xref: /openbmc/linux/kernel/cpu.c (revision 84fbfc33)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32 
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36 
37 #include "smpboot.h"
38 
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:	The current cpu state
42  * @target:	The target state
43  * @thread:	Pointer to the hotplug thread
44  * @should_run:	Thread should execute
45  * @rollback:	Perform a rollback
46  * @single:	Single callback invocation
47  * @bringup:	Single callback bringup or teardown selector
48  * @cb_state:	The state for a single callback (install/uninstall)
49  * @result:	Result of the operation
50  * @done_up:	Signal completion to the issuer of the task for cpu-up
51  * @done_down:	Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54 	enum cpuhp_state	state;
55 	enum cpuhp_state	target;
56 	enum cpuhp_state	fail;
57 #ifdef CONFIG_SMP
58 	struct task_struct	*thread;
59 	bool			should_run;
60 	bool			rollback;
61 	bool			single;
62 	bool			bringup;
63 	struct hlist_node	*node;
64 	struct hlist_node	*last;
65 	enum cpuhp_state	cb_state;
66 	int			result;
67 	struct completion	done_up;
68 	struct completion	done_down;
69 #endif
70 };
71 
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 	.fail = CPUHP_INVALID,
74 };
75 
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81 
82 
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87 
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93 
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96 
97 #endif
98 
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:	Name of the step
102  * @startup:	Startup function of the step
103  * @teardown:	Teardown function of the step
104  * @skip_onerr:	Do not invoke the functions on error rollback
105  *		Will go away once the notifiers	are gone
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			skip_onerr;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129 
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132 	/*
133 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134 	 * purposes as that state is handled explicitly in cpu_down.
135 	 */
136 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138 
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141 	struct cpuhp_step *sp;
142 
143 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144 	return sp + state;
145 }
146 
147 /**
148  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149  * @cpu:	The cpu for which the callback should be invoked
150  * @state:	The state to do callbacks for
151  * @bringup:	True if the bringup callback should be invoked
152  * @node:	For multi-instance, do a single entry callback for install/remove
153  * @lastp:	For multi-instance rollback, remember how far we got
154  *
155  * Called from cpu hotplug and from the state register machinery.
156  */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158 				 bool bringup, struct hlist_node *node,
159 				 struct hlist_node **lastp)
160 {
161 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162 	struct cpuhp_step *step = cpuhp_get_step(state);
163 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
164 	int (*cb)(unsigned int cpu);
165 	int ret, cnt;
166 
167 	if (st->fail == state) {
168 		st->fail = CPUHP_INVALID;
169 
170 		if (!(bringup ? step->startup.single : step->teardown.single))
171 			return 0;
172 
173 		return -EAGAIN;
174 	}
175 
176 	if (!step->multi_instance) {
177 		WARN_ON_ONCE(lastp && *lastp);
178 		cb = bringup ? step->startup.single : step->teardown.single;
179 		if (!cb)
180 			return 0;
181 		trace_cpuhp_enter(cpu, st->target, state, cb);
182 		ret = cb(cpu);
183 		trace_cpuhp_exit(cpu, st->state, state, ret);
184 		return ret;
185 	}
186 	cbm = bringup ? step->startup.multi : step->teardown.multi;
187 	if (!cbm)
188 		return 0;
189 
190 	/* Single invocation for instance add/remove */
191 	if (node) {
192 		WARN_ON_ONCE(lastp && *lastp);
193 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 		ret = cbm(cpu, node);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 
199 	/* State transition. Invoke on all instances */
200 	cnt = 0;
201 	hlist_for_each(node, &step->list) {
202 		if (lastp && node == *lastp)
203 			break;
204 
205 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206 		ret = cbm(cpu, node);
207 		trace_cpuhp_exit(cpu, st->state, state, ret);
208 		if (ret) {
209 			if (!lastp)
210 				goto err;
211 
212 			*lastp = node;
213 			return ret;
214 		}
215 		cnt++;
216 	}
217 	if (lastp)
218 		*lastp = NULL;
219 	return 0;
220 err:
221 	/* Rollback the instances if one failed */
222 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
223 	if (!cbm)
224 		return ret;
225 
226 	hlist_for_each(node, &step->list) {
227 		if (!cnt--)
228 			break;
229 
230 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231 		ret = cbm(cpu, node);
232 		trace_cpuhp_exit(cpu, st->state, state, ret);
233 		/*
234 		 * Rollback must not fail,
235 		 */
236 		WARN_ON_ONCE(ret);
237 	}
238 	return ret;
239 }
240 
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	wait_for_completion(done);
246 }
247 
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 	struct completion *done = bringup ? &st->done_up : &st->done_down;
251 	complete(done);
252 }
253 
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261 
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266 
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273 	mutex_lock(&cpu_add_remove_lock);
274 }
275 
276 void cpu_maps_update_done(void)
277 {
278 	mutex_unlock(&cpu_add_remove_lock);
279 }
280 
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290 
291 void cpus_read_lock(void)
292 {
293 	percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296 
297 void cpus_read_unlock(void)
298 {
299 	percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302 
303 void cpus_write_lock(void)
304 {
305 	percpu_down_write(&cpu_hotplug_lock);
306 }
307 
308 void cpus_write_unlock(void)
309 {
310 	percpu_up_write(&cpu_hotplug_lock);
311 }
312 
313 void lockdep_assert_cpus_held(void)
314 {
315 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317 
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327 	cpu_maps_update_begin();
328 	cpu_hotplug_disabled++;
329 	cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332 
333 static void __cpu_hotplug_enable(void)
334 {
335 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336 		return;
337 	cpu_hotplug_disabled--;
338 }
339 
340 void cpu_hotplug_enable(void)
341 {
342 	cpu_maps_update_begin();
343 	__cpu_hotplug_enable();
344 	cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif	/* CONFIG_HOTPLUG_CPU */
348 
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352 	enum cpuhp_state prev_state = st->state;
353 
354 	st->rollback = false;
355 	st->last = NULL;
356 
357 	st->target = target;
358 	st->single = false;
359 	st->bringup = st->state < target;
360 
361 	return prev_state;
362 }
363 
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367 	st->rollback = true;
368 
369 	/*
370 	 * If we have st->last we need to undo partial multi_instance of this
371 	 * state first. Otherwise start undo at the previous state.
372 	 */
373 	if (!st->last) {
374 		if (st->bringup)
375 			st->state--;
376 		else
377 			st->state++;
378 	}
379 
380 	st->target = prev_state;
381 	st->bringup = !st->bringup;
382 }
383 
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387 	if (!st->single && st->state == st->target)
388 		return;
389 
390 	st->result = 0;
391 	/*
392 	 * Make sure the above stores are visible before should_run becomes
393 	 * true. Paired with the mb() above in cpuhp_thread_fun()
394 	 */
395 	smp_mb();
396 	st->should_run = true;
397 	wake_up_process(st->thread);
398 	wait_for_ap_thread(st, st->bringup);
399 }
400 
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403 	enum cpuhp_state prev_state;
404 	int ret;
405 
406 	prev_state = cpuhp_set_state(st, target);
407 	__cpuhp_kick_ap(st);
408 	if ((ret = st->result)) {
409 		cpuhp_reset_state(st, prev_state);
410 		__cpuhp_kick_ap(st);
411 	}
412 
413 	return ret;
414 }
415 
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419 
420 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421 	wait_for_ap_thread(st, true);
422 	if (WARN_ON_ONCE((!cpu_online(cpu))))
423 		return -ECANCELED;
424 
425 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
426 	stop_machine_unpark(cpu);
427 	kthread_unpark(st->thread);
428 
429 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
430 		return 0;
431 
432 	return cpuhp_kick_ap(st, st->target);
433 }
434 
435 static int bringup_cpu(unsigned int cpu)
436 {
437 	struct task_struct *idle = idle_thread_get(cpu);
438 	int ret;
439 
440 	/*
441 	 * Some architectures have to walk the irq descriptors to
442 	 * setup the vector space for the cpu which comes online.
443 	 * Prevent irq alloc/free across the bringup.
444 	 */
445 	irq_lock_sparse();
446 
447 	/* Arch-specific enabling code. */
448 	ret = __cpu_up(cpu, idle);
449 	irq_unlock_sparse();
450 	if (ret)
451 		return ret;
452 	return bringup_wait_for_ap(cpu);
453 }
454 
455 /*
456  * Hotplug state machine related functions
457  */
458 
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461 	for (st->state--; st->state > st->target; st->state--) {
462 		struct cpuhp_step *step = cpuhp_get_step(st->state);
463 
464 		if (!step->skip_onerr)
465 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466 	}
467 }
468 
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470 			      enum cpuhp_state target)
471 {
472 	enum cpuhp_state prev_state = st->state;
473 	int ret = 0;
474 
475 	while (st->state < target) {
476 		st->state++;
477 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478 		if (ret) {
479 			st->target = prev_state;
480 			undo_cpu_up(cpu, st);
481 			break;
482 		}
483 	}
484 	return ret;
485 }
486 
487 /*
488  * The cpu hotplug threads manage the bringup and teardown of the cpus
489  */
490 static void cpuhp_create(unsigned int cpu)
491 {
492 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493 
494 	init_completion(&st->done_up);
495 	init_completion(&st->done_down);
496 }
497 
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501 
502 	return st->should_run;
503 }
504 
505 /*
506  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507  * callbacks when a state gets [un]installed at runtime.
508  *
509  * Each invocation of this function by the smpboot thread does a single AP
510  * state callback.
511  *
512  * It has 3 modes of operation:
513  *  - single: runs st->cb_state
514  *  - up:     runs ++st->state, while st->state < st->target
515  *  - down:   runs st->state--, while st->state > st->target
516  *
517  * When complete or on error, should_run is cleared and the completion is fired.
518  */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522 	bool bringup = st->bringup;
523 	enum cpuhp_state state;
524 
525 	/*
526 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527 	 * that if we see ->should_run we also see the rest of the state.
528 	 */
529 	smp_mb();
530 
531 	if (WARN_ON_ONCE(!st->should_run))
532 		return;
533 
534 	cpuhp_lock_acquire(bringup);
535 
536 	if (st->single) {
537 		state = st->cb_state;
538 		st->should_run = false;
539 	} else {
540 		if (bringup) {
541 			st->state++;
542 			state = st->state;
543 			st->should_run = (st->state < st->target);
544 			WARN_ON_ONCE(st->state > st->target);
545 		} else {
546 			state = st->state;
547 			st->state--;
548 			st->should_run = (st->state > st->target);
549 			WARN_ON_ONCE(st->state < st->target);
550 		}
551 	}
552 
553 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554 
555 	if (st->rollback) {
556 		struct cpuhp_step *step = cpuhp_get_step(state);
557 		if (step->skip_onerr)
558 			goto next;
559 	}
560 
561 	if (cpuhp_is_atomic_state(state)) {
562 		local_irq_disable();
563 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564 		local_irq_enable();
565 
566 		/*
567 		 * STARTING/DYING must not fail!
568 		 */
569 		WARN_ON_ONCE(st->result);
570 	} else {
571 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572 	}
573 
574 	if (st->result) {
575 		/*
576 		 * If we fail on a rollback, we're up a creek without no
577 		 * paddle, no way forward, no way back. We loose, thanks for
578 		 * playing.
579 		 */
580 		WARN_ON_ONCE(st->rollback);
581 		st->should_run = false;
582 	}
583 
584 next:
585 	cpuhp_lock_release(bringup);
586 
587 	if (!st->should_run)
588 		complete_ap_thread(st, bringup);
589 }
590 
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594 			 struct hlist_node *node)
595 {
596 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597 	int ret;
598 
599 	if (!cpu_online(cpu))
600 		return 0;
601 
602 	cpuhp_lock_acquire(false);
603 	cpuhp_lock_release(false);
604 
605 	cpuhp_lock_acquire(true);
606 	cpuhp_lock_release(true);
607 
608 	/*
609 	 * If we are up and running, use the hotplug thread. For early calls
610 	 * we invoke the thread function directly.
611 	 */
612 	if (!st->thread)
613 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614 
615 	st->rollback = false;
616 	st->last = NULL;
617 
618 	st->node = node;
619 	st->bringup = bringup;
620 	st->cb_state = state;
621 	st->single = true;
622 
623 	__cpuhp_kick_ap(st);
624 
625 	/*
626 	 * If we failed and did a partial, do a rollback.
627 	 */
628 	if ((ret = st->result) && st->last) {
629 		st->rollback = true;
630 		st->bringup = !bringup;
631 
632 		__cpuhp_kick_ap(st);
633 	}
634 
635 	return ret;
636 }
637 
638 static int cpuhp_kick_ap_work(unsigned int cpu)
639 {
640 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
641 	enum cpuhp_state prev_state = st->state;
642 	int ret;
643 
644 	cpuhp_lock_acquire(false);
645 	cpuhp_lock_release(false);
646 
647 	cpuhp_lock_acquire(true);
648 	cpuhp_lock_release(true);
649 
650 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
651 	ret = cpuhp_kick_ap(st, st->target);
652 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
653 
654 	return ret;
655 }
656 
657 static struct smp_hotplug_thread cpuhp_threads = {
658 	.store			= &cpuhp_state.thread,
659 	.create			= &cpuhp_create,
660 	.thread_should_run	= cpuhp_should_run,
661 	.thread_fn		= cpuhp_thread_fun,
662 	.thread_comm		= "cpuhp/%u",
663 	.selfparking		= true,
664 };
665 
666 void __init cpuhp_threads_init(void)
667 {
668 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
669 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
670 }
671 
672 #ifdef CONFIG_HOTPLUG_CPU
673 /**
674  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
675  * @cpu: a CPU id
676  *
677  * This function walks all processes, finds a valid mm struct for each one and
678  * then clears a corresponding bit in mm's cpumask.  While this all sounds
679  * trivial, there are various non-obvious corner cases, which this function
680  * tries to solve in a safe manner.
681  *
682  * Also note that the function uses a somewhat relaxed locking scheme, so it may
683  * be called only for an already offlined CPU.
684  */
685 void clear_tasks_mm_cpumask(int cpu)
686 {
687 	struct task_struct *p;
688 
689 	/*
690 	 * This function is called after the cpu is taken down and marked
691 	 * offline, so its not like new tasks will ever get this cpu set in
692 	 * their mm mask. -- Peter Zijlstra
693 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
694 	 * full-fledged tasklist_lock.
695 	 */
696 	WARN_ON(cpu_online(cpu));
697 	rcu_read_lock();
698 	for_each_process(p) {
699 		struct task_struct *t;
700 
701 		/*
702 		 * Main thread might exit, but other threads may still have
703 		 * a valid mm. Find one.
704 		 */
705 		t = find_lock_task_mm(p);
706 		if (!t)
707 			continue;
708 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
709 		task_unlock(t);
710 	}
711 	rcu_read_unlock();
712 }
713 
714 /* Take this CPU down. */
715 static int take_cpu_down(void *_param)
716 {
717 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
718 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
719 	int err, cpu = smp_processor_id();
720 	int ret;
721 
722 	/* Ensure this CPU doesn't handle any more interrupts. */
723 	err = __cpu_disable();
724 	if (err < 0)
725 		return err;
726 
727 	/*
728 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
729 	 * do this step again.
730 	 */
731 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
732 	st->state--;
733 	/* Invoke the former CPU_DYING callbacks */
734 	for (; st->state > target; st->state--) {
735 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
736 		/*
737 		 * DYING must not fail!
738 		 */
739 		WARN_ON_ONCE(ret);
740 	}
741 
742 	/* Give up timekeeping duties */
743 	tick_handover_do_timer();
744 	/* Park the stopper thread */
745 	stop_machine_park(cpu);
746 	return 0;
747 }
748 
749 static int takedown_cpu(unsigned int cpu)
750 {
751 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
752 	int err;
753 
754 	/* Park the smpboot threads */
755 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
756 	smpboot_park_threads(cpu);
757 
758 	/*
759 	 * Prevent irq alloc/free while the dying cpu reorganizes the
760 	 * interrupt affinities.
761 	 */
762 	irq_lock_sparse();
763 
764 	/*
765 	 * So now all preempt/rcu users must observe !cpu_active().
766 	 */
767 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
768 	if (err) {
769 		/* CPU refused to die */
770 		irq_unlock_sparse();
771 		/* Unpark the hotplug thread so we can rollback there */
772 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
773 		return err;
774 	}
775 	BUG_ON(cpu_online(cpu));
776 
777 	/*
778 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
779 	 * runnable tasks from the cpu, there's only the idle task left now
780 	 * that the migration thread is done doing the stop_machine thing.
781 	 *
782 	 * Wait for the stop thread to go away.
783 	 */
784 	wait_for_ap_thread(st, false);
785 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
786 
787 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
788 	irq_unlock_sparse();
789 
790 	hotplug_cpu__broadcast_tick_pull(cpu);
791 	/* This actually kills the CPU. */
792 	__cpu_die(cpu);
793 
794 	tick_cleanup_dead_cpu(cpu);
795 	rcutree_migrate_callbacks(cpu);
796 	return 0;
797 }
798 
799 static void cpuhp_complete_idle_dead(void *arg)
800 {
801 	struct cpuhp_cpu_state *st = arg;
802 
803 	complete_ap_thread(st, false);
804 }
805 
806 void cpuhp_report_idle_dead(void)
807 {
808 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
809 
810 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
811 	rcu_report_dead(smp_processor_id());
812 	st->state = CPUHP_AP_IDLE_DEAD;
813 	/*
814 	 * We cannot call complete after rcu_report_dead() so we delegate it
815 	 * to an online cpu.
816 	 */
817 	smp_call_function_single(cpumask_first(cpu_online_mask),
818 				 cpuhp_complete_idle_dead, st, 0);
819 }
820 
821 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
822 {
823 	for (st->state++; st->state < st->target; st->state++) {
824 		struct cpuhp_step *step = cpuhp_get_step(st->state);
825 
826 		if (!step->skip_onerr)
827 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
828 	}
829 }
830 
831 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
832 				enum cpuhp_state target)
833 {
834 	enum cpuhp_state prev_state = st->state;
835 	int ret = 0;
836 
837 	for (; st->state > target; st->state--) {
838 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
839 		if (ret) {
840 			st->target = prev_state;
841 			undo_cpu_down(cpu, st);
842 			break;
843 		}
844 	}
845 	return ret;
846 }
847 
848 /* Requires cpu_add_remove_lock to be held */
849 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
850 			   enum cpuhp_state target)
851 {
852 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
853 	int prev_state, ret = 0;
854 
855 	if (num_online_cpus() == 1)
856 		return -EBUSY;
857 
858 	if (!cpu_present(cpu))
859 		return -EINVAL;
860 
861 	cpus_write_lock();
862 
863 	cpuhp_tasks_frozen = tasks_frozen;
864 
865 	prev_state = cpuhp_set_state(st, target);
866 	/*
867 	 * If the current CPU state is in the range of the AP hotplug thread,
868 	 * then we need to kick the thread.
869 	 */
870 	if (st->state > CPUHP_TEARDOWN_CPU) {
871 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
872 		ret = cpuhp_kick_ap_work(cpu);
873 		/*
874 		 * The AP side has done the error rollback already. Just
875 		 * return the error code..
876 		 */
877 		if (ret)
878 			goto out;
879 
880 		/*
881 		 * We might have stopped still in the range of the AP hotplug
882 		 * thread. Nothing to do anymore.
883 		 */
884 		if (st->state > CPUHP_TEARDOWN_CPU)
885 			goto out;
886 
887 		st->target = target;
888 	}
889 	/*
890 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
891 	 * to do the further cleanups.
892 	 */
893 	ret = cpuhp_down_callbacks(cpu, st, target);
894 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
895 		cpuhp_reset_state(st, prev_state);
896 		__cpuhp_kick_ap(st);
897 	}
898 
899 out:
900 	cpus_write_unlock();
901 	/*
902 	 * Do post unplug cleanup. This is still protected against
903 	 * concurrent CPU hotplug via cpu_add_remove_lock.
904 	 */
905 	lockup_detector_cleanup();
906 	return ret;
907 }
908 
909 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
910 {
911 	int err;
912 
913 	cpu_maps_update_begin();
914 
915 	if (cpu_hotplug_disabled) {
916 		err = -EBUSY;
917 		goto out;
918 	}
919 
920 	err = _cpu_down(cpu, 0, target);
921 
922 out:
923 	cpu_maps_update_done();
924 	return err;
925 }
926 
927 int cpu_down(unsigned int cpu)
928 {
929 	return do_cpu_down(cpu, CPUHP_OFFLINE);
930 }
931 EXPORT_SYMBOL(cpu_down);
932 
933 #else
934 #define takedown_cpu		NULL
935 #endif /*CONFIG_HOTPLUG_CPU*/
936 
937 /**
938  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
939  * @cpu: cpu that just started
940  *
941  * It must be called by the arch code on the new cpu, before the new cpu
942  * enables interrupts and before the "boot" cpu returns from __cpu_up().
943  */
944 void notify_cpu_starting(unsigned int cpu)
945 {
946 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
947 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
948 	int ret;
949 
950 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
951 	while (st->state < target) {
952 		st->state++;
953 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
954 		/*
955 		 * STARTING must not fail!
956 		 */
957 		WARN_ON_ONCE(ret);
958 	}
959 }
960 
961 /*
962  * Called from the idle task. Wake up the controlling task which brings the
963  * stopper and the hotplug thread of the upcoming CPU up and then delegates
964  * the rest of the online bringup to the hotplug thread.
965  */
966 void cpuhp_online_idle(enum cpuhp_state state)
967 {
968 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
969 
970 	/* Happens for the boot cpu */
971 	if (state != CPUHP_AP_ONLINE_IDLE)
972 		return;
973 
974 	st->state = CPUHP_AP_ONLINE_IDLE;
975 	complete_ap_thread(st, true);
976 }
977 
978 /* Requires cpu_add_remove_lock to be held */
979 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
980 {
981 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
982 	struct task_struct *idle;
983 	int ret = 0;
984 
985 	cpus_write_lock();
986 
987 	if (!cpu_present(cpu)) {
988 		ret = -EINVAL;
989 		goto out;
990 	}
991 
992 	/*
993 	 * The caller of do_cpu_up might have raced with another
994 	 * caller. Ignore it for now.
995 	 */
996 	if (st->state >= target)
997 		goto out;
998 
999 	if (st->state == CPUHP_OFFLINE) {
1000 		/* Let it fail before we try to bring the cpu up */
1001 		idle = idle_thread_get(cpu);
1002 		if (IS_ERR(idle)) {
1003 			ret = PTR_ERR(idle);
1004 			goto out;
1005 		}
1006 	}
1007 
1008 	cpuhp_tasks_frozen = tasks_frozen;
1009 
1010 	cpuhp_set_state(st, target);
1011 	/*
1012 	 * If the current CPU state is in the range of the AP hotplug thread,
1013 	 * then we need to kick the thread once more.
1014 	 */
1015 	if (st->state > CPUHP_BRINGUP_CPU) {
1016 		ret = cpuhp_kick_ap_work(cpu);
1017 		/*
1018 		 * The AP side has done the error rollback already. Just
1019 		 * return the error code..
1020 		 */
1021 		if (ret)
1022 			goto out;
1023 	}
1024 
1025 	/*
1026 	 * Try to reach the target state. We max out on the BP at
1027 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1028 	 * responsible for bringing it up to the target state.
1029 	 */
1030 	target = min((int)target, CPUHP_BRINGUP_CPU);
1031 	ret = cpuhp_up_callbacks(cpu, st, target);
1032 out:
1033 	cpus_write_unlock();
1034 	return ret;
1035 }
1036 
1037 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1038 {
1039 	int err = 0;
1040 
1041 	if (!cpu_possible(cpu)) {
1042 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1043 		       cpu);
1044 #if defined(CONFIG_IA64)
1045 		pr_err("please check additional_cpus= boot parameter\n");
1046 #endif
1047 		return -EINVAL;
1048 	}
1049 
1050 	err = try_online_node(cpu_to_node(cpu));
1051 	if (err)
1052 		return err;
1053 
1054 	cpu_maps_update_begin();
1055 
1056 	if (cpu_hotplug_disabled) {
1057 		err = -EBUSY;
1058 		goto out;
1059 	}
1060 
1061 	err = _cpu_up(cpu, 0, target);
1062 out:
1063 	cpu_maps_update_done();
1064 	return err;
1065 }
1066 
1067 int cpu_up(unsigned int cpu)
1068 {
1069 	return do_cpu_up(cpu, CPUHP_ONLINE);
1070 }
1071 EXPORT_SYMBOL_GPL(cpu_up);
1072 
1073 #ifdef CONFIG_PM_SLEEP_SMP
1074 static cpumask_var_t frozen_cpus;
1075 
1076 int freeze_secondary_cpus(int primary)
1077 {
1078 	int cpu, error = 0;
1079 
1080 	cpu_maps_update_begin();
1081 	if (!cpu_online(primary))
1082 		primary = cpumask_first(cpu_online_mask);
1083 	/*
1084 	 * We take down all of the non-boot CPUs in one shot to avoid races
1085 	 * with the userspace trying to use the CPU hotplug at the same time
1086 	 */
1087 	cpumask_clear(frozen_cpus);
1088 
1089 	pr_info("Disabling non-boot CPUs ...\n");
1090 	for_each_online_cpu(cpu) {
1091 		if (cpu == primary)
1092 			continue;
1093 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1094 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1095 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1096 		if (!error)
1097 			cpumask_set_cpu(cpu, frozen_cpus);
1098 		else {
1099 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1100 			break;
1101 		}
1102 	}
1103 
1104 	if (!error)
1105 		BUG_ON(num_online_cpus() > 1);
1106 	else
1107 		pr_err("Non-boot CPUs are not disabled\n");
1108 
1109 	/*
1110 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1111 	 * this even in case of failure as all disable_nonboot_cpus() users are
1112 	 * supposed to do enable_nonboot_cpus() on the failure path.
1113 	 */
1114 	cpu_hotplug_disabled++;
1115 
1116 	cpu_maps_update_done();
1117 	return error;
1118 }
1119 
1120 void __weak arch_enable_nonboot_cpus_begin(void)
1121 {
1122 }
1123 
1124 void __weak arch_enable_nonboot_cpus_end(void)
1125 {
1126 }
1127 
1128 void enable_nonboot_cpus(void)
1129 {
1130 	int cpu, error;
1131 
1132 	/* Allow everyone to use the CPU hotplug again */
1133 	cpu_maps_update_begin();
1134 	__cpu_hotplug_enable();
1135 	if (cpumask_empty(frozen_cpus))
1136 		goto out;
1137 
1138 	pr_info("Enabling non-boot CPUs ...\n");
1139 
1140 	arch_enable_nonboot_cpus_begin();
1141 
1142 	for_each_cpu(cpu, frozen_cpus) {
1143 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1144 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1145 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1146 		if (!error) {
1147 			pr_info("CPU%d is up\n", cpu);
1148 			continue;
1149 		}
1150 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1151 	}
1152 
1153 	arch_enable_nonboot_cpus_end();
1154 
1155 	cpumask_clear(frozen_cpus);
1156 out:
1157 	cpu_maps_update_done();
1158 }
1159 
1160 static int __init alloc_frozen_cpus(void)
1161 {
1162 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1163 		return -ENOMEM;
1164 	return 0;
1165 }
1166 core_initcall(alloc_frozen_cpus);
1167 
1168 /*
1169  * When callbacks for CPU hotplug notifications are being executed, we must
1170  * ensure that the state of the system with respect to the tasks being frozen
1171  * or not, as reported by the notification, remains unchanged *throughout the
1172  * duration* of the execution of the callbacks.
1173  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1174  *
1175  * This synchronization is implemented by mutually excluding regular CPU
1176  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1177  * Hibernate notifications.
1178  */
1179 static int
1180 cpu_hotplug_pm_callback(struct notifier_block *nb,
1181 			unsigned long action, void *ptr)
1182 {
1183 	switch (action) {
1184 
1185 	case PM_SUSPEND_PREPARE:
1186 	case PM_HIBERNATION_PREPARE:
1187 		cpu_hotplug_disable();
1188 		break;
1189 
1190 	case PM_POST_SUSPEND:
1191 	case PM_POST_HIBERNATION:
1192 		cpu_hotplug_enable();
1193 		break;
1194 
1195 	default:
1196 		return NOTIFY_DONE;
1197 	}
1198 
1199 	return NOTIFY_OK;
1200 }
1201 
1202 
1203 static int __init cpu_hotplug_pm_sync_init(void)
1204 {
1205 	/*
1206 	 * cpu_hotplug_pm_callback has higher priority than x86
1207 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1208 	 * to disable cpu hotplug to avoid cpu hotplug race.
1209 	 */
1210 	pm_notifier(cpu_hotplug_pm_callback, 0);
1211 	return 0;
1212 }
1213 core_initcall(cpu_hotplug_pm_sync_init);
1214 
1215 #endif /* CONFIG_PM_SLEEP_SMP */
1216 
1217 int __boot_cpu_id;
1218 
1219 #endif /* CONFIG_SMP */
1220 
1221 /* Boot processor state steps */
1222 static struct cpuhp_step cpuhp_bp_states[] = {
1223 	[CPUHP_OFFLINE] = {
1224 		.name			= "offline",
1225 		.startup.single		= NULL,
1226 		.teardown.single	= NULL,
1227 	},
1228 #ifdef CONFIG_SMP
1229 	[CPUHP_CREATE_THREADS]= {
1230 		.name			= "threads:prepare",
1231 		.startup.single		= smpboot_create_threads,
1232 		.teardown.single	= NULL,
1233 		.cant_stop		= true,
1234 	},
1235 	[CPUHP_PERF_PREPARE] = {
1236 		.name			= "perf:prepare",
1237 		.startup.single		= perf_event_init_cpu,
1238 		.teardown.single	= perf_event_exit_cpu,
1239 	},
1240 	[CPUHP_WORKQUEUE_PREP] = {
1241 		.name			= "workqueue:prepare",
1242 		.startup.single		= workqueue_prepare_cpu,
1243 		.teardown.single	= NULL,
1244 	},
1245 	[CPUHP_HRTIMERS_PREPARE] = {
1246 		.name			= "hrtimers:prepare",
1247 		.startup.single		= hrtimers_prepare_cpu,
1248 		.teardown.single	= hrtimers_dead_cpu,
1249 	},
1250 	[CPUHP_SMPCFD_PREPARE] = {
1251 		.name			= "smpcfd:prepare",
1252 		.startup.single		= smpcfd_prepare_cpu,
1253 		.teardown.single	= smpcfd_dead_cpu,
1254 	},
1255 	[CPUHP_RELAY_PREPARE] = {
1256 		.name			= "relay:prepare",
1257 		.startup.single		= relay_prepare_cpu,
1258 		.teardown.single	= NULL,
1259 	},
1260 	[CPUHP_SLAB_PREPARE] = {
1261 		.name			= "slab:prepare",
1262 		.startup.single		= slab_prepare_cpu,
1263 		.teardown.single	= slab_dead_cpu,
1264 	},
1265 	[CPUHP_RCUTREE_PREP] = {
1266 		.name			= "RCU/tree:prepare",
1267 		.startup.single		= rcutree_prepare_cpu,
1268 		.teardown.single	= rcutree_dead_cpu,
1269 	},
1270 	/*
1271 	 * On the tear-down path, timers_dead_cpu() must be invoked
1272 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1273 	 * otherwise a RCU stall occurs.
1274 	 */
1275 	[CPUHP_TIMERS_DEAD] = {
1276 		.name			= "timers:dead",
1277 		.startup.single		= NULL,
1278 		.teardown.single	= timers_dead_cpu,
1279 	},
1280 	/* Kicks the plugged cpu into life */
1281 	[CPUHP_BRINGUP_CPU] = {
1282 		.name			= "cpu:bringup",
1283 		.startup.single		= bringup_cpu,
1284 		.teardown.single	= NULL,
1285 		.cant_stop		= true,
1286 	},
1287 	[CPUHP_AP_SMPCFD_DYING] = {
1288 		.name			= "smpcfd:dying",
1289 		.startup.single		= NULL,
1290 		.teardown.single	= smpcfd_dying_cpu,
1291 	},
1292 	/*
1293 	 * Handled on controll processor until the plugged processor manages
1294 	 * this itself.
1295 	 */
1296 	[CPUHP_TEARDOWN_CPU] = {
1297 		.name			= "cpu:teardown",
1298 		.startup.single		= NULL,
1299 		.teardown.single	= takedown_cpu,
1300 		.cant_stop		= true,
1301 	},
1302 #else
1303 	[CPUHP_BRINGUP_CPU] = { },
1304 #endif
1305 };
1306 
1307 /* Application processor state steps */
1308 static struct cpuhp_step cpuhp_ap_states[] = {
1309 #ifdef CONFIG_SMP
1310 	/* Final state before CPU kills itself */
1311 	[CPUHP_AP_IDLE_DEAD] = {
1312 		.name			= "idle:dead",
1313 	},
1314 	/*
1315 	 * Last state before CPU enters the idle loop to die. Transient state
1316 	 * for synchronization.
1317 	 */
1318 	[CPUHP_AP_OFFLINE] = {
1319 		.name			= "ap:offline",
1320 		.cant_stop		= true,
1321 	},
1322 	/* First state is scheduler control. Interrupts are disabled */
1323 	[CPUHP_AP_SCHED_STARTING] = {
1324 		.name			= "sched:starting",
1325 		.startup.single		= sched_cpu_starting,
1326 		.teardown.single	= sched_cpu_dying,
1327 	},
1328 	[CPUHP_AP_RCUTREE_DYING] = {
1329 		.name			= "RCU/tree:dying",
1330 		.startup.single		= NULL,
1331 		.teardown.single	= rcutree_dying_cpu,
1332 	},
1333 	/* Entry state on starting. Interrupts enabled from here on. Transient
1334 	 * state for synchronsization */
1335 	[CPUHP_AP_ONLINE] = {
1336 		.name			= "ap:online",
1337 	},
1338 	/* Handle smpboot threads park/unpark */
1339 	[CPUHP_AP_SMPBOOT_THREADS] = {
1340 		.name			= "smpboot/threads:online",
1341 		.startup.single		= smpboot_unpark_threads,
1342 		.teardown.single	= NULL,
1343 	},
1344 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1345 		.name			= "irq/affinity:online",
1346 		.startup.single		= irq_affinity_online_cpu,
1347 		.teardown.single	= NULL,
1348 	},
1349 	[CPUHP_AP_PERF_ONLINE] = {
1350 		.name			= "perf:online",
1351 		.startup.single		= perf_event_init_cpu,
1352 		.teardown.single	= perf_event_exit_cpu,
1353 	},
1354 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1355 		.name			= "workqueue:online",
1356 		.startup.single		= workqueue_online_cpu,
1357 		.teardown.single	= workqueue_offline_cpu,
1358 	},
1359 	[CPUHP_AP_RCUTREE_ONLINE] = {
1360 		.name			= "RCU/tree:online",
1361 		.startup.single		= rcutree_online_cpu,
1362 		.teardown.single	= rcutree_offline_cpu,
1363 	},
1364 #endif
1365 	/*
1366 	 * The dynamically registered state space is here
1367 	 */
1368 
1369 #ifdef CONFIG_SMP
1370 	/* Last state is scheduler control setting the cpu active */
1371 	[CPUHP_AP_ACTIVE] = {
1372 		.name			= "sched:active",
1373 		.startup.single		= sched_cpu_activate,
1374 		.teardown.single	= sched_cpu_deactivate,
1375 	},
1376 #endif
1377 
1378 	/* CPU is fully up and running. */
1379 	[CPUHP_ONLINE] = {
1380 		.name			= "online",
1381 		.startup.single		= NULL,
1382 		.teardown.single	= NULL,
1383 	},
1384 };
1385 
1386 /* Sanity check for callbacks */
1387 static int cpuhp_cb_check(enum cpuhp_state state)
1388 {
1389 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1390 		return -EINVAL;
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Returns a free for dynamic slot assignment of the Online state. The states
1396  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1397  * by having no name assigned.
1398  */
1399 static int cpuhp_reserve_state(enum cpuhp_state state)
1400 {
1401 	enum cpuhp_state i, end;
1402 	struct cpuhp_step *step;
1403 
1404 	switch (state) {
1405 	case CPUHP_AP_ONLINE_DYN:
1406 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1407 		end = CPUHP_AP_ONLINE_DYN_END;
1408 		break;
1409 	case CPUHP_BP_PREPARE_DYN:
1410 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1411 		end = CPUHP_BP_PREPARE_DYN_END;
1412 		break;
1413 	default:
1414 		return -EINVAL;
1415 	}
1416 
1417 	for (i = state; i <= end; i++, step++) {
1418 		if (!step->name)
1419 			return i;
1420 	}
1421 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1422 	return -ENOSPC;
1423 }
1424 
1425 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1426 				 int (*startup)(unsigned int cpu),
1427 				 int (*teardown)(unsigned int cpu),
1428 				 bool multi_instance)
1429 {
1430 	/* (Un)Install the callbacks for further cpu hotplug operations */
1431 	struct cpuhp_step *sp;
1432 	int ret = 0;
1433 
1434 	/*
1435 	 * If name is NULL, then the state gets removed.
1436 	 *
1437 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1438 	 * the first allocation from these dynamic ranges, so the removal
1439 	 * would trigger a new allocation and clear the wrong (already
1440 	 * empty) state, leaving the callbacks of the to be cleared state
1441 	 * dangling, which causes wreckage on the next hotplug operation.
1442 	 */
1443 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1444 		     state == CPUHP_BP_PREPARE_DYN)) {
1445 		ret = cpuhp_reserve_state(state);
1446 		if (ret < 0)
1447 			return ret;
1448 		state = ret;
1449 	}
1450 	sp = cpuhp_get_step(state);
1451 	if (name && sp->name)
1452 		return -EBUSY;
1453 
1454 	sp->startup.single = startup;
1455 	sp->teardown.single = teardown;
1456 	sp->name = name;
1457 	sp->multi_instance = multi_instance;
1458 	INIT_HLIST_HEAD(&sp->list);
1459 	return ret;
1460 }
1461 
1462 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1463 {
1464 	return cpuhp_get_step(state)->teardown.single;
1465 }
1466 
1467 /*
1468  * Call the startup/teardown function for a step either on the AP or
1469  * on the current CPU.
1470  */
1471 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1472 			    struct hlist_node *node)
1473 {
1474 	struct cpuhp_step *sp = cpuhp_get_step(state);
1475 	int ret;
1476 
1477 	/*
1478 	 * If there's nothing to do, we done.
1479 	 * Relies on the union for multi_instance.
1480 	 */
1481 	if ((bringup && !sp->startup.single) ||
1482 	    (!bringup && !sp->teardown.single))
1483 		return 0;
1484 	/*
1485 	 * The non AP bound callbacks can fail on bringup. On teardown
1486 	 * e.g. module removal we crash for now.
1487 	 */
1488 #ifdef CONFIG_SMP
1489 	if (cpuhp_is_ap_state(state))
1490 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1491 	else
1492 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1493 #else
1494 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1495 #endif
1496 	BUG_ON(ret && !bringup);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * Called from __cpuhp_setup_state on a recoverable failure.
1502  *
1503  * Note: The teardown callbacks for rollback are not allowed to fail!
1504  */
1505 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1506 				   struct hlist_node *node)
1507 {
1508 	int cpu;
1509 
1510 	/* Roll back the already executed steps on the other cpus */
1511 	for_each_present_cpu(cpu) {
1512 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1513 		int cpustate = st->state;
1514 
1515 		if (cpu >= failedcpu)
1516 			break;
1517 
1518 		/* Did we invoke the startup call on that cpu ? */
1519 		if (cpustate >= state)
1520 			cpuhp_issue_call(cpu, state, false, node);
1521 	}
1522 }
1523 
1524 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1525 					  struct hlist_node *node,
1526 					  bool invoke)
1527 {
1528 	struct cpuhp_step *sp;
1529 	int cpu;
1530 	int ret;
1531 
1532 	lockdep_assert_cpus_held();
1533 
1534 	sp = cpuhp_get_step(state);
1535 	if (sp->multi_instance == false)
1536 		return -EINVAL;
1537 
1538 	mutex_lock(&cpuhp_state_mutex);
1539 
1540 	if (!invoke || !sp->startup.multi)
1541 		goto add_node;
1542 
1543 	/*
1544 	 * Try to call the startup callback for each present cpu
1545 	 * depending on the hotplug state of the cpu.
1546 	 */
1547 	for_each_present_cpu(cpu) {
1548 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1549 		int cpustate = st->state;
1550 
1551 		if (cpustate < state)
1552 			continue;
1553 
1554 		ret = cpuhp_issue_call(cpu, state, true, node);
1555 		if (ret) {
1556 			if (sp->teardown.multi)
1557 				cpuhp_rollback_install(cpu, state, node);
1558 			goto unlock;
1559 		}
1560 	}
1561 add_node:
1562 	ret = 0;
1563 	hlist_add_head(node, &sp->list);
1564 unlock:
1565 	mutex_unlock(&cpuhp_state_mutex);
1566 	return ret;
1567 }
1568 
1569 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1570 			       bool invoke)
1571 {
1572 	int ret;
1573 
1574 	cpus_read_lock();
1575 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1576 	cpus_read_unlock();
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1580 
1581 /**
1582  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1583  * @state:		The state to setup
1584  * @invoke:		If true, the startup function is invoked for cpus where
1585  *			cpu state >= @state
1586  * @startup:		startup callback function
1587  * @teardown:		teardown callback function
1588  * @multi_instance:	State is set up for multiple instances which get
1589  *			added afterwards.
1590  *
1591  * The caller needs to hold cpus read locked while calling this function.
1592  * Returns:
1593  *   On success:
1594  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1595  *      0 for all other states
1596  *   On failure: proper (negative) error code
1597  */
1598 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1599 				   const char *name, bool invoke,
1600 				   int (*startup)(unsigned int cpu),
1601 				   int (*teardown)(unsigned int cpu),
1602 				   bool multi_instance)
1603 {
1604 	int cpu, ret = 0;
1605 	bool dynstate;
1606 
1607 	lockdep_assert_cpus_held();
1608 
1609 	if (cpuhp_cb_check(state) || !name)
1610 		return -EINVAL;
1611 
1612 	mutex_lock(&cpuhp_state_mutex);
1613 
1614 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1615 				    multi_instance);
1616 
1617 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1618 	if (ret > 0 && dynstate) {
1619 		state = ret;
1620 		ret = 0;
1621 	}
1622 
1623 	if (ret || !invoke || !startup)
1624 		goto out;
1625 
1626 	/*
1627 	 * Try to call the startup callback for each present cpu
1628 	 * depending on the hotplug state of the cpu.
1629 	 */
1630 	for_each_present_cpu(cpu) {
1631 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1632 		int cpustate = st->state;
1633 
1634 		if (cpustate < state)
1635 			continue;
1636 
1637 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1638 		if (ret) {
1639 			if (teardown)
1640 				cpuhp_rollback_install(cpu, state, NULL);
1641 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1642 			goto out;
1643 		}
1644 	}
1645 out:
1646 	mutex_unlock(&cpuhp_state_mutex);
1647 	/*
1648 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1649 	 * dynamically allocated state in case of success.
1650 	 */
1651 	if (!ret && dynstate)
1652 		return state;
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1656 
1657 int __cpuhp_setup_state(enum cpuhp_state state,
1658 			const char *name, bool invoke,
1659 			int (*startup)(unsigned int cpu),
1660 			int (*teardown)(unsigned int cpu),
1661 			bool multi_instance)
1662 {
1663 	int ret;
1664 
1665 	cpus_read_lock();
1666 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1667 					     teardown, multi_instance);
1668 	cpus_read_unlock();
1669 	return ret;
1670 }
1671 EXPORT_SYMBOL(__cpuhp_setup_state);
1672 
1673 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1674 				  struct hlist_node *node, bool invoke)
1675 {
1676 	struct cpuhp_step *sp = cpuhp_get_step(state);
1677 	int cpu;
1678 
1679 	BUG_ON(cpuhp_cb_check(state));
1680 
1681 	if (!sp->multi_instance)
1682 		return -EINVAL;
1683 
1684 	cpus_read_lock();
1685 	mutex_lock(&cpuhp_state_mutex);
1686 
1687 	if (!invoke || !cpuhp_get_teardown_cb(state))
1688 		goto remove;
1689 	/*
1690 	 * Call the teardown callback for each present cpu depending
1691 	 * on the hotplug state of the cpu. This function is not
1692 	 * allowed to fail currently!
1693 	 */
1694 	for_each_present_cpu(cpu) {
1695 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1696 		int cpustate = st->state;
1697 
1698 		if (cpustate >= state)
1699 			cpuhp_issue_call(cpu, state, false, node);
1700 	}
1701 
1702 remove:
1703 	hlist_del(node);
1704 	mutex_unlock(&cpuhp_state_mutex);
1705 	cpus_read_unlock();
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1710 
1711 /**
1712  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1713  * @state:	The state to remove
1714  * @invoke:	If true, the teardown function is invoked for cpus where
1715  *		cpu state >= @state
1716  *
1717  * The caller needs to hold cpus read locked while calling this function.
1718  * The teardown callback is currently not allowed to fail. Think
1719  * about module removal!
1720  */
1721 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1722 {
1723 	struct cpuhp_step *sp = cpuhp_get_step(state);
1724 	int cpu;
1725 
1726 	BUG_ON(cpuhp_cb_check(state));
1727 
1728 	lockdep_assert_cpus_held();
1729 
1730 	mutex_lock(&cpuhp_state_mutex);
1731 	if (sp->multi_instance) {
1732 		WARN(!hlist_empty(&sp->list),
1733 		     "Error: Removing state %d which has instances left.\n",
1734 		     state);
1735 		goto remove;
1736 	}
1737 
1738 	if (!invoke || !cpuhp_get_teardown_cb(state))
1739 		goto remove;
1740 
1741 	/*
1742 	 * Call the teardown callback for each present cpu depending
1743 	 * on the hotplug state of the cpu. This function is not
1744 	 * allowed to fail currently!
1745 	 */
1746 	for_each_present_cpu(cpu) {
1747 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1748 		int cpustate = st->state;
1749 
1750 		if (cpustate >= state)
1751 			cpuhp_issue_call(cpu, state, false, NULL);
1752 	}
1753 remove:
1754 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1755 	mutex_unlock(&cpuhp_state_mutex);
1756 }
1757 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1758 
1759 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1760 {
1761 	cpus_read_lock();
1762 	__cpuhp_remove_state_cpuslocked(state, invoke);
1763 	cpus_read_unlock();
1764 }
1765 EXPORT_SYMBOL(__cpuhp_remove_state);
1766 
1767 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1768 static ssize_t show_cpuhp_state(struct device *dev,
1769 				struct device_attribute *attr, char *buf)
1770 {
1771 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1772 
1773 	return sprintf(buf, "%d\n", st->state);
1774 }
1775 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1776 
1777 static ssize_t write_cpuhp_target(struct device *dev,
1778 				  struct device_attribute *attr,
1779 				  const char *buf, size_t count)
1780 {
1781 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1782 	struct cpuhp_step *sp;
1783 	int target, ret;
1784 
1785 	ret = kstrtoint(buf, 10, &target);
1786 	if (ret)
1787 		return ret;
1788 
1789 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1790 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1791 		return -EINVAL;
1792 #else
1793 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1794 		return -EINVAL;
1795 #endif
1796 
1797 	ret = lock_device_hotplug_sysfs();
1798 	if (ret)
1799 		return ret;
1800 
1801 	mutex_lock(&cpuhp_state_mutex);
1802 	sp = cpuhp_get_step(target);
1803 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1804 	mutex_unlock(&cpuhp_state_mutex);
1805 	if (ret)
1806 		goto out;
1807 
1808 	if (st->state < target)
1809 		ret = do_cpu_up(dev->id, target);
1810 	else
1811 		ret = do_cpu_down(dev->id, target);
1812 out:
1813 	unlock_device_hotplug();
1814 	return ret ? ret : count;
1815 }
1816 
1817 static ssize_t show_cpuhp_target(struct device *dev,
1818 				 struct device_attribute *attr, char *buf)
1819 {
1820 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1821 
1822 	return sprintf(buf, "%d\n", st->target);
1823 }
1824 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1825 
1826 
1827 static ssize_t write_cpuhp_fail(struct device *dev,
1828 				struct device_attribute *attr,
1829 				const char *buf, size_t count)
1830 {
1831 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1832 	struct cpuhp_step *sp;
1833 	int fail, ret;
1834 
1835 	ret = kstrtoint(buf, 10, &fail);
1836 	if (ret)
1837 		return ret;
1838 
1839 	/*
1840 	 * Cannot fail STARTING/DYING callbacks.
1841 	 */
1842 	if (cpuhp_is_atomic_state(fail))
1843 		return -EINVAL;
1844 
1845 	/*
1846 	 * Cannot fail anything that doesn't have callbacks.
1847 	 */
1848 	mutex_lock(&cpuhp_state_mutex);
1849 	sp = cpuhp_get_step(fail);
1850 	if (!sp->startup.single && !sp->teardown.single)
1851 		ret = -EINVAL;
1852 	mutex_unlock(&cpuhp_state_mutex);
1853 	if (ret)
1854 		return ret;
1855 
1856 	st->fail = fail;
1857 
1858 	return count;
1859 }
1860 
1861 static ssize_t show_cpuhp_fail(struct device *dev,
1862 			       struct device_attribute *attr, char *buf)
1863 {
1864 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1865 
1866 	return sprintf(buf, "%d\n", st->fail);
1867 }
1868 
1869 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1870 
1871 static struct attribute *cpuhp_cpu_attrs[] = {
1872 	&dev_attr_state.attr,
1873 	&dev_attr_target.attr,
1874 	&dev_attr_fail.attr,
1875 	NULL
1876 };
1877 
1878 static const struct attribute_group cpuhp_cpu_attr_group = {
1879 	.attrs = cpuhp_cpu_attrs,
1880 	.name = "hotplug",
1881 	NULL
1882 };
1883 
1884 static ssize_t show_cpuhp_states(struct device *dev,
1885 				 struct device_attribute *attr, char *buf)
1886 {
1887 	ssize_t cur, res = 0;
1888 	int i;
1889 
1890 	mutex_lock(&cpuhp_state_mutex);
1891 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1892 		struct cpuhp_step *sp = cpuhp_get_step(i);
1893 
1894 		if (sp->name) {
1895 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1896 			buf += cur;
1897 			res += cur;
1898 		}
1899 	}
1900 	mutex_unlock(&cpuhp_state_mutex);
1901 	return res;
1902 }
1903 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1904 
1905 static struct attribute *cpuhp_cpu_root_attrs[] = {
1906 	&dev_attr_states.attr,
1907 	NULL
1908 };
1909 
1910 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1911 	.attrs = cpuhp_cpu_root_attrs,
1912 	.name = "hotplug",
1913 	NULL
1914 };
1915 
1916 static int __init cpuhp_sysfs_init(void)
1917 {
1918 	int cpu, ret;
1919 
1920 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1921 				 &cpuhp_cpu_root_attr_group);
1922 	if (ret)
1923 		return ret;
1924 
1925 	for_each_possible_cpu(cpu) {
1926 		struct device *dev = get_cpu_device(cpu);
1927 
1928 		if (!dev)
1929 			continue;
1930 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1931 		if (ret)
1932 			return ret;
1933 	}
1934 	return 0;
1935 }
1936 device_initcall(cpuhp_sysfs_init);
1937 #endif
1938 
1939 /*
1940  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1941  * represents all NR_CPUS bits binary values of 1<<nr.
1942  *
1943  * It is used by cpumask_of() to get a constant address to a CPU
1944  * mask value that has a single bit set only.
1945  */
1946 
1947 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1948 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1949 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1950 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1951 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1952 
1953 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1954 
1955 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1956 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1957 #if BITS_PER_LONG > 32
1958 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1959 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1960 #endif
1961 };
1962 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1963 
1964 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1965 EXPORT_SYMBOL(cpu_all_bits);
1966 
1967 #ifdef CONFIG_INIT_ALL_POSSIBLE
1968 struct cpumask __cpu_possible_mask __read_mostly
1969 	= {CPU_BITS_ALL};
1970 #else
1971 struct cpumask __cpu_possible_mask __read_mostly;
1972 #endif
1973 EXPORT_SYMBOL(__cpu_possible_mask);
1974 
1975 struct cpumask __cpu_online_mask __read_mostly;
1976 EXPORT_SYMBOL(__cpu_online_mask);
1977 
1978 struct cpumask __cpu_present_mask __read_mostly;
1979 EXPORT_SYMBOL(__cpu_present_mask);
1980 
1981 struct cpumask __cpu_active_mask __read_mostly;
1982 EXPORT_SYMBOL(__cpu_active_mask);
1983 
1984 void init_cpu_present(const struct cpumask *src)
1985 {
1986 	cpumask_copy(&__cpu_present_mask, src);
1987 }
1988 
1989 void init_cpu_possible(const struct cpumask *src)
1990 {
1991 	cpumask_copy(&__cpu_possible_mask, src);
1992 }
1993 
1994 void init_cpu_online(const struct cpumask *src)
1995 {
1996 	cpumask_copy(&__cpu_online_mask, src);
1997 }
1998 
1999 /*
2000  * Activate the first processor.
2001  */
2002 void __init boot_cpu_init(void)
2003 {
2004 	int cpu = smp_processor_id();
2005 
2006 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2007 	set_cpu_online(cpu, true);
2008 	set_cpu_active(cpu, true);
2009 	set_cpu_present(cpu, true);
2010 	set_cpu_possible(cpu, true);
2011 
2012 #ifdef CONFIG_SMP
2013 	__boot_cpu_id = cpu;
2014 #endif
2015 }
2016 
2017 /*
2018  * Must be called _AFTER_ setting up the per_cpu areas
2019  */
2020 void __init boot_cpu_state_init(void)
2021 {
2022 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2023 }
2024