1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 #include <linux/cpuset.h> 36 37 #include <trace/events/power.h> 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/cpuhp.h> 40 41 #include "smpboot.h" 42 43 /** 44 * cpuhp_cpu_state - Per cpu hotplug state storage 45 * @state: The current cpu state 46 * @target: The target state 47 * @thread: Pointer to the hotplug thread 48 * @should_run: Thread should execute 49 * @rollback: Perform a rollback 50 * @single: Single callback invocation 51 * @bringup: Single callback bringup or teardown selector 52 * @cb_state: The state for a single callback (install/uninstall) 53 * @result: Result of the operation 54 * @done_up: Signal completion to the issuer of the task for cpu-up 55 * @done_down: Signal completion to the issuer of the task for cpu-down 56 */ 57 struct cpuhp_cpu_state { 58 enum cpuhp_state state; 59 enum cpuhp_state target; 60 enum cpuhp_state fail; 61 #ifdef CONFIG_SMP 62 struct task_struct *thread; 63 bool should_run; 64 bool rollback; 65 bool single; 66 bool bringup; 67 int cpu; 68 struct hlist_node *node; 69 struct hlist_node *last; 70 enum cpuhp_state cb_state; 71 int result; 72 struct completion done_up; 73 struct completion done_down; 74 #endif 75 }; 76 77 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 78 .fail = CPUHP_INVALID, 79 }; 80 81 #ifdef CONFIG_SMP 82 cpumask_t cpus_booted_once_mask; 83 #endif 84 85 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 86 static struct lockdep_map cpuhp_state_up_map = 87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 88 static struct lockdep_map cpuhp_state_down_map = 89 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 90 91 92 static inline void cpuhp_lock_acquire(bool bringup) 93 { 94 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 95 } 96 97 static inline void cpuhp_lock_release(bool bringup) 98 { 99 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 100 } 101 #else 102 103 static inline void cpuhp_lock_acquire(bool bringup) { } 104 static inline void cpuhp_lock_release(bool bringup) { } 105 106 #endif 107 108 /** 109 * cpuhp_step - Hotplug state machine step 110 * @name: Name of the step 111 * @startup: Startup function of the step 112 * @teardown: Teardown function of the step 113 * @cant_stop: Bringup/teardown can't be stopped at this step 114 */ 115 struct cpuhp_step { 116 const char *name; 117 union { 118 int (*single)(unsigned int cpu); 119 int (*multi)(unsigned int cpu, 120 struct hlist_node *node); 121 } startup; 122 union { 123 int (*single)(unsigned int cpu); 124 int (*multi)(unsigned int cpu, 125 struct hlist_node *node); 126 } teardown; 127 struct hlist_head list; 128 bool cant_stop; 129 bool multi_instance; 130 }; 131 132 static DEFINE_MUTEX(cpuhp_state_mutex); 133 static struct cpuhp_step cpuhp_hp_states[]; 134 135 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 136 { 137 return cpuhp_hp_states + state; 138 } 139 140 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 141 { 142 return bringup ? !step->startup.single : !step->teardown.single; 143 } 144 145 /** 146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 147 * @cpu: The cpu for which the callback should be invoked 148 * @state: The state to do callbacks for 149 * @bringup: True if the bringup callback should be invoked 150 * @node: For multi-instance, do a single entry callback for install/remove 151 * @lastp: For multi-instance rollback, remember how far we got 152 * 153 * Called from cpu hotplug and from the state register machinery. 154 */ 155 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 156 bool bringup, struct hlist_node *node, 157 struct hlist_node **lastp) 158 { 159 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 160 struct cpuhp_step *step = cpuhp_get_step(state); 161 int (*cbm)(unsigned int cpu, struct hlist_node *node); 162 int (*cb)(unsigned int cpu); 163 int ret, cnt; 164 165 if (st->fail == state) { 166 st->fail = CPUHP_INVALID; 167 return -EAGAIN; 168 } 169 170 if (cpuhp_step_empty(bringup, step)) { 171 WARN_ON_ONCE(1); 172 return 0; 173 } 174 175 if (!step->multi_instance) { 176 WARN_ON_ONCE(lastp && *lastp); 177 cb = bringup ? step->startup.single : step->teardown.single; 178 179 trace_cpuhp_enter(cpu, st->target, state, cb); 180 ret = cb(cpu); 181 trace_cpuhp_exit(cpu, st->state, state, ret); 182 return ret; 183 } 184 cbm = bringup ? step->startup.multi : step->teardown.multi; 185 186 /* Single invocation for instance add/remove */ 187 if (node) { 188 WARN_ON_ONCE(lastp && *lastp); 189 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 190 ret = cbm(cpu, node); 191 trace_cpuhp_exit(cpu, st->state, state, ret); 192 return ret; 193 } 194 195 /* State transition. Invoke on all instances */ 196 cnt = 0; 197 hlist_for_each(node, &step->list) { 198 if (lastp && node == *lastp) 199 break; 200 201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 202 ret = cbm(cpu, node); 203 trace_cpuhp_exit(cpu, st->state, state, ret); 204 if (ret) { 205 if (!lastp) 206 goto err; 207 208 *lastp = node; 209 return ret; 210 } 211 cnt++; 212 } 213 if (lastp) 214 *lastp = NULL; 215 return 0; 216 err: 217 /* Rollback the instances if one failed */ 218 cbm = !bringup ? step->startup.multi : step->teardown.multi; 219 if (!cbm) 220 return ret; 221 222 hlist_for_each(node, &step->list) { 223 if (!cnt--) 224 break; 225 226 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 227 ret = cbm(cpu, node); 228 trace_cpuhp_exit(cpu, st->state, state, ret); 229 /* 230 * Rollback must not fail, 231 */ 232 WARN_ON_ONCE(ret); 233 } 234 return ret; 235 } 236 237 #ifdef CONFIG_SMP 238 static bool cpuhp_is_ap_state(enum cpuhp_state state) 239 { 240 /* 241 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 242 * purposes as that state is handled explicitly in cpu_down. 243 */ 244 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 245 } 246 247 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 wait_for_completion(done); 251 } 252 253 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 254 { 255 struct completion *done = bringup ? &st->done_up : &st->done_down; 256 complete(done); 257 } 258 259 /* 260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 261 */ 262 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 263 { 264 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 265 } 266 267 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 268 static DEFINE_MUTEX(cpu_add_remove_lock); 269 bool cpuhp_tasks_frozen; 270 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 271 272 /* 273 * The following two APIs (cpu_maps_update_begin/done) must be used when 274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 275 */ 276 void cpu_maps_update_begin(void) 277 { 278 mutex_lock(&cpu_add_remove_lock); 279 } 280 281 void cpu_maps_update_done(void) 282 { 283 mutex_unlock(&cpu_add_remove_lock); 284 } 285 286 /* 287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 288 * Should always be manipulated under cpu_add_remove_lock 289 */ 290 static int cpu_hotplug_disabled; 291 292 #ifdef CONFIG_HOTPLUG_CPU 293 294 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 295 296 void cpus_read_lock(void) 297 { 298 percpu_down_read(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_lock); 301 302 int cpus_read_trylock(void) 303 { 304 return percpu_down_read_trylock(&cpu_hotplug_lock); 305 } 306 EXPORT_SYMBOL_GPL(cpus_read_trylock); 307 308 void cpus_read_unlock(void) 309 { 310 percpu_up_read(&cpu_hotplug_lock); 311 } 312 EXPORT_SYMBOL_GPL(cpus_read_unlock); 313 314 void cpus_write_lock(void) 315 { 316 percpu_down_write(&cpu_hotplug_lock); 317 } 318 319 void cpus_write_unlock(void) 320 { 321 percpu_up_write(&cpu_hotplug_lock); 322 } 323 324 void lockdep_assert_cpus_held(void) 325 { 326 /* 327 * We can't have hotplug operations before userspace starts running, 328 * and some init codepaths will knowingly not take the hotplug lock. 329 * This is all valid, so mute lockdep until it makes sense to report 330 * unheld locks. 331 */ 332 if (system_state < SYSTEM_RUNNING) 333 return; 334 335 percpu_rwsem_assert_held(&cpu_hotplug_lock); 336 } 337 338 #ifdef CONFIG_LOCKDEP 339 int lockdep_is_cpus_held(void) 340 { 341 return percpu_rwsem_is_held(&cpu_hotplug_lock); 342 } 343 #endif 344 345 static void lockdep_acquire_cpus_lock(void) 346 { 347 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 348 } 349 350 static void lockdep_release_cpus_lock(void) 351 { 352 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 353 } 354 355 /* 356 * Wait for currently running CPU hotplug operations to complete (if any) and 357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 359 * hotplug path before performing hotplug operations. So acquiring that lock 360 * guarantees mutual exclusion from any currently running hotplug operations. 361 */ 362 void cpu_hotplug_disable(void) 363 { 364 cpu_maps_update_begin(); 365 cpu_hotplug_disabled++; 366 cpu_maps_update_done(); 367 } 368 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 369 370 static void __cpu_hotplug_enable(void) 371 { 372 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 373 return; 374 cpu_hotplug_disabled--; 375 } 376 377 void cpu_hotplug_enable(void) 378 { 379 cpu_maps_update_begin(); 380 __cpu_hotplug_enable(); 381 cpu_maps_update_done(); 382 } 383 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 384 385 #else 386 387 static void lockdep_acquire_cpus_lock(void) 388 { 389 } 390 391 static void lockdep_release_cpus_lock(void) 392 { 393 } 394 395 #endif /* CONFIG_HOTPLUG_CPU */ 396 397 /* 398 * Architectures that need SMT-specific errata handling during SMT hotplug 399 * should override this. 400 */ 401 void __weak arch_smt_update(void) { } 402 403 #ifdef CONFIG_HOTPLUG_SMT 404 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 405 406 void __init cpu_smt_disable(bool force) 407 { 408 if (!cpu_smt_possible()) 409 return; 410 411 if (force) { 412 pr_info("SMT: Force disabled\n"); 413 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 414 } else { 415 pr_info("SMT: disabled\n"); 416 cpu_smt_control = CPU_SMT_DISABLED; 417 } 418 } 419 420 /* 421 * The decision whether SMT is supported can only be done after the full 422 * CPU identification. Called from architecture code. 423 */ 424 void __init cpu_smt_check_topology(void) 425 { 426 if (!topology_smt_supported()) 427 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 428 } 429 430 static int __init smt_cmdline_disable(char *str) 431 { 432 cpu_smt_disable(str && !strcmp(str, "force")); 433 return 0; 434 } 435 early_param("nosmt", smt_cmdline_disable); 436 437 static inline bool cpu_smt_allowed(unsigned int cpu) 438 { 439 if (cpu_smt_control == CPU_SMT_ENABLED) 440 return true; 441 442 if (topology_is_primary_thread(cpu)) 443 return true; 444 445 /* 446 * On x86 it's required to boot all logical CPUs at least once so 447 * that the init code can get a chance to set CR4.MCE on each 448 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 449 * core will shutdown the machine. 450 */ 451 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 452 } 453 454 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 455 bool cpu_smt_possible(void) 456 { 457 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 458 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 459 } 460 EXPORT_SYMBOL_GPL(cpu_smt_possible); 461 #else 462 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 463 #endif 464 465 static inline enum cpuhp_state 466 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 467 { 468 enum cpuhp_state prev_state = st->state; 469 bool bringup = st->state < target; 470 471 st->rollback = false; 472 st->last = NULL; 473 474 st->target = target; 475 st->single = false; 476 st->bringup = bringup; 477 if (cpu_dying(st->cpu) != !bringup) 478 set_cpu_dying(st->cpu, !bringup); 479 480 return prev_state; 481 } 482 483 static inline void 484 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 485 { 486 bool bringup = !st->bringup; 487 488 st->target = prev_state; 489 490 /* 491 * Already rolling back. No need invert the bringup value or to change 492 * the current state. 493 */ 494 if (st->rollback) 495 return; 496 497 st->rollback = true; 498 499 /* 500 * If we have st->last we need to undo partial multi_instance of this 501 * state first. Otherwise start undo at the previous state. 502 */ 503 if (!st->last) { 504 if (st->bringup) 505 st->state--; 506 else 507 st->state++; 508 } 509 510 st->bringup = bringup; 511 if (cpu_dying(st->cpu) != !bringup) 512 set_cpu_dying(st->cpu, !bringup); 513 } 514 515 /* Regular hotplug invocation of the AP hotplug thread */ 516 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 517 { 518 if (!st->single && st->state == st->target) 519 return; 520 521 st->result = 0; 522 /* 523 * Make sure the above stores are visible before should_run becomes 524 * true. Paired with the mb() above in cpuhp_thread_fun() 525 */ 526 smp_mb(); 527 st->should_run = true; 528 wake_up_process(st->thread); 529 wait_for_ap_thread(st, st->bringup); 530 } 531 532 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 533 { 534 enum cpuhp_state prev_state; 535 int ret; 536 537 prev_state = cpuhp_set_state(st, target); 538 __cpuhp_kick_ap(st); 539 if ((ret = st->result)) { 540 cpuhp_reset_state(st, prev_state); 541 __cpuhp_kick_ap(st); 542 } 543 544 return ret; 545 } 546 547 static int bringup_wait_for_ap(unsigned int cpu) 548 { 549 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 550 551 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 552 wait_for_ap_thread(st, true); 553 if (WARN_ON_ONCE((!cpu_online(cpu)))) 554 return -ECANCELED; 555 556 /* Unpark the hotplug thread of the target cpu */ 557 kthread_unpark(st->thread); 558 559 /* 560 * SMT soft disabling on X86 requires to bring the CPU out of the 561 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 562 * CPU marked itself as booted_once in notify_cpu_starting() so the 563 * cpu_smt_allowed() check will now return false if this is not the 564 * primary sibling. 565 */ 566 if (!cpu_smt_allowed(cpu)) 567 return -ECANCELED; 568 569 if (st->target <= CPUHP_AP_ONLINE_IDLE) 570 return 0; 571 572 return cpuhp_kick_ap(st, st->target); 573 } 574 575 static int bringup_cpu(unsigned int cpu) 576 { 577 struct task_struct *idle = idle_thread_get(cpu); 578 int ret; 579 580 /* 581 * Some architectures have to walk the irq descriptors to 582 * setup the vector space for the cpu which comes online. 583 * Prevent irq alloc/free across the bringup. 584 */ 585 irq_lock_sparse(); 586 587 /* Arch-specific enabling code. */ 588 ret = __cpu_up(cpu, idle); 589 irq_unlock_sparse(); 590 if (ret) 591 return ret; 592 return bringup_wait_for_ap(cpu); 593 } 594 595 static int finish_cpu(unsigned int cpu) 596 { 597 struct task_struct *idle = idle_thread_get(cpu); 598 struct mm_struct *mm = idle->active_mm; 599 600 /* 601 * idle_task_exit() will have switched to &init_mm, now 602 * clean up any remaining active_mm state. 603 */ 604 if (mm != &init_mm) 605 idle->active_mm = &init_mm; 606 mmdrop(mm); 607 return 0; 608 } 609 610 /* 611 * Hotplug state machine related functions 612 */ 613 614 /* 615 * Get the next state to run. Empty ones will be skipped. Returns true if a 616 * state must be run. 617 * 618 * st->state will be modified ahead of time, to match state_to_run, as if it 619 * has already ran. 620 */ 621 static bool cpuhp_next_state(bool bringup, 622 enum cpuhp_state *state_to_run, 623 struct cpuhp_cpu_state *st, 624 enum cpuhp_state target) 625 { 626 do { 627 if (bringup) { 628 if (st->state >= target) 629 return false; 630 631 *state_to_run = ++st->state; 632 } else { 633 if (st->state <= target) 634 return false; 635 636 *state_to_run = st->state--; 637 } 638 639 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 640 break; 641 } while (true); 642 643 return true; 644 } 645 646 static int cpuhp_invoke_callback_range(bool bringup, 647 unsigned int cpu, 648 struct cpuhp_cpu_state *st, 649 enum cpuhp_state target) 650 { 651 enum cpuhp_state state; 652 int err = 0; 653 654 while (cpuhp_next_state(bringup, &state, st, target)) { 655 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 656 if (err) 657 break; 658 } 659 660 return err; 661 } 662 663 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 664 { 665 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 666 return true; 667 /* 668 * When CPU hotplug is disabled, then taking the CPU down is not 669 * possible because takedown_cpu() and the architecture and 670 * subsystem specific mechanisms are not available. So the CPU 671 * which would be completely unplugged again needs to stay around 672 * in the current state. 673 */ 674 return st->state <= CPUHP_BRINGUP_CPU; 675 } 676 677 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 678 enum cpuhp_state target) 679 { 680 enum cpuhp_state prev_state = st->state; 681 int ret = 0; 682 683 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 684 if (ret) { 685 cpuhp_reset_state(st, prev_state); 686 if (can_rollback_cpu(st)) 687 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 688 prev_state)); 689 } 690 return ret; 691 } 692 693 /* 694 * The cpu hotplug threads manage the bringup and teardown of the cpus 695 */ 696 static void cpuhp_create(unsigned int cpu) 697 { 698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 699 700 init_completion(&st->done_up); 701 init_completion(&st->done_down); 702 st->cpu = cpu; 703 } 704 705 static int cpuhp_should_run(unsigned int cpu) 706 { 707 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 708 709 return st->should_run; 710 } 711 712 /* 713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 714 * callbacks when a state gets [un]installed at runtime. 715 * 716 * Each invocation of this function by the smpboot thread does a single AP 717 * state callback. 718 * 719 * It has 3 modes of operation: 720 * - single: runs st->cb_state 721 * - up: runs ++st->state, while st->state < st->target 722 * - down: runs st->state--, while st->state > st->target 723 * 724 * When complete or on error, should_run is cleared and the completion is fired. 725 */ 726 static void cpuhp_thread_fun(unsigned int cpu) 727 { 728 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 729 bool bringup = st->bringup; 730 enum cpuhp_state state; 731 732 if (WARN_ON_ONCE(!st->should_run)) 733 return; 734 735 /* 736 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 737 * that if we see ->should_run we also see the rest of the state. 738 */ 739 smp_mb(); 740 741 /* 742 * The BP holds the hotplug lock, but we're now running on the AP, 743 * ensure that anybody asserting the lock is held, will actually find 744 * it so. 745 */ 746 lockdep_acquire_cpus_lock(); 747 cpuhp_lock_acquire(bringup); 748 749 if (st->single) { 750 state = st->cb_state; 751 st->should_run = false; 752 } else { 753 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 754 if (!st->should_run) 755 goto end; 756 } 757 758 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 759 760 if (cpuhp_is_atomic_state(state)) { 761 local_irq_disable(); 762 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 763 local_irq_enable(); 764 765 /* 766 * STARTING/DYING must not fail! 767 */ 768 WARN_ON_ONCE(st->result); 769 } else { 770 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 771 } 772 773 if (st->result) { 774 /* 775 * If we fail on a rollback, we're up a creek without no 776 * paddle, no way forward, no way back. We loose, thanks for 777 * playing. 778 */ 779 WARN_ON_ONCE(st->rollback); 780 st->should_run = false; 781 } 782 783 end: 784 cpuhp_lock_release(bringup); 785 lockdep_release_cpus_lock(); 786 787 if (!st->should_run) 788 complete_ap_thread(st, bringup); 789 } 790 791 /* Invoke a single callback on a remote cpu */ 792 static int 793 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 794 struct hlist_node *node) 795 { 796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 797 int ret; 798 799 if (!cpu_online(cpu)) 800 return 0; 801 802 cpuhp_lock_acquire(false); 803 cpuhp_lock_release(false); 804 805 cpuhp_lock_acquire(true); 806 cpuhp_lock_release(true); 807 808 /* 809 * If we are up and running, use the hotplug thread. For early calls 810 * we invoke the thread function directly. 811 */ 812 if (!st->thread) 813 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 814 815 st->rollback = false; 816 st->last = NULL; 817 818 st->node = node; 819 st->bringup = bringup; 820 st->cb_state = state; 821 st->single = true; 822 823 __cpuhp_kick_ap(st); 824 825 /* 826 * If we failed and did a partial, do a rollback. 827 */ 828 if ((ret = st->result) && st->last) { 829 st->rollback = true; 830 st->bringup = !bringup; 831 832 __cpuhp_kick_ap(st); 833 } 834 835 /* 836 * Clean up the leftovers so the next hotplug operation wont use stale 837 * data. 838 */ 839 st->node = st->last = NULL; 840 return ret; 841 } 842 843 static int cpuhp_kick_ap_work(unsigned int cpu) 844 { 845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 846 enum cpuhp_state prev_state = st->state; 847 int ret; 848 849 cpuhp_lock_acquire(false); 850 cpuhp_lock_release(false); 851 852 cpuhp_lock_acquire(true); 853 cpuhp_lock_release(true); 854 855 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 856 ret = cpuhp_kick_ap(st, st->target); 857 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 858 859 return ret; 860 } 861 862 static struct smp_hotplug_thread cpuhp_threads = { 863 .store = &cpuhp_state.thread, 864 .create = &cpuhp_create, 865 .thread_should_run = cpuhp_should_run, 866 .thread_fn = cpuhp_thread_fun, 867 .thread_comm = "cpuhp/%u", 868 .selfparking = true, 869 }; 870 871 void __init cpuhp_threads_init(void) 872 { 873 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 874 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 875 } 876 877 /* 878 * 879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 880 * protected region. 881 * 882 * The operation is still serialized against concurrent CPU hotplug via 883 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 884 * serialized against other hotplug related activity like adding or 885 * removing of state callbacks and state instances, which invoke either the 886 * startup or the teardown callback of the affected state. 887 * 888 * This is required for subsystems which are unfixable vs. CPU hotplug and 889 * evade lock inversion problems by scheduling work which has to be 890 * completed _before_ cpu_up()/_cpu_down() returns. 891 * 892 * Don't even think about adding anything to this for any new code or even 893 * drivers. It's only purpose is to keep existing lock order trainwrecks 894 * working. 895 * 896 * For cpu_down() there might be valid reasons to finish cleanups which are 897 * not required to be done under cpu_hotplug_lock, but that's a different 898 * story and would be not invoked via this. 899 */ 900 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 901 { 902 /* 903 * cpusets delegate hotplug operations to a worker to "solve" the 904 * lock order problems. Wait for the worker, but only if tasks are 905 * _not_ frozen (suspend, hibernate) as that would wait forever. 906 * 907 * The wait is required because otherwise the hotplug operation 908 * returns with inconsistent state, which could even be observed in 909 * user space when a new CPU is brought up. The CPU plug uevent 910 * would be delivered and user space reacting on it would fail to 911 * move tasks to the newly plugged CPU up to the point where the 912 * work has finished because up to that point the newly plugged CPU 913 * is not assignable in cpusets/cgroups. On unplug that's not 914 * necessarily a visible issue, but it is still inconsistent state, 915 * which is the real problem which needs to be "fixed". This can't 916 * prevent the transient state between scheduling the work and 917 * returning from waiting for it. 918 */ 919 if (!tasks_frozen) 920 cpuset_wait_for_hotplug(); 921 } 922 923 #ifdef CONFIG_HOTPLUG_CPU 924 #ifndef arch_clear_mm_cpumask_cpu 925 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 926 #endif 927 928 /** 929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 930 * @cpu: a CPU id 931 * 932 * This function walks all processes, finds a valid mm struct for each one and 933 * then clears a corresponding bit in mm's cpumask. While this all sounds 934 * trivial, there are various non-obvious corner cases, which this function 935 * tries to solve in a safe manner. 936 * 937 * Also note that the function uses a somewhat relaxed locking scheme, so it may 938 * be called only for an already offlined CPU. 939 */ 940 void clear_tasks_mm_cpumask(int cpu) 941 { 942 struct task_struct *p; 943 944 /* 945 * This function is called after the cpu is taken down and marked 946 * offline, so its not like new tasks will ever get this cpu set in 947 * their mm mask. -- Peter Zijlstra 948 * Thus, we may use rcu_read_lock() here, instead of grabbing 949 * full-fledged tasklist_lock. 950 */ 951 WARN_ON(cpu_online(cpu)); 952 rcu_read_lock(); 953 for_each_process(p) { 954 struct task_struct *t; 955 956 /* 957 * Main thread might exit, but other threads may still have 958 * a valid mm. Find one. 959 */ 960 t = find_lock_task_mm(p); 961 if (!t) 962 continue; 963 arch_clear_mm_cpumask_cpu(cpu, t->mm); 964 task_unlock(t); 965 } 966 rcu_read_unlock(); 967 } 968 969 /* Take this CPU down. */ 970 static int take_cpu_down(void *_param) 971 { 972 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 973 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 974 int err, cpu = smp_processor_id(); 975 int ret; 976 977 /* Ensure this CPU doesn't handle any more interrupts. */ 978 err = __cpu_disable(); 979 if (err < 0) 980 return err; 981 982 /* 983 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 984 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 985 */ 986 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 987 988 /* Invoke the former CPU_DYING callbacks */ 989 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 990 991 /* 992 * DYING must not fail! 993 */ 994 WARN_ON_ONCE(ret); 995 996 /* Give up timekeeping duties */ 997 tick_handover_do_timer(); 998 /* Remove CPU from timer broadcasting */ 999 tick_offline_cpu(cpu); 1000 /* Park the stopper thread */ 1001 stop_machine_park(cpu); 1002 return 0; 1003 } 1004 1005 static int takedown_cpu(unsigned int cpu) 1006 { 1007 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1008 int err; 1009 1010 /* Park the smpboot threads */ 1011 kthread_park(st->thread); 1012 1013 /* 1014 * Prevent irq alloc/free while the dying cpu reorganizes the 1015 * interrupt affinities. 1016 */ 1017 irq_lock_sparse(); 1018 1019 /* 1020 * So now all preempt/rcu users must observe !cpu_active(). 1021 */ 1022 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1023 if (err) { 1024 /* CPU refused to die */ 1025 irq_unlock_sparse(); 1026 /* Unpark the hotplug thread so we can rollback there */ 1027 kthread_unpark(st->thread); 1028 return err; 1029 } 1030 BUG_ON(cpu_online(cpu)); 1031 1032 /* 1033 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1034 * all runnable tasks from the CPU, there's only the idle task left now 1035 * that the migration thread is done doing the stop_machine thing. 1036 * 1037 * Wait for the stop thread to go away. 1038 */ 1039 wait_for_ap_thread(st, false); 1040 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1041 1042 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1043 irq_unlock_sparse(); 1044 1045 hotplug_cpu__broadcast_tick_pull(cpu); 1046 /* This actually kills the CPU. */ 1047 __cpu_die(cpu); 1048 1049 tick_cleanup_dead_cpu(cpu); 1050 rcutree_migrate_callbacks(cpu); 1051 return 0; 1052 } 1053 1054 static void cpuhp_complete_idle_dead(void *arg) 1055 { 1056 struct cpuhp_cpu_state *st = arg; 1057 1058 complete_ap_thread(st, false); 1059 } 1060 1061 void cpuhp_report_idle_dead(void) 1062 { 1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1064 1065 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1066 rcu_report_dead(smp_processor_id()); 1067 st->state = CPUHP_AP_IDLE_DEAD; 1068 /* 1069 * We cannot call complete after rcu_report_dead() so we delegate it 1070 * to an online cpu. 1071 */ 1072 smp_call_function_single(cpumask_first(cpu_online_mask), 1073 cpuhp_complete_idle_dead, st, 0); 1074 } 1075 1076 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1077 enum cpuhp_state target) 1078 { 1079 enum cpuhp_state prev_state = st->state; 1080 int ret = 0; 1081 1082 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1083 if (ret) { 1084 1085 cpuhp_reset_state(st, prev_state); 1086 1087 if (st->state < prev_state) 1088 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1089 prev_state)); 1090 } 1091 1092 return ret; 1093 } 1094 1095 /* Requires cpu_add_remove_lock to be held */ 1096 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1097 enum cpuhp_state target) 1098 { 1099 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1100 int prev_state, ret = 0; 1101 1102 if (num_online_cpus() == 1) 1103 return -EBUSY; 1104 1105 if (!cpu_present(cpu)) 1106 return -EINVAL; 1107 1108 cpus_write_lock(); 1109 1110 cpuhp_tasks_frozen = tasks_frozen; 1111 1112 prev_state = cpuhp_set_state(st, target); 1113 /* 1114 * If the current CPU state is in the range of the AP hotplug thread, 1115 * then we need to kick the thread. 1116 */ 1117 if (st->state > CPUHP_TEARDOWN_CPU) { 1118 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1119 ret = cpuhp_kick_ap_work(cpu); 1120 /* 1121 * The AP side has done the error rollback already. Just 1122 * return the error code.. 1123 */ 1124 if (ret) 1125 goto out; 1126 1127 /* 1128 * We might have stopped still in the range of the AP hotplug 1129 * thread. Nothing to do anymore. 1130 */ 1131 if (st->state > CPUHP_TEARDOWN_CPU) 1132 goto out; 1133 1134 st->target = target; 1135 } 1136 /* 1137 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1138 * to do the further cleanups. 1139 */ 1140 ret = cpuhp_down_callbacks(cpu, st, target); 1141 if (ret && st->state < prev_state) { 1142 if (st->state == CPUHP_TEARDOWN_CPU) { 1143 cpuhp_reset_state(st, prev_state); 1144 __cpuhp_kick_ap(st); 1145 } else { 1146 WARN(1, "DEAD callback error for CPU%d", cpu); 1147 } 1148 } 1149 1150 out: 1151 cpus_write_unlock(); 1152 /* 1153 * Do post unplug cleanup. This is still protected against 1154 * concurrent CPU hotplug via cpu_add_remove_lock. 1155 */ 1156 lockup_detector_cleanup(); 1157 arch_smt_update(); 1158 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1159 return ret; 1160 } 1161 1162 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1163 { 1164 if (cpu_hotplug_disabled) 1165 return -EBUSY; 1166 return _cpu_down(cpu, 0, target); 1167 } 1168 1169 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1170 { 1171 int err; 1172 1173 cpu_maps_update_begin(); 1174 err = cpu_down_maps_locked(cpu, target); 1175 cpu_maps_update_done(); 1176 return err; 1177 } 1178 1179 /** 1180 * cpu_device_down - Bring down a cpu device 1181 * @dev: Pointer to the cpu device to offline 1182 * 1183 * This function is meant to be used by device core cpu subsystem only. 1184 * 1185 * Other subsystems should use remove_cpu() instead. 1186 */ 1187 int cpu_device_down(struct device *dev) 1188 { 1189 return cpu_down(dev->id, CPUHP_OFFLINE); 1190 } 1191 1192 int remove_cpu(unsigned int cpu) 1193 { 1194 int ret; 1195 1196 lock_device_hotplug(); 1197 ret = device_offline(get_cpu_device(cpu)); 1198 unlock_device_hotplug(); 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL_GPL(remove_cpu); 1203 1204 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1205 { 1206 unsigned int cpu; 1207 int error; 1208 1209 cpu_maps_update_begin(); 1210 1211 /* 1212 * Make certain the cpu I'm about to reboot on is online. 1213 * 1214 * This is inline to what migrate_to_reboot_cpu() already do. 1215 */ 1216 if (!cpu_online(primary_cpu)) 1217 primary_cpu = cpumask_first(cpu_online_mask); 1218 1219 for_each_online_cpu(cpu) { 1220 if (cpu == primary_cpu) 1221 continue; 1222 1223 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1224 if (error) { 1225 pr_err("Failed to offline CPU%d - error=%d", 1226 cpu, error); 1227 break; 1228 } 1229 } 1230 1231 /* 1232 * Ensure all but the reboot CPU are offline. 1233 */ 1234 BUG_ON(num_online_cpus() > 1); 1235 1236 /* 1237 * Make sure the CPUs won't be enabled by someone else after this 1238 * point. Kexec will reboot to a new kernel shortly resetting 1239 * everything along the way. 1240 */ 1241 cpu_hotplug_disabled++; 1242 1243 cpu_maps_update_done(); 1244 } 1245 1246 #else 1247 #define takedown_cpu NULL 1248 #endif /*CONFIG_HOTPLUG_CPU*/ 1249 1250 /** 1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1252 * @cpu: cpu that just started 1253 * 1254 * It must be called by the arch code on the new cpu, before the new cpu 1255 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1256 */ 1257 void notify_cpu_starting(unsigned int cpu) 1258 { 1259 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1260 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1261 int ret; 1262 1263 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1264 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1265 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1266 1267 /* 1268 * STARTING must not fail! 1269 */ 1270 WARN_ON_ONCE(ret); 1271 } 1272 1273 /* 1274 * Called from the idle task. Wake up the controlling task which brings the 1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1276 * online bringup to the hotplug thread. 1277 */ 1278 void cpuhp_online_idle(enum cpuhp_state state) 1279 { 1280 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1281 1282 /* Happens for the boot cpu */ 1283 if (state != CPUHP_AP_ONLINE_IDLE) 1284 return; 1285 1286 /* 1287 * Unpart the stopper thread before we start the idle loop (and start 1288 * scheduling); this ensures the stopper task is always available. 1289 */ 1290 stop_machine_unpark(smp_processor_id()); 1291 1292 st->state = CPUHP_AP_ONLINE_IDLE; 1293 complete_ap_thread(st, true); 1294 } 1295 1296 /* Requires cpu_add_remove_lock to be held */ 1297 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1298 { 1299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1300 struct task_struct *idle; 1301 int ret = 0; 1302 1303 cpus_write_lock(); 1304 1305 if (!cpu_present(cpu)) { 1306 ret = -EINVAL; 1307 goto out; 1308 } 1309 1310 /* 1311 * The caller of cpu_up() might have raced with another 1312 * caller. Nothing to do. 1313 */ 1314 if (st->state >= target) 1315 goto out; 1316 1317 if (st->state == CPUHP_OFFLINE) { 1318 /* Let it fail before we try to bring the cpu up */ 1319 idle = idle_thread_get(cpu); 1320 if (IS_ERR(idle)) { 1321 ret = PTR_ERR(idle); 1322 goto out; 1323 } 1324 } 1325 1326 cpuhp_tasks_frozen = tasks_frozen; 1327 1328 cpuhp_set_state(st, target); 1329 /* 1330 * If the current CPU state is in the range of the AP hotplug thread, 1331 * then we need to kick the thread once more. 1332 */ 1333 if (st->state > CPUHP_BRINGUP_CPU) { 1334 ret = cpuhp_kick_ap_work(cpu); 1335 /* 1336 * The AP side has done the error rollback already. Just 1337 * return the error code.. 1338 */ 1339 if (ret) 1340 goto out; 1341 } 1342 1343 /* 1344 * Try to reach the target state. We max out on the BP at 1345 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1346 * responsible for bringing it up to the target state. 1347 */ 1348 target = min((int)target, CPUHP_BRINGUP_CPU); 1349 ret = cpuhp_up_callbacks(cpu, st, target); 1350 out: 1351 cpus_write_unlock(); 1352 arch_smt_update(); 1353 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1354 return ret; 1355 } 1356 1357 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1358 { 1359 int err = 0; 1360 1361 if (!cpu_possible(cpu)) { 1362 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1363 cpu); 1364 #if defined(CONFIG_IA64) 1365 pr_err("please check additional_cpus= boot parameter\n"); 1366 #endif 1367 return -EINVAL; 1368 } 1369 1370 err = try_online_node(cpu_to_node(cpu)); 1371 if (err) 1372 return err; 1373 1374 cpu_maps_update_begin(); 1375 1376 if (cpu_hotplug_disabled) { 1377 err = -EBUSY; 1378 goto out; 1379 } 1380 if (!cpu_smt_allowed(cpu)) { 1381 err = -EPERM; 1382 goto out; 1383 } 1384 1385 err = _cpu_up(cpu, 0, target); 1386 out: 1387 cpu_maps_update_done(); 1388 return err; 1389 } 1390 1391 /** 1392 * cpu_device_up - Bring up a cpu device 1393 * @dev: Pointer to the cpu device to online 1394 * 1395 * This function is meant to be used by device core cpu subsystem only. 1396 * 1397 * Other subsystems should use add_cpu() instead. 1398 */ 1399 int cpu_device_up(struct device *dev) 1400 { 1401 return cpu_up(dev->id, CPUHP_ONLINE); 1402 } 1403 1404 int add_cpu(unsigned int cpu) 1405 { 1406 int ret; 1407 1408 lock_device_hotplug(); 1409 ret = device_online(get_cpu_device(cpu)); 1410 unlock_device_hotplug(); 1411 1412 return ret; 1413 } 1414 EXPORT_SYMBOL_GPL(add_cpu); 1415 1416 /** 1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1418 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1419 * 1420 * On some architectures like arm64, we can hibernate on any CPU, but on 1421 * wake up the CPU we hibernated on might be offline as a side effect of 1422 * using maxcpus= for example. 1423 */ 1424 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1425 { 1426 int ret; 1427 1428 if (!cpu_online(sleep_cpu)) { 1429 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1430 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1431 if (ret) { 1432 pr_err("Failed to bring hibernate-CPU up!\n"); 1433 return ret; 1434 } 1435 } 1436 return 0; 1437 } 1438 1439 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1440 { 1441 unsigned int cpu; 1442 1443 for_each_present_cpu(cpu) { 1444 if (num_online_cpus() >= setup_max_cpus) 1445 break; 1446 if (!cpu_online(cpu)) 1447 cpu_up(cpu, CPUHP_ONLINE); 1448 } 1449 } 1450 1451 #ifdef CONFIG_PM_SLEEP_SMP 1452 static cpumask_var_t frozen_cpus; 1453 1454 int freeze_secondary_cpus(int primary) 1455 { 1456 int cpu, error = 0; 1457 1458 cpu_maps_update_begin(); 1459 if (primary == -1) { 1460 primary = cpumask_first(cpu_online_mask); 1461 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1462 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1463 } else { 1464 if (!cpu_online(primary)) 1465 primary = cpumask_first(cpu_online_mask); 1466 } 1467 1468 /* 1469 * We take down all of the non-boot CPUs in one shot to avoid races 1470 * with the userspace trying to use the CPU hotplug at the same time 1471 */ 1472 cpumask_clear(frozen_cpus); 1473 1474 pr_info("Disabling non-boot CPUs ...\n"); 1475 for_each_online_cpu(cpu) { 1476 if (cpu == primary) 1477 continue; 1478 1479 if (pm_wakeup_pending()) { 1480 pr_info("Wakeup pending. Abort CPU freeze\n"); 1481 error = -EBUSY; 1482 break; 1483 } 1484 1485 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1486 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1487 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1488 if (!error) 1489 cpumask_set_cpu(cpu, frozen_cpus); 1490 else { 1491 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1492 break; 1493 } 1494 } 1495 1496 if (!error) 1497 BUG_ON(num_online_cpus() > 1); 1498 else 1499 pr_err("Non-boot CPUs are not disabled\n"); 1500 1501 /* 1502 * Make sure the CPUs won't be enabled by someone else. We need to do 1503 * this even in case of failure as all freeze_secondary_cpus() users are 1504 * supposed to do thaw_secondary_cpus() on the failure path. 1505 */ 1506 cpu_hotplug_disabled++; 1507 1508 cpu_maps_update_done(); 1509 return error; 1510 } 1511 1512 void __weak arch_thaw_secondary_cpus_begin(void) 1513 { 1514 } 1515 1516 void __weak arch_thaw_secondary_cpus_end(void) 1517 { 1518 } 1519 1520 void thaw_secondary_cpus(void) 1521 { 1522 int cpu, error; 1523 1524 /* Allow everyone to use the CPU hotplug again */ 1525 cpu_maps_update_begin(); 1526 __cpu_hotplug_enable(); 1527 if (cpumask_empty(frozen_cpus)) 1528 goto out; 1529 1530 pr_info("Enabling non-boot CPUs ...\n"); 1531 1532 arch_thaw_secondary_cpus_begin(); 1533 1534 for_each_cpu(cpu, frozen_cpus) { 1535 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1536 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1537 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1538 if (!error) { 1539 pr_info("CPU%d is up\n", cpu); 1540 continue; 1541 } 1542 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1543 } 1544 1545 arch_thaw_secondary_cpus_end(); 1546 1547 cpumask_clear(frozen_cpus); 1548 out: 1549 cpu_maps_update_done(); 1550 } 1551 1552 static int __init alloc_frozen_cpus(void) 1553 { 1554 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1555 return -ENOMEM; 1556 return 0; 1557 } 1558 core_initcall(alloc_frozen_cpus); 1559 1560 /* 1561 * When callbacks for CPU hotplug notifications are being executed, we must 1562 * ensure that the state of the system with respect to the tasks being frozen 1563 * or not, as reported by the notification, remains unchanged *throughout the 1564 * duration* of the execution of the callbacks. 1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1566 * 1567 * This synchronization is implemented by mutually excluding regular CPU 1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1569 * Hibernate notifications. 1570 */ 1571 static int 1572 cpu_hotplug_pm_callback(struct notifier_block *nb, 1573 unsigned long action, void *ptr) 1574 { 1575 switch (action) { 1576 1577 case PM_SUSPEND_PREPARE: 1578 case PM_HIBERNATION_PREPARE: 1579 cpu_hotplug_disable(); 1580 break; 1581 1582 case PM_POST_SUSPEND: 1583 case PM_POST_HIBERNATION: 1584 cpu_hotplug_enable(); 1585 break; 1586 1587 default: 1588 return NOTIFY_DONE; 1589 } 1590 1591 return NOTIFY_OK; 1592 } 1593 1594 1595 static int __init cpu_hotplug_pm_sync_init(void) 1596 { 1597 /* 1598 * cpu_hotplug_pm_callback has higher priority than x86 1599 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1600 * to disable cpu hotplug to avoid cpu hotplug race. 1601 */ 1602 pm_notifier(cpu_hotplug_pm_callback, 0); 1603 return 0; 1604 } 1605 core_initcall(cpu_hotplug_pm_sync_init); 1606 1607 #endif /* CONFIG_PM_SLEEP_SMP */ 1608 1609 int __boot_cpu_id; 1610 1611 #endif /* CONFIG_SMP */ 1612 1613 /* Boot processor state steps */ 1614 static struct cpuhp_step cpuhp_hp_states[] = { 1615 [CPUHP_OFFLINE] = { 1616 .name = "offline", 1617 .startup.single = NULL, 1618 .teardown.single = NULL, 1619 }, 1620 #ifdef CONFIG_SMP 1621 [CPUHP_CREATE_THREADS]= { 1622 .name = "threads:prepare", 1623 .startup.single = smpboot_create_threads, 1624 .teardown.single = NULL, 1625 .cant_stop = true, 1626 }, 1627 [CPUHP_PERF_PREPARE] = { 1628 .name = "perf:prepare", 1629 .startup.single = perf_event_init_cpu, 1630 .teardown.single = perf_event_exit_cpu, 1631 }, 1632 [CPUHP_WORKQUEUE_PREP] = { 1633 .name = "workqueue:prepare", 1634 .startup.single = workqueue_prepare_cpu, 1635 .teardown.single = NULL, 1636 }, 1637 [CPUHP_HRTIMERS_PREPARE] = { 1638 .name = "hrtimers:prepare", 1639 .startup.single = hrtimers_prepare_cpu, 1640 .teardown.single = hrtimers_dead_cpu, 1641 }, 1642 [CPUHP_SMPCFD_PREPARE] = { 1643 .name = "smpcfd:prepare", 1644 .startup.single = smpcfd_prepare_cpu, 1645 .teardown.single = smpcfd_dead_cpu, 1646 }, 1647 [CPUHP_RELAY_PREPARE] = { 1648 .name = "relay:prepare", 1649 .startup.single = relay_prepare_cpu, 1650 .teardown.single = NULL, 1651 }, 1652 [CPUHP_SLAB_PREPARE] = { 1653 .name = "slab:prepare", 1654 .startup.single = slab_prepare_cpu, 1655 .teardown.single = slab_dead_cpu, 1656 }, 1657 [CPUHP_RCUTREE_PREP] = { 1658 .name = "RCU/tree:prepare", 1659 .startup.single = rcutree_prepare_cpu, 1660 .teardown.single = rcutree_dead_cpu, 1661 }, 1662 /* 1663 * On the tear-down path, timers_dead_cpu() must be invoked 1664 * before blk_mq_queue_reinit_notify() from notify_dead(), 1665 * otherwise a RCU stall occurs. 1666 */ 1667 [CPUHP_TIMERS_PREPARE] = { 1668 .name = "timers:prepare", 1669 .startup.single = timers_prepare_cpu, 1670 .teardown.single = timers_dead_cpu, 1671 }, 1672 /* Kicks the plugged cpu into life */ 1673 [CPUHP_BRINGUP_CPU] = { 1674 .name = "cpu:bringup", 1675 .startup.single = bringup_cpu, 1676 .teardown.single = finish_cpu, 1677 .cant_stop = true, 1678 }, 1679 /* Final state before CPU kills itself */ 1680 [CPUHP_AP_IDLE_DEAD] = { 1681 .name = "idle:dead", 1682 }, 1683 /* 1684 * Last state before CPU enters the idle loop to die. Transient state 1685 * for synchronization. 1686 */ 1687 [CPUHP_AP_OFFLINE] = { 1688 .name = "ap:offline", 1689 .cant_stop = true, 1690 }, 1691 /* First state is scheduler control. Interrupts are disabled */ 1692 [CPUHP_AP_SCHED_STARTING] = { 1693 .name = "sched:starting", 1694 .startup.single = sched_cpu_starting, 1695 .teardown.single = sched_cpu_dying, 1696 }, 1697 [CPUHP_AP_RCUTREE_DYING] = { 1698 .name = "RCU/tree:dying", 1699 .startup.single = NULL, 1700 .teardown.single = rcutree_dying_cpu, 1701 }, 1702 [CPUHP_AP_SMPCFD_DYING] = { 1703 .name = "smpcfd:dying", 1704 .startup.single = NULL, 1705 .teardown.single = smpcfd_dying_cpu, 1706 }, 1707 /* Entry state on starting. Interrupts enabled from here on. Transient 1708 * state for synchronsization */ 1709 [CPUHP_AP_ONLINE] = { 1710 .name = "ap:online", 1711 }, 1712 /* 1713 * Handled on control processor until the plugged processor manages 1714 * this itself. 1715 */ 1716 [CPUHP_TEARDOWN_CPU] = { 1717 .name = "cpu:teardown", 1718 .startup.single = NULL, 1719 .teardown.single = takedown_cpu, 1720 .cant_stop = true, 1721 }, 1722 1723 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1724 .name = "sched:waitempty", 1725 .startup.single = NULL, 1726 .teardown.single = sched_cpu_wait_empty, 1727 }, 1728 1729 /* Handle smpboot threads park/unpark */ 1730 [CPUHP_AP_SMPBOOT_THREADS] = { 1731 .name = "smpboot/threads:online", 1732 .startup.single = smpboot_unpark_threads, 1733 .teardown.single = smpboot_park_threads, 1734 }, 1735 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1736 .name = "irq/affinity:online", 1737 .startup.single = irq_affinity_online_cpu, 1738 .teardown.single = NULL, 1739 }, 1740 [CPUHP_AP_PERF_ONLINE] = { 1741 .name = "perf:online", 1742 .startup.single = perf_event_init_cpu, 1743 .teardown.single = perf_event_exit_cpu, 1744 }, 1745 [CPUHP_AP_WATCHDOG_ONLINE] = { 1746 .name = "lockup_detector:online", 1747 .startup.single = lockup_detector_online_cpu, 1748 .teardown.single = lockup_detector_offline_cpu, 1749 }, 1750 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1751 .name = "workqueue:online", 1752 .startup.single = workqueue_online_cpu, 1753 .teardown.single = workqueue_offline_cpu, 1754 }, 1755 [CPUHP_AP_RCUTREE_ONLINE] = { 1756 .name = "RCU/tree:online", 1757 .startup.single = rcutree_online_cpu, 1758 .teardown.single = rcutree_offline_cpu, 1759 }, 1760 #endif 1761 /* 1762 * The dynamically registered state space is here 1763 */ 1764 1765 #ifdef CONFIG_SMP 1766 /* Last state is scheduler control setting the cpu active */ 1767 [CPUHP_AP_ACTIVE] = { 1768 .name = "sched:active", 1769 .startup.single = sched_cpu_activate, 1770 .teardown.single = sched_cpu_deactivate, 1771 }, 1772 #endif 1773 1774 /* CPU is fully up and running. */ 1775 [CPUHP_ONLINE] = { 1776 .name = "online", 1777 .startup.single = NULL, 1778 .teardown.single = NULL, 1779 }, 1780 }; 1781 1782 /* Sanity check for callbacks */ 1783 static int cpuhp_cb_check(enum cpuhp_state state) 1784 { 1785 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1786 return -EINVAL; 1787 return 0; 1788 } 1789 1790 /* 1791 * Returns a free for dynamic slot assignment of the Online state. The states 1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1793 * by having no name assigned. 1794 */ 1795 static int cpuhp_reserve_state(enum cpuhp_state state) 1796 { 1797 enum cpuhp_state i, end; 1798 struct cpuhp_step *step; 1799 1800 switch (state) { 1801 case CPUHP_AP_ONLINE_DYN: 1802 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1803 end = CPUHP_AP_ONLINE_DYN_END; 1804 break; 1805 case CPUHP_BP_PREPARE_DYN: 1806 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1807 end = CPUHP_BP_PREPARE_DYN_END; 1808 break; 1809 default: 1810 return -EINVAL; 1811 } 1812 1813 for (i = state; i <= end; i++, step++) { 1814 if (!step->name) 1815 return i; 1816 } 1817 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1818 return -ENOSPC; 1819 } 1820 1821 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1822 int (*startup)(unsigned int cpu), 1823 int (*teardown)(unsigned int cpu), 1824 bool multi_instance) 1825 { 1826 /* (Un)Install the callbacks for further cpu hotplug operations */ 1827 struct cpuhp_step *sp; 1828 int ret = 0; 1829 1830 /* 1831 * If name is NULL, then the state gets removed. 1832 * 1833 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1834 * the first allocation from these dynamic ranges, so the removal 1835 * would trigger a new allocation and clear the wrong (already 1836 * empty) state, leaving the callbacks of the to be cleared state 1837 * dangling, which causes wreckage on the next hotplug operation. 1838 */ 1839 if (name && (state == CPUHP_AP_ONLINE_DYN || 1840 state == CPUHP_BP_PREPARE_DYN)) { 1841 ret = cpuhp_reserve_state(state); 1842 if (ret < 0) 1843 return ret; 1844 state = ret; 1845 } 1846 sp = cpuhp_get_step(state); 1847 if (name && sp->name) 1848 return -EBUSY; 1849 1850 sp->startup.single = startup; 1851 sp->teardown.single = teardown; 1852 sp->name = name; 1853 sp->multi_instance = multi_instance; 1854 INIT_HLIST_HEAD(&sp->list); 1855 return ret; 1856 } 1857 1858 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1859 { 1860 return cpuhp_get_step(state)->teardown.single; 1861 } 1862 1863 /* 1864 * Call the startup/teardown function for a step either on the AP or 1865 * on the current CPU. 1866 */ 1867 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1868 struct hlist_node *node) 1869 { 1870 struct cpuhp_step *sp = cpuhp_get_step(state); 1871 int ret; 1872 1873 /* 1874 * If there's nothing to do, we done. 1875 * Relies on the union for multi_instance. 1876 */ 1877 if (cpuhp_step_empty(bringup, sp)) 1878 return 0; 1879 /* 1880 * The non AP bound callbacks can fail on bringup. On teardown 1881 * e.g. module removal we crash for now. 1882 */ 1883 #ifdef CONFIG_SMP 1884 if (cpuhp_is_ap_state(state)) 1885 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1886 else 1887 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1888 #else 1889 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1890 #endif 1891 BUG_ON(ret && !bringup); 1892 return ret; 1893 } 1894 1895 /* 1896 * Called from __cpuhp_setup_state on a recoverable failure. 1897 * 1898 * Note: The teardown callbacks for rollback are not allowed to fail! 1899 */ 1900 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1901 struct hlist_node *node) 1902 { 1903 int cpu; 1904 1905 /* Roll back the already executed steps on the other cpus */ 1906 for_each_present_cpu(cpu) { 1907 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1908 int cpustate = st->state; 1909 1910 if (cpu >= failedcpu) 1911 break; 1912 1913 /* Did we invoke the startup call on that cpu ? */ 1914 if (cpustate >= state) 1915 cpuhp_issue_call(cpu, state, false, node); 1916 } 1917 } 1918 1919 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1920 struct hlist_node *node, 1921 bool invoke) 1922 { 1923 struct cpuhp_step *sp; 1924 int cpu; 1925 int ret; 1926 1927 lockdep_assert_cpus_held(); 1928 1929 sp = cpuhp_get_step(state); 1930 if (sp->multi_instance == false) 1931 return -EINVAL; 1932 1933 mutex_lock(&cpuhp_state_mutex); 1934 1935 if (!invoke || !sp->startup.multi) 1936 goto add_node; 1937 1938 /* 1939 * Try to call the startup callback for each present cpu 1940 * depending on the hotplug state of the cpu. 1941 */ 1942 for_each_present_cpu(cpu) { 1943 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1944 int cpustate = st->state; 1945 1946 if (cpustate < state) 1947 continue; 1948 1949 ret = cpuhp_issue_call(cpu, state, true, node); 1950 if (ret) { 1951 if (sp->teardown.multi) 1952 cpuhp_rollback_install(cpu, state, node); 1953 goto unlock; 1954 } 1955 } 1956 add_node: 1957 ret = 0; 1958 hlist_add_head(node, &sp->list); 1959 unlock: 1960 mutex_unlock(&cpuhp_state_mutex); 1961 return ret; 1962 } 1963 1964 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1965 bool invoke) 1966 { 1967 int ret; 1968 1969 cpus_read_lock(); 1970 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1971 cpus_read_unlock(); 1972 return ret; 1973 } 1974 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1975 1976 /** 1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1978 * @state: The state to setup 1979 * @invoke: If true, the startup function is invoked for cpus where 1980 * cpu state >= @state 1981 * @startup: startup callback function 1982 * @teardown: teardown callback function 1983 * @multi_instance: State is set up for multiple instances which get 1984 * added afterwards. 1985 * 1986 * The caller needs to hold cpus read locked while calling this function. 1987 * Returns: 1988 * On success: 1989 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1990 * 0 for all other states 1991 * On failure: proper (negative) error code 1992 */ 1993 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1994 const char *name, bool invoke, 1995 int (*startup)(unsigned int cpu), 1996 int (*teardown)(unsigned int cpu), 1997 bool multi_instance) 1998 { 1999 int cpu, ret = 0; 2000 bool dynstate; 2001 2002 lockdep_assert_cpus_held(); 2003 2004 if (cpuhp_cb_check(state) || !name) 2005 return -EINVAL; 2006 2007 mutex_lock(&cpuhp_state_mutex); 2008 2009 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2010 multi_instance); 2011 2012 dynstate = state == CPUHP_AP_ONLINE_DYN; 2013 if (ret > 0 && dynstate) { 2014 state = ret; 2015 ret = 0; 2016 } 2017 2018 if (ret || !invoke || !startup) 2019 goto out; 2020 2021 /* 2022 * Try to call the startup callback for each present cpu 2023 * depending on the hotplug state of the cpu. 2024 */ 2025 for_each_present_cpu(cpu) { 2026 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2027 int cpustate = st->state; 2028 2029 if (cpustate < state) 2030 continue; 2031 2032 ret = cpuhp_issue_call(cpu, state, true, NULL); 2033 if (ret) { 2034 if (teardown) 2035 cpuhp_rollback_install(cpu, state, NULL); 2036 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2037 goto out; 2038 } 2039 } 2040 out: 2041 mutex_unlock(&cpuhp_state_mutex); 2042 /* 2043 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2044 * dynamically allocated state in case of success. 2045 */ 2046 if (!ret && dynstate) 2047 return state; 2048 return ret; 2049 } 2050 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2051 2052 int __cpuhp_setup_state(enum cpuhp_state state, 2053 const char *name, bool invoke, 2054 int (*startup)(unsigned int cpu), 2055 int (*teardown)(unsigned int cpu), 2056 bool multi_instance) 2057 { 2058 int ret; 2059 2060 cpus_read_lock(); 2061 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2062 teardown, multi_instance); 2063 cpus_read_unlock(); 2064 return ret; 2065 } 2066 EXPORT_SYMBOL(__cpuhp_setup_state); 2067 2068 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2069 struct hlist_node *node, bool invoke) 2070 { 2071 struct cpuhp_step *sp = cpuhp_get_step(state); 2072 int cpu; 2073 2074 BUG_ON(cpuhp_cb_check(state)); 2075 2076 if (!sp->multi_instance) 2077 return -EINVAL; 2078 2079 cpus_read_lock(); 2080 mutex_lock(&cpuhp_state_mutex); 2081 2082 if (!invoke || !cpuhp_get_teardown_cb(state)) 2083 goto remove; 2084 /* 2085 * Call the teardown callback for each present cpu depending 2086 * on the hotplug state of the cpu. This function is not 2087 * allowed to fail currently! 2088 */ 2089 for_each_present_cpu(cpu) { 2090 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2091 int cpustate = st->state; 2092 2093 if (cpustate >= state) 2094 cpuhp_issue_call(cpu, state, false, node); 2095 } 2096 2097 remove: 2098 hlist_del(node); 2099 mutex_unlock(&cpuhp_state_mutex); 2100 cpus_read_unlock(); 2101 2102 return 0; 2103 } 2104 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2105 2106 /** 2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2108 * @state: The state to remove 2109 * @invoke: If true, the teardown function is invoked for cpus where 2110 * cpu state >= @state 2111 * 2112 * The caller needs to hold cpus read locked while calling this function. 2113 * The teardown callback is currently not allowed to fail. Think 2114 * about module removal! 2115 */ 2116 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2117 { 2118 struct cpuhp_step *sp = cpuhp_get_step(state); 2119 int cpu; 2120 2121 BUG_ON(cpuhp_cb_check(state)); 2122 2123 lockdep_assert_cpus_held(); 2124 2125 mutex_lock(&cpuhp_state_mutex); 2126 if (sp->multi_instance) { 2127 WARN(!hlist_empty(&sp->list), 2128 "Error: Removing state %d which has instances left.\n", 2129 state); 2130 goto remove; 2131 } 2132 2133 if (!invoke || !cpuhp_get_teardown_cb(state)) 2134 goto remove; 2135 2136 /* 2137 * Call the teardown callback for each present cpu depending 2138 * on the hotplug state of the cpu. This function is not 2139 * allowed to fail currently! 2140 */ 2141 for_each_present_cpu(cpu) { 2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2143 int cpustate = st->state; 2144 2145 if (cpustate >= state) 2146 cpuhp_issue_call(cpu, state, false, NULL); 2147 } 2148 remove: 2149 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2150 mutex_unlock(&cpuhp_state_mutex); 2151 } 2152 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2153 2154 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2155 { 2156 cpus_read_lock(); 2157 __cpuhp_remove_state_cpuslocked(state, invoke); 2158 cpus_read_unlock(); 2159 } 2160 EXPORT_SYMBOL(__cpuhp_remove_state); 2161 2162 #ifdef CONFIG_HOTPLUG_SMT 2163 static void cpuhp_offline_cpu_device(unsigned int cpu) 2164 { 2165 struct device *dev = get_cpu_device(cpu); 2166 2167 dev->offline = true; 2168 /* Tell user space about the state change */ 2169 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2170 } 2171 2172 static void cpuhp_online_cpu_device(unsigned int cpu) 2173 { 2174 struct device *dev = get_cpu_device(cpu); 2175 2176 dev->offline = false; 2177 /* Tell user space about the state change */ 2178 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2179 } 2180 2181 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2182 { 2183 int cpu, ret = 0; 2184 2185 cpu_maps_update_begin(); 2186 for_each_online_cpu(cpu) { 2187 if (topology_is_primary_thread(cpu)) 2188 continue; 2189 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2190 if (ret) 2191 break; 2192 /* 2193 * As this needs to hold the cpu maps lock it's impossible 2194 * to call device_offline() because that ends up calling 2195 * cpu_down() which takes cpu maps lock. cpu maps lock 2196 * needs to be held as this might race against in kernel 2197 * abusers of the hotplug machinery (thermal management). 2198 * 2199 * So nothing would update device:offline state. That would 2200 * leave the sysfs entry stale and prevent onlining after 2201 * smt control has been changed to 'off' again. This is 2202 * called under the sysfs hotplug lock, so it is properly 2203 * serialized against the regular offline usage. 2204 */ 2205 cpuhp_offline_cpu_device(cpu); 2206 } 2207 if (!ret) 2208 cpu_smt_control = ctrlval; 2209 cpu_maps_update_done(); 2210 return ret; 2211 } 2212 2213 int cpuhp_smt_enable(void) 2214 { 2215 int cpu, ret = 0; 2216 2217 cpu_maps_update_begin(); 2218 cpu_smt_control = CPU_SMT_ENABLED; 2219 for_each_present_cpu(cpu) { 2220 /* Skip online CPUs and CPUs on offline nodes */ 2221 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2222 continue; 2223 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2224 if (ret) 2225 break; 2226 /* See comment in cpuhp_smt_disable() */ 2227 cpuhp_online_cpu_device(cpu); 2228 } 2229 cpu_maps_update_done(); 2230 return ret; 2231 } 2232 #endif 2233 2234 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2235 static ssize_t show_cpuhp_state(struct device *dev, 2236 struct device_attribute *attr, char *buf) 2237 { 2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2239 2240 return sprintf(buf, "%d\n", st->state); 2241 } 2242 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2243 2244 static ssize_t write_cpuhp_target(struct device *dev, 2245 struct device_attribute *attr, 2246 const char *buf, size_t count) 2247 { 2248 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2249 struct cpuhp_step *sp; 2250 int target, ret; 2251 2252 ret = kstrtoint(buf, 10, &target); 2253 if (ret) 2254 return ret; 2255 2256 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2257 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2258 return -EINVAL; 2259 #else 2260 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2261 return -EINVAL; 2262 #endif 2263 2264 ret = lock_device_hotplug_sysfs(); 2265 if (ret) 2266 return ret; 2267 2268 mutex_lock(&cpuhp_state_mutex); 2269 sp = cpuhp_get_step(target); 2270 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2271 mutex_unlock(&cpuhp_state_mutex); 2272 if (ret) 2273 goto out; 2274 2275 if (st->state < target) 2276 ret = cpu_up(dev->id, target); 2277 else 2278 ret = cpu_down(dev->id, target); 2279 out: 2280 unlock_device_hotplug(); 2281 return ret ? ret : count; 2282 } 2283 2284 static ssize_t show_cpuhp_target(struct device *dev, 2285 struct device_attribute *attr, char *buf) 2286 { 2287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2288 2289 return sprintf(buf, "%d\n", st->target); 2290 } 2291 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2292 2293 2294 static ssize_t write_cpuhp_fail(struct device *dev, 2295 struct device_attribute *attr, 2296 const char *buf, size_t count) 2297 { 2298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2299 struct cpuhp_step *sp; 2300 int fail, ret; 2301 2302 ret = kstrtoint(buf, 10, &fail); 2303 if (ret) 2304 return ret; 2305 2306 if (fail == CPUHP_INVALID) { 2307 st->fail = fail; 2308 return count; 2309 } 2310 2311 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2312 return -EINVAL; 2313 2314 /* 2315 * Cannot fail STARTING/DYING callbacks. 2316 */ 2317 if (cpuhp_is_atomic_state(fail)) 2318 return -EINVAL; 2319 2320 /* 2321 * DEAD callbacks cannot fail... 2322 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2323 * triggering STARTING callbacks, a failure in this state would 2324 * hinder rollback. 2325 */ 2326 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2327 return -EINVAL; 2328 2329 /* 2330 * Cannot fail anything that doesn't have callbacks. 2331 */ 2332 mutex_lock(&cpuhp_state_mutex); 2333 sp = cpuhp_get_step(fail); 2334 if (!sp->startup.single && !sp->teardown.single) 2335 ret = -EINVAL; 2336 mutex_unlock(&cpuhp_state_mutex); 2337 if (ret) 2338 return ret; 2339 2340 st->fail = fail; 2341 2342 return count; 2343 } 2344 2345 static ssize_t show_cpuhp_fail(struct device *dev, 2346 struct device_attribute *attr, char *buf) 2347 { 2348 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2349 2350 return sprintf(buf, "%d\n", st->fail); 2351 } 2352 2353 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2354 2355 static struct attribute *cpuhp_cpu_attrs[] = { 2356 &dev_attr_state.attr, 2357 &dev_attr_target.attr, 2358 &dev_attr_fail.attr, 2359 NULL 2360 }; 2361 2362 static const struct attribute_group cpuhp_cpu_attr_group = { 2363 .attrs = cpuhp_cpu_attrs, 2364 .name = "hotplug", 2365 NULL 2366 }; 2367 2368 static ssize_t show_cpuhp_states(struct device *dev, 2369 struct device_attribute *attr, char *buf) 2370 { 2371 ssize_t cur, res = 0; 2372 int i; 2373 2374 mutex_lock(&cpuhp_state_mutex); 2375 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2376 struct cpuhp_step *sp = cpuhp_get_step(i); 2377 2378 if (sp->name) { 2379 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2380 buf += cur; 2381 res += cur; 2382 } 2383 } 2384 mutex_unlock(&cpuhp_state_mutex); 2385 return res; 2386 } 2387 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2388 2389 static struct attribute *cpuhp_cpu_root_attrs[] = { 2390 &dev_attr_states.attr, 2391 NULL 2392 }; 2393 2394 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2395 .attrs = cpuhp_cpu_root_attrs, 2396 .name = "hotplug", 2397 NULL 2398 }; 2399 2400 #ifdef CONFIG_HOTPLUG_SMT 2401 2402 static ssize_t 2403 __store_smt_control(struct device *dev, struct device_attribute *attr, 2404 const char *buf, size_t count) 2405 { 2406 int ctrlval, ret; 2407 2408 if (sysfs_streq(buf, "on")) 2409 ctrlval = CPU_SMT_ENABLED; 2410 else if (sysfs_streq(buf, "off")) 2411 ctrlval = CPU_SMT_DISABLED; 2412 else if (sysfs_streq(buf, "forceoff")) 2413 ctrlval = CPU_SMT_FORCE_DISABLED; 2414 else 2415 return -EINVAL; 2416 2417 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2418 return -EPERM; 2419 2420 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2421 return -ENODEV; 2422 2423 ret = lock_device_hotplug_sysfs(); 2424 if (ret) 2425 return ret; 2426 2427 if (ctrlval != cpu_smt_control) { 2428 switch (ctrlval) { 2429 case CPU_SMT_ENABLED: 2430 ret = cpuhp_smt_enable(); 2431 break; 2432 case CPU_SMT_DISABLED: 2433 case CPU_SMT_FORCE_DISABLED: 2434 ret = cpuhp_smt_disable(ctrlval); 2435 break; 2436 } 2437 } 2438 2439 unlock_device_hotplug(); 2440 return ret ? ret : count; 2441 } 2442 2443 #else /* !CONFIG_HOTPLUG_SMT */ 2444 static ssize_t 2445 __store_smt_control(struct device *dev, struct device_attribute *attr, 2446 const char *buf, size_t count) 2447 { 2448 return -ENODEV; 2449 } 2450 #endif /* CONFIG_HOTPLUG_SMT */ 2451 2452 static const char *smt_states[] = { 2453 [CPU_SMT_ENABLED] = "on", 2454 [CPU_SMT_DISABLED] = "off", 2455 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2456 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2457 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2458 }; 2459 2460 static ssize_t 2461 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2462 { 2463 const char *state = smt_states[cpu_smt_control]; 2464 2465 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2466 } 2467 2468 static ssize_t 2469 store_smt_control(struct device *dev, struct device_attribute *attr, 2470 const char *buf, size_t count) 2471 { 2472 return __store_smt_control(dev, attr, buf, count); 2473 } 2474 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2475 2476 static ssize_t 2477 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2478 { 2479 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2480 } 2481 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2482 2483 static struct attribute *cpuhp_smt_attrs[] = { 2484 &dev_attr_control.attr, 2485 &dev_attr_active.attr, 2486 NULL 2487 }; 2488 2489 static const struct attribute_group cpuhp_smt_attr_group = { 2490 .attrs = cpuhp_smt_attrs, 2491 .name = "smt", 2492 NULL 2493 }; 2494 2495 static int __init cpu_smt_sysfs_init(void) 2496 { 2497 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2498 &cpuhp_smt_attr_group); 2499 } 2500 2501 static int __init cpuhp_sysfs_init(void) 2502 { 2503 int cpu, ret; 2504 2505 ret = cpu_smt_sysfs_init(); 2506 if (ret) 2507 return ret; 2508 2509 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2510 &cpuhp_cpu_root_attr_group); 2511 if (ret) 2512 return ret; 2513 2514 for_each_possible_cpu(cpu) { 2515 struct device *dev = get_cpu_device(cpu); 2516 2517 if (!dev) 2518 continue; 2519 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2520 if (ret) 2521 return ret; 2522 } 2523 return 0; 2524 } 2525 device_initcall(cpuhp_sysfs_init); 2526 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2527 2528 /* 2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2530 * represents all NR_CPUS bits binary values of 1<<nr. 2531 * 2532 * It is used by cpumask_of() to get a constant address to a CPU 2533 * mask value that has a single bit set only. 2534 */ 2535 2536 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2537 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2538 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2539 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2540 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2541 2542 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2543 2544 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2545 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2546 #if BITS_PER_LONG > 32 2547 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2548 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2549 #endif 2550 }; 2551 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2552 2553 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2554 EXPORT_SYMBOL(cpu_all_bits); 2555 2556 #ifdef CONFIG_INIT_ALL_POSSIBLE 2557 struct cpumask __cpu_possible_mask __read_mostly 2558 = {CPU_BITS_ALL}; 2559 #else 2560 struct cpumask __cpu_possible_mask __read_mostly; 2561 #endif 2562 EXPORT_SYMBOL(__cpu_possible_mask); 2563 2564 struct cpumask __cpu_online_mask __read_mostly; 2565 EXPORT_SYMBOL(__cpu_online_mask); 2566 2567 struct cpumask __cpu_present_mask __read_mostly; 2568 EXPORT_SYMBOL(__cpu_present_mask); 2569 2570 struct cpumask __cpu_active_mask __read_mostly; 2571 EXPORT_SYMBOL(__cpu_active_mask); 2572 2573 struct cpumask __cpu_dying_mask __read_mostly; 2574 EXPORT_SYMBOL(__cpu_dying_mask); 2575 2576 atomic_t __num_online_cpus __read_mostly; 2577 EXPORT_SYMBOL(__num_online_cpus); 2578 2579 void init_cpu_present(const struct cpumask *src) 2580 { 2581 cpumask_copy(&__cpu_present_mask, src); 2582 } 2583 2584 void init_cpu_possible(const struct cpumask *src) 2585 { 2586 cpumask_copy(&__cpu_possible_mask, src); 2587 } 2588 2589 void init_cpu_online(const struct cpumask *src) 2590 { 2591 cpumask_copy(&__cpu_online_mask, src); 2592 } 2593 2594 void set_cpu_online(unsigned int cpu, bool online) 2595 { 2596 /* 2597 * atomic_inc/dec() is required to handle the horrid abuse of this 2598 * function by the reboot and kexec code which invoke it from 2599 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2600 * regular CPU hotplug is properly serialized. 2601 * 2602 * Note, that the fact that __num_online_cpus is of type atomic_t 2603 * does not protect readers which are not serialized against 2604 * concurrent hotplug operations. 2605 */ 2606 if (online) { 2607 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2608 atomic_inc(&__num_online_cpus); 2609 } else { 2610 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2611 atomic_dec(&__num_online_cpus); 2612 } 2613 } 2614 2615 /* 2616 * Activate the first processor. 2617 */ 2618 void __init boot_cpu_init(void) 2619 { 2620 int cpu = smp_processor_id(); 2621 2622 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2623 set_cpu_online(cpu, true); 2624 set_cpu_active(cpu, true); 2625 set_cpu_present(cpu, true); 2626 set_cpu_possible(cpu, true); 2627 2628 #ifdef CONFIG_SMP 2629 __boot_cpu_id = cpu; 2630 #endif 2631 } 2632 2633 /* 2634 * Must be called _AFTER_ setting up the per_cpu areas 2635 */ 2636 void __init boot_cpu_hotplug_init(void) 2637 { 2638 #ifdef CONFIG_SMP 2639 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2640 #endif 2641 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2642 } 2643 2644 /* 2645 * These are used for a global "mitigations=" cmdline option for toggling 2646 * optional CPU mitigations. 2647 */ 2648 enum cpu_mitigations { 2649 CPU_MITIGATIONS_OFF, 2650 CPU_MITIGATIONS_AUTO, 2651 CPU_MITIGATIONS_AUTO_NOSMT, 2652 }; 2653 2654 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2655 CPU_MITIGATIONS_AUTO; 2656 2657 static int __init mitigations_parse_cmdline(char *arg) 2658 { 2659 if (!strcmp(arg, "off")) 2660 cpu_mitigations = CPU_MITIGATIONS_OFF; 2661 else if (!strcmp(arg, "auto")) 2662 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2663 else if (!strcmp(arg, "auto,nosmt")) 2664 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2665 else 2666 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2667 arg); 2668 2669 return 0; 2670 } 2671 early_param("mitigations", mitigations_parse_cmdline); 2672 2673 /* mitigations=off */ 2674 bool cpu_mitigations_off(void) 2675 { 2676 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2677 } 2678 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2679 2680 /* mitigations=auto,nosmt */ 2681 bool cpu_mitigations_auto_nosmt(void) 2682 { 2683 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2684 } 2685 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2686