xref: /openbmc/linux/kernel/cpu.c (revision 5df29bca)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <trace/events/power.h>
26 
27 #include "smpboot.h"
28 
29 #ifdef CONFIG_SMP
30 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
31 static DEFINE_MUTEX(cpu_add_remove_lock);
32 
33 /*
34  * The following two APIs (cpu_maps_update_begin/done) must be used when
35  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
36  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
37  * hotplug callback (un)registration performed using __register_cpu_notifier()
38  * or __unregister_cpu_notifier().
39  */
40 void cpu_maps_update_begin(void)
41 {
42 	mutex_lock(&cpu_add_remove_lock);
43 }
44 EXPORT_SYMBOL(cpu_notifier_register_begin);
45 
46 void cpu_maps_update_done(void)
47 {
48 	mutex_unlock(&cpu_add_remove_lock);
49 }
50 EXPORT_SYMBOL(cpu_notifier_register_done);
51 
52 static RAW_NOTIFIER_HEAD(cpu_chain);
53 
54 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
55  * Should always be manipulated under cpu_add_remove_lock
56  */
57 static int cpu_hotplug_disabled;
58 
59 #ifdef CONFIG_HOTPLUG_CPU
60 
61 static struct {
62 	struct task_struct *active_writer;
63 	/* wait queue to wake up the active_writer */
64 	wait_queue_head_t wq;
65 	/* verifies that no writer will get active while readers are active */
66 	struct mutex lock;
67 	/*
68 	 * Also blocks the new readers during
69 	 * an ongoing cpu hotplug operation.
70 	 */
71 	atomic_t refcount;
72 
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 	struct lockdep_map dep_map;
75 #endif
76 } cpu_hotplug = {
77 	.active_writer = NULL,
78 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
79 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	.dep_map = {.name = "cpu_hotplug.lock" },
82 #endif
83 };
84 
85 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
86 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
87 #define cpuhp_lock_acquire_tryread() \
88 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
89 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
90 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
91 
92 
93 void get_online_cpus(void)
94 {
95 	might_sleep();
96 	if (cpu_hotplug.active_writer == current)
97 		return;
98 	cpuhp_lock_acquire_read();
99 	mutex_lock(&cpu_hotplug.lock);
100 	atomic_inc(&cpu_hotplug.refcount);
101 	mutex_unlock(&cpu_hotplug.lock);
102 }
103 EXPORT_SYMBOL_GPL(get_online_cpus);
104 
105 void put_online_cpus(void)
106 {
107 	int refcount;
108 
109 	if (cpu_hotplug.active_writer == current)
110 		return;
111 
112 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
113 	if (WARN_ON(refcount < 0)) /* try to fix things up */
114 		atomic_inc(&cpu_hotplug.refcount);
115 
116 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
117 		wake_up(&cpu_hotplug.wq);
118 
119 	cpuhp_lock_release();
120 
121 }
122 EXPORT_SYMBOL_GPL(put_online_cpus);
123 
124 /*
125  * This ensures that the hotplug operation can begin only when the
126  * refcount goes to zero.
127  *
128  * Note that during a cpu-hotplug operation, the new readers, if any,
129  * will be blocked by the cpu_hotplug.lock
130  *
131  * Since cpu_hotplug_begin() is always called after invoking
132  * cpu_maps_update_begin(), we can be sure that only one writer is active.
133  *
134  * Note that theoretically, there is a possibility of a livelock:
135  * - Refcount goes to zero, last reader wakes up the sleeping
136  *   writer.
137  * - Last reader unlocks the cpu_hotplug.lock.
138  * - A new reader arrives at this moment, bumps up the refcount.
139  * - The writer acquires the cpu_hotplug.lock finds the refcount
140  *   non zero and goes to sleep again.
141  *
142  * However, this is very difficult to achieve in practice since
143  * get_online_cpus() not an api which is called all that often.
144  *
145  */
146 void cpu_hotplug_begin(void)
147 {
148 	DEFINE_WAIT(wait);
149 
150 	cpu_hotplug.active_writer = current;
151 	cpuhp_lock_acquire();
152 
153 	for (;;) {
154 		mutex_lock(&cpu_hotplug.lock);
155 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
156 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
157 				break;
158 		mutex_unlock(&cpu_hotplug.lock);
159 		schedule();
160 	}
161 	finish_wait(&cpu_hotplug.wq, &wait);
162 }
163 
164 void cpu_hotplug_done(void)
165 {
166 	cpu_hotplug.active_writer = NULL;
167 	mutex_unlock(&cpu_hotplug.lock);
168 	cpuhp_lock_release();
169 }
170 
171 /*
172  * Wait for currently running CPU hotplug operations to complete (if any) and
173  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
174  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
175  * hotplug path before performing hotplug operations. So acquiring that lock
176  * guarantees mutual exclusion from any currently running hotplug operations.
177  */
178 void cpu_hotplug_disable(void)
179 {
180 	cpu_maps_update_begin();
181 	cpu_hotplug_disabled++;
182 	cpu_maps_update_done();
183 }
184 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
185 
186 void cpu_hotplug_enable(void)
187 {
188 	cpu_maps_update_begin();
189 	WARN_ON(--cpu_hotplug_disabled < 0);
190 	cpu_maps_update_done();
191 }
192 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
193 #endif	/* CONFIG_HOTPLUG_CPU */
194 
195 /* Need to know about CPUs going up/down? */
196 int register_cpu_notifier(struct notifier_block *nb)
197 {
198 	int ret;
199 	cpu_maps_update_begin();
200 	ret = raw_notifier_chain_register(&cpu_chain, nb);
201 	cpu_maps_update_done();
202 	return ret;
203 }
204 
205 int __register_cpu_notifier(struct notifier_block *nb)
206 {
207 	return raw_notifier_chain_register(&cpu_chain, nb);
208 }
209 
210 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
211 			int *nr_calls)
212 {
213 	int ret;
214 
215 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
216 					nr_calls);
217 
218 	return notifier_to_errno(ret);
219 }
220 
221 static int cpu_notify(unsigned long val, void *v)
222 {
223 	return __cpu_notify(val, v, -1, NULL);
224 }
225 
226 #ifdef CONFIG_HOTPLUG_CPU
227 
228 static void cpu_notify_nofail(unsigned long val, void *v)
229 {
230 	BUG_ON(cpu_notify(val, v));
231 }
232 EXPORT_SYMBOL(register_cpu_notifier);
233 EXPORT_SYMBOL(__register_cpu_notifier);
234 
235 void unregister_cpu_notifier(struct notifier_block *nb)
236 {
237 	cpu_maps_update_begin();
238 	raw_notifier_chain_unregister(&cpu_chain, nb);
239 	cpu_maps_update_done();
240 }
241 EXPORT_SYMBOL(unregister_cpu_notifier);
242 
243 void __unregister_cpu_notifier(struct notifier_block *nb)
244 {
245 	raw_notifier_chain_unregister(&cpu_chain, nb);
246 }
247 EXPORT_SYMBOL(__unregister_cpu_notifier);
248 
249 /**
250  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
251  * @cpu: a CPU id
252  *
253  * This function walks all processes, finds a valid mm struct for each one and
254  * then clears a corresponding bit in mm's cpumask.  While this all sounds
255  * trivial, there are various non-obvious corner cases, which this function
256  * tries to solve in a safe manner.
257  *
258  * Also note that the function uses a somewhat relaxed locking scheme, so it may
259  * be called only for an already offlined CPU.
260  */
261 void clear_tasks_mm_cpumask(int cpu)
262 {
263 	struct task_struct *p;
264 
265 	/*
266 	 * This function is called after the cpu is taken down and marked
267 	 * offline, so its not like new tasks will ever get this cpu set in
268 	 * their mm mask. -- Peter Zijlstra
269 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
270 	 * full-fledged tasklist_lock.
271 	 */
272 	WARN_ON(cpu_online(cpu));
273 	rcu_read_lock();
274 	for_each_process(p) {
275 		struct task_struct *t;
276 
277 		/*
278 		 * Main thread might exit, but other threads may still have
279 		 * a valid mm. Find one.
280 		 */
281 		t = find_lock_task_mm(p);
282 		if (!t)
283 			continue;
284 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
285 		task_unlock(t);
286 	}
287 	rcu_read_unlock();
288 }
289 
290 static inline void check_for_tasks(int dead_cpu)
291 {
292 	struct task_struct *g, *p;
293 
294 	read_lock(&tasklist_lock);
295 	for_each_process_thread(g, p) {
296 		if (!p->on_rq)
297 			continue;
298 		/*
299 		 * We do the check with unlocked task_rq(p)->lock.
300 		 * Order the reading to do not warn about a task,
301 		 * which was running on this cpu in the past, and
302 		 * it's just been woken on another cpu.
303 		 */
304 		rmb();
305 		if (task_cpu(p) != dead_cpu)
306 			continue;
307 
308 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
309 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
310 	}
311 	read_unlock(&tasklist_lock);
312 }
313 
314 struct take_cpu_down_param {
315 	unsigned long mod;
316 	void *hcpu;
317 };
318 
319 /* Take this CPU down. */
320 static int take_cpu_down(void *_param)
321 {
322 	struct take_cpu_down_param *param = _param;
323 	int err;
324 
325 	/* Ensure this CPU doesn't handle any more interrupts. */
326 	err = __cpu_disable();
327 	if (err < 0)
328 		return err;
329 
330 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
331 	/* Give up timekeeping duties */
332 	tick_handover_do_timer();
333 	/* Park the stopper thread */
334 	stop_machine_park((long)param->hcpu);
335 	return 0;
336 }
337 
338 /* Requires cpu_add_remove_lock to be held */
339 static int _cpu_down(unsigned int cpu, int tasks_frozen)
340 {
341 	int err, nr_calls = 0;
342 	void *hcpu = (void *)(long)cpu;
343 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
344 	struct take_cpu_down_param tcd_param = {
345 		.mod = mod,
346 		.hcpu = hcpu,
347 	};
348 
349 	if (num_online_cpus() == 1)
350 		return -EBUSY;
351 
352 	if (!cpu_online(cpu))
353 		return -EINVAL;
354 
355 	cpu_hotplug_begin();
356 
357 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
358 	if (err) {
359 		nr_calls--;
360 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
361 		pr_warn("%s: attempt to take down CPU %u failed\n",
362 			__func__, cpu);
363 		goto out_release;
364 	}
365 
366 	/*
367 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
368 	 * and RCU users of this state to go away such that all new such users
369 	 * will observe it.
370 	 *
371 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
372 	 * not imply sync_sched(), so wait for both.
373 	 *
374 	 * Do sync before park smpboot threads to take care the rcu boost case.
375 	 */
376 	if (IS_ENABLED(CONFIG_PREEMPT))
377 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
378 	else
379 		synchronize_rcu();
380 
381 	smpboot_park_threads(cpu);
382 
383 	/*
384 	 * Prevent irq alloc/free while the dying cpu reorganizes the
385 	 * interrupt affinities.
386 	 */
387 	irq_lock_sparse();
388 
389 	/*
390 	 * So now all preempt/rcu users must observe !cpu_active().
391 	 */
392 	err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
393 	if (err) {
394 		/* CPU didn't die: tell everyone.  Can't complain. */
395 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
396 		irq_unlock_sparse();
397 		goto out_release;
398 	}
399 	BUG_ON(cpu_online(cpu));
400 
401 	/*
402 	 * The migration_call() CPU_DYING callback will have removed all
403 	 * runnable tasks from the cpu, there's only the idle task left now
404 	 * that the migration thread is done doing the stop_machine thing.
405 	 *
406 	 * Wait for the stop thread to go away.
407 	 */
408 	while (!per_cpu(cpu_dead_idle, cpu))
409 		cpu_relax();
410 	smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
411 	per_cpu(cpu_dead_idle, cpu) = false;
412 
413 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
414 	irq_unlock_sparse();
415 
416 	hotplug_cpu__broadcast_tick_pull(cpu);
417 	/* This actually kills the CPU. */
418 	__cpu_die(cpu);
419 
420 	/* CPU is completely dead: tell everyone.  Too late to complain. */
421 	tick_cleanup_dead_cpu(cpu);
422 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
423 
424 	check_for_tasks(cpu);
425 
426 out_release:
427 	cpu_hotplug_done();
428 	if (!err)
429 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
430 	return err;
431 }
432 
433 int cpu_down(unsigned int cpu)
434 {
435 	int err;
436 
437 	cpu_maps_update_begin();
438 
439 	if (cpu_hotplug_disabled) {
440 		err = -EBUSY;
441 		goto out;
442 	}
443 
444 	err = _cpu_down(cpu, 0);
445 
446 out:
447 	cpu_maps_update_done();
448 	return err;
449 }
450 EXPORT_SYMBOL(cpu_down);
451 #endif /*CONFIG_HOTPLUG_CPU*/
452 
453 /*
454  * Unpark per-CPU smpboot kthreads at CPU-online time.
455  */
456 static int smpboot_thread_call(struct notifier_block *nfb,
457 			       unsigned long action, void *hcpu)
458 {
459 	int cpu = (long)hcpu;
460 
461 	switch (action & ~CPU_TASKS_FROZEN) {
462 
463 	case CPU_DOWN_FAILED:
464 	case CPU_ONLINE:
465 		smpboot_unpark_threads(cpu);
466 		break;
467 
468 	default:
469 		break;
470 	}
471 
472 	return NOTIFY_OK;
473 }
474 
475 static struct notifier_block smpboot_thread_notifier = {
476 	.notifier_call = smpboot_thread_call,
477 	.priority = CPU_PRI_SMPBOOT,
478 };
479 
480 void smpboot_thread_init(void)
481 {
482 	register_cpu_notifier(&smpboot_thread_notifier);
483 }
484 
485 /* Requires cpu_add_remove_lock to be held */
486 static int _cpu_up(unsigned int cpu, int tasks_frozen)
487 {
488 	int ret, nr_calls = 0;
489 	void *hcpu = (void *)(long)cpu;
490 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
491 	struct task_struct *idle;
492 
493 	cpu_hotplug_begin();
494 
495 	if (cpu_online(cpu) || !cpu_present(cpu)) {
496 		ret = -EINVAL;
497 		goto out;
498 	}
499 
500 	idle = idle_thread_get(cpu);
501 	if (IS_ERR(idle)) {
502 		ret = PTR_ERR(idle);
503 		goto out;
504 	}
505 
506 	ret = smpboot_create_threads(cpu);
507 	if (ret)
508 		goto out;
509 
510 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
511 	if (ret) {
512 		nr_calls--;
513 		pr_warn("%s: attempt to bring up CPU %u failed\n",
514 			__func__, cpu);
515 		goto out_notify;
516 	}
517 
518 	/* Arch-specific enabling code. */
519 	ret = __cpu_up(cpu, idle);
520 
521 	if (ret != 0)
522 		goto out_notify;
523 	BUG_ON(!cpu_online(cpu));
524 
525 	/* Now call notifier in preparation. */
526 	cpu_notify(CPU_ONLINE | mod, hcpu);
527 
528 out_notify:
529 	if (ret != 0)
530 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
531 out:
532 	cpu_hotplug_done();
533 
534 	return ret;
535 }
536 
537 int cpu_up(unsigned int cpu)
538 {
539 	int err = 0;
540 
541 	if (!cpu_possible(cpu)) {
542 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
543 		       cpu);
544 #if defined(CONFIG_IA64)
545 		pr_err("please check additional_cpus= boot parameter\n");
546 #endif
547 		return -EINVAL;
548 	}
549 
550 	err = try_online_node(cpu_to_node(cpu));
551 	if (err)
552 		return err;
553 
554 	cpu_maps_update_begin();
555 
556 	if (cpu_hotplug_disabled) {
557 		err = -EBUSY;
558 		goto out;
559 	}
560 
561 	err = _cpu_up(cpu, 0);
562 
563 out:
564 	cpu_maps_update_done();
565 	return err;
566 }
567 EXPORT_SYMBOL_GPL(cpu_up);
568 
569 #ifdef CONFIG_PM_SLEEP_SMP
570 static cpumask_var_t frozen_cpus;
571 
572 int disable_nonboot_cpus(void)
573 {
574 	int cpu, first_cpu, error = 0;
575 
576 	cpu_maps_update_begin();
577 	first_cpu = cpumask_first(cpu_online_mask);
578 	/*
579 	 * We take down all of the non-boot CPUs in one shot to avoid races
580 	 * with the userspace trying to use the CPU hotplug at the same time
581 	 */
582 	cpumask_clear(frozen_cpus);
583 
584 	pr_info("Disabling non-boot CPUs ...\n");
585 	for_each_online_cpu(cpu) {
586 		if (cpu == first_cpu)
587 			continue;
588 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
589 		error = _cpu_down(cpu, 1);
590 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
591 		if (!error)
592 			cpumask_set_cpu(cpu, frozen_cpus);
593 		else {
594 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
595 			break;
596 		}
597 	}
598 
599 	if (!error)
600 		BUG_ON(num_online_cpus() > 1);
601 	else
602 		pr_err("Non-boot CPUs are not disabled\n");
603 
604 	/*
605 	 * Make sure the CPUs won't be enabled by someone else. We need to do
606 	 * this even in case of failure as all disable_nonboot_cpus() users are
607 	 * supposed to do enable_nonboot_cpus() on the failure path.
608 	 */
609 	cpu_hotplug_disabled++;
610 
611 	cpu_maps_update_done();
612 	return error;
613 }
614 
615 void __weak arch_enable_nonboot_cpus_begin(void)
616 {
617 }
618 
619 void __weak arch_enable_nonboot_cpus_end(void)
620 {
621 }
622 
623 void enable_nonboot_cpus(void)
624 {
625 	int cpu, error;
626 
627 	/* Allow everyone to use the CPU hotplug again */
628 	cpu_maps_update_begin();
629 	WARN_ON(--cpu_hotplug_disabled < 0);
630 	if (cpumask_empty(frozen_cpus))
631 		goto out;
632 
633 	pr_info("Enabling non-boot CPUs ...\n");
634 
635 	arch_enable_nonboot_cpus_begin();
636 
637 	for_each_cpu(cpu, frozen_cpus) {
638 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
639 		error = _cpu_up(cpu, 1);
640 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
641 		if (!error) {
642 			pr_info("CPU%d is up\n", cpu);
643 			continue;
644 		}
645 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
646 	}
647 
648 	arch_enable_nonboot_cpus_end();
649 
650 	cpumask_clear(frozen_cpus);
651 out:
652 	cpu_maps_update_done();
653 }
654 
655 static int __init alloc_frozen_cpus(void)
656 {
657 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
658 		return -ENOMEM;
659 	return 0;
660 }
661 core_initcall(alloc_frozen_cpus);
662 
663 /*
664  * When callbacks for CPU hotplug notifications are being executed, we must
665  * ensure that the state of the system with respect to the tasks being frozen
666  * or not, as reported by the notification, remains unchanged *throughout the
667  * duration* of the execution of the callbacks.
668  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
669  *
670  * This synchronization is implemented by mutually excluding regular CPU
671  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
672  * Hibernate notifications.
673  */
674 static int
675 cpu_hotplug_pm_callback(struct notifier_block *nb,
676 			unsigned long action, void *ptr)
677 {
678 	switch (action) {
679 
680 	case PM_SUSPEND_PREPARE:
681 	case PM_HIBERNATION_PREPARE:
682 		cpu_hotplug_disable();
683 		break;
684 
685 	case PM_POST_SUSPEND:
686 	case PM_POST_HIBERNATION:
687 		cpu_hotplug_enable();
688 		break;
689 
690 	default:
691 		return NOTIFY_DONE;
692 	}
693 
694 	return NOTIFY_OK;
695 }
696 
697 
698 static int __init cpu_hotplug_pm_sync_init(void)
699 {
700 	/*
701 	 * cpu_hotplug_pm_callback has higher priority than x86
702 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
703 	 * to disable cpu hotplug to avoid cpu hotplug race.
704 	 */
705 	pm_notifier(cpu_hotplug_pm_callback, 0);
706 	return 0;
707 }
708 core_initcall(cpu_hotplug_pm_sync_init);
709 
710 #endif /* CONFIG_PM_SLEEP_SMP */
711 
712 /**
713  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
714  * @cpu: cpu that just started
715  *
716  * This function calls the cpu_chain notifiers with CPU_STARTING.
717  * It must be called by the arch code on the new cpu, before the new cpu
718  * enables interrupts and before the "boot" cpu returns from __cpu_up().
719  */
720 void notify_cpu_starting(unsigned int cpu)
721 {
722 	unsigned long val = CPU_STARTING;
723 
724 #ifdef CONFIG_PM_SLEEP_SMP
725 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
726 		val = CPU_STARTING_FROZEN;
727 #endif /* CONFIG_PM_SLEEP_SMP */
728 	cpu_notify(val, (void *)(long)cpu);
729 }
730 
731 #endif /* CONFIG_SMP */
732 
733 /*
734  * cpu_bit_bitmap[] is a special, "compressed" data structure that
735  * represents all NR_CPUS bits binary values of 1<<nr.
736  *
737  * It is used by cpumask_of() to get a constant address to a CPU
738  * mask value that has a single bit set only.
739  */
740 
741 /* cpu_bit_bitmap[0] is empty - so we can back into it */
742 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
743 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
744 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
745 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
746 
747 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
748 
749 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
750 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
751 #if BITS_PER_LONG > 32
752 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
753 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
754 #endif
755 };
756 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
757 
758 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
759 EXPORT_SYMBOL(cpu_all_bits);
760 
761 #ifdef CONFIG_INIT_ALL_POSSIBLE
762 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
763 	= CPU_BITS_ALL;
764 #else
765 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
766 #endif
767 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
768 EXPORT_SYMBOL(cpu_possible_mask);
769 
770 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
771 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
772 EXPORT_SYMBOL(cpu_online_mask);
773 
774 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
775 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
776 EXPORT_SYMBOL(cpu_present_mask);
777 
778 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
779 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
780 EXPORT_SYMBOL(cpu_active_mask);
781 
782 void set_cpu_possible(unsigned int cpu, bool possible)
783 {
784 	if (possible)
785 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
786 	else
787 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
788 }
789 
790 void set_cpu_present(unsigned int cpu, bool present)
791 {
792 	if (present)
793 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
794 	else
795 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
796 }
797 
798 void set_cpu_online(unsigned int cpu, bool online)
799 {
800 	if (online) {
801 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
802 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
803 	} else {
804 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
805 	}
806 }
807 
808 void set_cpu_active(unsigned int cpu, bool active)
809 {
810 	if (active)
811 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
812 	else
813 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
814 }
815 
816 void init_cpu_present(const struct cpumask *src)
817 {
818 	cpumask_copy(to_cpumask(cpu_present_bits), src);
819 }
820 
821 void init_cpu_possible(const struct cpumask *src)
822 {
823 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
824 }
825 
826 void init_cpu_online(const struct cpumask *src)
827 {
828 	cpumask_copy(to_cpumask(cpu_online_bits), src);
829 }
830