xref: /openbmc/linux/kernel/cpu.c (revision 6aa7de05)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32 
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36 
37 #include "smpboot.h"
38 
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:	The current cpu state
42  * @target:	The target state
43  * @thread:	Pointer to the hotplug thread
44  * @should_run:	Thread should execute
45  * @rollback:	Perform a rollback
46  * @single:	Single callback invocation
47  * @bringup:	Single callback bringup or teardown selector
48  * @cb_state:	The state for a single callback (install/uninstall)
49  * @result:	Result of the operation
50  * @done_up:	Signal completion to the issuer of the task for cpu-up
51  * @done_down:	Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54 	enum cpuhp_state	state;
55 	enum cpuhp_state	target;
56 	enum cpuhp_state	fail;
57 #ifdef CONFIG_SMP
58 	struct task_struct	*thread;
59 	bool			should_run;
60 	bool			rollback;
61 	bool			single;
62 	bool			bringup;
63 	struct hlist_node	*node;
64 	struct hlist_node	*last;
65 	enum cpuhp_state	cb_state;
66 	int			result;
67 	struct completion	done_up;
68 	struct completion	done_down;
69 #endif
70 };
71 
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 	.fail = CPUHP_INVALID,
74 };
75 
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81 
82 
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87 
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93 
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96 
97 #endif
98 
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:	Name of the step
102  * @startup:	Startup function of the step
103  * @teardown:	Teardown function of the step
104  * @skip_onerr:	Do not invoke the functions on error rollback
105  *		Will go away once the notifiers	are gone
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			skip_onerr;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129 
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132 	/*
133 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134 	 * purposes as that state is handled explicitly in cpu_down.
135 	 */
136 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138 
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141 	struct cpuhp_step *sp;
142 
143 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144 	return sp + state;
145 }
146 
147 /**
148  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149  * @cpu:	The cpu for which the callback should be invoked
150  * @state:	The state to do callbacks for
151  * @bringup:	True if the bringup callback should be invoked
152  * @node:	For multi-instance, do a single entry callback for install/remove
153  * @lastp:	For multi-instance rollback, remember how far we got
154  *
155  * Called from cpu hotplug and from the state register machinery.
156  */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158 				 bool bringup, struct hlist_node *node,
159 				 struct hlist_node **lastp)
160 {
161 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162 	struct cpuhp_step *step = cpuhp_get_step(state);
163 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
164 	int (*cb)(unsigned int cpu);
165 	int ret, cnt;
166 
167 	if (st->fail == state) {
168 		st->fail = CPUHP_INVALID;
169 
170 		if (!(bringup ? step->startup.single : step->teardown.single))
171 			return 0;
172 
173 		return -EAGAIN;
174 	}
175 
176 	if (!step->multi_instance) {
177 		WARN_ON_ONCE(lastp && *lastp);
178 		cb = bringup ? step->startup.single : step->teardown.single;
179 		if (!cb)
180 			return 0;
181 		trace_cpuhp_enter(cpu, st->target, state, cb);
182 		ret = cb(cpu);
183 		trace_cpuhp_exit(cpu, st->state, state, ret);
184 		return ret;
185 	}
186 	cbm = bringup ? step->startup.multi : step->teardown.multi;
187 	if (!cbm)
188 		return 0;
189 
190 	/* Single invocation for instance add/remove */
191 	if (node) {
192 		WARN_ON_ONCE(lastp && *lastp);
193 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 		ret = cbm(cpu, node);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 
199 	/* State transition. Invoke on all instances */
200 	cnt = 0;
201 	hlist_for_each(node, &step->list) {
202 		if (lastp && node == *lastp)
203 			break;
204 
205 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206 		ret = cbm(cpu, node);
207 		trace_cpuhp_exit(cpu, st->state, state, ret);
208 		if (ret) {
209 			if (!lastp)
210 				goto err;
211 
212 			*lastp = node;
213 			return ret;
214 		}
215 		cnt++;
216 	}
217 	if (lastp)
218 		*lastp = NULL;
219 	return 0;
220 err:
221 	/* Rollback the instances if one failed */
222 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
223 	if (!cbm)
224 		return ret;
225 
226 	hlist_for_each(node, &step->list) {
227 		if (!cnt--)
228 			break;
229 
230 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231 		ret = cbm(cpu, node);
232 		trace_cpuhp_exit(cpu, st->state, state, ret);
233 		/*
234 		 * Rollback must not fail,
235 		 */
236 		WARN_ON_ONCE(ret);
237 	}
238 	return ret;
239 }
240 
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	wait_for_completion(done);
246 }
247 
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 	struct completion *done = bringup ? &st->done_up : &st->done_down;
251 	complete(done);
252 }
253 
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261 
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266 
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273 	mutex_lock(&cpu_add_remove_lock);
274 }
275 
276 void cpu_maps_update_done(void)
277 {
278 	mutex_unlock(&cpu_add_remove_lock);
279 }
280 
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290 
291 void cpus_read_lock(void)
292 {
293 	percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296 
297 void cpus_read_unlock(void)
298 {
299 	percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302 
303 void cpus_write_lock(void)
304 {
305 	percpu_down_write(&cpu_hotplug_lock);
306 }
307 
308 void cpus_write_unlock(void)
309 {
310 	percpu_up_write(&cpu_hotplug_lock);
311 }
312 
313 void lockdep_assert_cpus_held(void)
314 {
315 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317 
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327 	cpu_maps_update_begin();
328 	cpu_hotplug_disabled++;
329 	cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332 
333 static void __cpu_hotplug_enable(void)
334 {
335 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336 		return;
337 	cpu_hotplug_disabled--;
338 }
339 
340 void cpu_hotplug_enable(void)
341 {
342 	cpu_maps_update_begin();
343 	__cpu_hotplug_enable();
344 	cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif	/* CONFIG_HOTPLUG_CPU */
348 
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352 	enum cpuhp_state prev_state = st->state;
353 
354 	st->rollback = false;
355 	st->last = NULL;
356 
357 	st->target = target;
358 	st->single = false;
359 	st->bringup = st->state < target;
360 
361 	return prev_state;
362 }
363 
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367 	st->rollback = true;
368 
369 	/*
370 	 * If we have st->last we need to undo partial multi_instance of this
371 	 * state first. Otherwise start undo at the previous state.
372 	 */
373 	if (!st->last) {
374 		if (st->bringup)
375 			st->state--;
376 		else
377 			st->state++;
378 	}
379 
380 	st->target = prev_state;
381 	st->bringup = !st->bringup;
382 }
383 
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387 	if (!st->single && st->state == st->target)
388 		return;
389 
390 	st->result = 0;
391 	/*
392 	 * Make sure the above stores are visible before should_run becomes
393 	 * true. Paired with the mb() above in cpuhp_thread_fun()
394 	 */
395 	smp_mb();
396 	st->should_run = true;
397 	wake_up_process(st->thread);
398 	wait_for_ap_thread(st, st->bringup);
399 }
400 
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403 	enum cpuhp_state prev_state;
404 	int ret;
405 
406 	prev_state = cpuhp_set_state(st, target);
407 	__cpuhp_kick_ap(st);
408 	if ((ret = st->result)) {
409 		cpuhp_reset_state(st, prev_state);
410 		__cpuhp_kick_ap(st);
411 	}
412 
413 	return ret;
414 }
415 
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419 
420 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421 	wait_for_ap_thread(st, true);
422 	if (WARN_ON_ONCE((!cpu_online(cpu))))
423 		return -ECANCELED;
424 
425 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
426 	stop_machine_unpark(cpu);
427 	kthread_unpark(st->thread);
428 
429 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
430 		return 0;
431 
432 	return cpuhp_kick_ap(st, st->target);
433 }
434 
435 static int bringup_cpu(unsigned int cpu)
436 {
437 	struct task_struct *idle = idle_thread_get(cpu);
438 	int ret;
439 
440 	/*
441 	 * Some architectures have to walk the irq descriptors to
442 	 * setup the vector space for the cpu which comes online.
443 	 * Prevent irq alloc/free across the bringup.
444 	 */
445 	irq_lock_sparse();
446 
447 	/* Arch-specific enabling code. */
448 	ret = __cpu_up(cpu, idle);
449 	irq_unlock_sparse();
450 	if (ret)
451 		return ret;
452 	return bringup_wait_for_ap(cpu);
453 }
454 
455 /*
456  * Hotplug state machine related functions
457  */
458 
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461 	for (st->state--; st->state > st->target; st->state--) {
462 		struct cpuhp_step *step = cpuhp_get_step(st->state);
463 
464 		if (!step->skip_onerr)
465 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466 	}
467 }
468 
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470 			      enum cpuhp_state target)
471 {
472 	enum cpuhp_state prev_state = st->state;
473 	int ret = 0;
474 
475 	while (st->state < target) {
476 		st->state++;
477 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478 		if (ret) {
479 			st->target = prev_state;
480 			undo_cpu_up(cpu, st);
481 			break;
482 		}
483 	}
484 	return ret;
485 }
486 
487 /*
488  * The cpu hotplug threads manage the bringup and teardown of the cpus
489  */
490 static void cpuhp_create(unsigned int cpu)
491 {
492 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493 
494 	init_completion(&st->done_up);
495 	init_completion(&st->done_down);
496 }
497 
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501 
502 	return st->should_run;
503 }
504 
505 /*
506  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507  * callbacks when a state gets [un]installed at runtime.
508  *
509  * Each invocation of this function by the smpboot thread does a single AP
510  * state callback.
511  *
512  * It has 3 modes of operation:
513  *  - single: runs st->cb_state
514  *  - up:     runs ++st->state, while st->state < st->target
515  *  - down:   runs st->state--, while st->state > st->target
516  *
517  * When complete or on error, should_run is cleared and the completion is fired.
518  */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522 	bool bringup = st->bringup;
523 	enum cpuhp_state state;
524 
525 	/*
526 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527 	 * that if we see ->should_run we also see the rest of the state.
528 	 */
529 	smp_mb();
530 
531 	if (WARN_ON_ONCE(!st->should_run))
532 		return;
533 
534 	cpuhp_lock_acquire(bringup);
535 
536 	if (st->single) {
537 		state = st->cb_state;
538 		st->should_run = false;
539 	} else {
540 		if (bringup) {
541 			st->state++;
542 			state = st->state;
543 			st->should_run = (st->state < st->target);
544 			WARN_ON_ONCE(st->state > st->target);
545 		} else {
546 			state = st->state;
547 			st->state--;
548 			st->should_run = (st->state > st->target);
549 			WARN_ON_ONCE(st->state < st->target);
550 		}
551 	}
552 
553 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554 
555 	if (st->rollback) {
556 		struct cpuhp_step *step = cpuhp_get_step(state);
557 		if (step->skip_onerr)
558 			goto next;
559 	}
560 
561 	if (cpuhp_is_atomic_state(state)) {
562 		local_irq_disable();
563 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564 		local_irq_enable();
565 
566 		/*
567 		 * STARTING/DYING must not fail!
568 		 */
569 		WARN_ON_ONCE(st->result);
570 	} else {
571 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572 	}
573 
574 	if (st->result) {
575 		/*
576 		 * If we fail on a rollback, we're up a creek without no
577 		 * paddle, no way forward, no way back. We loose, thanks for
578 		 * playing.
579 		 */
580 		WARN_ON_ONCE(st->rollback);
581 		st->should_run = false;
582 	}
583 
584 next:
585 	cpuhp_lock_release(bringup);
586 
587 	if (!st->should_run)
588 		complete_ap_thread(st, bringup);
589 }
590 
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594 			 struct hlist_node *node)
595 {
596 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597 	int ret;
598 
599 	if (!cpu_online(cpu))
600 		return 0;
601 
602 	cpuhp_lock_acquire(false);
603 	cpuhp_lock_release(false);
604 
605 	cpuhp_lock_acquire(true);
606 	cpuhp_lock_release(true);
607 
608 	/*
609 	 * If we are up and running, use the hotplug thread. For early calls
610 	 * we invoke the thread function directly.
611 	 */
612 	if (!st->thread)
613 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614 
615 	st->rollback = false;
616 	st->last = NULL;
617 
618 	st->node = node;
619 	st->bringup = bringup;
620 	st->cb_state = state;
621 	st->single = true;
622 
623 	__cpuhp_kick_ap(st);
624 
625 	/*
626 	 * If we failed and did a partial, do a rollback.
627 	 */
628 	if ((ret = st->result) && st->last) {
629 		st->rollback = true;
630 		st->bringup = !bringup;
631 
632 		__cpuhp_kick_ap(st);
633 	}
634 
635 	/*
636 	 * Clean up the leftovers so the next hotplug operation wont use stale
637 	 * data.
638 	 */
639 	st->node = st->last = NULL;
640 	return ret;
641 }
642 
643 static int cpuhp_kick_ap_work(unsigned int cpu)
644 {
645 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
646 	enum cpuhp_state prev_state = st->state;
647 	int ret;
648 
649 	cpuhp_lock_acquire(false);
650 	cpuhp_lock_release(false);
651 
652 	cpuhp_lock_acquire(true);
653 	cpuhp_lock_release(true);
654 
655 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
656 	ret = cpuhp_kick_ap(st, st->target);
657 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
658 
659 	return ret;
660 }
661 
662 static struct smp_hotplug_thread cpuhp_threads = {
663 	.store			= &cpuhp_state.thread,
664 	.create			= &cpuhp_create,
665 	.thread_should_run	= cpuhp_should_run,
666 	.thread_fn		= cpuhp_thread_fun,
667 	.thread_comm		= "cpuhp/%u",
668 	.selfparking		= true,
669 };
670 
671 void __init cpuhp_threads_init(void)
672 {
673 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
674 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
675 }
676 
677 #ifdef CONFIG_HOTPLUG_CPU
678 /**
679  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
680  * @cpu: a CPU id
681  *
682  * This function walks all processes, finds a valid mm struct for each one and
683  * then clears a corresponding bit in mm's cpumask.  While this all sounds
684  * trivial, there are various non-obvious corner cases, which this function
685  * tries to solve in a safe manner.
686  *
687  * Also note that the function uses a somewhat relaxed locking scheme, so it may
688  * be called only for an already offlined CPU.
689  */
690 void clear_tasks_mm_cpumask(int cpu)
691 {
692 	struct task_struct *p;
693 
694 	/*
695 	 * This function is called after the cpu is taken down and marked
696 	 * offline, so its not like new tasks will ever get this cpu set in
697 	 * their mm mask. -- Peter Zijlstra
698 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
699 	 * full-fledged tasklist_lock.
700 	 */
701 	WARN_ON(cpu_online(cpu));
702 	rcu_read_lock();
703 	for_each_process(p) {
704 		struct task_struct *t;
705 
706 		/*
707 		 * Main thread might exit, but other threads may still have
708 		 * a valid mm. Find one.
709 		 */
710 		t = find_lock_task_mm(p);
711 		if (!t)
712 			continue;
713 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
714 		task_unlock(t);
715 	}
716 	rcu_read_unlock();
717 }
718 
719 /* Take this CPU down. */
720 static int take_cpu_down(void *_param)
721 {
722 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
724 	int err, cpu = smp_processor_id();
725 	int ret;
726 
727 	/* Ensure this CPU doesn't handle any more interrupts. */
728 	err = __cpu_disable();
729 	if (err < 0)
730 		return err;
731 
732 	/*
733 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
734 	 * do this step again.
735 	 */
736 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
737 	st->state--;
738 	/* Invoke the former CPU_DYING callbacks */
739 	for (; st->state > target; st->state--) {
740 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
741 		/*
742 		 * DYING must not fail!
743 		 */
744 		WARN_ON_ONCE(ret);
745 	}
746 
747 	/* Give up timekeeping duties */
748 	tick_handover_do_timer();
749 	/* Park the stopper thread */
750 	stop_machine_park(cpu);
751 	return 0;
752 }
753 
754 static int takedown_cpu(unsigned int cpu)
755 {
756 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
757 	int err;
758 
759 	/* Park the smpboot threads */
760 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
761 	smpboot_park_threads(cpu);
762 
763 	/*
764 	 * Prevent irq alloc/free while the dying cpu reorganizes the
765 	 * interrupt affinities.
766 	 */
767 	irq_lock_sparse();
768 
769 	/*
770 	 * So now all preempt/rcu users must observe !cpu_active().
771 	 */
772 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
773 	if (err) {
774 		/* CPU refused to die */
775 		irq_unlock_sparse();
776 		/* Unpark the hotplug thread so we can rollback there */
777 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
778 		return err;
779 	}
780 	BUG_ON(cpu_online(cpu));
781 
782 	/*
783 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
784 	 * runnable tasks from the cpu, there's only the idle task left now
785 	 * that the migration thread is done doing the stop_machine thing.
786 	 *
787 	 * Wait for the stop thread to go away.
788 	 */
789 	wait_for_ap_thread(st, false);
790 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
791 
792 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
793 	irq_unlock_sparse();
794 
795 	hotplug_cpu__broadcast_tick_pull(cpu);
796 	/* This actually kills the CPU. */
797 	__cpu_die(cpu);
798 
799 	tick_cleanup_dead_cpu(cpu);
800 	rcutree_migrate_callbacks(cpu);
801 	return 0;
802 }
803 
804 static void cpuhp_complete_idle_dead(void *arg)
805 {
806 	struct cpuhp_cpu_state *st = arg;
807 
808 	complete_ap_thread(st, false);
809 }
810 
811 void cpuhp_report_idle_dead(void)
812 {
813 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
814 
815 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
816 	rcu_report_dead(smp_processor_id());
817 	st->state = CPUHP_AP_IDLE_DEAD;
818 	/*
819 	 * We cannot call complete after rcu_report_dead() so we delegate it
820 	 * to an online cpu.
821 	 */
822 	smp_call_function_single(cpumask_first(cpu_online_mask),
823 				 cpuhp_complete_idle_dead, st, 0);
824 }
825 
826 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
827 {
828 	for (st->state++; st->state < st->target; st->state++) {
829 		struct cpuhp_step *step = cpuhp_get_step(st->state);
830 
831 		if (!step->skip_onerr)
832 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
833 	}
834 }
835 
836 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
837 				enum cpuhp_state target)
838 {
839 	enum cpuhp_state prev_state = st->state;
840 	int ret = 0;
841 
842 	for (; st->state > target; st->state--) {
843 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
844 		if (ret) {
845 			st->target = prev_state;
846 			undo_cpu_down(cpu, st);
847 			break;
848 		}
849 	}
850 	return ret;
851 }
852 
853 /* Requires cpu_add_remove_lock to be held */
854 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
855 			   enum cpuhp_state target)
856 {
857 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
858 	int prev_state, ret = 0;
859 
860 	if (num_online_cpus() == 1)
861 		return -EBUSY;
862 
863 	if (!cpu_present(cpu))
864 		return -EINVAL;
865 
866 	cpus_write_lock();
867 
868 	cpuhp_tasks_frozen = tasks_frozen;
869 
870 	prev_state = cpuhp_set_state(st, target);
871 	/*
872 	 * If the current CPU state is in the range of the AP hotplug thread,
873 	 * then we need to kick the thread.
874 	 */
875 	if (st->state > CPUHP_TEARDOWN_CPU) {
876 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
877 		ret = cpuhp_kick_ap_work(cpu);
878 		/*
879 		 * The AP side has done the error rollback already. Just
880 		 * return the error code..
881 		 */
882 		if (ret)
883 			goto out;
884 
885 		/*
886 		 * We might have stopped still in the range of the AP hotplug
887 		 * thread. Nothing to do anymore.
888 		 */
889 		if (st->state > CPUHP_TEARDOWN_CPU)
890 			goto out;
891 
892 		st->target = target;
893 	}
894 	/*
895 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
896 	 * to do the further cleanups.
897 	 */
898 	ret = cpuhp_down_callbacks(cpu, st, target);
899 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
900 		cpuhp_reset_state(st, prev_state);
901 		__cpuhp_kick_ap(st);
902 	}
903 
904 out:
905 	cpus_write_unlock();
906 	/*
907 	 * Do post unplug cleanup. This is still protected against
908 	 * concurrent CPU hotplug via cpu_add_remove_lock.
909 	 */
910 	lockup_detector_cleanup();
911 	return ret;
912 }
913 
914 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
915 {
916 	int err;
917 
918 	cpu_maps_update_begin();
919 
920 	if (cpu_hotplug_disabled) {
921 		err = -EBUSY;
922 		goto out;
923 	}
924 
925 	err = _cpu_down(cpu, 0, target);
926 
927 out:
928 	cpu_maps_update_done();
929 	return err;
930 }
931 
932 int cpu_down(unsigned int cpu)
933 {
934 	return do_cpu_down(cpu, CPUHP_OFFLINE);
935 }
936 EXPORT_SYMBOL(cpu_down);
937 
938 #else
939 #define takedown_cpu		NULL
940 #endif /*CONFIG_HOTPLUG_CPU*/
941 
942 /**
943  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
944  * @cpu: cpu that just started
945  *
946  * It must be called by the arch code on the new cpu, before the new cpu
947  * enables interrupts and before the "boot" cpu returns from __cpu_up().
948  */
949 void notify_cpu_starting(unsigned int cpu)
950 {
951 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
952 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
953 	int ret;
954 
955 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
956 	while (st->state < target) {
957 		st->state++;
958 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
959 		/*
960 		 * STARTING must not fail!
961 		 */
962 		WARN_ON_ONCE(ret);
963 	}
964 }
965 
966 /*
967  * Called from the idle task. Wake up the controlling task which brings the
968  * stopper and the hotplug thread of the upcoming CPU up and then delegates
969  * the rest of the online bringup to the hotplug thread.
970  */
971 void cpuhp_online_idle(enum cpuhp_state state)
972 {
973 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
974 
975 	/* Happens for the boot cpu */
976 	if (state != CPUHP_AP_ONLINE_IDLE)
977 		return;
978 
979 	st->state = CPUHP_AP_ONLINE_IDLE;
980 	complete_ap_thread(st, true);
981 }
982 
983 /* Requires cpu_add_remove_lock to be held */
984 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
985 {
986 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
987 	struct task_struct *idle;
988 	int ret = 0;
989 
990 	cpus_write_lock();
991 
992 	if (!cpu_present(cpu)) {
993 		ret = -EINVAL;
994 		goto out;
995 	}
996 
997 	/*
998 	 * The caller of do_cpu_up might have raced with another
999 	 * caller. Ignore it for now.
1000 	 */
1001 	if (st->state >= target)
1002 		goto out;
1003 
1004 	if (st->state == CPUHP_OFFLINE) {
1005 		/* Let it fail before we try to bring the cpu up */
1006 		idle = idle_thread_get(cpu);
1007 		if (IS_ERR(idle)) {
1008 			ret = PTR_ERR(idle);
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	cpuhp_tasks_frozen = tasks_frozen;
1014 
1015 	cpuhp_set_state(st, target);
1016 	/*
1017 	 * If the current CPU state is in the range of the AP hotplug thread,
1018 	 * then we need to kick the thread once more.
1019 	 */
1020 	if (st->state > CPUHP_BRINGUP_CPU) {
1021 		ret = cpuhp_kick_ap_work(cpu);
1022 		/*
1023 		 * The AP side has done the error rollback already. Just
1024 		 * return the error code..
1025 		 */
1026 		if (ret)
1027 			goto out;
1028 	}
1029 
1030 	/*
1031 	 * Try to reach the target state. We max out on the BP at
1032 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1033 	 * responsible for bringing it up to the target state.
1034 	 */
1035 	target = min((int)target, CPUHP_BRINGUP_CPU);
1036 	ret = cpuhp_up_callbacks(cpu, st, target);
1037 out:
1038 	cpus_write_unlock();
1039 	return ret;
1040 }
1041 
1042 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1043 {
1044 	int err = 0;
1045 
1046 	if (!cpu_possible(cpu)) {
1047 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1048 		       cpu);
1049 #if defined(CONFIG_IA64)
1050 		pr_err("please check additional_cpus= boot parameter\n");
1051 #endif
1052 		return -EINVAL;
1053 	}
1054 
1055 	err = try_online_node(cpu_to_node(cpu));
1056 	if (err)
1057 		return err;
1058 
1059 	cpu_maps_update_begin();
1060 
1061 	if (cpu_hotplug_disabled) {
1062 		err = -EBUSY;
1063 		goto out;
1064 	}
1065 
1066 	err = _cpu_up(cpu, 0, target);
1067 out:
1068 	cpu_maps_update_done();
1069 	return err;
1070 }
1071 
1072 int cpu_up(unsigned int cpu)
1073 {
1074 	return do_cpu_up(cpu, CPUHP_ONLINE);
1075 }
1076 EXPORT_SYMBOL_GPL(cpu_up);
1077 
1078 #ifdef CONFIG_PM_SLEEP_SMP
1079 static cpumask_var_t frozen_cpus;
1080 
1081 int freeze_secondary_cpus(int primary)
1082 {
1083 	int cpu, error = 0;
1084 
1085 	cpu_maps_update_begin();
1086 	if (!cpu_online(primary))
1087 		primary = cpumask_first(cpu_online_mask);
1088 	/*
1089 	 * We take down all of the non-boot CPUs in one shot to avoid races
1090 	 * with the userspace trying to use the CPU hotplug at the same time
1091 	 */
1092 	cpumask_clear(frozen_cpus);
1093 
1094 	pr_info("Disabling non-boot CPUs ...\n");
1095 	for_each_online_cpu(cpu) {
1096 		if (cpu == primary)
1097 			continue;
1098 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1099 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1100 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1101 		if (!error)
1102 			cpumask_set_cpu(cpu, frozen_cpus);
1103 		else {
1104 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1105 			break;
1106 		}
1107 	}
1108 
1109 	if (!error)
1110 		BUG_ON(num_online_cpus() > 1);
1111 	else
1112 		pr_err("Non-boot CPUs are not disabled\n");
1113 
1114 	/*
1115 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1116 	 * this even in case of failure as all disable_nonboot_cpus() users are
1117 	 * supposed to do enable_nonboot_cpus() on the failure path.
1118 	 */
1119 	cpu_hotplug_disabled++;
1120 
1121 	cpu_maps_update_done();
1122 	return error;
1123 }
1124 
1125 void __weak arch_enable_nonboot_cpus_begin(void)
1126 {
1127 }
1128 
1129 void __weak arch_enable_nonboot_cpus_end(void)
1130 {
1131 }
1132 
1133 void enable_nonboot_cpus(void)
1134 {
1135 	int cpu, error;
1136 
1137 	/* Allow everyone to use the CPU hotplug again */
1138 	cpu_maps_update_begin();
1139 	__cpu_hotplug_enable();
1140 	if (cpumask_empty(frozen_cpus))
1141 		goto out;
1142 
1143 	pr_info("Enabling non-boot CPUs ...\n");
1144 
1145 	arch_enable_nonboot_cpus_begin();
1146 
1147 	for_each_cpu(cpu, frozen_cpus) {
1148 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1149 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1150 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1151 		if (!error) {
1152 			pr_info("CPU%d is up\n", cpu);
1153 			continue;
1154 		}
1155 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1156 	}
1157 
1158 	arch_enable_nonboot_cpus_end();
1159 
1160 	cpumask_clear(frozen_cpus);
1161 out:
1162 	cpu_maps_update_done();
1163 }
1164 
1165 static int __init alloc_frozen_cpus(void)
1166 {
1167 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1168 		return -ENOMEM;
1169 	return 0;
1170 }
1171 core_initcall(alloc_frozen_cpus);
1172 
1173 /*
1174  * When callbacks for CPU hotplug notifications are being executed, we must
1175  * ensure that the state of the system with respect to the tasks being frozen
1176  * or not, as reported by the notification, remains unchanged *throughout the
1177  * duration* of the execution of the callbacks.
1178  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1179  *
1180  * This synchronization is implemented by mutually excluding regular CPU
1181  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1182  * Hibernate notifications.
1183  */
1184 static int
1185 cpu_hotplug_pm_callback(struct notifier_block *nb,
1186 			unsigned long action, void *ptr)
1187 {
1188 	switch (action) {
1189 
1190 	case PM_SUSPEND_PREPARE:
1191 	case PM_HIBERNATION_PREPARE:
1192 		cpu_hotplug_disable();
1193 		break;
1194 
1195 	case PM_POST_SUSPEND:
1196 	case PM_POST_HIBERNATION:
1197 		cpu_hotplug_enable();
1198 		break;
1199 
1200 	default:
1201 		return NOTIFY_DONE;
1202 	}
1203 
1204 	return NOTIFY_OK;
1205 }
1206 
1207 
1208 static int __init cpu_hotplug_pm_sync_init(void)
1209 {
1210 	/*
1211 	 * cpu_hotplug_pm_callback has higher priority than x86
1212 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1213 	 * to disable cpu hotplug to avoid cpu hotplug race.
1214 	 */
1215 	pm_notifier(cpu_hotplug_pm_callback, 0);
1216 	return 0;
1217 }
1218 core_initcall(cpu_hotplug_pm_sync_init);
1219 
1220 #endif /* CONFIG_PM_SLEEP_SMP */
1221 
1222 int __boot_cpu_id;
1223 
1224 #endif /* CONFIG_SMP */
1225 
1226 /* Boot processor state steps */
1227 static struct cpuhp_step cpuhp_bp_states[] = {
1228 	[CPUHP_OFFLINE] = {
1229 		.name			= "offline",
1230 		.startup.single		= NULL,
1231 		.teardown.single	= NULL,
1232 	},
1233 #ifdef CONFIG_SMP
1234 	[CPUHP_CREATE_THREADS]= {
1235 		.name			= "threads:prepare",
1236 		.startup.single		= smpboot_create_threads,
1237 		.teardown.single	= NULL,
1238 		.cant_stop		= true,
1239 	},
1240 	[CPUHP_PERF_PREPARE] = {
1241 		.name			= "perf:prepare",
1242 		.startup.single		= perf_event_init_cpu,
1243 		.teardown.single	= perf_event_exit_cpu,
1244 	},
1245 	[CPUHP_WORKQUEUE_PREP] = {
1246 		.name			= "workqueue:prepare",
1247 		.startup.single		= workqueue_prepare_cpu,
1248 		.teardown.single	= NULL,
1249 	},
1250 	[CPUHP_HRTIMERS_PREPARE] = {
1251 		.name			= "hrtimers:prepare",
1252 		.startup.single		= hrtimers_prepare_cpu,
1253 		.teardown.single	= hrtimers_dead_cpu,
1254 	},
1255 	[CPUHP_SMPCFD_PREPARE] = {
1256 		.name			= "smpcfd:prepare",
1257 		.startup.single		= smpcfd_prepare_cpu,
1258 		.teardown.single	= smpcfd_dead_cpu,
1259 	},
1260 	[CPUHP_RELAY_PREPARE] = {
1261 		.name			= "relay:prepare",
1262 		.startup.single		= relay_prepare_cpu,
1263 		.teardown.single	= NULL,
1264 	},
1265 	[CPUHP_SLAB_PREPARE] = {
1266 		.name			= "slab:prepare",
1267 		.startup.single		= slab_prepare_cpu,
1268 		.teardown.single	= slab_dead_cpu,
1269 	},
1270 	[CPUHP_RCUTREE_PREP] = {
1271 		.name			= "RCU/tree:prepare",
1272 		.startup.single		= rcutree_prepare_cpu,
1273 		.teardown.single	= rcutree_dead_cpu,
1274 	},
1275 	/*
1276 	 * On the tear-down path, timers_dead_cpu() must be invoked
1277 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1278 	 * otherwise a RCU stall occurs.
1279 	 */
1280 	[CPUHP_TIMERS_DEAD] = {
1281 		.name			= "timers:dead",
1282 		.startup.single		= NULL,
1283 		.teardown.single	= timers_dead_cpu,
1284 	},
1285 	/* Kicks the plugged cpu into life */
1286 	[CPUHP_BRINGUP_CPU] = {
1287 		.name			= "cpu:bringup",
1288 		.startup.single		= bringup_cpu,
1289 		.teardown.single	= NULL,
1290 		.cant_stop		= true,
1291 	},
1292 	[CPUHP_AP_SMPCFD_DYING] = {
1293 		.name			= "smpcfd:dying",
1294 		.startup.single		= NULL,
1295 		.teardown.single	= smpcfd_dying_cpu,
1296 	},
1297 	/*
1298 	 * Handled on controll processor until the plugged processor manages
1299 	 * this itself.
1300 	 */
1301 	[CPUHP_TEARDOWN_CPU] = {
1302 		.name			= "cpu:teardown",
1303 		.startup.single		= NULL,
1304 		.teardown.single	= takedown_cpu,
1305 		.cant_stop		= true,
1306 	},
1307 #else
1308 	[CPUHP_BRINGUP_CPU] = { },
1309 #endif
1310 };
1311 
1312 /* Application processor state steps */
1313 static struct cpuhp_step cpuhp_ap_states[] = {
1314 #ifdef CONFIG_SMP
1315 	/* Final state before CPU kills itself */
1316 	[CPUHP_AP_IDLE_DEAD] = {
1317 		.name			= "idle:dead",
1318 	},
1319 	/*
1320 	 * Last state before CPU enters the idle loop to die. Transient state
1321 	 * for synchronization.
1322 	 */
1323 	[CPUHP_AP_OFFLINE] = {
1324 		.name			= "ap:offline",
1325 		.cant_stop		= true,
1326 	},
1327 	/* First state is scheduler control. Interrupts are disabled */
1328 	[CPUHP_AP_SCHED_STARTING] = {
1329 		.name			= "sched:starting",
1330 		.startup.single		= sched_cpu_starting,
1331 		.teardown.single	= sched_cpu_dying,
1332 	},
1333 	[CPUHP_AP_RCUTREE_DYING] = {
1334 		.name			= "RCU/tree:dying",
1335 		.startup.single		= NULL,
1336 		.teardown.single	= rcutree_dying_cpu,
1337 	},
1338 	/* Entry state on starting. Interrupts enabled from here on. Transient
1339 	 * state for synchronsization */
1340 	[CPUHP_AP_ONLINE] = {
1341 		.name			= "ap:online",
1342 	},
1343 	/* Handle smpboot threads park/unpark */
1344 	[CPUHP_AP_SMPBOOT_THREADS] = {
1345 		.name			= "smpboot/threads:online",
1346 		.startup.single		= smpboot_unpark_threads,
1347 		.teardown.single	= NULL,
1348 	},
1349 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1350 		.name			= "irq/affinity:online",
1351 		.startup.single		= irq_affinity_online_cpu,
1352 		.teardown.single	= NULL,
1353 	},
1354 	[CPUHP_AP_PERF_ONLINE] = {
1355 		.name			= "perf:online",
1356 		.startup.single		= perf_event_init_cpu,
1357 		.teardown.single	= perf_event_exit_cpu,
1358 	},
1359 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1360 		.name			= "workqueue:online",
1361 		.startup.single		= workqueue_online_cpu,
1362 		.teardown.single	= workqueue_offline_cpu,
1363 	},
1364 	[CPUHP_AP_RCUTREE_ONLINE] = {
1365 		.name			= "RCU/tree:online",
1366 		.startup.single		= rcutree_online_cpu,
1367 		.teardown.single	= rcutree_offline_cpu,
1368 	},
1369 #endif
1370 	/*
1371 	 * The dynamically registered state space is here
1372 	 */
1373 
1374 #ifdef CONFIG_SMP
1375 	/* Last state is scheduler control setting the cpu active */
1376 	[CPUHP_AP_ACTIVE] = {
1377 		.name			= "sched:active",
1378 		.startup.single		= sched_cpu_activate,
1379 		.teardown.single	= sched_cpu_deactivate,
1380 	},
1381 #endif
1382 
1383 	/* CPU is fully up and running. */
1384 	[CPUHP_ONLINE] = {
1385 		.name			= "online",
1386 		.startup.single		= NULL,
1387 		.teardown.single	= NULL,
1388 	},
1389 };
1390 
1391 /* Sanity check for callbacks */
1392 static int cpuhp_cb_check(enum cpuhp_state state)
1393 {
1394 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1395 		return -EINVAL;
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Returns a free for dynamic slot assignment of the Online state. The states
1401  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1402  * by having no name assigned.
1403  */
1404 static int cpuhp_reserve_state(enum cpuhp_state state)
1405 {
1406 	enum cpuhp_state i, end;
1407 	struct cpuhp_step *step;
1408 
1409 	switch (state) {
1410 	case CPUHP_AP_ONLINE_DYN:
1411 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1412 		end = CPUHP_AP_ONLINE_DYN_END;
1413 		break;
1414 	case CPUHP_BP_PREPARE_DYN:
1415 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1416 		end = CPUHP_BP_PREPARE_DYN_END;
1417 		break;
1418 	default:
1419 		return -EINVAL;
1420 	}
1421 
1422 	for (i = state; i <= end; i++, step++) {
1423 		if (!step->name)
1424 			return i;
1425 	}
1426 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1427 	return -ENOSPC;
1428 }
1429 
1430 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1431 				 int (*startup)(unsigned int cpu),
1432 				 int (*teardown)(unsigned int cpu),
1433 				 bool multi_instance)
1434 {
1435 	/* (Un)Install the callbacks for further cpu hotplug operations */
1436 	struct cpuhp_step *sp;
1437 	int ret = 0;
1438 
1439 	/*
1440 	 * If name is NULL, then the state gets removed.
1441 	 *
1442 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1443 	 * the first allocation from these dynamic ranges, so the removal
1444 	 * would trigger a new allocation and clear the wrong (already
1445 	 * empty) state, leaving the callbacks of the to be cleared state
1446 	 * dangling, which causes wreckage on the next hotplug operation.
1447 	 */
1448 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1449 		     state == CPUHP_BP_PREPARE_DYN)) {
1450 		ret = cpuhp_reserve_state(state);
1451 		if (ret < 0)
1452 			return ret;
1453 		state = ret;
1454 	}
1455 	sp = cpuhp_get_step(state);
1456 	if (name && sp->name)
1457 		return -EBUSY;
1458 
1459 	sp->startup.single = startup;
1460 	sp->teardown.single = teardown;
1461 	sp->name = name;
1462 	sp->multi_instance = multi_instance;
1463 	INIT_HLIST_HEAD(&sp->list);
1464 	return ret;
1465 }
1466 
1467 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1468 {
1469 	return cpuhp_get_step(state)->teardown.single;
1470 }
1471 
1472 /*
1473  * Call the startup/teardown function for a step either on the AP or
1474  * on the current CPU.
1475  */
1476 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1477 			    struct hlist_node *node)
1478 {
1479 	struct cpuhp_step *sp = cpuhp_get_step(state);
1480 	int ret;
1481 
1482 	/*
1483 	 * If there's nothing to do, we done.
1484 	 * Relies on the union for multi_instance.
1485 	 */
1486 	if ((bringup && !sp->startup.single) ||
1487 	    (!bringup && !sp->teardown.single))
1488 		return 0;
1489 	/*
1490 	 * The non AP bound callbacks can fail on bringup. On teardown
1491 	 * e.g. module removal we crash for now.
1492 	 */
1493 #ifdef CONFIG_SMP
1494 	if (cpuhp_is_ap_state(state))
1495 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1496 	else
1497 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1498 #else
1499 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1500 #endif
1501 	BUG_ON(ret && !bringup);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * Called from __cpuhp_setup_state on a recoverable failure.
1507  *
1508  * Note: The teardown callbacks for rollback are not allowed to fail!
1509  */
1510 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1511 				   struct hlist_node *node)
1512 {
1513 	int cpu;
1514 
1515 	/* Roll back the already executed steps on the other cpus */
1516 	for_each_present_cpu(cpu) {
1517 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1518 		int cpustate = st->state;
1519 
1520 		if (cpu >= failedcpu)
1521 			break;
1522 
1523 		/* Did we invoke the startup call on that cpu ? */
1524 		if (cpustate >= state)
1525 			cpuhp_issue_call(cpu, state, false, node);
1526 	}
1527 }
1528 
1529 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1530 					  struct hlist_node *node,
1531 					  bool invoke)
1532 {
1533 	struct cpuhp_step *sp;
1534 	int cpu;
1535 	int ret;
1536 
1537 	lockdep_assert_cpus_held();
1538 
1539 	sp = cpuhp_get_step(state);
1540 	if (sp->multi_instance == false)
1541 		return -EINVAL;
1542 
1543 	mutex_lock(&cpuhp_state_mutex);
1544 
1545 	if (!invoke || !sp->startup.multi)
1546 		goto add_node;
1547 
1548 	/*
1549 	 * Try to call the startup callback for each present cpu
1550 	 * depending on the hotplug state of the cpu.
1551 	 */
1552 	for_each_present_cpu(cpu) {
1553 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1554 		int cpustate = st->state;
1555 
1556 		if (cpustate < state)
1557 			continue;
1558 
1559 		ret = cpuhp_issue_call(cpu, state, true, node);
1560 		if (ret) {
1561 			if (sp->teardown.multi)
1562 				cpuhp_rollback_install(cpu, state, node);
1563 			goto unlock;
1564 		}
1565 	}
1566 add_node:
1567 	ret = 0;
1568 	hlist_add_head(node, &sp->list);
1569 unlock:
1570 	mutex_unlock(&cpuhp_state_mutex);
1571 	return ret;
1572 }
1573 
1574 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1575 			       bool invoke)
1576 {
1577 	int ret;
1578 
1579 	cpus_read_lock();
1580 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1581 	cpus_read_unlock();
1582 	return ret;
1583 }
1584 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1585 
1586 /**
1587  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1588  * @state:		The state to setup
1589  * @invoke:		If true, the startup function is invoked for cpus where
1590  *			cpu state >= @state
1591  * @startup:		startup callback function
1592  * @teardown:		teardown callback function
1593  * @multi_instance:	State is set up for multiple instances which get
1594  *			added afterwards.
1595  *
1596  * The caller needs to hold cpus read locked while calling this function.
1597  * Returns:
1598  *   On success:
1599  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1600  *      0 for all other states
1601  *   On failure: proper (negative) error code
1602  */
1603 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1604 				   const char *name, bool invoke,
1605 				   int (*startup)(unsigned int cpu),
1606 				   int (*teardown)(unsigned int cpu),
1607 				   bool multi_instance)
1608 {
1609 	int cpu, ret = 0;
1610 	bool dynstate;
1611 
1612 	lockdep_assert_cpus_held();
1613 
1614 	if (cpuhp_cb_check(state) || !name)
1615 		return -EINVAL;
1616 
1617 	mutex_lock(&cpuhp_state_mutex);
1618 
1619 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1620 				    multi_instance);
1621 
1622 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1623 	if (ret > 0 && dynstate) {
1624 		state = ret;
1625 		ret = 0;
1626 	}
1627 
1628 	if (ret || !invoke || !startup)
1629 		goto out;
1630 
1631 	/*
1632 	 * Try to call the startup callback for each present cpu
1633 	 * depending on the hotplug state of the cpu.
1634 	 */
1635 	for_each_present_cpu(cpu) {
1636 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1637 		int cpustate = st->state;
1638 
1639 		if (cpustate < state)
1640 			continue;
1641 
1642 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1643 		if (ret) {
1644 			if (teardown)
1645 				cpuhp_rollback_install(cpu, state, NULL);
1646 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1647 			goto out;
1648 		}
1649 	}
1650 out:
1651 	mutex_unlock(&cpuhp_state_mutex);
1652 	/*
1653 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1654 	 * dynamically allocated state in case of success.
1655 	 */
1656 	if (!ret && dynstate)
1657 		return state;
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1661 
1662 int __cpuhp_setup_state(enum cpuhp_state state,
1663 			const char *name, bool invoke,
1664 			int (*startup)(unsigned int cpu),
1665 			int (*teardown)(unsigned int cpu),
1666 			bool multi_instance)
1667 {
1668 	int ret;
1669 
1670 	cpus_read_lock();
1671 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1672 					     teardown, multi_instance);
1673 	cpus_read_unlock();
1674 	return ret;
1675 }
1676 EXPORT_SYMBOL(__cpuhp_setup_state);
1677 
1678 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1679 				  struct hlist_node *node, bool invoke)
1680 {
1681 	struct cpuhp_step *sp = cpuhp_get_step(state);
1682 	int cpu;
1683 
1684 	BUG_ON(cpuhp_cb_check(state));
1685 
1686 	if (!sp->multi_instance)
1687 		return -EINVAL;
1688 
1689 	cpus_read_lock();
1690 	mutex_lock(&cpuhp_state_mutex);
1691 
1692 	if (!invoke || !cpuhp_get_teardown_cb(state))
1693 		goto remove;
1694 	/*
1695 	 * Call the teardown callback for each present cpu depending
1696 	 * on the hotplug state of the cpu. This function is not
1697 	 * allowed to fail currently!
1698 	 */
1699 	for_each_present_cpu(cpu) {
1700 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1701 		int cpustate = st->state;
1702 
1703 		if (cpustate >= state)
1704 			cpuhp_issue_call(cpu, state, false, node);
1705 	}
1706 
1707 remove:
1708 	hlist_del(node);
1709 	mutex_unlock(&cpuhp_state_mutex);
1710 	cpus_read_unlock();
1711 
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1715 
1716 /**
1717  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1718  * @state:	The state to remove
1719  * @invoke:	If true, the teardown function is invoked for cpus where
1720  *		cpu state >= @state
1721  *
1722  * The caller needs to hold cpus read locked while calling this function.
1723  * The teardown callback is currently not allowed to fail. Think
1724  * about module removal!
1725  */
1726 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1727 {
1728 	struct cpuhp_step *sp = cpuhp_get_step(state);
1729 	int cpu;
1730 
1731 	BUG_ON(cpuhp_cb_check(state));
1732 
1733 	lockdep_assert_cpus_held();
1734 
1735 	mutex_lock(&cpuhp_state_mutex);
1736 	if (sp->multi_instance) {
1737 		WARN(!hlist_empty(&sp->list),
1738 		     "Error: Removing state %d which has instances left.\n",
1739 		     state);
1740 		goto remove;
1741 	}
1742 
1743 	if (!invoke || !cpuhp_get_teardown_cb(state))
1744 		goto remove;
1745 
1746 	/*
1747 	 * Call the teardown callback for each present cpu depending
1748 	 * on the hotplug state of the cpu. This function is not
1749 	 * allowed to fail currently!
1750 	 */
1751 	for_each_present_cpu(cpu) {
1752 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1753 		int cpustate = st->state;
1754 
1755 		if (cpustate >= state)
1756 			cpuhp_issue_call(cpu, state, false, NULL);
1757 	}
1758 remove:
1759 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1760 	mutex_unlock(&cpuhp_state_mutex);
1761 }
1762 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1763 
1764 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1765 {
1766 	cpus_read_lock();
1767 	__cpuhp_remove_state_cpuslocked(state, invoke);
1768 	cpus_read_unlock();
1769 }
1770 EXPORT_SYMBOL(__cpuhp_remove_state);
1771 
1772 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1773 static ssize_t show_cpuhp_state(struct device *dev,
1774 				struct device_attribute *attr, char *buf)
1775 {
1776 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1777 
1778 	return sprintf(buf, "%d\n", st->state);
1779 }
1780 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1781 
1782 static ssize_t write_cpuhp_target(struct device *dev,
1783 				  struct device_attribute *attr,
1784 				  const char *buf, size_t count)
1785 {
1786 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1787 	struct cpuhp_step *sp;
1788 	int target, ret;
1789 
1790 	ret = kstrtoint(buf, 10, &target);
1791 	if (ret)
1792 		return ret;
1793 
1794 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1795 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1796 		return -EINVAL;
1797 #else
1798 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1799 		return -EINVAL;
1800 #endif
1801 
1802 	ret = lock_device_hotplug_sysfs();
1803 	if (ret)
1804 		return ret;
1805 
1806 	mutex_lock(&cpuhp_state_mutex);
1807 	sp = cpuhp_get_step(target);
1808 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1809 	mutex_unlock(&cpuhp_state_mutex);
1810 	if (ret)
1811 		goto out;
1812 
1813 	if (st->state < target)
1814 		ret = do_cpu_up(dev->id, target);
1815 	else
1816 		ret = do_cpu_down(dev->id, target);
1817 out:
1818 	unlock_device_hotplug();
1819 	return ret ? ret : count;
1820 }
1821 
1822 static ssize_t show_cpuhp_target(struct device *dev,
1823 				 struct device_attribute *attr, char *buf)
1824 {
1825 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1826 
1827 	return sprintf(buf, "%d\n", st->target);
1828 }
1829 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1830 
1831 
1832 static ssize_t write_cpuhp_fail(struct device *dev,
1833 				struct device_attribute *attr,
1834 				const char *buf, size_t count)
1835 {
1836 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1837 	struct cpuhp_step *sp;
1838 	int fail, ret;
1839 
1840 	ret = kstrtoint(buf, 10, &fail);
1841 	if (ret)
1842 		return ret;
1843 
1844 	/*
1845 	 * Cannot fail STARTING/DYING callbacks.
1846 	 */
1847 	if (cpuhp_is_atomic_state(fail))
1848 		return -EINVAL;
1849 
1850 	/*
1851 	 * Cannot fail anything that doesn't have callbacks.
1852 	 */
1853 	mutex_lock(&cpuhp_state_mutex);
1854 	sp = cpuhp_get_step(fail);
1855 	if (!sp->startup.single && !sp->teardown.single)
1856 		ret = -EINVAL;
1857 	mutex_unlock(&cpuhp_state_mutex);
1858 	if (ret)
1859 		return ret;
1860 
1861 	st->fail = fail;
1862 
1863 	return count;
1864 }
1865 
1866 static ssize_t show_cpuhp_fail(struct device *dev,
1867 			       struct device_attribute *attr, char *buf)
1868 {
1869 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1870 
1871 	return sprintf(buf, "%d\n", st->fail);
1872 }
1873 
1874 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1875 
1876 static struct attribute *cpuhp_cpu_attrs[] = {
1877 	&dev_attr_state.attr,
1878 	&dev_attr_target.attr,
1879 	&dev_attr_fail.attr,
1880 	NULL
1881 };
1882 
1883 static const struct attribute_group cpuhp_cpu_attr_group = {
1884 	.attrs = cpuhp_cpu_attrs,
1885 	.name = "hotplug",
1886 	NULL
1887 };
1888 
1889 static ssize_t show_cpuhp_states(struct device *dev,
1890 				 struct device_attribute *attr, char *buf)
1891 {
1892 	ssize_t cur, res = 0;
1893 	int i;
1894 
1895 	mutex_lock(&cpuhp_state_mutex);
1896 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1897 		struct cpuhp_step *sp = cpuhp_get_step(i);
1898 
1899 		if (sp->name) {
1900 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1901 			buf += cur;
1902 			res += cur;
1903 		}
1904 	}
1905 	mutex_unlock(&cpuhp_state_mutex);
1906 	return res;
1907 }
1908 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1909 
1910 static struct attribute *cpuhp_cpu_root_attrs[] = {
1911 	&dev_attr_states.attr,
1912 	NULL
1913 };
1914 
1915 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1916 	.attrs = cpuhp_cpu_root_attrs,
1917 	.name = "hotplug",
1918 	NULL
1919 };
1920 
1921 static int __init cpuhp_sysfs_init(void)
1922 {
1923 	int cpu, ret;
1924 
1925 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1926 				 &cpuhp_cpu_root_attr_group);
1927 	if (ret)
1928 		return ret;
1929 
1930 	for_each_possible_cpu(cpu) {
1931 		struct device *dev = get_cpu_device(cpu);
1932 
1933 		if (!dev)
1934 			continue;
1935 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1936 		if (ret)
1937 			return ret;
1938 	}
1939 	return 0;
1940 }
1941 device_initcall(cpuhp_sysfs_init);
1942 #endif
1943 
1944 /*
1945  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1946  * represents all NR_CPUS bits binary values of 1<<nr.
1947  *
1948  * It is used by cpumask_of() to get a constant address to a CPU
1949  * mask value that has a single bit set only.
1950  */
1951 
1952 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1953 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1954 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1955 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1956 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1957 
1958 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1959 
1960 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1961 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1962 #if BITS_PER_LONG > 32
1963 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1964 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1965 #endif
1966 };
1967 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1968 
1969 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1970 EXPORT_SYMBOL(cpu_all_bits);
1971 
1972 #ifdef CONFIG_INIT_ALL_POSSIBLE
1973 struct cpumask __cpu_possible_mask __read_mostly
1974 	= {CPU_BITS_ALL};
1975 #else
1976 struct cpumask __cpu_possible_mask __read_mostly;
1977 #endif
1978 EXPORT_SYMBOL(__cpu_possible_mask);
1979 
1980 struct cpumask __cpu_online_mask __read_mostly;
1981 EXPORT_SYMBOL(__cpu_online_mask);
1982 
1983 struct cpumask __cpu_present_mask __read_mostly;
1984 EXPORT_SYMBOL(__cpu_present_mask);
1985 
1986 struct cpumask __cpu_active_mask __read_mostly;
1987 EXPORT_SYMBOL(__cpu_active_mask);
1988 
1989 void init_cpu_present(const struct cpumask *src)
1990 {
1991 	cpumask_copy(&__cpu_present_mask, src);
1992 }
1993 
1994 void init_cpu_possible(const struct cpumask *src)
1995 {
1996 	cpumask_copy(&__cpu_possible_mask, src);
1997 }
1998 
1999 void init_cpu_online(const struct cpumask *src)
2000 {
2001 	cpumask_copy(&__cpu_online_mask, src);
2002 }
2003 
2004 /*
2005  * Activate the first processor.
2006  */
2007 void __init boot_cpu_init(void)
2008 {
2009 	int cpu = smp_processor_id();
2010 
2011 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2012 	set_cpu_online(cpu, true);
2013 	set_cpu_active(cpu, true);
2014 	set_cpu_present(cpu, true);
2015 	set_cpu_possible(cpu, true);
2016 
2017 #ifdef CONFIG_SMP
2018 	__boot_cpu_id = cpu;
2019 #endif
2020 }
2021 
2022 /*
2023  * Must be called _AFTER_ setting up the per_cpu areas
2024  */
2025 void __init boot_cpu_state_init(void)
2026 {
2027 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2028 }
2029