xref: /openbmc/linux/kernel/cpu.c (revision 609e478b)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <trace/events/power.h>
24 
25 #include "smpboot.h"
26 
27 #ifdef CONFIG_SMP
28 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
29 static DEFINE_MUTEX(cpu_add_remove_lock);
30 
31 /*
32  * The following two APIs (cpu_maps_update_begin/done) must be used when
33  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
34  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
35  * hotplug callback (un)registration performed using __register_cpu_notifier()
36  * or __unregister_cpu_notifier().
37  */
38 void cpu_maps_update_begin(void)
39 {
40 	mutex_lock(&cpu_add_remove_lock);
41 }
42 EXPORT_SYMBOL(cpu_notifier_register_begin);
43 
44 void cpu_maps_update_done(void)
45 {
46 	mutex_unlock(&cpu_add_remove_lock);
47 }
48 EXPORT_SYMBOL(cpu_notifier_register_done);
49 
50 static RAW_NOTIFIER_HEAD(cpu_chain);
51 
52 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
53  * Should always be manipulated under cpu_add_remove_lock
54  */
55 static int cpu_hotplug_disabled;
56 
57 #ifdef CONFIG_HOTPLUG_CPU
58 
59 static struct {
60 	struct task_struct *active_writer;
61 	struct mutex lock; /* Synchronizes accesses to refcount, */
62 	/*
63 	 * Also blocks the new readers during
64 	 * an ongoing cpu hotplug operation.
65 	 */
66 	int refcount;
67 
68 #ifdef CONFIG_DEBUG_LOCK_ALLOC
69 	struct lockdep_map dep_map;
70 #endif
71 } cpu_hotplug = {
72 	.active_writer = NULL,
73 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
74 	.refcount = 0,
75 #ifdef CONFIG_DEBUG_LOCK_ALLOC
76 	.dep_map = {.name = "cpu_hotplug.lock" },
77 #endif
78 };
79 
80 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
81 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
82 #define cpuhp_lock_acquire_tryread() \
83 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
84 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
85 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
86 
87 void get_online_cpus(void)
88 {
89 	might_sleep();
90 	if (cpu_hotplug.active_writer == current)
91 		return;
92 	cpuhp_lock_acquire_read();
93 	mutex_lock(&cpu_hotplug.lock);
94 	cpu_hotplug.refcount++;
95 	mutex_unlock(&cpu_hotplug.lock);
96 }
97 EXPORT_SYMBOL_GPL(get_online_cpus);
98 
99 bool try_get_online_cpus(void)
100 {
101 	if (cpu_hotplug.active_writer == current)
102 		return true;
103 	if (!mutex_trylock(&cpu_hotplug.lock))
104 		return false;
105 	cpuhp_lock_acquire_tryread();
106 	cpu_hotplug.refcount++;
107 	mutex_unlock(&cpu_hotplug.lock);
108 	return true;
109 }
110 EXPORT_SYMBOL_GPL(try_get_online_cpus);
111 
112 void put_online_cpus(void)
113 {
114 	if (cpu_hotplug.active_writer == current)
115 		return;
116 	mutex_lock(&cpu_hotplug.lock);
117 
118 	if (WARN_ON(!cpu_hotplug.refcount))
119 		cpu_hotplug.refcount++; /* try to fix things up */
120 
121 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
122 		wake_up_process(cpu_hotplug.active_writer);
123 	mutex_unlock(&cpu_hotplug.lock);
124 	cpuhp_lock_release();
125 
126 }
127 EXPORT_SYMBOL_GPL(put_online_cpus);
128 
129 /*
130  * This ensures that the hotplug operation can begin only when the
131  * refcount goes to zero.
132  *
133  * Note that during a cpu-hotplug operation, the new readers, if any,
134  * will be blocked by the cpu_hotplug.lock
135  *
136  * Since cpu_hotplug_begin() is always called after invoking
137  * cpu_maps_update_begin(), we can be sure that only one writer is active.
138  *
139  * Note that theoretically, there is a possibility of a livelock:
140  * - Refcount goes to zero, last reader wakes up the sleeping
141  *   writer.
142  * - Last reader unlocks the cpu_hotplug.lock.
143  * - A new reader arrives at this moment, bumps up the refcount.
144  * - The writer acquires the cpu_hotplug.lock finds the refcount
145  *   non zero and goes to sleep again.
146  *
147  * However, this is very difficult to achieve in practice since
148  * get_online_cpus() not an api which is called all that often.
149  *
150  */
151 void cpu_hotplug_begin(void)
152 {
153 	cpu_hotplug.active_writer = current;
154 
155 	cpuhp_lock_acquire();
156 	for (;;) {
157 		mutex_lock(&cpu_hotplug.lock);
158 		if (likely(!cpu_hotplug.refcount))
159 			break;
160 		__set_current_state(TASK_UNINTERRUPTIBLE);
161 		mutex_unlock(&cpu_hotplug.lock);
162 		schedule();
163 	}
164 }
165 
166 void cpu_hotplug_done(void)
167 {
168 	cpu_hotplug.active_writer = NULL;
169 	mutex_unlock(&cpu_hotplug.lock);
170 	cpuhp_lock_release();
171 }
172 
173 /*
174  * Wait for currently running CPU hotplug operations to complete (if any) and
175  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
176  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
177  * hotplug path before performing hotplug operations. So acquiring that lock
178  * guarantees mutual exclusion from any currently running hotplug operations.
179  */
180 void cpu_hotplug_disable(void)
181 {
182 	cpu_maps_update_begin();
183 	cpu_hotplug_disabled = 1;
184 	cpu_maps_update_done();
185 }
186 
187 void cpu_hotplug_enable(void)
188 {
189 	cpu_maps_update_begin();
190 	cpu_hotplug_disabled = 0;
191 	cpu_maps_update_done();
192 }
193 
194 #endif	/* CONFIG_HOTPLUG_CPU */
195 
196 /* Need to know about CPUs going up/down? */
197 int __ref register_cpu_notifier(struct notifier_block *nb)
198 {
199 	int ret;
200 	cpu_maps_update_begin();
201 	ret = raw_notifier_chain_register(&cpu_chain, nb);
202 	cpu_maps_update_done();
203 	return ret;
204 }
205 
206 int __ref __register_cpu_notifier(struct notifier_block *nb)
207 {
208 	return raw_notifier_chain_register(&cpu_chain, nb);
209 }
210 
211 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
212 			int *nr_calls)
213 {
214 	int ret;
215 
216 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
217 					nr_calls);
218 
219 	return notifier_to_errno(ret);
220 }
221 
222 static int cpu_notify(unsigned long val, void *v)
223 {
224 	return __cpu_notify(val, v, -1, NULL);
225 }
226 
227 #ifdef CONFIG_HOTPLUG_CPU
228 
229 static void cpu_notify_nofail(unsigned long val, void *v)
230 {
231 	BUG_ON(cpu_notify(val, v));
232 }
233 EXPORT_SYMBOL(register_cpu_notifier);
234 EXPORT_SYMBOL(__register_cpu_notifier);
235 
236 void __ref unregister_cpu_notifier(struct notifier_block *nb)
237 {
238 	cpu_maps_update_begin();
239 	raw_notifier_chain_unregister(&cpu_chain, nb);
240 	cpu_maps_update_done();
241 }
242 EXPORT_SYMBOL(unregister_cpu_notifier);
243 
244 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
245 {
246 	raw_notifier_chain_unregister(&cpu_chain, nb);
247 }
248 EXPORT_SYMBOL(__unregister_cpu_notifier);
249 
250 /**
251  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
252  * @cpu: a CPU id
253  *
254  * This function walks all processes, finds a valid mm struct for each one and
255  * then clears a corresponding bit in mm's cpumask.  While this all sounds
256  * trivial, there are various non-obvious corner cases, which this function
257  * tries to solve in a safe manner.
258  *
259  * Also note that the function uses a somewhat relaxed locking scheme, so it may
260  * be called only for an already offlined CPU.
261  */
262 void clear_tasks_mm_cpumask(int cpu)
263 {
264 	struct task_struct *p;
265 
266 	/*
267 	 * This function is called after the cpu is taken down and marked
268 	 * offline, so its not like new tasks will ever get this cpu set in
269 	 * their mm mask. -- Peter Zijlstra
270 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
271 	 * full-fledged tasklist_lock.
272 	 */
273 	WARN_ON(cpu_online(cpu));
274 	rcu_read_lock();
275 	for_each_process(p) {
276 		struct task_struct *t;
277 
278 		/*
279 		 * Main thread might exit, but other threads may still have
280 		 * a valid mm. Find one.
281 		 */
282 		t = find_lock_task_mm(p);
283 		if (!t)
284 			continue;
285 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
286 		task_unlock(t);
287 	}
288 	rcu_read_unlock();
289 }
290 
291 static inline void check_for_tasks(int dead_cpu)
292 {
293 	struct task_struct *g, *p;
294 
295 	read_lock_irq(&tasklist_lock);
296 	do_each_thread(g, p) {
297 		if (!p->on_rq)
298 			continue;
299 		/*
300 		 * We do the check with unlocked task_rq(p)->lock.
301 		 * Order the reading to do not warn about a task,
302 		 * which was running on this cpu in the past, and
303 		 * it's just been woken on another cpu.
304 		 */
305 		rmb();
306 		if (task_cpu(p) != dead_cpu)
307 			continue;
308 
309 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
310 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
311 	} while_each_thread(g, p);
312 	read_unlock_irq(&tasklist_lock);
313 }
314 
315 struct take_cpu_down_param {
316 	unsigned long mod;
317 	void *hcpu;
318 };
319 
320 /* Take this CPU down. */
321 static int __ref take_cpu_down(void *_param)
322 {
323 	struct take_cpu_down_param *param = _param;
324 	int err;
325 
326 	/* Ensure this CPU doesn't handle any more interrupts. */
327 	err = __cpu_disable();
328 	if (err < 0)
329 		return err;
330 
331 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
332 	/* Park the stopper thread */
333 	kthread_park(current);
334 	return 0;
335 }
336 
337 /* Requires cpu_add_remove_lock to be held */
338 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
339 {
340 	int err, nr_calls = 0;
341 	void *hcpu = (void *)(long)cpu;
342 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
343 	struct take_cpu_down_param tcd_param = {
344 		.mod = mod,
345 		.hcpu = hcpu,
346 	};
347 
348 	if (num_online_cpus() == 1)
349 		return -EBUSY;
350 
351 	if (!cpu_online(cpu))
352 		return -EINVAL;
353 
354 	cpu_hotplug_begin();
355 
356 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
357 	if (err) {
358 		nr_calls--;
359 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
360 		pr_warn("%s: attempt to take down CPU %u failed\n",
361 			__func__, cpu);
362 		goto out_release;
363 	}
364 
365 	/*
366 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
367 	 * and RCU users of this state to go away such that all new such users
368 	 * will observe it.
369 	 *
370 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
371 	 * not imply sync_sched(), so explicitly call both.
372 	 *
373 	 * Do sync before park smpboot threads to take care the rcu boost case.
374 	 */
375 #ifdef CONFIG_PREEMPT
376 	synchronize_sched();
377 #endif
378 	synchronize_rcu();
379 
380 	smpboot_park_threads(cpu);
381 
382 	/*
383 	 * So now all preempt/rcu users must observe !cpu_active().
384 	 */
385 
386 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
387 	if (err) {
388 		/* CPU didn't die: tell everyone.  Can't complain. */
389 		smpboot_unpark_threads(cpu);
390 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
391 		goto out_release;
392 	}
393 	BUG_ON(cpu_online(cpu));
394 
395 	/*
396 	 * The migration_call() CPU_DYING callback will have removed all
397 	 * runnable tasks from the cpu, there's only the idle task left now
398 	 * that the migration thread is done doing the stop_machine thing.
399 	 *
400 	 * Wait for the stop thread to go away.
401 	 */
402 	while (!idle_cpu(cpu))
403 		cpu_relax();
404 
405 	/* This actually kills the CPU. */
406 	__cpu_die(cpu);
407 
408 	/* CPU is completely dead: tell everyone.  Too late to complain. */
409 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
410 
411 	check_for_tasks(cpu);
412 
413 out_release:
414 	cpu_hotplug_done();
415 	if (!err)
416 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
417 	return err;
418 }
419 
420 int __ref cpu_down(unsigned int cpu)
421 {
422 	int err;
423 
424 	cpu_maps_update_begin();
425 
426 	if (cpu_hotplug_disabled) {
427 		err = -EBUSY;
428 		goto out;
429 	}
430 
431 	err = _cpu_down(cpu, 0);
432 
433 out:
434 	cpu_maps_update_done();
435 	return err;
436 }
437 EXPORT_SYMBOL(cpu_down);
438 #endif /*CONFIG_HOTPLUG_CPU*/
439 
440 /* Requires cpu_add_remove_lock to be held */
441 static int _cpu_up(unsigned int cpu, int tasks_frozen)
442 {
443 	int ret, nr_calls = 0;
444 	void *hcpu = (void *)(long)cpu;
445 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
446 	struct task_struct *idle;
447 
448 	cpu_hotplug_begin();
449 
450 	if (cpu_online(cpu) || !cpu_present(cpu)) {
451 		ret = -EINVAL;
452 		goto out;
453 	}
454 
455 	idle = idle_thread_get(cpu);
456 	if (IS_ERR(idle)) {
457 		ret = PTR_ERR(idle);
458 		goto out;
459 	}
460 
461 	ret = smpboot_create_threads(cpu);
462 	if (ret)
463 		goto out;
464 
465 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
466 	if (ret) {
467 		nr_calls--;
468 		pr_warn("%s: attempt to bring up CPU %u failed\n",
469 			__func__, cpu);
470 		goto out_notify;
471 	}
472 
473 	/* Arch-specific enabling code. */
474 	ret = __cpu_up(cpu, idle);
475 	if (ret != 0)
476 		goto out_notify;
477 	BUG_ON(!cpu_online(cpu));
478 
479 	/* Wake the per cpu threads */
480 	smpboot_unpark_threads(cpu);
481 
482 	/* Now call notifier in preparation. */
483 	cpu_notify(CPU_ONLINE | mod, hcpu);
484 
485 out_notify:
486 	if (ret != 0)
487 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
488 out:
489 	cpu_hotplug_done();
490 
491 	return ret;
492 }
493 
494 int cpu_up(unsigned int cpu)
495 {
496 	int err = 0;
497 
498 	if (!cpu_possible(cpu)) {
499 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
500 		       cpu);
501 #if defined(CONFIG_IA64)
502 		pr_err("please check additional_cpus= boot parameter\n");
503 #endif
504 		return -EINVAL;
505 	}
506 
507 	err = try_online_node(cpu_to_node(cpu));
508 	if (err)
509 		return err;
510 
511 	cpu_maps_update_begin();
512 
513 	if (cpu_hotplug_disabled) {
514 		err = -EBUSY;
515 		goto out;
516 	}
517 
518 	err = _cpu_up(cpu, 0);
519 
520 out:
521 	cpu_maps_update_done();
522 	return err;
523 }
524 EXPORT_SYMBOL_GPL(cpu_up);
525 
526 #ifdef CONFIG_PM_SLEEP_SMP
527 static cpumask_var_t frozen_cpus;
528 
529 int disable_nonboot_cpus(void)
530 {
531 	int cpu, first_cpu, error = 0;
532 
533 	cpu_maps_update_begin();
534 	first_cpu = cpumask_first(cpu_online_mask);
535 	/*
536 	 * We take down all of the non-boot CPUs in one shot to avoid races
537 	 * with the userspace trying to use the CPU hotplug at the same time
538 	 */
539 	cpumask_clear(frozen_cpus);
540 
541 	pr_info("Disabling non-boot CPUs ...\n");
542 	for_each_online_cpu(cpu) {
543 		if (cpu == first_cpu)
544 			continue;
545 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
546 		error = _cpu_down(cpu, 1);
547 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
548 		if (!error)
549 			cpumask_set_cpu(cpu, frozen_cpus);
550 		else {
551 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
552 			break;
553 		}
554 	}
555 
556 	if (!error) {
557 		BUG_ON(num_online_cpus() > 1);
558 		/* Make sure the CPUs won't be enabled by someone else */
559 		cpu_hotplug_disabled = 1;
560 	} else {
561 		pr_err("Non-boot CPUs are not disabled\n");
562 	}
563 	cpu_maps_update_done();
564 	return error;
565 }
566 
567 void __weak arch_enable_nonboot_cpus_begin(void)
568 {
569 }
570 
571 void __weak arch_enable_nonboot_cpus_end(void)
572 {
573 }
574 
575 void __ref enable_nonboot_cpus(void)
576 {
577 	int cpu, error;
578 
579 	/* Allow everyone to use the CPU hotplug again */
580 	cpu_maps_update_begin();
581 	cpu_hotplug_disabled = 0;
582 	if (cpumask_empty(frozen_cpus))
583 		goto out;
584 
585 	pr_info("Enabling non-boot CPUs ...\n");
586 
587 	arch_enable_nonboot_cpus_begin();
588 
589 	for_each_cpu(cpu, frozen_cpus) {
590 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
591 		error = _cpu_up(cpu, 1);
592 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
593 		if (!error) {
594 			pr_info("CPU%d is up\n", cpu);
595 			continue;
596 		}
597 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
598 	}
599 
600 	arch_enable_nonboot_cpus_end();
601 
602 	cpumask_clear(frozen_cpus);
603 out:
604 	cpu_maps_update_done();
605 }
606 
607 static int __init alloc_frozen_cpus(void)
608 {
609 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
610 		return -ENOMEM;
611 	return 0;
612 }
613 core_initcall(alloc_frozen_cpus);
614 
615 /*
616  * When callbacks for CPU hotplug notifications are being executed, we must
617  * ensure that the state of the system with respect to the tasks being frozen
618  * or not, as reported by the notification, remains unchanged *throughout the
619  * duration* of the execution of the callbacks.
620  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
621  *
622  * This synchronization is implemented by mutually excluding regular CPU
623  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
624  * Hibernate notifications.
625  */
626 static int
627 cpu_hotplug_pm_callback(struct notifier_block *nb,
628 			unsigned long action, void *ptr)
629 {
630 	switch (action) {
631 
632 	case PM_SUSPEND_PREPARE:
633 	case PM_HIBERNATION_PREPARE:
634 		cpu_hotplug_disable();
635 		break;
636 
637 	case PM_POST_SUSPEND:
638 	case PM_POST_HIBERNATION:
639 		cpu_hotplug_enable();
640 		break;
641 
642 	default:
643 		return NOTIFY_DONE;
644 	}
645 
646 	return NOTIFY_OK;
647 }
648 
649 
650 static int __init cpu_hotplug_pm_sync_init(void)
651 {
652 	/*
653 	 * cpu_hotplug_pm_callback has higher priority than x86
654 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
655 	 * to disable cpu hotplug to avoid cpu hotplug race.
656 	 */
657 	pm_notifier(cpu_hotplug_pm_callback, 0);
658 	return 0;
659 }
660 core_initcall(cpu_hotplug_pm_sync_init);
661 
662 #endif /* CONFIG_PM_SLEEP_SMP */
663 
664 /**
665  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
666  * @cpu: cpu that just started
667  *
668  * This function calls the cpu_chain notifiers with CPU_STARTING.
669  * It must be called by the arch code on the new cpu, before the new cpu
670  * enables interrupts and before the "boot" cpu returns from __cpu_up().
671  */
672 void notify_cpu_starting(unsigned int cpu)
673 {
674 	unsigned long val = CPU_STARTING;
675 
676 #ifdef CONFIG_PM_SLEEP_SMP
677 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
678 		val = CPU_STARTING_FROZEN;
679 #endif /* CONFIG_PM_SLEEP_SMP */
680 	cpu_notify(val, (void *)(long)cpu);
681 }
682 
683 #endif /* CONFIG_SMP */
684 
685 /*
686  * cpu_bit_bitmap[] is a special, "compressed" data structure that
687  * represents all NR_CPUS bits binary values of 1<<nr.
688  *
689  * It is used by cpumask_of() to get a constant address to a CPU
690  * mask value that has a single bit set only.
691  */
692 
693 /* cpu_bit_bitmap[0] is empty - so we can back into it */
694 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
695 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
696 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
697 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
698 
699 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
700 
701 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
702 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
703 #if BITS_PER_LONG > 32
704 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
705 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
706 #endif
707 };
708 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
709 
710 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
711 EXPORT_SYMBOL(cpu_all_bits);
712 
713 #ifdef CONFIG_INIT_ALL_POSSIBLE
714 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
715 	= CPU_BITS_ALL;
716 #else
717 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
718 #endif
719 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
720 EXPORT_SYMBOL(cpu_possible_mask);
721 
722 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
723 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
724 EXPORT_SYMBOL(cpu_online_mask);
725 
726 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
727 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
728 EXPORT_SYMBOL(cpu_present_mask);
729 
730 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
731 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
732 EXPORT_SYMBOL(cpu_active_mask);
733 
734 void set_cpu_possible(unsigned int cpu, bool possible)
735 {
736 	if (possible)
737 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
738 	else
739 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
740 }
741 
742 void set_cpu_present(unsigned int cpu, bool present)
743 {
744 	if (present)
745 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
746 	else
747 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
748 }
749 
750 void set_cpu_online(unsigned int cpu, bool online)
751 {
752 	if (online) {
753 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
754 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
755 	} else {
756 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
757 	}
758 }
759 
760 void set_cpu_active(unsigned int cpu, bool active)
761 {
762 	if (active)
763 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
764 	else
765 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
766 }
767 
768 void init_cpu_present(const struct cpumask *src)
769 {
770 	cpumask_copy(to_cpumask(cpu_present_bits), src);
771 }
772 
773 void init_cpu_possible(const struct cpumask *src)
774 {
775 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
776 }
777 
778 void init_cpu_online(const struct cpumask *src)
779 {
780 	cpumask_copy(to_cpumask(cpu_online_bits), src);
781 }
782