950 if (!ret && dynstate) 1951 return state; 1952 return ret; 1953 } 1954 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1955 1956 int __cpuhp_setup_state(enum cpuhp_state state, 1957 const char *name, bool invoke, 1958 int (*startup)(unsigned int cpu), 1959 int (*teardown)(unsigned int cpu), 1960 bool multi_instance) 1961 { 1962 int ret; 1963 1964 cpus_read_lock(); 1965 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1966 teardown, multi_instance); 1967 cpus_read_unlock(); 1968 return ret; 1969 } 1970 EXPORT_SYMBOL(__cpuhp_setup_state); 1971 1972 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1973 struct hlist_node *node, bool invoke) 1974 { 1975 struct cpuhp_step *sp = cpuhp_get_step(state); 1976 int cpu; 1977 1978 BUG_ON(cpuhp_cb_check(state)); 1979 1980 if (!sp->multi_instance) 1981 return -EINVAL; 1982 1983 cpus_read_lock(); 1984 mutex_lock(&cpuhp_state_mutex); 1985 1986 if (!invoke || !cpuhp_get_teardown_cb(state)) 1987 goto remove; 1988 /* 1989 * Call the teardown callback for each present cpu depending 1990 * on the hotplug state of the cpu. This function is not 1991 * allowed to fail currently! 1992 */ 1993 for_each_present_cpu(cpu) { 1994 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1995 int cpustate = st->state; 1996 1997 if (cpustate >= state) 1998 cpuhp_issue_call(cpu, state, false, node); 1999 } 2000 2001 remove: 2002 hlist_del(node); 2003 mutex_unlock(&cpuhp_state_mutex); 2004 cpus_read_unlock(); 2005 2006 return 0; 2007 } 2008 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2009 2010 /** 2011 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2012 * @state: The state to remove 2013 * @invoke: If true, the teardown function is invoked for cpus where 2014 * cpu state >= @state 2015 * 2016 * The caller needs to hold cpus read locked while calling this function. 2017 * The teardown callback is currently not allowed to fail. Think 2018 * about module removal! 2019 */ 2020 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2021 { 2022 struct cpuhp_step *sp = cpuhp_get_step(state); 2023 int cpu; 2024 2025 BUG_ON(cpuhp_cb_check(state)); 2026 2027 lockdep_assert_cpus_held(); 2028 2029 mutex_lock(&cpuhp_state_mutex); 2030 if (sp->multi_instance) { 2031 WARN(!hlist_empty(&sp->list), 2032 "Error: Removing state %d which has instances left.\n", 2033 state); 2034 goto remove; 2035 } 2036 2037 if (!invoke || !cpuhp_get_teardown_cb(state)) 2038 goto remove; 2039 2040 /* 2041 * Call the teardown callback for each present cpu depending 2042 * on the hotplug state of the cpu. This function is not 2043 * allowed to fail currently! 2044 */ 2045 for_each_present_cpu(cpu) { 2046 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2047 int cpustate = st->state; 2048 2049 if (cpustate >= state) 2050 cpuhp_issue_call(cpu, state, false, NULL); 2051 } 2052 remove: 2053 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2054 mutex_unlock(&cpuhp_state_mutex); 2055 } 2056 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2057 2058 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2059 { 2060 cpus_read_lock(); 2061 __cpuhp_remove_state_cpuslocked(state, invoke); 2062 cpus_read_unlock(); 2063 } 2064 EXPORT_SYMBOL(__cpuhp_remove_state); 2065 2066 #ifdef CONFIG_HOTPLUG_SMT 2067 static void cpuhp_offline_cpu_device(unsigned int cpu) 2068 { 2069 struct device *dev = get_cpu_device(cpu); 2070 2071 dev->offline = true; 2072 /* Tell user space about the state change */ 2073 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2074 } 2075 2076 static void cpuhp_online_cpu_device(unsigned int cpu) 2077 { 2078 struct device *dev = get_cpu_device(cpu); 2079 2080 dev->offline = false; 2081 /* Tell user space about the state change */ 2082 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2083 } 2084 2085 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2086 { 2087 int cpu, ret = 0; 2088 2089 cpu_maps_update_begin(); 2090 for_each_online_cpu(cpu) { 2091 if (topology_is_primary_thread(cpu)) 2092 continue; 2093 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2094 if (ret) 2095 break; 2096 /* 2097 * As this needs to hold the cpu maps lock it's impossible 2098 * to call device_offline() because that ends up calling 2099 * cpu_down() which takes cpu maps lock. cpu maps lock 2100 * needs to be held as this might race against in kernel 2101 * abusers of the hotplug machinery (thermal management). 2102 * 2103 * So nothing would update device:offline state. That would 2104 * leave the sysfs entry stale and prevent onlining after 2105 * smt control has been changed to 'off' again. This is 2106 * called under the sysfs hotplug lock, so it is properly 2107 * serialized against the regular offline usage. 2108 */ 2109 cpuhp_offline_cpu_device(cpu); 2110 } 2111 if (!ret) 2112 cpu_smt_control = ctrlval; 2113 cpu_maps_update_done(); 2114 return ret; 2115 } 2116 2117 int cpuhp_smt_enable(void) 2118 { 2119 int cpu, ret = 0; 2120 2121 cpu_maps_update_begin(); 2122 cpu_smt_control = CPU_SMT_ENABLED; 2123 for_each_present_cpu(cpu) { 2124 /* Skip online CPUs and CPUs on offline nodes */ 2125 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2126 continue; 2127 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2128 if (ret) 2129 break; 2130 /* See comment in cpuhp_smt_disable() */ 2131 cpuhp_online_cpu_device(cpu); 2132 } 2133 cpu_maps_update_done(); 2134 return ret; 2135 } 2136 #endif 2137 2138 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2139 static ssize_t show_cpuhp_state(struct device *dev, 2140 struct device_attribute *attr, char *buf) 2141 { 2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2143 2144 return sprintf(buf, "%d\n", st->state); 2145 } 2146 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2147 2148 static ssize_t write_cpuhp_target(struct device *dev, 2149 struct device_attribute *attr, 2150 const char *buf, size_t count) 2151 { 2152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2153 struct cpuhp_step *sp; 2154 int target, ret; 2155 2156 ret = kstrtoint(buf, 10, &target); 2157 if (ret) 2158 return ret; 2159 2160 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2161 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2162 return -EINVAL; 2163 #else 2164 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2165 return -EINVAL; 2166 #endif 2167 2168 ret = lock_device_hotplug_sysfs(); 2169 if (ret) 2170 return ret; 2171 2172 mutex_lock(&cpuhp_state_mutex); 2173 sp = cpuhp_get_step(target); 2174 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2175 mutex_unlock(&cpuhp_state_mutex); 2176 if (ret) 2177 goto out; 2178 2179 if (st->state < target) 2180 ret = cpu_up(dev->id, target); 2181 else 2182 ret = cpu_down(dev->id, target); 2183 out: 2184 unlock_device_hotplug(); 2185 return ret ? ret : count; 2186 } 2187 2188 static ssize_t show_cpuhp_target(struct device *dev, 2189 struct device_attribute *attr, char *buf) 2190 { 2191 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2192 2193 return sprintf(buf, "%d\n", st->target); 2194 } 2195 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2196 2197 2198 static ssize_t write_cpuhp_fail(struct device *dev, 2199 struct device_attribute *attr, 2200 const char *buf, size_t count) 2201 { 2202 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2203 struct cpuhp_step *sp; 2204 int fail, ret; 2205 2206 ret = kstrtoint(buf, 10, &fail); 2207 if (ret) 2208 return ret; 2209 2210 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2211 return -EINVAL; 2212 2213 /* 2214 * Cannot fail STARTING/DYING callbacks. 2215 */ 2216 if (cpuhp_is_atomic_state(fail)) 2217 return -EINVAL; 2218 2219 /* 2220 * Cannot fail anything that doesn't have callbacks. 2221 */ 2222 mutex_lock(&cpuhp_state_mutex); 2223 sp = cpuhp_get_step(fail); 2224 if (!sp->startup.single && !sp->teardown.single) 2225 ret = -EINVAL; 2226 mutex_unlock(&cpuhp_state_mutex); 2227 if (ret) 2228 return ret; 2229 2230 st->fail = fail; 2231 2232 return count; 2233 } 2234 2235 static ssize_t show_cpuhp_fail(struct device *dev, 2236 struct device_attribute *attr, char *buf) 2237 { 2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2239 2240 return sprintf(buf, "%d\n", st->fail); 2241 } 2242 2243 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2244 2245 static struct attribute *cpuhp_cpu_attrs[] = { 2246 &dev_attr_state.attr, 2247 &dev_attr_target.attr, 2248 &dev_attr_fail.attr, 2249 NULL 2250 }; 2251 2252 static const struct attribute_group cpuhp_cpu_attr_group = { 2253 .attrs = cpuhp_cpu_attrs, 2254 .name = "hotplug", 2255 NULL 2256 }; 2257 2258 static ssize_t show_cpuhp_states(struct device *dev, 2259 struct device_attribute *attr, char *buf) 2260 { 2261 ssize_t cur, res = 0; 2262 int i; 2263 2264 mutex_lock(&cpuhp_state_mutex); 2265 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2266 struct cpuhp_step *sp = cpuhp_get_step(i); 2267 2268 if (sp->name) { 2269 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2270 buf += cur; 2271 res += cur; 2272 } 2273 } 2274 mutex_unlock(&cpuhp_state_mutex); 2275 return res; 2276 } 2277 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2278 2279 static struct attribute *cpuhp_cpu_root_attrs[] = { 2280 &dev_attr_states.attr, 2281 NULL 2282 }; 2283 2284 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2285 .attrs = cpuhp_cpu_root_attrs, 2286 .name = "hotplug", 2287 NULL 2288 }; 2289 2290 #ifdef CONFIG_HOTPLUG_SMT 2291 2292 static ssize_t 2293 __store_smt_control(struct device *dev, struct device_attribute *attr, 2294 const char *buf, size_t count) 2295 { 2296 int ctrlval, ret; 2297 2298 if (sysfs_streq(buf, "on")) 2299 ctrlval = CPU_SMT_ENABLED; 2300 else if (sysfs_streq(buf, "off")) 2301 ctrlval = CPU_SMT_DISABLED; 2302 else if (sysfs_streq(buf, "forceoff")) 2303 ctrlval = CPU_SMT_FORCE_DISABLED; 2304 else 2305 return -EINVAL; 2306 2307 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2308 return -EPERM; 2309 2310 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2311 return -ENODEV; 2312 2313 ret = lock_device_hotplug_sysfs(); 2314 if (ret) 2315 return ret; 2316 2317 if (ctrlval != cpu_smt_control) { 2318 switch (ctrlval) { 2319 case CPU_SMT_ENABLED: 2320 ret = cpuhp_smt_enable(); 2321 break; 2322 case CPU_SMT_DISABLED: 2323 case CPU_SMT_FORCE_DISABLED: 2324 ret = cpuhp_smt_disable(ctrlval); 2325 break; 2326 } 2327 } 2328 2329 unlock_device_hotplug(); 2330 return ret ? ret : count; 2331 } 2332 2333 #else /* !CONFIG_HOTPLUG_SMT */ 2334 static ssize_t 2335 __store_smt_control(struct device *dev, struct device_attribute *attr, 2336 const char *buf, size_t count) 2337 { 2338 return -ENODEV; 2339 } 2340 #endif /* CONFIG_HOTPLUG_SMT */ 2341 2342 static const char *smt_states[] = { 2343 [CPU_SMT_ENABLED] = "on", 2344 [CPU_SMT_DISABLED] = "off", 2345 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2346 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2347 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2348 }; 2349 2350 static ssize_t 2351 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2352 { 2353 const char *state = smt_states[cpu_smt_control]; 2354 2355 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2356 } 2357 2358 static ssize_t 2359 store_smt_control(struct device *dev, struct device_attribute *attr, 2360 const char *buf, size_t count) 2361 { 2362 return __store_smt_control(dev, attr, buf, count); 2363 } 2364 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2365 2366 static ssize_t 2367 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2368 { 2369 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2370 } 2371 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2372 2373 static struct attribute *cpuhp_smt_attrs[] = { 2374 &dev_attr_control.attr, 2375 &dev_attr_active.attr, 2376 NULL 2377 }; 2378 2379 static const struct attribute_group cpuhp_smt_attr_group = { 2380 .attrs = cpuhp_smt_attrs, 2381 .name = "smt", 2382 NULL 2383 }; 2384 2385 static int __init cpu_smt_sysfs_init(void) 2386 { 2387 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2388 &cpuhp_smt_attr_group); 2389 } 2390 2391 static int __init cpuhp_sysfs_init(void) 2392 { 2393 int cpu, ret; 2394 2395 ret = cpu_smt_sysfs_init(); 2396 if (ret) 2397 return ret; 2398 2399 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2400 &cpuhp_cpu_root_attr_group); 2401 if (ret) 2402 return ret; 2403 2404 for_each_possible_cpu(cpu) { 2405 struct device *dev = get_cpu_device(cpu); 2406 2407 if (!dev) 2408 continue; 2409 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2410 if (ret) 2411 return ret; 2412 } 2413 return 0; 2414 } 2415 device_initcall(cpuhp_sysfs_init); 2416 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2417 2418 /* 2419 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2420 * represents all NR_CPUS bits binary values of 1<<nr. 2421 * 2422 * It is used by cpumask_of() to get a constant address to a CPU 2423 * mask value that has a single bit set only. 2424 */ 2425 2426 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2427 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2428 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2429 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2430 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2431 2432 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2433 2434 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2435 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2436 #if BITS_PER_LONG > 32 2437 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2438 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2439 #endif 2440 }; 2441 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2442 2443 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2444 EXPORT_SYMBOL(cpu_all_bits); 2445 2446 #ifdef CONFIG_INIT_ALL_POSSIBLE 2447 struct cpumask __cpu_possible_mask __read_mostly 2448 = {CPU_BITS_ALL}; 2449 #else 2450 struct cpumask __cpu_possible_mask __read_mostly; 2451 #endif 2452 EXPORT_SYMBOL(__cpu_possible_mask); 2453 2454 struct cpumask __cpu_online_mask __read_mostly; 2455 EXPORT_SYMBOL(__cpu_online_mask); 2456 2457 struct cpumask __cpu_present_mask __read_mostly; 2458 EXPORT_SYMBOL(__cpu_present_mask); 2459 2460 struct cpumask __cpu_active_mask __read_mostly; 2461 EXPORT_SYMBOL(__cpu_active_mask); 2462 2463 atomic_t __num_online_cpus __read_mostly; 2464 EXPORT_SYMBOL(__num_online_cpus); 2465 2466 void init_cpu_present(const struct cpumask *src) 2467 { 2468 cpumask_copy(&__cpu_present_mask, src); 2469 } 2470 2471 void init_cpu_possible(const struct cpumask *src) 2472 { 2473 cpumask_copy(&__cpu_possible_mask, src); 2474 } 2475 2476 void init_cpu_online(const struct cpumask *src) 2477 { 2478 cpumask_copy(&__cpu_online_mask, src); 2479 } 2480 2481 void set_cpu_online(unsigned int cpu, bool online) 2482 { 2483 /* 2484 * atomic_inc/dec() is required to handle the horrid abuse of this 2485 * function by the reboot and kexec code which invoke it from 2486 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2487 * regular CPU hotplug is properly serialized. 2488 * 2489 * Note, that the fact that __num_online_cpus is of type atomic_t 2490 * does not protect readers which are not serialized against 2491 * concurrent hotplug operations. 2492 */ 2493 if (online) { 2494 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2495 atomic_inc(&__num_online_cpus); 2496 } else { 2497 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2498 atomic_dec(&__num_online_cpus); 2499 } 2500 } 2501 2502 /* 2503 * Activate the first processor. 2504 */ 2505 void __init boot_cpu_init(void) 2506 { 2507 int cpu = smp_processor_id(); 2508 2509 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2510 set_cpu_online(cpu, true); 2511 set_cpu_active(cpu, true); 2512 set_cpu_present(cpu, true); 2513 set_cpu_possible(cpu, true); 2514 2515 #ifdef CONFIG_SMP 2516 __boot_cpu_id = cpu; 2517 #endif 2518 } 2519 2520 /* 2521 * Must be called _AFTER_ setting up the per_cpu areas 2522 */ 2523 void __init boot_cpu_hotplug_init(void) 2524 { 2525 #ifdef CONFIG_SMP 2526 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2527 #endif 2528 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2529 } 2530 2531 /* 2532 * These are used for a global "mitigations=" cmdline option for toggling 2533 * optional CPU mitigations. 2534 */ 2535 enum cpu_mitigations { 2536 CPU_MITIGATIONS_OFF, 2537 CPU_MITIGATIONS_AUTO, 2538 CPU_MITIGATIONS_AUTO_NOSMT, 2539 }; 2540 2541 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2542 CPU_MITIGATIONS_AUTO; 2543 2544 static int __init mitigations_parse_cmdline(char *arg) 2545 { 2546 if (!strcmp(arg, "off")) 2547 cpu_mitigations = CPU_MITIGATIONS_OFF; 2548 else if (!strcmp(arg, "auto")) 2549 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2550 else if (!strcmp(arg, "auto,nosmt")) 2551 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2552 else 2553 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2554 arg); 2555 2556 return 0; 2557 } 2558 early_param("mitigations", mitigations_parse_cmdline); 2559 2560 /* mitigations=off */ 2561 bool cpu_mitigations_off(void) 2562 { 2563 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2564 } 2565 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2566 2567 /* mitigations=auto,nosmt */ 2568 bool cpu_mitigations_auto_nosmt(void) 2569 { 2570 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2571 } 2572 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2573