xref: /openbmc/linux/kernel/cpu.c (revision 84764a41)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 
23 #include "smpboot.h"
24 
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28 
29 /*
30  * The following two API's must be used when attempting
31  * to serialize the updates to cpu_online_mask, cpu_present_mask.
32  */
33 void cpu_maps_update_begin(void)
34 {
35 	mutex_lock(&cpu_add_remove_lock);
36 }
37 
38 void cpu_maps_update_done(void)
39 {
40 	mutex_unlock(&cpu_add_remove_lock);
41 }
42 
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44 
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46  * Should always be manipulated under cpu_add_remove_lock
47  */
48 static int cpu_hotplug_disabled;
49 
50 #ifdef CONFIG_HOTPLUG_CPU
51 
52 static struct {
53 	struct task_struct *active_writer;
54 	struct mutex lock; /* Synchronizes accesses to refcount, */
55 	/*
56 	 * Also blocks the new readers during
57 	 * an ongoing cpu hotplug operation.
58 	 */
59 	int refcount;
60 } cpu_hotplug = {
61 	.active_writer = NULL,
62 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 	.refcount = 0,
64 };
65 
66 void get_online_cpus(void)
67 {
68 	might_sleep();
69 	if (cpu_hotplug.active_writer == current)
70 		return;
71 	mutex_lock(&cpu_hotplug.lock);
72 	cpu_hotplug.refcount++;
73 	mutex_unlock(&cpu_hotplug.lock);
74 
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77 
78 void put_online_cpus(void)
79 {
80 	if (cpu_hotplug.active_writer == current)
81 		return;
82 	mutex_lock(&cpu_hotplug.lock);
83 
84 	if (WARN_ON(!cpu_hotplug.refcount))
85 		cpu_hotplug.refcount++; /* try to fix things up */
86 
87 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 		wake_up_process(cpu_hotplug.active_writer);
89 	mutex_unlock(&cpu_hotplug.lock);
90 
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93 
94 /*
95  * This ensures that the hotplug operation can begin only when the
96  * refcount goes to zero.
97  *
98  * Note that during a cpu-hotplug operation, the new readers, if any,
99  * will be blocked by the cpu_hotplug.lock
100  *
101  * Since cpu_hotplug_begin() is always called after invoking
102  * cpu_maps_update_begin(), we can be sure that only one writer is active.
103  *
104  * Note that theoretically, there is a possibility of a livelock:
105  * - Refcount goes to zero, last reader wakes up the sleeping
106  *   writer.
107  * - Last reader unlocks the cpu_hotplug.lock.
108  * - A new reader arrives at this moment, bumps up the refcount.
109  * - The writer acquires the cpu_hotplug.lock finds the refcount
110  *   non zero and goes to sleep again.
111  *
112  * However, this is very difficult to achieve in practice since
113  * get_online_cpus() not an api which is called all that often.
114  *
115  */
116 static void cpu_hotplug_begin(void)
117 {
118 	cpu_hotplug.active_writer = current;
119 
120 	for (;;) {
121 		mutex_lock(&cpu_hotplug.lock);
122 		if (likely(!cpu_hotplug.refcount))
123 			break;
124 		__set_current_state(TASK_UNINTERRUPTIBLE);
125 		mutex_unlock(&cpu_hotplug.lock);
126 		schedule();
127 	}
128 }
129 
130 static void cpu_hotplug_done(void)
131 {
132 	cpu_hotplug.active_writer = NULL;
133 	mutex_unlock(&cpu_hotplug.lock);
134 }
135 
136 #else /* #if CONFIG_HOTPLUG_CPU */
137 static void cpu_hotplug_begin(void) {}
138 static void cpu_hotplug_done(void) {}
139 #endif	/* #else #if CONFIG_HOTPLUG_CPU */
140 
141 /* Need to know about CPUs going up/down? */
142 int __ref register_cpu_notifier(struct notifier_block *nb)
143 {
144 	int ret;
145 	cpu_maps_update_begin();
146 	ret = raw_notifier_chain_register(&cpu_chain, nb);
147 	cpu_maps_update_done();
148 	return ret;
149 }
150 
151 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
152 			int *nr_calls)
153 {
154 	int ret;
155 
156 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
157 					nr_calls);
158 
159 	return notifier_to_errno(ret);
160 }
161 
162 static int cpu_notify(unsigned long val, void *v)
163 {
164 	return __cpu_notify(val, v, -1, NULL);
165 }
166 
167 #ifdef CONFIG_HOTPLUG_CPU
168 
169 static void cpu_notify_nofail(unsigned long val, void *v)
170 {
171 	BUG_ON(cpu_notify(val, v));
172 }
173 EXPORT_SYMBOL(register_cpu_notifier);
174 
175 void __ref unregister_cpu_notifier(struct notifier_block *nb)
176 {
177 	cpu_maps_update_begin();
178 	raw_notifier_chain_unregister(&cpu_chain, nb);
179 	cpu_maps_update_done();
180 }
181 EXPORT_SYMBOL(unregister_cpu_notifier);
182 
183 /**
184  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
185  * @cpu: a CPU id
186  *
187  * This function walks all processes, finds a valid mm struct for each one and
188  * then clears a corresponding bit in mm's cpumask.  While this all sounds
189  * trivial, there are various non-obvious corner cases, which this function
190  * tries to solve in a safe manner.
191  *
192  * Also note that the function uses a somewhat relaxed locking scheme, so it may
193  * be called only for an already offlined CPU.
194  */
195 void clear_tasks_mm_cpumask(int cpu)
196 {
197 	struct task_struct *p;
198 
199 	/*
200 	 * This function is called after the cpu is taken down and marked
201 	 * offline, so its not like new tasks will ever get this cpu set in
202 	 * their mm mask. -- Peter Zijlstra
203 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
204 	 * full-fledged tasklist_lock.
205 	 */
206 	WARN_ON(cpu_online(cpu));
207 	rcu_read_lock();
208 	for_each_process(p) {
209 		struct task_struct *t;
210 
211 		/*
212 		 * Main thread might exit, but other threads may still have
213 		 * a valid mm. Find one.
214 		 */
215 		t = find_lock_task_mm(p);
216 		if (!t)
217 			continue;
218 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
219 		task_unlock(t);
220 	}
221 	rcu_read_unlock();
222 }
223 
224 static inline void check_for_tasks(int cpu)
225 {
226 	struct task_struct *p;
227 
228 	write_lock_irq(&tasklist_lock);
229 	for_each_process(p) {
230 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
231 		    (p->utime || p->stime))
232 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
233 				"(state = %ld, flags = %x)\n",
234 				p->comm, task_pid_nr(p), cpu,
235 				p->state, p->flags);
236 	}
237 	write_unlock_irq(&tasklist_lock);
238 }
239 
240 struct take_cpu_down_param {
241 	unsigned long mod;
242 	void *hcpu;
243 };
244 
245 /* Take this CPU down. */
246 static int __ref take_cpu_down(void *_param)
247 {
248 	struct take_cpu_down_param *param = _param;
249 	int err;
250 
251 	/* Ensure this CPU doesn't handle any more interrupts. */
252 	err = __cpu_disable();
253 	if (err < 0)
254 		return err;
255 
256 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
257 	return 0;
258 }
259 
260 /* Requires cpu_add_remove_lock to be held */
261 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
262 {
263 	int err, nr_calls = 0;
264 	void *hcpu = (void *)(long)cpu;
265 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
266 	struct take_cpu_down_param tcd_param = {
267 		.mod = mod,
268 		.hcpu = hcpu,
269 	};
270 
271 	if (num_online_cpus() == 1)
272 		return -EBUSY;
273 
274 	if (!cpu_online(cpu))
275 		return -EINVAL;
276 
277 	cpu_hotplug_begin();
278 
279 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
280 	if (err) {
281 		nr_calls--;
282 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
283 		printk("%s: attempt to take down CPU %u failed\n",
284 				__func__, cpu);
285 		goto out_release;
286 	}
287 	smpboot_park_threads(cpu);
288 
289 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
290 	if (err) {
291 		/* CPU didn't die: tell everyone.  Can't complain. */
292 		smpboot_unpark_threads(cpu);
293 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
294 		goto out_release;
295 	}
296 	BUG_ON(cpu_online(cpu));
297 
298 	/*
299 	 * The migration_call() CPU_DYING callback will have removed all
300 	 * runnable tasks from the cpu, there's only the idle task left now
301 	 * that the migration thread is done doing the stop_machine thing.
302 	 *
303 	 * Wait for the stop thread to go away.
304 	 */
305 	while (!idle_cpu(cpu))
306 		cpu_relax();
307 
308 	/* This actually kills the CPU. */
309 	__cpu_die(cpu);
310 
311 	/* CPU is completely dead: tell everyone.  Too late to complain. */
312 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
313 
314 	check_for_tasks(cpu);
315 
316 out_release:
317 	cpu_hotplug_done();
318 	if (!err)
319 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
320 	return err;
321 }
322 
323 int __ref cpu_down(unsigned int cpu)
324 {
325 	int err;
326 
327 	cpu_maps_update_begin();
328 
329 	if (cpu_hotplug_disabled) {
330 		err = -EBUSY;
331 		goto out;
332 	}
333 
334 	err = _cpu_down(cpu, 0);
335 
336 out:
337 	cpu_maps_update_done();
338 	return err;
339 }
340 EXPORT_SYMBOL(cpu_down);
341 #endif /*CONFIG_HOTPLUG_CPU*/
342 
343 /* Requires cpu_add_remove_lock to be held */
344 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
345 {
346 	int ret, nr_calls = 0;
347 	void *hcpu = (void *)(long)cpu;
348 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
349 	struct task_struct *idle;
350 
351 	if (cpu_online(cpu) || !cpu_present(cpu))
352 		return -EINVAL;
353 
354 	cpu_hotplug_begin();
355 
356 	idle = idle_thread_get(cpu);
357 	if (IS_ERR(idle)) {
358 		ret = PTR_ERR(idle);
359 		goto out;
360 	}
361 
362 	ret = smpboot_create_threads(cpu);
363 	if (ret)
364 		goto out;
365 
366 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
367 	if (ret) {
368 		nr_calls--;
369 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
370 				__func__, cpu);
371 		goto out_notify;
372 	}
373 
374 	/* Arch-specific enabling code. */
375 	ret = __cpu_up(cpu, idle);
376 	if (ret != 0)
377 		goto out_notify;
378 	BUG_ON(!cpu_online(cpu));
379 
380 	/* Wake the per cpu threads */
381 	smpboot_unpark_threads(cpu);
382 
383 	/* Now call notifier in preparation. */
384 	cpu_notify(CPU_ONLINE | mod, hcpu);
385 
386 out_notify:
387 	if (ret != 0)
388 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
389 out:
390 	cpu_hotplug_done();
391 
392 	return ret;
393 }
394 
395 int __cpuinit cpu_up(unsigned int cpu)
396 {
397 	int err = 0;
398 
399 #ifdef	CONFIG_MEMORY_HOTPLUG
400 	int nid;
401 	pg_data_t	*pgdat;
402 #endif
403 
404 	if (!cpu_possible(cpu)) {
405 		printk(KERN_ERR "can't online cpu %d because it is not "
406 			"configured as may-hotadd at boot time\n", cpu);
407 #if defined(CONFIG_IA64)
408 		printk(KERN_ERR "please check additional_cpus= boot "
409 				"parameter\n");
410 #endif
411 		return -EINVAL;
412 	}
413 
414 #ifdef	CONFIG_MEMORY_HOTPLUG
415 	nid = cpu_to_node(cpu);
416 	if (!node_online(nid)) {
417 		err = mem_online_node(nid);
418 		if (err)
419 			return err;
420 	}
421 
422 	pgdat = NODE_DATA(nid);
423 	if (!pgdat) {
424 		printk(KERN_ERR
425 			"Can't online cpu %d due to NULL pgdat\n", cpu);
426 		return -ENOMEM;
427 	}
428 
429 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
430 		mutex_lock(&zonelists_mutex);
431 		build_all_zonelists(NULL, NULL);
432 		mutex_unlock(&zonelists_mutex);
433 	}
434 #endif
435 
436 	cpu_maps_update_begin();
437 
438 	if (cpu_hotplug_disabled) {
439 		err = -EBUSY;
440 		goto out;
441 	}
442 
443 	err = _cpu_up(cpu, 0);
444 
445 out:
446 	cpu_maps_update_done();
447 	return err;
448 }
449 EXPORT_SYMBOL_GPL(cpu_up);
450 
451 #ifdef CONFIG_PM_SLEEP_SMP
452 static cpumask_var_t frozen_cpus;
453 
454 int disable_nonboot_cpus(void)
455 {
456 	int cpu, first_cpu, error = 0;
457 
458 	cpu_maps_update_begin();
459 	first_cpu = cpumask_first(cpu_online_mask);
460 	/*
461 	 * We take down all of the non-boot CPUs in one shot to avoid races
462 	 * with the userspace trying to use the CPU hotplug at the same time
463 	 */
464 	cpumask_clear(frozen_cpus);
465 
466 	printk("Disabling non-boot CPUs ...\n");
467 	for_each_online_cpu(cpu) {
468 		if (cpu == first_cpu)
469 			continue;
470 		error = _cpu_down(cpu, 1);
471 		if (!error)
472 			cpumask_set_cpu(cpu, frozen_cpus);
473 		else {
474 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
475 				cpu, error);
476 			break;
477 		}
478 	}
479 
480 	if (!error) {
481 		BUG_ON(num_online_cpus() > 1);
482 		/* Make sure the CPUs won't be enabled by someone else */
483 		cpu_hotplug_disabled = 1;
484 	} else {
485 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
486 	}
487 	cpu_maps_update_done();
488 	return error;
489 }
490 
491 void __weak arch_enable_nonboot_cpus_begin(void)
492 {
493 }
494 
495 void __weak arch_enable_nonboot_cpus_end(void)
496 {
497 }
498 
499 void __ref enable_nonboot_cpus(void)
500 {
501 	int cpu, error;
502 
503 	/* Allow everyone to use the CPU hotplug again */
504 	cpu_maps_update_begin();
505 	cpu_hotplug_disabled = 0;
506 	if (cpumask_empty(frozen_cpus))
507 		goto out;
508 
509 	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
510 
511 	arch_enable_nonboot_cpus_begin();
512 
513 	for_each_cpu(cpu, frozen_cpus) {
514 		error = _cpu_up(cpu, 1);
515 		if (!error) {
516 			printk(KERN_INFO "CPU%d is up\n", cpu);
517 			continue;
518 		}
519 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
520 	}
521 
522 	arch_enable_nonboot_cpus_end();
523 
524 	cpumask_clear(frozen_cpus);
525 out:
526 	cpu_maps_update_done();
527 }
528 
529 static int __init alloc_frozen_cpus(void)
530 {
531 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
532 		return -ENOMEM;
533 	return 0;
534 }
535 core_initcall(alloc_frozen_cpus);
536 
537 /*
538  * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
539  * hotplug when tasks are about to be frozen. Also, don't allow the freezer
540  * to continue until any currently running CPU hotplug operation gets
541  * completed.
542  * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
543  * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
544  * CPU hotplug path and released only after it is complete. Thus, we
545  * (and hence the freezer) will block here until any currently running CPU
546  * hotplug operation gets completed.
547  */
548 void cpu_hotplug_disable_before_freeze(void)
549 {
550 	cpu_maps_update_begin();
551 	cpu_hotplug_disabled = 1;
552 	cpu_maps_update_done();
553 }
554 
555 
556 /*
557  * When tasks have been thawed, re-enable regular CPU hotplug (which had been
558  * disabled while beginning to freeze tasks).
559  */
560 void cpu_hotplug_enable_after_thaw(void)
561 {
562 	cpu_maps_update_begin();
563 	cpu_hotplug_disabled = 0;
564 	cpu_maps_update_done();
565 }
566 
567 /*
568  * When callbacks for CPU hotplug notifications are being executed, we must
569  * ensure that the state of the system with respect to the tasks being frozen
570  * or not, as reported by the notification, remains unchanged *throughout the
571  * duration* of the execution of the callbacks.
572  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
573  *
574  * This synchronization is implemented by mutually excluding regular CPU
575  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
576  * Hibernate notifications.
577  */
578 static int
579 cpu_hotplug_pm_callback(struct notifier_block *nb,
580 			unsigned long action, void *ptr)
581 {
582 	switch (action) {
583 
584 	case PM_SUSPEND_PREPARE:
585 	case PM_HIBERNATION_PREPARE:
586 		cpu_hotplug_disable_before_freeze();
587 		break;
588 
589 	case PM_POST_SUSPEND:
590 	case PM_POST_HIBERNATION:
591 		cpu_hotplug_enable_after_thaw();
592 		break;
593 
594 	default:
595 		return NOTIFY_DONE;
596 	}
597 
598 	return NOTIFY_OK;
599 }
600 
601 
602 static int __init cpu_hotplug_pm_sync_init(void)
603 {
604 	pm_notifier(cpu_hotplug_pm_callback, 0);
605 	return 0;
606 }
607 core_initcall(cpu_hotplug_pm_sync_init);
608 
609 #endif /* CONFIG_PM_SLEEP_SMP */
610 
611 /**
612  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
613  * @cpu: cpu that just started
614  *
615  * This function calls the cpu_chain notifiers with CPU_STARTING.
616  * It must be called by the arch code on the new cpu, before the new cpu
617  * enables interrupts and before the "boot" cpu returns from __cpu_up().
618  */
619 void __cpuinit notify_cpu_starting(unsigned int cpu)
620 {
621 	unsigned long val = CPU_STARTING;
622 
623 #ifdef CONFIG_PM_SLEEP_SMP
624 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
625 		val = CPU_STARTING_FROZEN;
626 #endif /* CONFIG_PM_SLEEP_SMP */
627 	cpu_notify(val, (void *)(long)cpu);
628 }
629 
630 #endif /* CONFIG_SMP */
631 
632 /*
633  * cpu_bit_bitmap[] is a special, "compressed" data structure that
634  * represents all NR_CPUS bits binary values of 1<<nr.
635  *
636  * It is used by cpumask_of() to get a constant address to a CPU
637  * mask value that has a single bit set only.
638  */
639 
640 /* cpu_bit_bitmap[0] is empty - so we can back into it */
641 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
642 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
643 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
644 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
645 
646 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
647 
648 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
649 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
650 #if BITS_PER_LONG > 32
651 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
652 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
653 #endif
654 };
655 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
656 
657 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
658 EXPORT_SYMBOL(cpu_all_bits);
659 
660 #ifdef CONFIG_INIT_ALL_POSSIBLE
661 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
662 	= CPU_BITS_ALL;
663 #else
664 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
665 #endif
666 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
667 EXPORT_SYMBOL(cpu_possible_mask);
668 
669 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
670 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
671 EXPORT_SYMBOL(cpu_online_mask);
672 
673 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
674 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
675 EXPORT_SYMBOL(cpu_present_mask);
676 
677 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
678 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
679 EXPORT_SYMBOL(cpu_active_mask);
680 
681 void set_cpu_possible(unsigned int cpu, bool possible)
682 {
683 	if (possible)
684 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
685 	else
686 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
687 }
688 
689 void set_cpu_present(unsigned int cpu, bool present)
690 {
691 	if (present)
692 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
693 	else
694 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
695 }
696 
697 void set_cpu_online(unsigned int cpu, bool online)
698 {
699 	if (online)
700 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
701 	else
702 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
703 }
704 
705 void set_cpu_active(unsigned int cpu, bool active)
706 {
707 	if (active)
708 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
709 	else
710 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
711 }
712 
713 void init_cpu_present(const struct cpumask *src)
714 {
715 	cpumask_copy(to_cpumask(cpu_present_bits), src);
716 }
717 
718 void init_cpu_possible(const struct cpumask *src)
719 {
720 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
721 }
722 
723 void init_cpu_online(const struct cpumask *src)
724 {
725 	cpumask_copy(to_cpumask(cpu_online_bits), src);
726 }
727