xref: /openbmc/linux/kernel/cpu.c (revision 80ecbd24)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 
23 #include "smpboot.h"
24 
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28 
29 /*
30  * The following two API's must be used when attempting
31  * to serialize the updates to cpu_online_mask, cpu_present_mask.
32  */
33 void cpu_maps_update_begin(void)
34 {
35 	mutex_lock(&cpu_add_remove_lock);
36 }
37 
38 void cpu_maps_update_done(void)
39 {
40 	mutex_unlock(&cpu_add_remove_lock);
41 }
42 
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44 
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46  * Should always be manipulated under cpu_add_remove_lock
47  */
48 static int cpu_hotplug_disabled;
49 
50 #ifdef CONFIG_HOTPLUG_CPU
51 
52 static struct {
53 	struct task_struct *active_writer;
54 	struct mutex lock; /* Synchronizes accesses to refcount, */
55 	/*
56 	 * Also blocks the new readers during
57 	 * an ongoing cpu hotplug operation.
58 	 */
59 	int refcount;
60 } cpu_hotplug = {
61 	.active_writer = NULL,
62 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 	.refcount = 0,
64 };
65 
66 void get_online_cpus(void)
67 {
68 	might_sleep();
69 	if (cpu_hotplug.active_writer == current)
70 		return;
71 	mutex_lock(&cpu_hotplug.lock);
72 	cpu_hotplug.refcount++;
73 	mutex_unlock(&cpu_hotplug.lock);
74 
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77 
78 void put_online_cpus(void)
79 {
80 	if (cpu_hotplug.active_writer == current)
81 		return;
82 	mutex_lock(&cpu_hotplug.lock);
83 
84 	if (WARN_ON(!cpu_hotplug.refcount))
85 		cpu_hotplug.refcount++; /* try to fix things up */
86 
87 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 		wake_up_process(cpu_hotplug.active_writer);
89 	mutex_unlock(&cpu_hotplug.lock);
90 
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93 
94 /*
95  * This ensures that the hotplug operation can begin only when the
96  * refcount goes to zero.
97  *
98  * Note that during a cpu-hotplug operation, the new readers, if any,
99  * will be blocked by the cpu_hotplug.lock
100  *
101  * Since cpu_hotplug_begin() is always called after invoking
102  * cpu_maps_update_begin(), we can be sure that only one writer is active.
103  *
104  * Note that theoretically, there is a possibility of a livelock:
105  * - Refcount goes to zero, last reader wakes up the sleeping
106  *   writer.
107  * - Last reader unlocks the cpu_hotplug.lock.
108  * - A new reader arrives at this moment, bumps up the refcount.
109  * - The writer acquires the cpu_hotplug.lock finds the refcount
110  *   non zero and goes to sleep again.
111  *
112  * However, this is very difficult to achieve in practice since
113  * get_online_cpus() not an api which is called all that often.
114  *
115  */
116 static void cpu_hotplug_begin(void)
117 {
118 	cpu_hotplug.active_writer = current;
119 
120 	for (;;) {
121 		mutex_lock(&cpu_hotplug.lock);
122 		if (likely(!cpu_hotplug.refcount))
123 			break;
124 		__set_current_state(TASK_UNINTERRUPTIBLE);
125 		mutex_unlock(&cpu_hotplug.lock);
126 		schedule();
127 	}
128 }
129 
130 static void cpu_hotplug_done(void)
131 {
132 	cpu_hotplug.active_writer = NULL;
133 	mutex_unlock(&cpu_hotplug.lock);
134 }
135 
136 /*
137  * Wait for currently running CPU hotplug operations to complete (if any) and
138  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
139  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
140  * hotplug path before performing hotplug operations. So acquiring that lock
141  * guarantees mutual exclusion from any currently running hotplug operations.
142  */
143 void cpu_hotplug_disable(void)
144 {
145 	cpu_maps_update_begin();
146 	cpu_hotplug_disabled = 1;
147 	cpu_maps_update_done();
148 }
149 
150 void cpu_hotplug_enable(void)
151 {
152 	cpu_maps_update_begin();
153 	cpu_hotplug_disabled = 0;
154 	cpu_maps_update_done();
155 }
156 
157 #else /* #if CONFIG_HOTPLUG_CPU */
158 static void cpu_hotplug_begin(void) {}
159 static void cpu_hotplug_done(void) {}
160 #endif	/* #else #if CONFIG_HOTPLUG_CPU */
161 
162 /* Need to know about CPUs going up/down? */
163 int __ref register_cpu_notifier(struct notifier_block *nb)
164 {
165 	int ret;
166 	cpu_maps_update_begin();
167 	ret = raw_notifier_chain_register(&cpu_chain, nb);
168 	cpu_maps_update_done();
169 	return ret;
170 }
171 
172 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
173 			int *nr_calls)
174 {
175 	int ret;
176 
177 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
178 					nr_calls);
179 
180 	return notifier_to_errno(ret);
181 }
182 
183 static int cpu_notify(unsigned long val, void *v)
184 {
185 	return __cpu_notify(val, v, -1, NULL);
186 }
187 
188 #ifdef CONFIG_HOTPLUG_CPU
189 
190 static void cpu_notify_nofail(unsigned long val, void *v)
191 {
192 	BUG_ON(cpu_notify(val, v));
193 }
194 EXPORT_SYMBOL(register_cpu_notifier);
195 
196 void __ref unregister_cpu_notifier(struct notifier_block *nb)
197 {
198 	cpu_maps_update_begin();
199 	raw_notifier_chain_unregister(&cpu_chain, nb);
200 	cpu_maps_update_done();
201 }
202 EXPORT_SYMBOL(unregister_cpu_notifier);
203 
204 /**
205  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
206  * @cpu: a CPU id
207  *
208  * This function walks all processes, finds a valid mm struct for each one and
209  * then clears a corresponding bit in mm's cpumask.  While this all sounds
210  * trivial, there are various non-obvious corner cases, which this function
211  * tries to solve in a safe manner.
212  *
213  * Also note that the function uses a somewhat relaxed locking scheme, so it may
214  * be called only for an already offlined CPU.
215  */
216 void clear_tasks_mm_cpumask(int cpu)
217 {
218 	struct task_struct *p;
219 
220 	/*
221 	 * This function is called after the cpu is taken down and marked
222 	 * offline, so its not like new tasks will ever get this cpu set in
223 	 * their mm mask. -- Peter Zijlstra
224 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
225 	 * full-fledged tasklist_lock.
226 	 */
227 	WARN_ON(cpu_online(cpu));
228 	rcu_read_lock();
229 	for_each_process(p) {
230 		struct task_struct *t;
231 
232 		/*
233 		 * Main thread might exit, but other threads may still have
234 		 * a valid mm. Find one.
235 		 */
236 		t = find_lock_task_mm(p);
237 		if (!t)
238 			continue;
239 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
240 		task_unlock(t);
241 	}
242 	rcu_read_unlock();
243 }
244 
245 static inline void check_for_tasks(int cpu)
246 {
247 	struct task_struct *p;
248 	cputime_t utime, stime;
249 
250 	write_lock_irq(&tasklist_lock);
251 	for_each_process(p) {
252 		task_cputime(p, &utime, &stime);
253 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
254 		    (utime || stime))
255 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
256 				"(state = %ld, flags = %x)\n",
257 				p->comm, task_pid_nr(p), cpu,
258 				p->state, p->flags);
259 	}
260 	write_unlock_irq(&tasklist_lock);
261 }
262 
263 struct take_cpu_down_param {
264 	unsigned long mod;
265 	void *hcpu;
266 };
267 
268 /* Take this CPU down. */
269 static int __ref take_cpu_down(void *_param)
270 {
271 	struct take_cpu_down_param *param = _param;
272 	int err;
273 
274 	/* Ensure this CPU doesn't handle any more interrupts. */
275 	err = __cpu_disable();
276 	if (err < 0)
277 		return err;
278 
279 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
280 	/* Park the stopper thread */
281 	kthread_park(current);
282 	return 0;
283 }
284 
285 /* Requires cpu_add_remove_lock to be held */
286 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
287 {
288 	int err, nr_calls = 0;
289 	void *hcpu = (void *)(long)cpu;
290 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
291 	struct take_cpu_down_param tcd_param = {
292 		.mod = mod,
293 		.hcpu = hcpu,
294 	};
295 
296 	if (num_online_cpus() == 1)
297 		return -EBUSY;
298 
299 	if (!cpu_online(cpu))
300 		return -EINVAL;
301 
302 	cpu_hotplug_begin();
303 
304 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
305 	if (err) {
306 		nr_calls--;
307 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
308 		printk("%s: attempt to take down CPU %u failed\n",
309 				__func__, cpu);
310 		goto out_release;
311 	}
312 	smpboot_park_threads(cpu);
313 
314 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
315 	if (err) {
316 		/* CPU didn't die: tell everyone.  Can't complain. */
317 		smpboot_unpark_threads(cpu);
318 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
319 		goto out_release;
320 	}
321 	BUG_ON(cpu_online(cpu));
322 
323 	/*
324 	 * The migration_call() CPU_DYING callback will have removed all
325 	 * runnable tasks from the cpu, there's only the idle task left now
326 	 * that the migration thread is done doing the stop_machine thing.
327 	 *
328 	 * Wait for the stop thread to go away.
329 	 */
330 	while (!idle_cpu(cpu))
331 		cpu_relax();
332 
333 	/* This actually kills the CPU. */
334 	__cpu_die(cpu);
335 
336 	/* CPU is completely dead: tell everyone.  Too late to complain. */
337 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
338 
339 	check_for_tasks(cpu);
340 
341 out_release:
342 	cpu_hotplug_done();
343 	if (!err)
344 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
345 	return err;
346 }
347 
348 int __ref cpu_down(unsigned int cpu)
349 {
350 	int err;
351 
352 	cpu_maps_update_begin();
353 
354 	if (cpu_hotplug_disabled) {
355 		err = -EBUSY;
356 		goto out;
357 	}
358 
359 	err = _cpu_down(cpu, 0);
360 
361 out:
362 	cpu_maps_update_done();
363 	return err;
364 }
365 EXPORT_SYMBOL(cpu_down);
366 #endif /*CONFIG_HOTPLUG_CPU*/
367 
368 /* Requires cpu_add_remove_lock to be held */
369 static int _cpu_up(unsigned int cpu, int tasks_frozen)
370 {
371 	int ret, nr_calls = 0;
372 	void *hcpu = (void *)(long)cpu;
373 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
374 	struct task_struct *idle;
375 
376 	cpu_hotplug_begin();
377 
378 	if (cpu_online(cpu) || !cpu_present(cpu)) {
379 		ret = -EINVAL;
380 		goto out;
381 	}
382 
383 	idle = idle_thread_get(cpu);
384 	if (IS_ERR(idle)) {
385 		ret = PTR_ERR(idle);
386 		goto out;
387 	}
388 
389 	ret = smpboot_create_threads(cpu);
390 	if (ret)
391 		goto out;
392 
393 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
394 	if (ret) {
395 		nr_calls--;
396 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
397 				__func__, cpu);
398 		goto out_notify;
399 	}
400 
401 	/* Arch-specific enabling code. */
402 	ret = __cpu_up(cpu, idle);
403 	if (ret != 0)
404 		goto out_notify;
405 	BUG_ON(!cpu_online(cpu));
406 
407 	/* Wake the per cpu threads */
408 	smpboot_unpark_threads(cpu);
409 
410 	/* Now call notifier in preparation. */
411 	cpu_notify(CPU_ONLINE | mod, hcpu);
412 
413 out_notify:
414 	if (ret != 0)
415 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
416 out:
417 	cpu_hotplug_done();
418 
419 	return ret;
420 }
421 
422 int cpu_up(unsigned int cpu)
423 {
424 	int err = 0;
425 
426 #ifdef	CONFIG_MEMORY_HOTPLUG
427 	int nid;
428 	pg_data_t	*pgdat;
429 #endif
430 
431 	if (!cpu_possible(cpu)) {
432 		printk(KERN_ERR "can't online cpu %d because it is not "
433 			"configured as may-hotadd at boot time\n", cpu);
434 #if defined(CONFIG_IA64)
435 		printk(KERN_ERR "please check additional_cpus= boot "
436 				"parameter\n");
437 #endif
438 		return -EINVAL;
439 	}
440 
441 #ifdef	CONFIG_MEMORY_HOTPLUG
442 	nid = cpu_to_node(cpu);
443 	if (!node_online(nid)) {
444 		err = mem_online_node(nid);
445 		if (err)
446 			return err;
447 	}
448 
449 	pgdat = NODE_DATA(nid);
450 	if (!pgdat) {
451 		printk(KERN_ERR
452 			"Can't online cpu %d due to NULL pgdat\n", cpu);
453 		return -ENOMEM;
454 	}
455 
456 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
457 		mutex_lock(&zonelists_mutex);
458 		build_all_zonelists(NULL, NULL);
459 		mutex_unlock(&zonelists_mutex);
460 	}
461 #endif
462 
463 	cpu_maps_update_begin();
464 
465 	if (cpu_hotplug_disabled) {
466 		err = -EBUSY;
467 		goto out;
468 	}
469 
470 	err = _cpu_up(cpu, 0);
471 
472 out:
473 	cpu_maps_update_done();
474 	return err;
475 }
476 EXPORT_SYMBOL_GPL(cpu_up);
477 
478 #ifdef CONFIG_PM_SLEEP_SMP
479 static cpumask_var_t frozen_cpus;
480 
481 int disable_nonboot_cpus(void)
482 {
483 	int cpu, first_cpu, error = 0;
484 
485 	cpu_maps_update_begin();
486 	first_cpu = cpumask_first(cpu_online_mask);
487 	/*
488 	 * We take down all of the non-boot CPUs in one shot to avoid races
489 	 * with the userspace trying to use the CPU hotplug at the same time
490 	 */
491 	cpumask_clear(frozen_cpus);
492 
493 	printk("Disabling non-boot CPUs ...\n");
494 	for_each_online_cpu(cpu) {
495 		if (cpu == first_cpu)
496 			continue;
497 		error = _cpu_down(cpu, 1);
498 		if (!error)
499 			cpumask_set_cpu(cpu, frozen_cpus);
500 		else {
501 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
502 				cpu, error);
503 			break;
504 		}
505 	}
506 
507 	if (!error) {
508 		BUG_ON(num_online_cpus() > 1);
509 		/* Make sure the CPUs won't be enabled by someone else */
510 		cpu_hotplug_disabled = 1;
511 	} else {
512 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
513 	}
514 	cpu_maps_update_done();
515 	return error;
516 }
517 
518 void __weak arch_enable_nonboot_cpus_begin(void)
519 {
520 }
521 
522 void __weak arch_enable_nonboot_cpus_end(void)
523 {
524 }
525 
526 void __ref enable_nonboot_cpus(void)
527 {
528 	int cpu, error;
529 
530 	/* Allow everyone to use the CPU hotplug again */
531 	cpu_maps_update_begin();
532 	cpu_hotplug_disabled = 0;
533 	if (cpumask_empty(frozen_cpus))
534 		goto out;
535 
536 	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
537 
538 	arch_enable_nonboot_cpus_begin();
539 
540 	for_each_cpu(cpu, frozen_cpus) {
541 		error = _cpu_up(cpu, 1);
542 		if (!error) {
543 			printk(KERN_INFO "CPU%d is up\n", cpu);
544 			continue;
545 		}
546 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
547 	}
548 
549 	arch_enable_nonboot_cpus_end();
550 
551 	cpumask_clear(frozen_cpus);
552 out:
553 	cpu_maps_update_done();
554 }
555 
556 static int __init alloc_frozen_cpus(void)
557 {
558 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
559 		return -ENOMEM;
560 	return 0;
561 }
562 core_initcall(alloc_frozen_cpus);
563 
564 /*
565  * When callbacks for CPU hotplug notifications are being executed, we must
566  * ensure that the state of the system with respect to the tasks being frozen
567  * or not, as reported by the notification, remains unchanged *throughout the
568  * duration* of the execution of the callbacks.
569  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
570  *
571  * This synchronization is implemented by mutually excluding regular CPU
572  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
573  * Hibernate notifications.
574  */
575 static int
576 cpu_hotplug_pm_callback(struct notifier_block *nb,
577 			unsigned long action, void *ptr)
578 {
579 	switch (action) {
580 
581 	case PM_SUSPEND_PREPARE:
582 	case PM_HIBERNATION_PREPARE:
583 		cpu_hotplug_disable();
584 		break;
585 
586 	case PM_POST_SUSPEND:
587 	case PM_POST_HIBERNATION:
588 		cpu_hotplug_enable();
589 		break;
590 
591 	default:
592 		return NOTIFY_DONE;
593 	}
594 
595 	return NOTIFY_OK;
596 }
597 
598 
599 static int __init cpu_hotplug_pm_sync_init(void)
600 {
601 	/*
602 	 * cpu_hotplug_pm_callback has higher priority than x86
603 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
604 	 * to disable cpu hotplug to avoid cpu hotplug race.
605 	 */
606 	pm_notifier(cpu_hotplug_pm_callback, 0);
607 	return 0;
608 }
609 core_initcall(cpu_hotplug_pm_sync_init);
610 
611 #endif /* CONFIG_PM_SLEEP_SMP */
612 
613 /**
614  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
615  * @cpu: cpu that just started
616  *
617  * This function calls the cpu_chain notifiers with CPU_STARTING.
618  * It must be called by the arch code on the new cpu, before the new cpu
619  * enables interrupts and before the "boot" cpu returns from __cpu_up().
620  */
621 void notify_cpu_starting(unsigned int cpu)
622 {
623 	unsigned long val = CPU_STARTING;
624 
625 #ifdef CONFIG_PM_SLEEP_SMP
626 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
627 		val = CPU_STARTING_FROZEN;
628 #endif /* CONFIG_PM_SLEEP_SMP */
629 	cpu_notify(val, (void *)(long)cpu);
630 }
631 
632 #endif /* CONFIG_SMP */
633 
634 /*
635  * cpu_bit_bitmap[] is a special, "compressed" data structure that
636  * represents all NR_CPUS bits binary values of 1<<nr.
637  *
638  * It is used by cpumask_of() to get a constant address to a CPU
639  * mask value that has a single bit set only.
640  */
641 
642 /* cpu_bit_bitmap[0] is empty - so we can back into it */
643 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
644 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
645 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
646 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
647 
648 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
649 
650 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
651 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
652 #if BITS_PER_LONG > 32
653 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
654 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
655 #endif
656 };
657 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
658 
659 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
660 EXPORT_SYMBOL(cpu_all_bits);
661 
662 #ifdef CONFIG_INIT_ALL_POSSIBLE
663 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
664 	= CPU_BITS_ALL;
665 #else
666 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
667 #endif
668 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
669 EXPORT_SYMBOL(cpu_possible_mask);
670 
671 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
672 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
673 EXPORT_SYMBOL(cpu_online_mask);
674 
675 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
676 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
677 EXPORT_SYMBOL(cpu_present_mask);
678 
679 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
680 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
681 EXPORT_SYMBOL(cpu_active_mask);
682 
683 void set_cpu_possible(unsigned int cpu, bool possible)
684 {
685 	if (possible)
686 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
687 	else
688 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
689 }
690 
691 void set_cpu_present(unsigned int cpu, bool present)
692 {
693 	if (present)
694 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
695 	else
696 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
697 }
698 
699 void set_cpu_online(unsigned int cpu, bool online)
700 {
701 	if (online)
702 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
703 	else
704 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
705 }
706 
707 void set_cpu_active(unsigned int cpu, bool active)
708 {
709 	if (active)
710 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
711 	else
712 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
713 }
714 
715 void init_cpu_present(const struct cpumask *src)
716 {
717 	cpumask_copy(to_cpumask(cpu_present_bits), src);
718 }
719 
720 void init_cpu_possible(const struct cpumask *src)
721 {
722 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
723 }
724 
725 void init_cpu_online(const struct cpumask *src)
726 {
727 	cpumask_copy(to_cpumask(cpu_online_bits), src);
728 }
729