1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bug.h> 21 #include <linux/kthread.h> 22 #include <linux/stop_machine.h> 23 #include <linux/mutex.h> 24 #include <linux/gfp.h> 25 #include <linux/suspend.h> 26 #include <linux/lockdep.h> 27 #include <linux/tick.h> 28 #include <linux/irq.h> 29 #include <linux/nmi.h> 30 #include <linux/smpboot.h> 31 #include <linux/relay.h> 32 #include <linux/slab.h> 33 #include <linux/percpu-rwsem.h> 34 35 #include <trace/events/power.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/cpuhp.h> 38 39 #include "smpboot.h" 40 41 /** 42 * cpuhp_cpu_state - Per cpu hotplug state storage 43 * @state: The current cpu state 44 * @target: The target state 45 * @thread: Pointer to the hotplug thread 46 * @should_run: Thread should execute 47 * @rollback: Perform a rollback 48 * @single: Single callback invocation 49 * @bringup: Single callback bringup or teardown selector 50 * @cb_state: The state for a single callback (install/uninstall) 51 * @result: Result of the operation 52 * @done_up: Signal completion to the issuer of the task for cpu-up 53 * @done_down: Signal completion to the issuer of the task for cpu-down 54 */ 55 struct cpuhp_cpu_state { 56 enum cpuhp_state state; 57 enum cpuhp_state target; 58 enum cpuhp_state fail; 59 #ifdef CONFIG_SMP 60 struct task_struct *thread; 61 bool should_run; 62 bool rollback; 63 bool single; 64 bool bringup; 65 bool booted_once; 66 struct hlist_node *node; 67 struct hlist_node *last; 68 enum cpuhp_state cb_state; 69 int result; 70 struct completion done_up; 71 struct completion done_down; 72 #endif 73 }; 74 75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 76 .fail = CPUHP_INVALID, 77 }; 78 79 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 80 static struct lockdep_map cpuhp_state_up_map = 81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 82 static struct lockdep_map cpuhp_state_down_map = 83 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 84 85 86 static inline void cpuhp_lock_acquire(bool bringup) 87 { 88 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 89 } 90 91 static inline void cpuhp_lock_release(bool bringup) 92 { 93 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 94 } 95 #else 96 97 static inline void cpuhp_lock_acquire(bool bringup) { } 98 static inline void cpuhp_lock_release(bool bringup) { } 99 100 #endif 101 102 /** 103 * cpuhp_step - Hotplug state machine step 104 * @name: Name of the step 105 * @startup: Startup function of the step 106 * @teardown: Teardown function of the step 107 * @cant_stop: Bringup/teardown can't be stopped at this step 108 */ 109 struct cpuhp_step { 110 const char *name; 111 union { 112 int (*single)(unsigned int cpu); 113 int (*multi)(unsigned int cpu, 114 struct hlist_node *node); 115 } startup; 116 union { 117 int (*single)(unsigned int cpu); 118 int (*multi)(unsigned int cpu, 119 struct hlist_node *node); 120 } teardown; 121 struct hlist_head list; 122 bool cant_stop; 123 bool multi_instance; 124 }; 125 126 static DEFINE_MUTEX(cpuhp_state_mutex); 127 static struct cpuhp_step cpuhp_hp_states[]; 128 129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 130 { 131 return cpuhp_hp_states + state; 132 } 133 134 /** 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 136 * @cpu: The cpu for which the callback should be invoked 137 * @state: The state to do callbacks for 138 * @bringup: True if the bringup callback should be invoked 139 * @node: For multi-instance, do a single entry callback for install/remove 140 * @lastp: For multi-instance rollback, remember how far we got 141 * 142 * Called from cpu hotplug and from the state register machinery. 143 */ 144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 145 bool bringup, struct hlist_node *node, 146 struct hlist_node **lastp) 147 { 148 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 149 struct cpuhp_step *step = cpuhp_get_step(state); 150 int (*cbm)(unsigned int cpu, struct hlist_node *node); 151 int (*cb)(unsigned int cpu); 152 int ret, cnt; 153 154 if (st->fail == state) { 155 st->fail = CPUHP_INVALID; 156 157 if (!(bringup ? step->startup.single : step->teardown.single)) 158 return 0; 159 160 return -EAGAIN; 161 } 162 163 if (!step->multi_instance) { 164 WARN_ON_ONCE(lastp && *lastp); 165 cb = bringup ? step->startup.single : step->teardown.single; 166 if (!cb) 167 return 0; 168 trace_cpuhp_enter(cpu, st->target, state, cb); 169 ret = cb(cpu); 170 trace_cpuhp_exit(cpu, st->state, state, ret); 171 return ret; 172 } 173 cbm = bringup ? step->startup.multi : step->teardown.multi; 174 if (!cbm) 175 return 0; 176 177 /* Single invocation for instance add/remove */ 178 if (node) { 179 WARN_ON_ONCE(lastp && *lastp); 180 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 181 ret = cbm(cpu, node); 182 trace_cpuhp_exit(cpu, st->state, state, ret); 183 return ret; 184 } 185 186 /* State transition. Invoke on all instances */ 187 cnt = 0; 188 hlist_for_each(node, &step->list) { 189 if (lastp && node == *lastp) 190 break; 191 192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 193 ret = cbm(cpu, node); 194 trace_cpuhp_exit(cpu, st->state, state, ret); 195 if (ret) { 196 if (!lastp) 197 goto err; 198 199 *lastp = node; 200 return ret; 201 } 202 cnt++; 203 } 204 if (lastp) 205 *lastp = NULL; 206 return 0; 207 err: 208 /* Rollback the instances if one failed */ 209 cbm = !bringup ? step->startup.multi : step->teardown.multi; 210 if (!cbm) 211 return ret; 212 213 hlist_for_each(node, &step->list) { 214 if (!cnt--) 215 break; 216 217 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 218 ret = cbm(cpu, node); 219 trace_cpuhp_exit(cpu, st->state, state, ret); 220 /* 221 * Rollback must not fail, 222 */ 223 WARN_ON_ONCE(ret); 224 } 225 return ret; 226 } 227 228 #ifdef CONFIG_SMP 229 static bool cpuhp_is_ap_state(enum cpuhp_state state) 230 { 231 /* 232 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 233 * purposes as that state is handled explicitly in cpu_down. 234 */ 235 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 236 } 237 238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 239 { 240 struct completion *done = bringup ? &st->done_up : &st->done_down; 241 wait_for_completion(done); 242 } 243 244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 245 { 246 struct completion *done = bringup ? &st->done_up : &st->done_down; 247 complete(done); 248 } 249 250 /* 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 252 */ 253 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 254 { 255 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 256 } 257 258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 259 static DEFINE_MUTEX(cpu_add_remove_lock); 260 bool cpuhp_tasks_frozen; 261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 262 263 /* 264 * The following two APIs (cpu_maps_update_begin/done) must be used when 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 266 */ 267 void cpu_maps_update_begin(void) 268 { 269 mutex_lock(&cpu_add_remove_lock); 270 } 271 272 void cpu_maps_update_done(void) 273 { 274 mutex_unlock(&cpu_add_remove_lock); 275 } 276 277 /* 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 279 * Should always be manipulated under cpu_add_remove_lock 280 */ 281 static int cpu_hotplug_disabled; 282 283 #ifdef CONFIG_HOTPLUG_CPU 284 285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 286 287 void cpus_read_lock(void) 288 { 289 percpu_down_read(&cpu_hotplug_lock); 290 } 291 EXPORT_SYMBOL_GPL(cpus_read_lock); 292 293 int cpus_read_trylock(void) 294 { 295 return percpu_down_read_trylock(&cpu_hotplug_lock); 296 } 297 EXPORT_SYMBOL_GPL(cpus_read_trylock); 298 299 void cpus_read_unlock(void) 300 { 301 percpu_up_read(&cpu_hotplug_lock); 302 } 303 EXPORT_SYMBOL_GPL(cpus_read_unlock); 304 305 void cpus_write_lock(void) 306 { 307 percpu_down_write(&cpu_hotplug_lock); 308 } 309 310 void cpus_write_unlock(void) 311 { 312 percpu_up_write(&cpu_hotplug_lock); 313 } 314 315 void lockdep_assert_cpus_held(void) 316 { 317 /* 318 * We can't have hotplug operations before userspace starts running, 319 * and some init codepaths will knowingly not take the hotplug lock. 320 * This is all valid, so mute lockdep until it makes sense to report 321 * unheld locks. 322 */ 323 if (system_state < SYSTEM_RUNNING) 324 return; 325 326 percpu_rwsem_assert_held(&cpu_hotplug_lock); 327 } 328 329 static void lockdep_acquire_cpus_lock(void) 330 { 331 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 332 } 333 334 static void lockdep_release_cpus_lock(void) 335 { 336 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_); 337 } 338 339 /* 340 * Wait for currently running CPU hotplug operations to complete (if any) and 341 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 342 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 343 * hotplug path before performing hotplug operations. So acquiring that lock 344 * guarantees mutual exclusion from any currently running hotplug operations. 345 */ 346 void cpu_hotplug_disable(void) 347 { 348 cpu_maps_update_begin(); 349 cpu_hotplug_disabled++; 350 cpu_maps_update_done(); 351 } 352 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 353 354 static void __cpu_hotplug_enable(void) 355 { 356 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 357 return; 358 cpu_hotplug_disabled--; 359 } 360 361 void cpu_hotplug_enable(void) 362 { 363 cpu_maps_update_begin(); 364 __cpu_hotplug_enable(); 365 cpu_maps_update_done(); 366 } 367 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 368 369 #else 370 371 static void lockdep_acquire_cpus_lock(void) 372 { 373 } 374 375 static void lockdep_release_cpus_lock(void) 376 { 377 } 378 379 #endif /* CONFIG_HOTPLUG_CPU */ 380 381 /* 382 * Architectures that need SMT-specific errata handling during SMT hotplug 383 * should override this. 384 */ 385 void __weak arch_smt_update(void) { } 386 387 #ifdef CONFIG_HOTPLUG_SMT 388 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 389 390 void __init cpu_smt_disable(bool force) 391 { 392 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 393 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 394 return; 395 396 if (force) { 397 pr_info("SMT: Force disabled\n"); 398 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 399 } else { 400 pr_info("SMT: disabled\n"); 401 cpu_smt_control = CPU_SMT_DISABLED; 402 } 403 } 404 405 /* 406 * The decision whether SMT is supported can only be done after the full 407 * CPU identification. Called from architecture code. 408 */ 409 void __init cpu_smt_check_topology(void) 410 { 411 if (!topology_smt_supported()) 412 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 413 } 414 415 static int __init smt_cmdline_disable(char *str) 416 { 417 cpu_smt_disable(str && !strcmp(str, "force")); 418 return 0; 419 } 420 early_param("nosmt", smt_cmdline_disable); 421 422 static inline bool cpu_smt_allowed(unsigned int cpu) 423 { 424 if (cpu_smt_control == CPU_SMT_ENABLED) 425 return true; 426 427 if (topology_is_primary_thread(cpu)) 428 return true; 429 430 /* 431 * On x86 it's required to boot all logical CPUs at least once so 432 * that the init code can get a chance to set CR4.MCE on each 433 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 434 * core will shutdown the machine. 435 */ 436 return !per_cpu(cpuhp_state, cpu).booted_once; 437 } 438 #else 439 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 440 #endif 441 442 static inline enum cpuhp_state 443 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 444 { 445 enum cpuhp_state prev_state = st->state; 446 447 st->rollback = false; 448 st->last = NULL; 449 450 st->target = target; 451 st->single = false; 452 st->bringup = st->state < target; 453 454 return prev_state; 455 } 456 457 static inline void 458 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 459 { 460 st->rollback = true; 461 462 /* 463 * If we have st->last we need to undo partial multi_instance of this 464 * state first. Otherwise start undo at the previous state. 465 */ 466 if (!st->last) { 467 if (st->bringup) 468 st->state--; 469 else 470 st->state++; 471 } 472 473 st->target = prev_state; 474 st->bringup = !st->bringup; 475 } 476 477 /* Regular hotplug invocation of the AP hotplug thread */ 478 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 479 { 480 if (!st->single && st->state == st->target) 481 return; 482 483 st->result = 0; 484 /* 485 * Make sure the above stores are visible before should_run becomes 486 * true. Paired with the mb() above in cpuhp_thread_fun() 487 */ 488 smp_mb(); 489 st->should_run = true; 490 wake_up_process(st->thread); 491 wait_for_ap_thread(st, st->bringup); 492 } 493 494 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 495 { 496 enum cpuhp_state prev_state; 497 int ret; 498 499 prev_state = cpuhp_set_state(st, target); 500 __cpuhp_kick_ap(st); 501 if ((ret = st->result)) { 502 cpuhp_reset_state(st, prev_state); 503 __cpuhp_kick_ap(st); 504 } 505 506 return ret; 507 } 508 509 static int bringup_wait_for_ap(unsigned int cpu) 510 { 511 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 512 513 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 514 wait_for_ap_thread(st, true); 515 if (WARN_ON_ONCE((!cpu_online(cpu)))) 516 return -ECANCELED; 517 518 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 519 stop_machine_unpark(cpu); 520 kthread_unpark(st->thread); 521 522 /* 523 * SMT soft disabling on X86 requires to bring the CPU out of the 524 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 525 * CPU marked itself as booted_once in cpu_notify_starting() so the 526 * cpu_smt_allowed() check will now return false if this is not the 527 * primary sibling. 528 */ 529 if (!cpu_smt_allowed(cpu)) 530 return -ECANCELED; 531 532 if (st->target <= CPUHP_AP_ONLINE_IDLE) 533 return 0; 534 535 return cpuhp_kick_ap(st, st->target); 536 } 537 538 static int bringup_cpu(unsigned int cpu) 539 { 540 struct task_struct *idle = idle_thread_get(cpu); 541 int ret; 542 543 /* 544 * Some architectures have to walk the irq descriptors to 545 * setup the vector space for the cpu which comes online. 546 * Prevent irq alloc/free across the bringup. 547 */ 548 irq_lock_sparse(); 549 550 /* Arch-specific enabling code. */ 551 ret = __cpu_up(cpu, idle); 552 irq_unlock_sparse(); 553 if (ret) 554 return ret; 555 return bringup_wait_for_ap(cpu); 556 } 557 558 /* 559 * Hotplug state machine related functions 560 */ 561 562 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 563 { 564 for (st->state--; st->state > st->target; st->state--) 565 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 566 } 567 568 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 569 { 570 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 571 return true; 572 /* 573 * When CPU hotplug is disabled, then taking the CPU down is not 574 * possible because takedown_cpu() and the architecture and 575 * subsystem specific mechanisms are not available. So the CPU 576 * which would be completely unplugged again needs to stay around 577 * in the current state. 578 */ 579 return st->state <= CPUHP_BRINGUP_CPU; 580 } 581 582 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 583 enum cpuhp_state target) 584 { 585 enum cpuhp_state prev_state = st->state; 586 int ret = 0; 587 588 while (st->state < target) { 589 st->state++; 590 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 591 if (ret) { 592 if (can_rollback_cpu(st)) { 593 st->target = prev_state; 594 undo_cpu_up(cpu, st); 595 } 596 break; 597 } 598 } 599 return ret; 600 } 601 602 /* 603 * The cpu hotplug threads manage the bringup and teardown of the cpus 604 */ 605 static void cpuhp_create(unsigned int cpu) 606 { 607 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 608 609 init_completion(&st->done_up); 610 init_completion(&st->done_down); 611 } 612 613 static int cpuhp_should_run(unsigned int cpu) 614 { 615 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 616 617 return st->should_run; 618 } 619 620 /* 621 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 622 * callbacks when a state gets [un]installed at runtime. 623 * 624 * Each invocation of this function by the smpboot thread does a single AP 625 * state callback. 626 * 627 * It has 3 modes of operation: 628 * - single: runs st->cb_state 629 * - up: runs ++st->state, while st->state < st->target 630 * - down: runs st->state--, while st->state > st->target 631 * 632 * When complete or on error, should_run is cleared and the completion is fired. 633 */ 634 static void cpuhp_thread_fun(unsigned int cpu) 635 { 636 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 637 bool bringup = st->bringup; 638 enum cpuhp_state state; 639 640 if (WARN_ON_ONCE(!st->should_run)) 641 return; 642 643 /* 644 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 645 * that if we see ->should_run we also see the rest of the state. 646 */ 647 smp_mb(); 648 649 /* 650 * The BP holds the hotplug lock, but we're now running on the AP, 651 * ensure that anybody asserting the lock is held, will actually find 652 * it so. 653 */ 654 lockdep_acquire_cpus_lock(); 655 cpuhp_lock_acquire(bringup); 656 657 if (st->single) { 658 state = st->cb_state; 659 st->should_run = false; 660 } else { 661 if (bringup) { 662 st->state++; 663 state = st->state; 664 st->should_run = (st->state < st->target); 665 WARN_ON_ONCE(st->state > st->target); 666 } else { 667 state = st->state; 668 st->state--; 669 st->should_run = (st->state > st->target); 670 WARN_ON_ONCE(st->state < st->target); 671 } 672 } 673 674 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 675 676 if (cpuhp_is_atomic_state(state)) { 677 local_irq_disable(); 678 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 679 local_irq_enable(); 680 681 /* 682 * STARTING/DYING must not fail! 683 */ 684 WARN_ON_ONCE(st->result); 685 } else { 686 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 687 } 688 689 if (st->result) { 690 /* 691 * If we fail on a rollback, we're up a creek without no 692 * paddle, no way forward, no way back. We loose, thanks for 693 * playing. 694 */ 695 WARN_ON_ONCE(st->rollback); 696 st->should_run = false; 697 } 698 699 cpuhp_lock_release(bringup); 700 lockdep_release_cpus_lock(); 701 702 if (!st->should_run) 703 complete_ap_thread(st, bringup); 704 } 705 706 /* Invoke a single callback on a remote cpu */ 707 static int 708 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 709 struct hlist_node *node) 710 { 711 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 712 int ret; 713 714 if (!cpu_online(cpu)) 715 return 0; 716 717 cpuhp_lock_acquire(false); 718 cpuhp_lock_release(false); 719 720 cpuhp_lock_acquire(true); 721 cpuhp_lock_release(true); 722 723 /* 724 * If we are up and running, use the hotplug thread. For early calls 725 * we invoke the thread function directly. 726 */ 727 if (!st->thread) 728 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 729 730 st->rollback = false; 731 st->last = NULL; 732 733 st->node = node; 734 st->bringup = bringup; 735 st->cb_state = state; 736 st->single = true; 737 738 __cpuhp_kick_ap(st); 739 740 /* 741 * If we failed and did a partial, do a rollback. 742 */ 743 if ((ret = st->result) && st->last) { 744 st->rollback = true; 745 st->bringup = !bringup; 746 747 __cpuhp_kick_ap(st); 748 } 749 750 /* 751 * Clean up the leftovers so the next hotplug operation wont use stale 752 * data. 753 */ 754 st->node = st->last = NULL; 755 return ret; 756 } 757 758 static int cpuhp_kick_ap_work(unsigned int cpu) 759 { 760 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 761 enum cpuhp_state prev_state = st->state; 762 int ret; 763 764 cpuhp_lock_acquire(false); 765 cpuhp_lock_release(false); 766 767 cpuhp_lock_acquire(true); 768 cpuhp_lock_release(true); 769 770 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 771 ret = cpuhp_kick_ap(st, st->target); 772 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 773 774 return ret; 775 } 776 777 static struct smp_hotplug_thread cpuhp_threads = { 778 .store = &cpuhp_state.thread, 779 .create = &cpuhp_create, 780 .thread_should_run = cpuhp_should_run, 781 .thread_fn = cpuhp_thread_fun, 782 .thread_comm = "cpuhp/%u", 783 .selfparking = true, 784 }; 785 786 void __init cpuhp_threads_init(void) 787 { 788 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 789 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 790 } 791 792 #ifdef CONFIG_HOTPLUG_CPU 793 /** 794 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 795 * @cpu: a CPU id 796 * 797 * This function walks all processes, finds a valid mm struct for each one and 798 * then clears a corresponding bit in mm's cpumask. While this all sounds 799 * trivial, there are various non-obvious corner cases, which this function 800 * tries to solve in a safe manner. 801 * 802 * Also note that the function uses a somewhat relaxed locking scheme, so it may 803 * be called only for an already offlined CPU. 804 */ 805 void clear_tasks_mm_cpumask(int cpu) 806 { 807 struct task_struct *p; 808 809 /* 810 * This function is called after the cpu is taken down and marked 811 * offline, so its not like new tasks will ever get this cpu set in 812 * their mm mask. -- Peter Zijlstra 813 * Thus, we may use rcu_read_lock() here, instead of grabbing 814 * full-fledged tasklist_lock. 815 */ 816 WARN_ON(cpu_online(cpu)); 817 rcu_read_lock(); 818 for_each_process(p) { 819 struct task_struct *t; 820 821 /* 822 * Main thread might exit, but other threads may still have 823 * a valid mm. Find one. 824 */ 825 t = find_lock_task_mm(p); 826 if (!t) 827 continue; 828 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 829 task_unlock(t); 830 } 831 rcu_read_unlock(); 832 } 833 834 /* Take this CPU down. */ 835 static int take_cpu_down(void *_param) 836 { 837 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 838 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 839 int err, cpu = smp_processor_id(); 840 int ret; 841 842 /* Ensure this CPU doesn't handle any more interrupts. */ 843 err = __cpu_disable(); 844 if (err < 0) 845 return err; 846 847 /* 848 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 849 * do this step again. 850 */ 851 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 852 st->state--; 853 /* Invoke the former CPU_DYING callbacks */ 854 for (; st->state > target; st->state--) { 855 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 856 /* 857 * DYING must not fail! 858 */ 859 WARN_ON_ONCE(ret); 860 } 861 862 /* Give up timekeeping duties */ 863 tick_handover_do_timer(); 864 /* Remove CPU from timer broadcasting */ 865 tick_offline_cpu(cpu); 866 /* Park the stopper thread */ 867 stop_machine_park(cpu); 868 return 0; 869 } 870 871 static int takedown_cpu(unsigned int cpu) 872 { 873 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 874 int err; 875 876 /* Park the smpboot threads */ 877 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 878 879 /* 880 * Prevent irq alloc/free while the dying cpu reorganizes the 881 * interrupt affinities. 882 */ 883 irq_lock_sparse(); 884 885 /* 886 * So now all preempt/rcu users must observe !cpu_active(). 887 */ 888 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 889 if (err) { 890 /* CPU refused to die */ 891 irq_unlock_sparse(); 892 /* Unpark the hotplug thread so we can rollback there */ 893 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 894 return err; 895 } 896 BUG_ON(cpu_online(cpu)); 897 898 /* 899 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 900 * all runnable tasks from the CPU, there's only the idle task left now 901 * that the migration thread is done doing the stop_machine thing. 902 * 903 * Wait for the stop thread to go away. 904 */ 905 wait_for_ap_thread(st, false); 906 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 907 908 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 909 irq_unlock_sparse(); 910 911 hotplug_cpu__broadcast_tick_pull(cpu); 912 /* This actually kills the CPU. */ 913 __cpu_die(cpu); 914 915 tick_cleanup_dead_cpu(cpu); 916 rcutree_migrate_callbacks(cpu); 917 return 0; 918 } 919 920 static void cpuhp_complete_idle_dead(void *arg) 921 { 922 struct cpuhp_cpu_state *st = arg; 923 924 complete_ap_thread(st, false); 925 } 926 927 void cpuhp_report_idle_dead(void) 928 { 929 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 930 931 BUG_ON(st->state != CPUHP_AP_OFFLINE); 932 rcu_report_dead(smp_processor_id()); 933 st->state = CPUHP_AP_IDLE_DEAD; 934 /* 935 * We cannot call complete after rcu_report_dead() so we delegate it 936 * to an online cpu. 937 */ 938 smp_call_function_single(cpumask_first(cpu_online_mask), 939 cpuhp_complete_idle_dead, st, 0); 940 } 941 942 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 943 { 944 for (st->state++; st->state < st->target; st->state++) 945 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 946 } 947 948 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 949 enum cpuhp_state target) 950 { 951 enum cpuhp_state prev_state = st->state; 952 int ret = 0; 953 954 for (; st->state > target; st->state--) { 955 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 956 if (ret) { 957 st->target = prev_state; 958 if (st->state < prev_state) 959 undo_cpu_down(cpu, st); 960 break; 961 } 962 } 963 return ret; 964 } 965 966 /* Requires cpu_add_remove_lock to be held */ 967 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 968 enum cpuhp_state target) 969 { 970 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 971 int prev_state, ret = 0; 972 973 if (num_online_cpus() == 1) 974 return -EBUSY; 975 976 if (!cpu_present(cpu)) 977 return -EINVAL; 978 979 cpus_write_lock(); 980 981 cpuhp_tasks_frozen = tasks_frozen; 982 983 prev_state = cpuhp_set_state(st, target); 984 /* 985 * If the current CPU state is in the range of the AP hotplug thread, 986 * then we need to kick the thread. 987 */ 988 if (st->state > CPUHP_TEARDOWN_CPU) { 989 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 990 ret = cpuhp_kick_ap_work(cpu); 991 /* 992 * The AP side has done the error rollback already. Just 993 * return the error code.. 994 */ 995 if (ret) 996 goto out; 997 998 /* 999 * We might have stopped still in the range of the AP hotplug 1000 * thread. Nothing to do anymore. 1001 */ 1002 if (st->state > CPUHP_TEARDOWN_CPU) 1003 goto out; 1004 1005 st->target = target; 1006 } 1007 /* 1008 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1009 * to do the further cleanups. 1010 */ 1011 ret = cpuhp_down_callbacks(cpu, st, target); 1012 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1013 cpuhp_reset_state(st, prev_state); 1014 __cpuhp_kick_ap(st); 1015 } 1016 1017 out: 1018 cpus_write_unlock(); 1019 /* 1020 * Do post unplug cleanup. This is still protected against 1021 * concurrent CPU hotplug via cpu_add_remove_lock. 1022 */ 1023 lockup_detector_cleanup(); 1024 arch_smt_update(); 1025 return ret; 1026 } 1027 1028 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1029 { 1030 if (cpu_hotplug_disabled) 1031 return -EBUSY; 1032 return _cpu_down(cpu, 0, target); 1033 } 1034 1035 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1036 { 1037 int err; 1038 1039 cpu_maps_update_begin(); 1040 err = cpu_down_maps_locked(cpu, target); 1041 cpu_maps_update_done(); 1042 return err; 1043 } 1044 1045 int cpu_down(unsigned int cpu) 1046 { 1047 return do_cpu_down(cpu, CPUHP_OFFLINE); 1048 } 1049 EXPORT_SYMBOL(cpu_down); 1050 1051 #else 1052 #define takedown_cpu NULL 1053 #endif /*CONFIG_HOTPLUG_CPU*/ 1054 1055 /** 1056 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1057 * @cpu: cpu that just started 1058 * 1059 * It must be called by the arch code on the new cpu, before the new cpu 1060 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1061 */ 1062 void notify_cpu_starting(unsigned int cpu) 1063 { 1064 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1065 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1066 int ret; 1067 1068 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1069 st->booted_once = true; 1070 while (st->state < target) { 1071 st->state++; 1072 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1073 /* 1074 * STARTING must not fail! 1075 */ 1076 WARN_ON_ONCE(ret); 1077 } 1078 } 1079 1080 /* 1081 * Called from the idle task. Wake up the controlling task which brings the 1082 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1083 * the rest of the online bringup to the hotplug thread. 1084 */ 1085 void cpuhp_online_idle(enum cpuhp_state state) 1086 { 1087 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1088 1089 /* Happens for the boot cpu */ 1090 if (state != CPUHP_AP_ONLINE_IDLE) 1091 return; 1092 1093 st->state = CPUHP_AP_ONLINE_IDLE; 1094 complete_ap_thread(st, true); 1095 } 1096 1097 /* Requires cpu_add_remove_lock to be held */ 1098 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1099 { 1100 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1101 struct task_struct *idle; 1102 int ret = 0; 1103 1104 cpus_write_lock(); 1105 1106 if (!cpu_present(cpu)) { 1107 ret = -EINVAL; 1108 goto out; 1109 } 1110 1111 /* 1112 * The caller of do_cpu_up might have raced with another 1113 * caller. Ignore it for now. 1114 */ 1115 if (st->state >= target) 1116 goto out; 1117 1118 if (st->state == CPUHP_OFFLINE) { 1119 /* Let it fail before we try to bring the cpu up */ 1120 idle = idle_thread_get(cpu); 1121 if (IS_ERR(idle)) { 1122 ret = PTR_ERR(idle); 1123 goto out; 1124 } 1125 } 1126 1127 cpuhp_tasks_frozen = tasks_frozen; 1128 1129 cpuhp_set_state(st, target); 1130 /* 1131 * If the current CPU state is in the range of the AP hotplug thread, 1132 * then we need to kick the thread once more. 1133 */ 1134 if (st->state > CPUHP_BRINGUP_CPU) { 1135 ret = cpuhp_kick_ap_work(cpu); 1136 /* 1137 * The AP side has done the error rollback already. Just 1138 * return the error code.. 1139 */ 1140 if (ret) 1141 goto out; 1142 } 1143 1144 /* 1145 * Try to reach the target state. We max out on the BP at 1146 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1147 * responsible for bringing it up to the target state. 1148 */ 1149 target = min((int)target, CPUHP_BRINGUP_CPU); 1150 ret = cpuhp_up_callbacks(cpu, st, target); 1151 out: 1152 cpus_write_unlock(); 1153 arch_smt_update(); 1154 return ret; 1155 } 1156 1157 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1158 { 1159 int err = 0; 1160 1161 if (!cpu_possible(cpu)) { 1162 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1163 cpu); 1164 #if defined(CONFIG_IA64) 1165 pr_err("please check additional_cpus= boot parameter\n"); 1166 #endif 1167 return -EINVAL; 1168 } 1169 1170 err = try_online_node(cpu_to_node(cpu)); 1171 if (err) 1172 return err; 1173 1174 cpu_maps_update_begin(); 1175 1176 if (cpu_hotplug_disabled) { 1177 err = -EBUSY; 1178 goto out; 1179 } 1180 if (!cpu_smt_allowed(cpu)) { 1181 err = -EPERM; 1182 goto out; 1183 } 1184 1185 err = _cpu_up(cpu, 0, target); 1186 out: 1187 cpu_maps_update_done(); 1188 return err; 1189 } 1190 1191 int cpu_up(unsigned int cpu) 1192 { 1193 return do_cpu_up(cpu, CPUHP_ONLINE); 1194 } 1195 EXPORT_SYMBOL_GPL(cpu_up); 1196 1197 #ifdef CONFIG_PM_SLEEP_SMP 1198 static cpumask_var_t frozen_cpus; 1199 1200 int freeze_secondary_cpus(int primary) 1201 { 1202 int cpu, error = 0; 1203 1204 cpu_maps_update_begin(); 1205 if (primary == -1) { 1206 primary = cpumask_first(cpu_online_mask); 1207 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1208 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1209 } else { 1210 if (!cpu_online(primary)) 1211 primary = cpumask_first(cpu_online_mask); 1212 } 1213 1214 /* 1215 * We take down all of the non-boot CPUs in one shot to avoid races 1216 * with the userspace trying to use the CPU hotplug at the same time 1217 */ 1218 cpumask_clear(frozen_cpus); 1219 1220 pr_info("Disabling non-boot CPUs ...\n"); 1221 for_each_online_cpu(cpu) { 1222 if (cpu == primary) 1223 continue; 1224 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1225 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1226 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1227 if (!error) 1228 cpumask_set_cpu(cpu, frozen_cpus); 1229 else { 1230 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1231 break; 1232 } 1233 } 1234 1235 if (!error) 1236 BUG_ON(num_online_cpus() > 1); 1237 else 1238 pr_err("Non-boot CPUs are not disabled\n"); 1239 1240 /* 1241 * Make sure the CPUs won't be enabled by someone else. We need to do 1242 * this even in case of failure as all disable_nonboot_cpus() users are 1243 * supposed to do enable_nonboot_cpus() on the failure path. 1244 */ 1245 cpu_hotplug_disabled++; 1246 1247 cpu_maps_update_done(); 1248 return error; 1249 } 1250 1251 void __weak arch_enable_nonboot_cpus_begin(void) 1252 { 1253 } 1254 1255 void __weak arch_enable_nonboot_cpus_end(void) 1256 { 1257 } 1258 1259 void enable_nonboot_cpus(void) 1260 { 1261 int cpu, error; 1262 1263 /* Allow everyone to use the CPU hotplug again */ 1264 cpu_maps_update_begin(); 1265 __cpu_hotplug_enable(); 1266 if (cpumask_empty(frozen_cpus)) 1267 goto out; 1268 1269 pr_info("Enabling non-boot CPUs ...\n"); 1270 1271 arch_enable_nonboot_cpus_begin(); 1272 1273 for_each_cpu(cpu, frozen_cpus) { 1274 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1275 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1276 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1277 if (!error) { 1278 pr_info("CPU%d is up\n", cpu); 1279 continue; 1280 } 1281 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1282 } 1283 1284 arch_enable_nonboot_cpus_end(); 1285 1286 cpumask_clear(frozen_cpus); 1287 out: 1288 cpu_maps_update_done(); 1289 } 1290 1291 static int __init alloc_frozen_cpus(void) 1292 { 1293 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1294 return -ENOMEM; 1295 return 0; 1296 } 1297 core_initcall(alloc_frozen_cpus); 1298 1299 /* 1300 * When callbacks for CPU hotplug notifications are being executed, we must 1301 * ensure that the state of the system with respect to the tasks being frozen 1302 * or not, as reported by the notification, remains unchanged *throughout the 1303 * duration* of the execution of the callbacks. 1304 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1305 * 1306 * This synchronization is implemented by mutually excluding regular CPU 1307 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1308 * Hibernate notifications. 1309 */ 1310 static int 1311 cpu_hotplug_pm_callback(struct notifier_block *nb, 1312 unsigned long action, void *ptr) 1313 { 1314 switch (action) { 1315 1316 case PM_SUSPEND_PREPARE: 1317 case PM_HIBERNATION_PREPARE: 1318 cpu_hotplug_disable(); 1319 break; 1320 1321 case PM_POST_SUSPEND: 1322 case PM_POST_HIBERNATION: 1323 cpu_hotplug_enable(); 1324 break; 1325 1326 default: 1327 return NOTIFY_DONE; 1328 } 1329 1330 return NOTIFY_OK; 1331 } 1332 1333 1334 static int __init cpu_hotplug_pm_sync_init(void) 1335 { 1336 /* 1337 * cpu_hotplug_pm_callback has higher priority than x86 1338 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1339 * to disable cpu hotplug to avoid cpu hotplug race. 1340 */ 1341 pm_notifier(cpu_hotplug_pm_callback, 0); 1342 return 0; 1343 } 1344 core_initcall(cpu_hotplug_pm_sync_init); 1345 1346 #endif /* CONFIG_PM_SLEEP_SMP */ 1347 1348 int __boot_cpu_id; 1349 1350 #endif /* CONFIG_SMP */ 1351 1352 /* Boot processor state steps */ 1353 static struct cpuhp_step cpuhp_hp_states[] = { 1354 [CPUHP_OFFLINE] = { 1355 .name = "offline", 1356 .startup.single = NULL, 1357 .teardown.single = NULL, 1358 }, 1359 #ifdef CONFIG_SMP 1360 [CPUHP_CREATE_THREADS]= { 1361 .name = "threads:prepare", 1362 .startup.single = smpboot_create_threads, 1363 .teardown.single = NULL, 1364 .cant_stop = true, 1365 }, 1366 [CPUHP_PERF_PREPARE] = { 1367 .name = "perf:prepare", 1368 .startup.single = perf_event_init_cpu, 1369 .teardown.single = perf_event_exit_cpu, 1370 }, 1371 [CPUHP_WORKQUEUE_PREP] = { 1372 .name = "workqueue:prepare", 1373 .startup.single = workqueue_prepare_cpu, 1374 .teardown.single = NULL, 1375 }, 1376 [CPUHP_HRTIMERS_PREPARE] = { 1377 .name = "hrtimers:prepare", 1378 .startup.single = hrtimers_prepare_cpu, 1379 .teardown.single = hrtimers_dead_cpu, 1380 }, 1381 [CPUHP_SMPCFD_PREPARE] = { 1382 .name = "smpcfd:prepare", 1383 .startup.single = smpcfd_prepare_cpu, 1384 .teardown.single = smpcfd_dead_cpu, 1385 }, 1386 [CPUHP_RELAY_PREPARE] = { 1387 .name = "relay:prepare", 1388 .startup.single = relay_prepare_cpu, 1389 .teardown.single = NULL, 1390 }, 1391 [CPUHP_SLAB_PREPARE] = { 1392 .name = "slab:prepare", 1393 .startup.single = slab_prepare_cpu, 1394 .teardown.single = slab_dead_cpu, 1395 }, 1396 [CPUHP_RCUTREE_PREP] = { 1397 .name = "RCU/tree:prepare", 1398 .startup.single = rcutree_prepare_cpu, 1399 .teardown.single = rcutree_dead_cpu, 1400 }, 1401 /* 1402 * On the tear-down path, timers_dead_cpu() must be invoked 1403 * before blk_mq_queue_reinit_notify() from notify_dead(), 1404 * otherwise a RCU stall occurs. 1405 */ 1406 [CPUHP_TIMERS_PREPARE] = { 1407 .name = "timers:prepare", 1408 .startup.single = timers_prepare_cpu, 1409 .teardown.single = timers_dead_cpu, 1410 }, 1411 /* Kicks the plugged cpu into life */ 1412 [CPUHP_BRINGUP_CPU] = { 1413 .name = "cpu:bringup", 1414 .startup.single = bringup_cpu, 1415 .teardown.single = NULL, 1416 .cant_stop = true, 1417 }, 1418 /* Final state before CPU kills itself */ 1419 [CPUHP_AP_IDLE_DEAD] = { 1420 .name = "idle:dead", 1421 }, 1422 /* 1423 * Last state before CPU enters the idle loop to die. Transient state 1424 * for synchronization. 1425 */ 1426 [CPUHP_AP_OFFLINE] = { 1427 .name = "ap:offline", 1428 .cant_stop = true, 1429 }, 1430 /* First state is scheduler control. Interrupts are disabled */ 1431 [CPUHP_AP_SCHED_STARTING] = { 1432 .name = "sched:starting", 1433 .startup.single = sched_cpu_starting, 1434 .teardown.single = sched_cpu_dying, 1435 }, 1436 [CPUHP_AP_RCUTREE_DYING] = { 1437 .name = "RCU/tree:dying", 1438 .startup.single = NULL, 1439 .teardown.single = rcutree_dying_cpu, 1440 }, 1441 [CPUHP_AP_SMPCFD_DYING] = { 1442 .name = "smpcfd:dying", 1443 .startup.single = NULL, 1444 .teardown.single = smpcfd_dying_cpu, 1445 }, 1446 /* Entry state on starting. Interrupts enabled from here on. Transient 1447 * state for synchronsization */ 1448 [CPUHP_AP_ONLINE] = { 1449 .name = "ap:online", 1450 }, 1451 /* 1452 * Handled on controll processor until the plugged processor manages 1453 * this itself. 1454 */ 1455 [CPUHP_TEARDOWN_CPU] = { 1456 .name = "cpu:teardown", 1457 .startup.single = NULL, 1458 .teardown.single = takedown_cpu, 1459 .cant_stop = true, 1460 }, 1461 /* Handle smpboot threads park/unpark */ 1462 [CPUHP_AP_SMPBOOT_THREADS] = { 1463 .name = "smpboot/threads:online", 1464 .startup.single = smpboot_unpark_threads, 1465 .teardown.single = smpboot_park_threads, 1466 }, 1467 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1468 .name = "irq/affinity:online", 1469 .startup.single = irq_affinity_online_cpu, 1470 .teardown.single = NULL, 1471 }, 1472 [CPUHP_AP_PERF_ONLINE] = { 1473 .name = "perf:online", 1474 .startup.single = perf_event_init_cpu, 1475 .teardown.single = perf_event_exit_cpu, 1476 }, 1477 [CPUHP_AP_WATCHDOG_ONLINE] = { 1478 .name = "lockup_detector:online", 1479 .startup.single = lockup_detector_online_cpu, 1480 .teardown.single = lockup_detector_offline_cpu, 1481 }, 1482 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1483 .name = "workqueue:online", 1484 .startup.single = workqueue_online_cpu, 1485 .teardown.single = workqueue_offline_cpu, 1486 }, 1487 [CPUHP_AP_RCUTREE_ONLINE] = { 1488 .name = "RCU/tree:online", 1489 .startup.single = rcutree_online_cpu, 1490 .teardown.single = rcutree_offline_cpu, 1491 }, 1492 #endif 1493 /* 1494 * The dynamically registered state space is here 1495 */ 1496 1497 #ifdef CONFIG_SMP 1498 /* Last state is scheduler control setting the cpu active */ 1499 [CPUHP_AP_ACTIVE] = { 1500 .name = "sched:active", 1501 .startup.single = sched_cpu_activate, 1502 .teardown.single = sched_cpu_deactivate, 1503 }, 1504 #endif 1505 1506 /* CPU is fully up and running. */ 1507 [CPUHP_ONLINE] = { 1508 .name = "online", 1509 .startup.single = NULL, 1510 .teardown.single = NULL, 1511 }, 1512 }; 1513 1514 /* Sanity check for callbacks */ 1515 static int cpuhp_cb_check(enum cpuhp_state state) 1516 { 1517 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1518 return -EINVAL; 1519 return 0; 1520 } 1521 1522 /* 1523 * Returns a free for dynamic slot assignment of the Online state. The states 1524 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1525 * by having no name assigned. 1526 */ 1527 static int cpuhp_reserve_state(enum cpuhp_state state) 1528 { 1529 enum cpuhp_state i, end; 1530 struct cpuhp_step *step; 1531 1532 switch (state) { 1533 case CPUHP_AP_ONLINE_DYN: 1534 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1535 end = CPUHP_AP_ONLINE_DYN_END; 1536 break; 1537 case CPUHP_BP_PREPARE_DYN: 1538 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1539 end = CPUHP_BP_PREPARE_DYN_END; 1540 break; 1541 default: 1542 return -EINVAL; 1543 } 1544 1545 for (i = state; i <= end; i++, step++) { 1546 if (!step->name) 1547 return i; 1548 } 1549 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1550 return -ENOSPC; 1551 } 1552 1553 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1554 int (*startup)(unsigned int cpu), 1555 int (*teardown)(unsigned int cpu), 1556 bool multi_instance) 1557 { 1558 /* (Un)Install the callbacks for further cpu hotplug operations */ 1559 struct cpuhp_step *sp; 1560 int ret = 0; 1561 1562 /* 1563 * If name is NULL, then the state gets removed. 1564 * 1565 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1566 * the first allocation from these dynamic ranges, so the removal 1567 * would trigger a new allocation and clear the wrong (already 1568 * empty) state, leaving the callbacks of the to be cleared state 1569 * dangling, which causes wreckage on the next hotplug operation. 1570 */ 1571 if (name && (state == CPUHP_AP_ONLINE_DYN || 1572 state == CPUHP_BP_PREPARE_DYN)) { 1573 ret = cpuhp_reserve_state(state); 1574 if (ret < 0) 1575 return ret; 1576 state = ret; 1577 } 1578 sp = cpuhp_get_step(state); 1579 if (name && sp->name) 1580 return -EBUSY; 1581 1582 sp->startup.single = startup; 1583 sp->teardown.single = teardown; 1584 sp->name = name; 1585 sp->multi_instance = multi_instance; 1586 INIT_HLIST_HEAD(&sp->list); 1587 return ret; 1588 } 1589 1590 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1591 { 1592 return cpuhp_get_step(state)->teardown.single; 1593 } 1594 1595 /* 1596 * Call the startup/teardown function for a step either on the AP or 1597 * on the current CPU. 1598 */ 1599 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1600 struct hlist_node *node) 1601 { 1602 struct cpuhp_step *sp = cpuhp_get_step(state); 1603 int ret; 1604 1605 /* 1606 * If there's nothing to do, we done. 1607 * Relies on the union for multi_instance. 1608 */ 1609 if ((bringup && !sp->startup.single) || 1610 (!bringup && !sp->teardown.single)) 1611 return 0; 1612 /* 1613 * The non AP bound callbacks can fail on bringup. On teardown 1614 * e.g. module removal we crash for now. 1615 */ 1616 #ifdef CONFIG_SMP 1617 if (cpuhp_is_ap_state(state)) 1618 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1619 else 1620 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1621 #else 1622 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1623 #endif 1624 BUG_ON(ret && !bringup); 1625 return ret; 1626 } 1627 1628 /* 1629 * Called from __cpuhp_setup_state on a recoverable failure. 1630 * 1631 * Note: The teardown callbacks for rollback are not allowed to fail! 1632 */ 1633 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1634 struct hlist_node *node) 1635 { 1636 int cpu; 1637 1638 /* Roll back the already executed steps on the other cpus */ 1639 for_each_present_cpu(cpu) { 1640 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1641 int cpustate = st->state; 1642 1643 if (cpu >= failedcpu) 1644 break; 1645 1646 /* Did we invoke the startup call on that cpu ? */ 1647 if (cpustate >= state) 1648 cpuhp_issue_call(cpu, state, false, node); 1649 } 1650 } 1651 1652 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1653 struct hlist_node *node, 1654 bool invoke) 1655 { 1656 struct cpuhp_step *sp; 1657 int cpu; 1658 int ret; 1659 1660 lockdep_assert_cpus_held(); 1661 1662 sp = cpuhp_get_step(state); 1663 if (sp->multi_instance == false) 1664 return -EINVAL; 1665 1666 mutex_lock(&cpuhp_state_mutex); 1667 1668 if (!invoke || !sp->startup.multi) 1669 goto add_node; 1670 1671 /* 1672 * Try to call the startup callback for each present cpu 1673 * depending on the hotplug state of the cpu. 1674 */ 1675 for_each_present_cpu(cpu) { 1676 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1677 int cpustate = st->state; 1678 1679 if (cpustate < state) 1680 continue; 1681 1682 ret = cpuhp_issue_call(cpu, state, true, node); 1683 if (ret) { 1684 if (sp->teardown.multi) 1685 cpuhp_rollback_install(cpu, state, node); 1686 goto unlock; 1687 } 1688 } 1689 add_node: 1690 ret = 0; 1691 hlist_add_head(node, &sp->list); 1692 unlock: 1693 mutex_unlock(&cpuhp_state_mutex); 1694 return ret; 1695 } 1696 1697 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1698 bool invoke) 1699 { 1700 int ret; 1701 1702 cpus_read_lock(); 1703 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1704 cpus_read_unlock(); 1705 return ret; 1706 } 1707 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1708 1709 /** 1710 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1711 * @state: The state to setup 1712 * @invoke: If true, the startup function is invoked for cpus where 1713 * cpu state >= @state 1714 * @startup: startup callback function 1715 * @teardown: teardown callback function 1716 * @multi_instance: State is set up for multiple instances which get 1717 * added afterwards. 1718 * 1719 * The caller needs to hold cpus read locked while calling this function. 1720 * Returns: 1721 * On success: 1722 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1723 * 0 for all other states 1724 * On failure: proper (negative) error code 1725 */ 1726 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1727 const char *name, bool invoke, 1728 int (*startup)(unsigned int cpu), 1729 int (*teardown)(unsigned int cpu), 1730 bool multi_instance) 1731 { 1732 int cpu, ret = 0; 1733 bool dynstate; 1734 1735 lockdep_assert_cpus_held(); 1736 1737 if (cpuhp_cb_check(state) || !name) 1738 return -EINVAL; 1739 1740 mutex_lock(&cpuhp_state_mutex); 1741 1742 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1743 multi_instance); 1744 1745 dynstate = state == CPUHP_AP_ONLINE_DYN; 1746 if (ret > 0 && dynstate) { 1747 state = ret; 1748 ret = 0; 1749 } 1750 1751 if (ret || !invoke || !startup) 1752 goto out; 1753 1754 /* 1755 * Try to call the startup callback for each present cpu 1756 * depending on the hotplug state of the cpu. 1757 */ 1758 for_each_present_cpu(cpu) { 1759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1760 int cpustate = st->state; 1761 1762 if (cpustate < state) 1763 continue; 1764 1765 ret = cpuhp_issue_call(cpu, state, true, NULL); 1766 if (ret) { 1767 if (teardown) 1768 cpuhp_rollback_install(cpu, state, NULL); 1769 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1770 goto out; 1771 } 1772 } 1773 out: 1774 mutex_unlock(&cpuhp_state_mutex); 1775 /* 1776 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1777 * dynamically allocated state in case of success. 1778 */ 1779 if (!ret && dynstate) 1780 return state; 1781 return ret; 1782 } 1783 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1784 1785 int __cpuhp_setup_state(enum cpuhp_state state, 1786 const char *name, bool invoke, 1787 int (*startup)(unsigned int cpu), 1788 int (*teardown)(unsigned int cpu), 1789 bool multi_instance) 1790 { 1791 int ret; 1792 1793 cpus_read_lock(); 1794 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1795 teardown, multi_instance); 1796 cpus_read_unlock(); 1797 return ret; 1798 } 1799 EXPORT_SYMBOL(__cpuhp_setup_state); 1800 1801 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1802 struct hlist_node *node, bool invoke) 1803 { 1804 struct cpuhp_step *sp = cpuhp_get_step(state); 1805 int cpu; 1806 1807 BUG_ON(cpuhp_cb_check(state)); 1808 1809 if (!sp->multi_instance) 1810 return -EINVAL; 1811 1812 cpus_read_lock(); 1813 mutex_lock(&cpuhp_state_mutex); 1814 1815 if (!invoke || !cpuhp_get_teardown_cb(state)) 1816 goto remove; 1817 /* 1818 * Call the teardown callback for each present cpu depending 1819 * on the hotplug state of the cpu. This function is not 1820 * allowed to fail currently! 1821 */ 1822 for_each_present_cpu(cpu) { 1823 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1824 int cpustate = st->state; 1825 1826 if (cpustate >= state) 1827 cpuhp_issue_call(cpu, state, false, node); 1828 } 1829 1830 remove: 1831 hlist_del(node); 1832 mutex_unlock(&cpuhp_state_mutex); 1833 cpus_read_unlock(); 1834 1835 return 0; 1836 } 1837 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1838 1839 /** 1840 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1841 * @state: The state to remove 1842 * @invoke: If true, the teardown function is invoked for cpus where 1843 * cpu state >= @state 1844 * 1845 * The caller needs to hold cpus read locked while calling this function. 1846 * The teardown callback is currently not allowed to fail. Think 1847 * about module removal! 1848 */ 1849 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1850 { 1851 struct cpuhp_step *sp = cpuhp_get_step(state); 1852 int cpu; 1853 1854 BUG_ON(cpuhp_cb_check(state)); 1855 1856 lockdep_assert_cpus_held(); 1857 1858 mutex_lock(&cpuhp_state_mutex); 1859 if (sp->multi_instance) { 1860 WARN(!hlist_empty(&sp->list), 1861 "Error: Removing state %d which has instances left.\n", 1862 state); 1863 goto remove; 1864 } 1865 1866 if (!invoke || !cpuhp_get_teardown_cb(state)) 1867 goto remove; 1868 1869 /* 1870 * Call the teardown callback for each present cpu depending 1871 * on the hotplug state of the cpu. This function is not 1872 * allowed to fail currently! 1873 */ 1874 for_each_present_cpu(cpu) { 1875 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1876 int cpustate = st->state; 1877 1878 if (cpustate >= state) 1879 cpuhp_issue_call(cpu, state, false, NULL); 1880 } 1881 remove: 1882 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1883 mutex_unlock(&cpuhp_state_mutex); 1884 } 1885 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1886 1887 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1888 { 1889 cpus_read_lock(); 1890 __cpuhp_remove_state_cpuslocked(state, invoke); 1891 cpus_read_unlock(); 1892 } 1893 EXPORT_SYMBOL(__cpuhp_remove_state); 1894 1895 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1896 static ssize_t show_cpuhp_state(struct device *dev, 1897 struct device_attribute *attr, char *buf) 1898 { 1899 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1900 1901 return sprintf(buf, "%d\n", st->state); 1902 } 1903 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1904 1905 static ssize_t write_cpuhp_target(struct device *dev, 1906 struct device_attribute *attr, 1907 const char *buf, size_t count) 1908 { 1909 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1910 struct cpuhp_step *sp; 1911 int target, ret; 1912 1913 ret = kstrtoint(buf, 10, &target); 1914 if (ret) 1915 return ret; 1916 1917 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1918 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1919 return -EINVAL; 1920 #else 1921 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1922 return -EINVAL; 1923 #endif 1924 1925 ret = lock_device_hotplug_sysfs(); 1926 if (ret) 1927 return ret; 1928 1929 mutex_lock(&cpuhp_state_mutex); 1930 sp = cpuhp_get_step(target); 1931 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1932 mutex_unlock(&cpuhp_state_mutex); 1933 if (ret) 1934 goto out; 1935 1936 if (st->state < target) 1937 ret = do_cpu_up(dev->id, target); 1938 else 1939 ret = do_cpu_down(dev->id, target); 1940 out: 1941 unlock_device_hotplug(); 1942 return ret ? ret : count; 1943 } 1944 1945 static ssize_t show_cpuhp_target(struct device *dev, 1946 struct device_attribute *attr, char *buf) 1947 { 1948 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1949 1950 return sprintf(buf, "%d\n", st->target); 1951 } 1952 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1953 1954 1955 static ssize_t write_cpuhp_fail(struct device *dev, 1956 struct device_attribute *attr, 1957 const char *buf, size_t count) 1958 { 1959 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1960 struct cpuhp_step *sp; 1961 int fail, ret; 1962 1963 ret = kstrtoint(buf, 10, &fail); 1964 if (ret) 1965 return ret; 1966 1967 /* 1968 * Cannot fail STARTING/DYING callbacks. 1969 */ 1970 if (cpuhp_is_atomic_state(fail)) 1971 return -EINVAL; 1972 1973 /* 1974 * Cannot fail anything that doesn't have callbacks. 1975 */ 1976 mutex_lock(&cpuhp_state_mutex); 1977 sp = cpuhp_get_step(fail); 1978 if (!sp->startup.single && !sp->teardown.single) 1979 ret = -EINVAL; 1980 mutex_unlock(&cpuhp_state_mutex); 1981 if (ret) 1982 return ret; 1983 1984 st->fail = fail; 1985 1986 return count; 1987 } 1988 1989 static ssize_t show_cpuhp_fail(struct device *dev, 1990 struct device_attribute *attr, char *buf) 1991 { 1992 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1993 1994 return sprintf(buf, "%d\n", st->fail); 1995 } 1996 1997 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1998 1999 static struct attribute *cpuhp_cpu_attrs[] = { 2000 &dev_attr_state.attr, 2001 &dev_attr_target.attr, 2002 &dev_attr_fail.attr, 2003 NULL 2004 }; 2005 2006 static const struct attribute_group cpuhp_cpu_attr_group = { 2007 .attrs = cpuhp_cpu_attrs, 2008 .name = "hotplug", 2009 NULL 2010 }; 2011 2012 static ssize_t show_cpuhp_states(struct device *dev, 2013 struct device_attribute *attr, char *buf) 2014 { 2015 ssize_t cur, res = 0; 2016 int i; 2017 2018 mutex_lock(&cpuhp_state_mutex); 2019 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2020 struct cpuhp_step *sp = cpuhp_get_step(i); 2021 2022 if (sp->name) { 2023 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2024 buf += cur; 2025 res += cur; 2026 } 2027 } 2028 mutex_unlock(&cpuhp_state_mutex); 2029 return res; 2030 } 2031 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2032 2033 static struct attribute *cpuhp_cpu_root_attrs[] = { 2034 &dev_attr_states.attr, 2035 NULL 2036 }; 2037 2038 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2039 .attrs = cpuhp_cpu_root_attrs, 2040 .name = "hotplug", 2041 NULL 2042 }; 2043 2044 #ifdef CONFIG_HOTPLUG_SMT 2045 2046 static void cpuhp_offline_cpu_device(unsigned int cpu) 2047 { 2048 struct device *dev = get_cpu_device(cpu); 2049 2050 dev->offline = true; 2051 /* Tell user space about the state change */ 2052 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2053 } 2054 2055 static void cpuhp_online_cpu_device(unsigned int cpu) 2056 { 2057 struct device *dev = get_cpu_device(cpu); 2058 2059 dev->offline = false; 2060 /* Tell user space about the state change */ 2061 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2062 } 2063 2064 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2065 { 2066 int cpu, ret = 0; 2067 2068 cpu_maps_update_begin(); 2069 for_each_online_cpu(cpu) { 2070 if (topology_is_primary_thread(cpu)) 2071 continue; 2072 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2073 if (ret) 2074 break; 2075 /* 2076 * As this needs to hold the cpu maps lock it's impossible 2077 * to call device_offline() because that ends up calling 2078 * cpu_down() which takes cpu maps lock. cpu maps lock 2079 * needs to be held as this might race against in kernel 2080 * abusers of the hotplug machinery (thermal management). 2081 * 2082 * So nothing would update device:offline state. That would 2083 * leave the sysfs entry stale and prevent onlining after 2084 * smt control has been changed to 'off' again. This is 2085 * called under the sysfs hotplug lock, so it is properly 2086 * serialized against the regular offline usage. 2087 */ 2088 cpuhp_offline_cpu_device(cpu); 2089 } 2090 if (!ret) 2091 cpu_smt_control = ctrlval; 2092 cpu_maps_update_done(); 2093 return ret; 2094 } 2095 2096 int cpuhp_smt_enable(void) 2097 { 2098 int cpu, ret = 0; 2099 2100 cpu_maps_update_begin(); 2101 cpu_smt_control = CPU_SMT_ENABLED; 2102 for_each_present_cpu(cpu) { 2103 /* Skip online CPUs and CPUs on offline nodes */ 2104 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2105 continue; 2106 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2107 if (ret) 2108 break; 2109 /* See comment in cpuhp_smt_disable() */ 2110 cpuhp_online_cpu_device(cpu); 2111 } 2112 cpu_maps_update_done(); 2113 return ret; 2114 } 2115 2116 2117 static ssize_t 2118 __store_smt_control(struct device *dev, struct device_attribute *attr, 2119 const char *buf, size_t count) 2120 { 2121 int ctrlval, ret; 2122 2123 if (sysfs_streq(buf, "on")) 2124 ctrlval = CPU_SMT_ENABLED; 2125 else if (sysfs_streq(buf, "off")) 2126 ctrlval = CPU_SMT_DISABLED; 2127 else if (sysfs_streq(buf, "forceoff")) 2128 ctrlval = CPU_SMT_FORCE_DISABLED; 2129 else 2130 return -EINVAL; 2131 2132 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2133 return -EPERM; 2134 2135 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2136 return -ENODEV; 2137 2138 ret = lock_device_hotplug_sysfs(); 2139 if (ret) 2140 return ret; 2141 2142 if (ctrlval != cpu_smt_control) { 2143 switch (ctrlval) { 2144 case CPU_SMT_ENABLED: 2145 ret = cpuhp_smt_enable(); 2146 break; 2147 case CPU_SMT_DISABLED: 2148 case CPU_SMT_FORCE_DISABLED: 2149 ret = cpuhp_smt_disable(ctrlval); 2150 break; 2151 } 2152 } 2153 2154 unlock_device_hotplug(); 2155 return ret ? ret : count; 2156 } 2157 2158 #else /* !CONFIG_HOTPLUG_SMT */ 2159 static ssize_t 2160 __store_smt_control(struct device *dev, struct device_attribute *attr, 2161 const char *buf, size_t count) 2162 { 2163 return -ENODEV; 2164 } 2165 #endif /* CONFIG_HOTPLUG_SMT */ 2166 2167 static const char *smt_states[] = { 2168 [CPU_SMT_ENABLED] = "on", 2169 [CPU_SMT_DISABLED] = "off", 2170 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2171 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2172 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2173 }; 2174 2175 static ssize_t 2176 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2177 { 2178 const char *state = smt_states[cpu_smt_control]; 2179 2180 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2181 } 2182 2183 static ssize_t 2184 store_smt_control(struct device *dev, struct device_attribute *attr, 2185 const char *buf, size_t count) 2186 { 2187 return __store_smt_control(dev, attr, buf, count); 2188 } 2189 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2190 2191 static ssize_t 2192 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2193 { 2194 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2195 } 2196 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2197 2198 static struct attribute *cpuhp_smt_attrs[] = { 2199 &dev_attr_control.attr, 2200 &dev_attr_active.attr, 2201 NULL 2202 }; 2203 2204 static const struct attribute_group cpuhp_smt_attr_group = { 2205 .attrs = cpuhp_smt_attrs, 2206 .name = "smt", 2207 NULL 2208 }; 2209 2210 static int __init cpu_smt_sysfs_init(void) 2211 { 2212 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2213 &cpuhp_smt_attr_group); 2214 } 2215 2216 static int __init cpuhp_sysfs_init(void) 2217 { 2218 int cpu, ret; 2219 2220 ret = cpu_smt_sysfs_init(); 2221 if (ret) 2222 return ret; 2223 2224 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2225 &cpuhp_cpu_root_attr_group); 2226 if (ret) 2227 return ret; 2228 2229 for_each_possible_cpu(cpu) { 2230 struct device *dev = get_cpu_device(cpu); 2231 2232 if (!dev) 2233 continue; 2234 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2235 if (ret) 2236 return ret; 2237 } 2238 return 0; 2239 } 2240 device_initcall(cpuhp_sysfs_init); 2241 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2242 2243 /* 2244 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2245 * represents all NR_CPUS bits binary values of 1<<nr. 2246 * 2247 * It is used by cpumask_of() to get a constant address to a CPU 2248 * mask value that has a single bit set only. 2249 */ 2250 2251 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2252 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2253 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2254 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2255 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2256 2257 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2258 2259 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2260 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2261 #if BITS_PER_LONG > 32 2262 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2263 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2264 #endif 2265 }; 2266 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2267 2268 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2269 EXPORT_SYMBOL(cpu_all_bits); 2270 2271 #ifdef CONFIG_INIT_ALL_POSSIBLE 2272 struct cpumask __cpu_possible_mask __read_mostly 2273 = {CPU_BITS_ALL}; 2274 #else 2275 struct cpumask __cpu_possible_mask __read_mostly; 2276 #endif 2277 EXPORT_SYMBOL(__cpu_possible_mask); 2278 2279 struct cpumask __cpu_online_mask __read_mostly; 2280 EXPORT_SYMBOL(__cpu_online_mask); 2281 2282 struct cpumask __cpu_present_mask __read_mostly; 2283 EXPORT_SYMBOL(__cpu_present_mask); 2284 2285 struct cpumask __cpu_active_mask __read_mostly; 2286 EXPORT_SYMBOL(__cpu_active_mask); 2287 2288 void init_cpu_present(const struct cpumask *src) 2289 { 2290 cpumask_copy(&__cpu_present_mask, src); 2291 } 2292 2293 void init_cpu_possible(const struct cpumask *src) 2294 { 2295 cpumask_copy(&__cpu_possible_mask, src); 2296 } 2297 2298 void init_cpu_online(const struct cpumask *src) 2299 { 2300 cpumask_copy(&__cpu_online_mask, src); 2301 } 2302 2303 /* 2304 * Activate the first processor. 2305 */ 2306 void __init boot_cpu_init(void) 2307 { 2308 int cpu = smp_processor_id(); 2309 2310 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2311 set_cpu_online(cpu, true); 2312 set_cpu_active(cpu, true); 2313 set_cpu_present(cpu, true); 2314 set_cpu_possible(cpu, true); 2315 2316 #ifdef CONFIG_SMP 2317 __boot_cpu_id = cpu; 2318 #endif 2319 } 2320 2321 /* 2322 * Must be called _AFTER_ setting up the per_cpu areas 2323 */ 2324 void __init boot_cpu_hotplug_init(void) 2325 { 2326 #ifdef CONFIG_SMP 2327 this_cpu_write(cpuhp_state.booted_once, true); 2328 #endif 2329 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2330 } 2331 2332 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 2333 2334 static int __init mitigations_parse_cmdline(char *arg) 2335 { 2336 if (!strcmp(arg, "off")) 2337 cpu_mitigations = CPU_MITIGATIONS_OFF; 2338 else if (!strcmp(arg, "auto")) 2339 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2340 else if (!strcmp(arg, "auto,nosmt")) 2341 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2342 2343 return 0; 2344 } 2345 early_param("mitigations", mitigations_parse_cmdline); 2346