1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/oom.h> 14 #include <linux/rcupdate.h> 15 #include <linux/export.h> 16 #include <linux/bug.h> 17 #include <linux/kthread.h> 18 #include <linux/stop_machine.h> 19 #include <linux/mutex.h> 20 #include <linux/gfp.h> 21 #include <linux/suspend.h> 22 23 #include "smpboot.h" 24 25 #ifdef CONFIG_SMP 26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 27 static DEFINE_MUTEX(cpu_add_remove_lock); 28 29 /* 30 * The following two API's must be used when attempting 31 * to serialize the updates to cpu_online_mask, cpu_present_mask. 32 */ 33 void cpu_maps_update_begin(void) 34 { 35 mutex_lock(&cpu_add_remove_lock); 36 } 37 38 void cpu_maps_update_done(void) 39 { 40 mutex_unlock(&cpu_add_remove_lock); 41 } 42 43 static RAW_NOTIFIER_HEAD(cpu_chain); 44 45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 46 * Should always be manipulated under cpu_add_remove_lock 47 */ 48 static int cpu_hotplug_disabled; 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 52 static struct { 53 struct task_struct *active_writer; 54 struct mutex lock; /* Synchronizes accesses to refcount, */ 55 /* 56 * Also blocks the new readers during 57 * an ongoing cpu hotplug operation. 58 */ 59 int refcount; 60 } cpu_hotplug = { 61 .active_writer = NULL, 62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 63 .refcount = 0, 64 }; 65 66 void get_online_cpus(void) 67 { 68 might_sleep(); 69 if (cpu_hotplug.active_writer == current) 70 return; 71 mutex_lock(&cpu_hotplug.lock); 72 cpu_hotplug.refcount++; 73 mutex_unlock(&cpu_hotplug.lock); 74 75 } 76 EXPORT_SYMBOL_GPL(get_online_cpus); 77 78 void put_online_cpus(void) 79 { 80 if (cpu_hotplug.active_writer == current) 81 return; 82 mutex_lock(&cpu_hotplug.lock); 83 84 if (WARN_ON(!cpu_hotplug.refcount)) 85 cpu_hotplug.refcount++; /* try to fix things up */ 86 87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) 88 wake_up_process(cpu_hotplug.active_writer); 89 mutex_unlock(&cpu_hotplug.lock); 90 91 } 92 EXPORT_SYMBOL_GPL(put_online_cpus); 93 94 /* 95 * This ensures that the hotplug operation can begin only when the 96 * refcount goes to zero. 97 * 98 * Note that during a cpu-hotplug operation, the new readers, if any, 99 * will be blocked by the cpu_hotplug.lock 100 * 101 * Since cpu_hotplug_begin() is always called after invoking 102 * cpu_maps_update_begin(), we can be sure that only one writer is active. 103 * 104 * Note that theoretically, there is a possibility of a livelock: 105 * - Refcount goes to zero, last reader wakes up the sleeping 106 * writer. 107 * - Last reader unlocks the cpu_hotplug.lock. 108 * - A new reader arrives at this moment, bumps up the refcount. 109 * - The writer acquires the cpu_hotplug.lock finds the refcount 110 * non zero and goes to sleep again. 111 * 112 * However, this is very difficult to achieve in practice since 113 * get_online_cpus() not an api which is called all that often. 114 * 115 */ 116 static void cpu_hotplug_begin(void) 117 { 118 cpu_hotplug.active_writer = current; 119 120 for (;;) { 121 mutex_lock(&cpu_hotplug.lock); 122 if (likely(!cpu_hotplug.refcount)) 123 break; 124 __set_current_state(TASK_UNINTERRUPTIBLE); 125 mutex_unlock(&cpu_hotplug.lock); 126 schedule(); 127 } 128 } 129 130 static void cpu_hotplug_done(void) 131 { 132 cpu_hotplug.active_writer = NULL; 133 mutex_unlock(&cpu_hotplug.lock); 134 } 135 136 /* 137 * Wait for currently running CPU hotplug operations to complete (if any) and 138 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 139 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 140 * hotplug path before performing hotplug operations. So acquiring that lock 141 * guarantees mutual exclusion from any currently running hotplug operations. 142 */ 143 void cpu_hotplug_disable(void) 144 { 145 cpu_maps_update_begin(); 146 cpu_hotplug_disabled = 1; 147 cpu_maps_update_done(); 148 } 149 150 void cpu_hotplug_enable(void) 151 { 152 cpu_maps_update_begin(); 153 cpu_hotplug_disabled = 0; 154 cpu_maps_update_done(); 155 } 156 157 #else /* #if CONFIG_HOTPLUG_CPU */ 158 static void cpu_hotplug_begin(void) {} 159 static void cpu_hotplug_done(void) {} 160 #endif /* #else #if CONFIG_HOTPLUG_CPU */ 161 162 /* Need to know about CPUs going up/down? */ 163 int __ref register_cpu_notifier(struct notifier_block *nb) 164 { 165 int ret; 166 cpu_maps_update_begin(); 167 ret = raw_notifier_chain_register(&cpu_chain, nb); 168 cpu_maps_update_done(); 169 return ret; 170 } 171 172 static int __cpu_notify(unsigned long val, void *v, int nr_to_call, 173 int *nr_calls) 174 { 175 int ret; 176 177 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, 178 nr_calls); 179 180 return notifier_to_errno(ret); 181 } 182 183 static int cpu_notify(unsigned long val, void *v) 184 { 185 return __cpu_notify(val, v, -1, NULL); 186 } 187 188 #ifdef CONFIG_HOTPLUG_CPU 189 190 static void cpu_notify_nofail(unsigned long val, void *v) 191 { 192 BUG_ON(cpu_notify(val, v)); 193 } 194 EXPORT_SYMBOL(register_cpu_notifier); 195 196 void __ref unregister_cpu_notifier(struct notifier_block *nb) 197 { 198 cpu_maps_update_begin(); 199 raw_notifier_chain_unregister(&cpu_chain, nb); 200 cpu_maps_update_done(); 201 } 202 EXPORT_SYMBOL(unregister_cpu_notifier); 203 204 /** 205 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 206 * @cpu: a CPU id 207 * 208 * This function walks all processes, finds a valid mm struct for each one and 209 * then clears a corresponding bit in mm's cpumask. While this all sounds 210 * trivial, there are various non-obvious corner cases, which this function 211 * tries to solve in a safe manner. 212 * 213 * Also note that the function uses a somewhat relaxed locking scheme, so it may 214 * be called only for an already offlined CPU. 215 */ 216 void clear_tasks_mm_cpumask(int cpu) 217 { 218 struct task_struct *p; 219 220 /* 221 * This function is called after the cpu is taken down and marked 222 * offline, so its not like new tasks will ever get this cpu set in 223 * their mm mask. -- Peter Zijlstra 224 * Thus, we may use rcu_read_lock() here, instead of grabbing 225 * full-fledged tasklist_lock. 226 */ 227 WARN_ON(cpu_online(cpu)); 228 rcu_read_lock(); 229 for_each_process(p) { 230 struct task_struct *t; 231 232 /* 233 * Main thread might exit, but other threads may still have 234 * a valid mm. Find one. 235 */ 236 t = find_lock_task_mm(p); 237 if (!t) 238 continue; 239 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 240 task_unlock(t); 241 } 242 rcu_read_unlock(); 243 } 244 245 static inline void check_for_tasks(int cpu) 246 { 247 struct task_struct *p; 248 cputime_t utime, stime; 249 250 write_lock_irq(&tasklist_lock); 251 for_each_process(p) { 252 task_cputime(p, &utime, &stime); 253 if (task_cpu(p) == cpu && p->state == TASK_RUNNING && 254 (utime || stime)) 255 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " 256 "(state = %ld, flags = %x)\n", 257 p->comm, task_pid_nr(p), cpu, 258 p->state, p->flags); 259 } 260 write_unlock_irq(&tasklist_lock); 261 } 262 263 struct take_cpu_down_param { 264 unsigned long mod; 265 void *hcpu; 266 }; 267 268 /* Take this CPU down. */ 269 static int __ref take_cpu_down(void *_param) 270 { 271 struct take_cpu_down_param *param = _param; 272 int err; 273 274 /* Ensure this CPU doesn't handle any more interrupts. */ 275 err = __cpu_disable(); 276 if (err < 0) 277 return err; 278 279 cpu_notify(CPU_DYING | param->mod, param->hcpu); 280 /* Park the stopper thread */ 281 kthread_park(current); 282 return 0; 283 } 284 285 /* Requires cpu_add_remove_lock to be held */ 286 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 287 { 288 int err, nr_calls = 0; 289 void *hcpu = (void *)(long)cpu; 290 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 291 struct take_cpu_down_param tcd_param = { 292 .mod = mod, 293 .hcpu = hcpu, 294 }; 295 296 if (num_online_cpus() == 1) 297 return -EBUSY; 298 299 if (!cpu_online(cpu)) 300 return -EINVAL; 301 302 cpu_hotplug_begin(); 303 304 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); 305 if (err) { 306 nr_calls--; 307 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); 308 printk("%s: attempt to take down CPU %u failed\n", 309 __func__, cpu); 310 goto out_release; 311 } 312 smpboot_park_threads(cpu); 313 314 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 315 if (err) { 316 /* CPU didn't die: tell everyone. Can't complain. */ 317 smpboot_unpark_threads(cpu); 318 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); 319 goto out_release; 320 } 321 BUG_ON(cpu_online(cpu)); 322 323 /* 324 * The migration_call() CPU_DYING callback will have removed all 325 * runnable tasks from the cpu, there's only the idle task left now 326 * that the migration thread is done doing the stop_machine thing. 327 * 328 * Wait for the stop thread to go away. 329 */ 330 while (!idle_cpu(cpu)) 331 cpu_relax(); 332 333 /* This actually kills the CPU. */ 334 __cpu_die(cpu); 335 336 /* CPU is completely dead: tell everyone. Too late to complain. */ 337 cpu_notify_nofail(CPU_DEAD | mod, hcpu); 338 339 check_for_tasks(cpu); 340 341 out_release: 342 cpu_hotplug_done(); 343 if (!err) 344 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); 345 return err; 346 } 347 348 int __ref cpu_down(unsigned int cpu) 349 { 350 int err; 351 352 cpu_maps_update_begin(); 353 354 if (cpu_hotplug_disabled) { 355 err = -EBUSY; 356 goto out; 357 } 358 359 err = _cpu_down(cpu, 0); 360 361 out: 362 cpu_maps_update_done(); 363 return err; 364 } 365 EXPORT_SYMBOL(cpu_down); 366 #endif /*CONFIG_HOTPLUG_CPU*/ 367 368 /* Requires cpu_add_remove_lock to be held */ 369 static int _cpu_up(unsigned int cpu, int tasks_frozen) 370 { 371 int ret, nr_calls = 0; 372 void *hcpu = (void *)(long)cpu; 373 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 374 struct task_struct *idle; 375 376 cpu_hotplug_begin(); 377 378 if (cpu_online(cpu) || !cpu_present(cpu)) { 379 ret = -EINVAL; 380 goto out; 381 } 382 383 idle = idle_thread_get(cpu); 384 if (IS_ERR(idle)) { 385 ret = PTR_ERR(idle); 386 goto out; 387 } 388 389 ret = smpboot_create_threads(cpu); 390 if (ret) 391 goto out; 392 393 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); 394 if (ret) { 395 nr_calls--; 396 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n", 397 __func__, cpu); 398 goto out_notify; 399 } 400 401 /* Arch-specific enabling code. */ 402 ret = __cpu_up(cpu, idle); 403 if (ret != 0) 404 goto out_notify; 405 BUG_ON(!cpu_online(cpu)); 406 407 /* Wake the per cpu threads */ 408 smpboot_unpark_threads(cpu); 409 410 /* Now call notifier in preparation. */ 411 cpu_notify(CPU_ONLINE | mod, hcpu); 412 413 out_notify: 414 if (ret != 0) 415 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 416 out: 417 cpu_hotplug_done(); 418 419 return ret; 420 } 421 422 int cpu_up(unsigned int cpu) 423 { 424 int err = 0; 425 426 #ifdef CONFIG_MEMORY_HOTPLUG 427 int nid; 428 pg_data_t *pgdat; 429 #endif 430 431 if (!cpu_possible(cpu)) { 432 printk(KERN_ERR "can't online cpu %d because it is not " 433 "configured as may-hotadd at boot time\n", cpu); 434 #if defined(CONFIG_IA64) 435 printk(KERN_ERR "please check additional_cpus= boot " 436 "parameter\n"); 437 #endif 438 return -EINVAL; 439 } 440 441 #ifdef CONFIG_MEMORY_HOTPLUG 442 nid = cpu_to_node(cpu); 443 if (!node_online(nid)) { 444 err = mem_online_node(nid); 445 if (err) 446 return err; 447 } 448 449 pgdat = NODE_DATA(nid); 450 if (!pgdat) { 451 printk(KERN_ERR 452 "Can't online cpu %d due to NULL pgdat\n", cpu); 453 return -ENOMEM; 454 } 455 456 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 457 mutex_lock(&zonelists_mutex); 458 build_all_zonelists(NULL, NULL); 459 mutex_unlock(&zonelists_mutex); 460 } 461 #endif 462 463 cpu_maps_update_begin(); 464 465 if (cpu_hotplug_disabled) { 466 err = -EBUSY; 467 goto out; 468 } 469 470 err = _cpu_up(cpu, 0); 471 472 out: 473 cpu_maps_update_done(); 474 return err; 475 } 476 EXPORT_SYMBOL_GPL(cpu_up); 477 478 #ifdef CONFIG_PM_SLEEP_SMP 479 static cpumask_var_t frozen_cpus; 480 481 int disable_nonboot_cpus(void) 482 { 483 int cpu, first_cpu, error = 0; 484 485 cpu_maps_update_begin(); 486 first_cpu = cpumask_first(cpu_online_mask); 487 /* 488 * We take down all of the non-boot CPUs in one shot to avoid races 489 * with the userspace trying to use the CPU hotplug at the same time 490 */ 491 cpumask_clear(frozen_cpus); 492 493 printk("Disabling non-boot CPUs ...\n"); 494 for_each_online_cpu(cpu) { 495 if (cpu == first_cpu) 496 continue; 497 error = _cpu_down(cpu, 1); 498 if (!error) 499 cpumask_set_cpu(cpu, frozen_cpus); 500 else { 501 printk(KERN_ERR "Error taking CPU%d down: %d\n", 502 cpu, error); 503 break; 504 } 505 } 506 507 if (!error) { 508 BUG_ON(num_online_cpus() > 1); 509 /* Make sure the CPUs won't be enabled by someone else */ 510 cpu_hotplug_disabled = 1; 511 } else { 512 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 513 } 514 cpu_maps_update_done(); 515 return error; 516 } 517 518 void __weak arch_enable_nonboot_cpus_begin(void) 519 { 520 } 521 522 void __weak arch_enable_nonboot_cpus_end(void) 523 { 524 } 525 526 void __ref enable_nonboot_cpus(void) 527 { 528 int cpu, error; 529 530 /* Allow everyone to use the CPU hotplug again */ 531 cpu_maps_update_begin(); 532 cpu_hotplug_disabled = 0; 533 if (cpumask_empty(frozen_cpus)) 534 goto out; 535 536 printk(KERN_INFO "Enabling non-boot CPUs ...\n"); 537 538 arch_enable_nonboot_cpus_begin(); 539 540 for_each_cpu(cpu, frozen_cpus) { 541 error = _cpu_up(cpu, 1); 542 if (!error) { 543 printk(KERN_INFO "CPU%d is up\n", cpu); 544 continue; 545 } 546 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 547 } 548 549 arch_enable_nonboot_cpus_end(); 550 551 cpumask_clear(frozen_cpus); 552 out: 553 cpu_maps_update_done(); 554 } 555 556 static int __init alloc_frozen_cpus(void) 557 { 558 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 559 return -ENOMEM; 560 return 0; 561 } 562 core_initcall(alloc_frozen_cpus); 563 564 /* 565 * When callbacks for CPU hotplug notifications are being executed, we must 566 * ensure that the state of the system with respect to the tasks being frozen 567 * or not, as reported by the notification, remains unchanged *throughout the 568 * duration* of the execution of the callbacks. 569 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 570 * 571 * This synchronization is implemented by mutually excluding regular CPU 572 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 573 * Hibernate notifications. 574 */ 575 static int 576 cpu_hotplug_pm_callback(struct notifier_block *nb, 577 unsigned long action, void *ptr) 578 { 579 switch (action) { 580 581 case PM_SUSPEND_PREPARE: 582 case PM_HIBERNATION_PREPARE: 583 cpu_hotplug_disable(); 584 break; 585 586 case PM_POST_SUSPEND: 587 case PM_POST_HIBERNATION: 588 cpu_hotplug_enable(); 589 break; 590 591 default: 592 return NOTIFY_DONE; 593 } 594 595 return NOTIFY_OK; 596 } 597 598 599 static int __init cpu_hotplug_pm_sync_init(void) 600 { 601 /* 602 * cpu_hotplug_pm_callback has higher priority than x86 603 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 604 * to disable cpu hotplug to avoid cpu hotplug race. 605 */ 606 pm_notifier(cpu_hotplug_pm_callback, 0); 607 return 0; 608 } 609 core_initcall(cpu_hotplug_pm_sync_init); 610 611 #endif /* CONFIG_PM_SLEEP_SMP */ 612 613 /** 614 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 615 * @cpu: cpu that just started 616 * 617 * This function calls the cpu_chain notifiers with CPU_STARTING. 618 * It must be called by the arch code on the new cpu, before the new cpu 619 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 620 */ 621 void notify_cpu_starting(unsigned int cpu) 622 { 623 unsigned long val = CPU_STARTING; 624 625 #ifdef CONFIG_PM_SLEEP_SMP 626 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) 627 val = CPU_STARTING_FROZEN; 628 #endif /* CONFIG_PM_SLEEP_SMP */ 629 cpu_notify(val, (void *)(long)cpu); 630 } 631 632 #endif /* CONFIG_SMP */ 633 634 /* 635 * cpu_bit_bitmap[] is a special, "compressed" data structure that 636 * represents all NR_CPUS bits binary values of 1<<nr. 637 * 638 * It is used by cpumask_of() to get a constant address to a CPU 639 * mask value that has a single bit set only. 640 */ 641 642 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 643 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 644 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 645 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 646 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 647 648 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 649 650 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 651 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 652 #if BITS_PER_LONG > 32 653 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 654 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 655 #endif 656 }; 657 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 658 659 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 660 EXPORT_SYMBOL(cpu_all_bits); 661 662 #ifdef CONFIG_INIT_ALL_POSSIBLE 663 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly 664 = CPU_BITS_ALL; 665 #else 666 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; 667 #endif 668 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); 669 EXPORT_SYMBOL(cpu_possible_mask); 670 671 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; 672 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); 673 EXPORT_SYMBOL(cpu_online_mask); 674 675 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; 676 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); 677 EXPORT_SYMBOL(cpu_present_mask); 678 679 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; 680 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); 681 EXPORT_SYMBOL(cpu_active_mask); 682 683 void set_cpu_possible(unsigned int cpu, bool possible) 684 { 685 if (possible) 686 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); 687 else 688 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); 689 } 690 691 void set_cpu_present(unsigned int cpu, bool present) 692 { 693 if (present) 694 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); 695 else 696 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); 697 } 698 699 void set_cpu_online(unsigned int cpu, bool online) 700 { 701 if (online) 702 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); 703 else 704 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); 705 } 706 707 void set_cpu_active(unsigned int cpu, bool active) 708 { 709 if (active) 710 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 711 else 712 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); 713 } 714 715 void init_cpu_present(const struct cpumask *src) 716 { 717 cpumask_copy(to_cpumask(cpu_present_bits), src); 718 } 719 720 void init_cpu_possible(const struct cpumask *src) 721 { 722 cpumask_copy(to_cpumask(cpu_possible_bits), src); 723 } 724 725 void init_cpu_online(const struct cpumask *src) 726 { 727 cpumask_copy(to_cpumask(cpu_online_bits), src); 728 } 729