1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/nmi.h> 28 #include <linux/smpboot.h> 29 #include <linux/relay.h> 30 #include <linux/slab.h> 31 #include <linux/percpu-rwsem.h> 32 33 #include <trace/events/power.h> 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/cpuhp.h> 36 37 #include "smpboot.h" 38 39 /** 40 * cpuhp_cpu_state - Per cpu hotplug state storage 41 * @state: The current cpu state 42 * @target: The target state 43 * @thread: Pointer to the hotplug thread 44 * @should_run: Thread should execute 45 * @rollback: Perform a rollback 46 * @single: Single callback invocation 47 * @bringup: Single callback bringup or teardown selector 48 * @cb_state: The state for a single callback (install/uninstall) 49 * @result: Result of the operation 50 * @done_up: Signal completion to the issuer of the task for cpu-up 51 * @done_down: Signal completion to the issuer of the task for cpu-down 52 */ 53 struct cpuhp_cpu_state { 54 enum cpuhp_state state; 55 enum cpuhp_state target; 56 enum cpuhp_state fail; 57 #ifdef CONFIG_SMP 58 struct task_struct *thread; 59 bool should_run; 60 bool rollback; 61 bool single; 62 bool bringup; 63 struct hlist_node *node; 64 struct hlist_node *last; 65 enum cpuhp_state cb_state; 66 int result; 67 struct completion done_up; 68 struct completion done_down; 69 #endif 70 }; 71 72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 73 .fail = CPUHP_INVALID, 74 }; 75 76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 77 static struct lockdep_map cpuhp_state_up_map = 78 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 79 static struct lockdep_map cpuhp_state_down_map = 80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 81 82 83 static void inline cpuhp_lock_acquire(bool bringup) 84 { 85 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 86 } 87 88 static void inline cpuhp_lock_release(bool bringup) 89 { 90 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 91 } 92 #else 93 94 static void inline cpuhp_lock_acquire(bool bringup) { } 95 static void inline cpuhp_lock_release(bool bringup) { } 96 97 #endif 98 99 /** 100 * cpuhp_step - Hotplug state machine step 101 * @name: Name of the step 102 * @startup: Startup function of the step 103 * @teardown: Teardown function of the step 104 * @skip_onerr: Do not invoke the functions on error rollback 105 * Will go away once the notifiers are gone 106 * @cant_stop: Bringup/teardown can't be stopped at this step 107 */ 108 struct cpuhp_step { 109 const char *name; 110 union { 111 int (*single)(unsigned int cpu); 112 int (*multi)(unsigned int cpu, 113 struct hlist_node *node); 114 } startup; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } teardown; 120 struct hlist_head list; 121 bool skip_onerr; 122 bool cant_stop; 123 bool multi_instance; 124 }; 125 126 static DEFINE_MUTEX(cpuhp_state_mutex); 127 static struct cpuhp_step cpuhp_bp_states[]; 128 static struct cpuhp_step cpuhp_ap_states[]; 129 130 static bool cpuhp_is_ap_state(enum cpuhp_state state) 131 { 132 /* 133 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 134 * purposes as that state is handled explicitly in cpu_down. 135 */ 136 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 137 } 138 139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 140 { 141 struct cpuhp_step *sp; 142 143 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; 144 return sp + state; 145 } 146 147 /** 148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 149 * @cpu: The cpu for which the callback should be invoked 150 * @state: The state to do callbacks for 151 * @bringup: True if the bringup callback should be invoked 152 * @node: For multi-instance, do a single entry callback for install/remove 153 * @lastp: For multi-instance rollback, remember how far we got 154 * 155 * Called from cpu hotplug and from the state register machinery. 156 */ 157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 158 bool bringup, struct hlist_node *node, 159 struct hlist_node **lastp) 160 { 161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 162 struct cpuhp_step *step = cpuhp_get_step(state); 163 int (*cbm)(unsigned int cpu, struct hlist_node *node); 164 int (*cb)(unsigned int cpu); 165 int ret, cnt; 166 167 if (st->fail == state) { 168 st->fail = CPUHP_INVALID; 169 170 if (!(bringup ? step->startup.single : step->teardown.single)) 171 return 0; 172 173 return -EAGAIN; 174 } 175 176 if (!step->multi_instance) { 177 WARN_ON_ONCE(lastp && *lastp); 178 cb = bringup ? step->startup.single : step->teardown.single; 179 if (!cb) 180 return 0; 181 trace_cpuhp_enter(cpu, st->target, state, cb); 182 ret = cb(cpu); 183 trace_cpuhp_exit(cpu, st->state, state, ret); 184 return ret; 185 } 186 cbm = bringup ? step->startup.multi : step->teardown.multi; 187 if (!cbm) 188 return 0; 189 190 /* Single invocation for instance add/remove */ 191 if (node) { 192 WARN_ON_ONCE(lastp && *lastp); 193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 194 ret = cbm(cpu, node); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 199 /* State transition. Invoke on all instances */ 200 cnt = 0; 201 hlist_for_each(node, &step->list) { 202 if (lastp && node == *lastp) 203 break; 204 205 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 206 ret = cbm(cpu, node); 207 trace_cpuhp_exit(cpu, st->state, state, ret); 208 if (ret) { 209 if (!lastp) 210 goto err; 211 212 *lastp = node; 213 return ret; 214 } 215 cnt++; 216 } 217 if (lastp) 218 *lastp = NULL; 219 return 0; 220 err: 221 /* Rollback the instances if one failed */ 222 cbm = !bringup ? step->startup.multi : step->teardown.multi; 223 if (!cbm) 224 return ret; 225 226 hlist_for_each(node, &step->list) { 227 if (!cnt--) 228 break; 229 230 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 231 ret = cbm(cpu, node); 232 trace_cpuhp_exit(cpu, st->state, state, ret); 233 /* 234 * Rollback must not fail, 235 */ 236 WARN_ON_ONCE(ret); 237 } 238 return ret; 239 } 240 241 #ifdef CONFIG_SMP 242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 243 { 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 245 wait_for_completion(done); 246 } 247 248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 249 { 250 struct completion *done = bringup ? &st->done_up : &st->done_down; 251 complete(done); 252 } 253 254 /* 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 256 */ 257 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 258 { 259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 260 } 261 262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 263 static DEFINE_MUTEX(cpu_add_remove_lock); 264 bool cpuhp_tasks_frozen; 265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 266 267 /* 268 * The following two APIs (cpu_maps_update_begin/done) must be used when 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 270 */ 271 void cpu_maps_update_begin(void) 272 { 273 mutex_lock(&cpu_add_remove_lock); 274 } 275 276 void cpu_maps_update_done(void) 277 { 278 mutex_unlock(&cpu_add_remove_lock); 279 } 280 281 /* 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 283 * Should always be manipulated under cpu_add_remove_lock 284 */ 285 static int cpu_hotplug_disabled; 286 287 #ifdef CONFIG_HOTPLUG_CPU 288 289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 290 291 void cpus_read_lock(void) 292 { 293 percpu_down_read(&cpu_hotplug_lock); 294 } 295 EXPORT_SYMBOL_GPL(cpus_read_lock); 296 297 void cpus_read_unlock(void) 298 { 299 percpu_up_read(&cpu_hotplug_lock); 300 } 301 EXPORT_SYMBOL_GPL(cpus_read_unlock); 302 303 void cpus_write_lock(void) 304 { 305 percpu_down_write(&cpu_hotplug_lock); 306 } 307 308 void cpus_write_unlock(void) 309 { 310 percpu_up_write(&cpu_hotplug_lock); 311 } 312 313 void lockdep_assert_cpus_held(void) 314 { 315 percpu_rwsem_assert_held(&cpu_hotplug_lock); 316 } 317 318 /* 319 * Wait for currently running CPU hotplug operations to complete (if any) and 320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 322 * hotplug path before performing hotplug operations. So acquiring that lock 323 * guarantees mutual exclusion from any currently running hotplug operations. 324 */ 325 void cpu_hotplug_disable(void) 326 { 327 cpu_maps_update_begin(); 328 cpu_hotplug_disabled++; 329 cpu_maps_update_done(); 330 } 331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 332 333 static void __cpu_hotplug_enable(void) 334 { 335 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 336 return; 337 cpu_hotplug_disabled--; 338 } 339 340 void cpu_hotplug_enable(void) 341 { 342 cpu_maps_update_begin(); 343 __cpu_hotplug_enable(); 344 cpu_maps_update_done(); 345 } 346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 347 #endif /* CONFIG_HOTPLUG_CPU */ 348 349 static inline enum cpuhp_state 350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 351 { 352 enum cpuhp_state prev_state = st->state; 353 354 st->rollback = false; 355 st->last = NULL; 356 357 st->target = target; 358 st->single = false; 359 st->bringup = st->state < target; 360 361 return prev_state; 362 } 363 364 static inline void 365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 366 { 367 st->rollback = true; 368 369 /* 370 * If we have st->last we need to undo partial multi_instance of this 371 * state first. Otherwise start undo at the previous state. 372 */ 373 if (!st->last) { 374 if (st->bringup) 375 st->state--; 376 else 377 st->state++; 378 } 379 380 st->target = prev_state; 381 st->bringup = !st->bringup; 382 } 383 384 /* Regular hotplug invocation of the AP hotplug thread */ 385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 386 { 387 if (!st->single && st->state == st->target) 388 return; 389 390 st->result = 0; 391 /* 392 * Make sure the above stores are visible before should_run becomes 393 * true. Paired with the mb() above in cpuhp_thread_fun() 394 */ 395 smp_mb(); 396 st->should_run = true; 397 wake_up_process(st->thread); 398 wait_for_ap_thread(st, st->bringup); 399 } 400 401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 402 { 403 enum cpuhp_state prev_state; 404 int ret; 405 406 prev_state = cpuhp_set_state(st, target); 407 __cpuhp_kick_ap(st); 408 if ((ret = st->result)) { 409 cpuhp_reset_state(st, prev_state); 410 __cpuhp_kick_ap(st); 411 } 412 413 return ret; 414 } 415 416 static int bringup_wait_for_ap(unsigned int cpu) 417 { 418 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 419 420 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 421 wait_for_ap_thread(st, true); 422 if (WARN_ON_ONCE((!cpu_online(cpu)))) 423 return -ECANCELED; 424 425 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 426 stop_machine_unpark(cpu); 427 kthread_unpark(st->thread); 428 429 if (st->target <= CPUHP_AP_ONLINE_IDLE) 430 return 0; 431 432 return cpuhp_kick_ap(st, st->target); 433 } 434 435 static int bringup_cpu(unsigned int cpu) 436 { 437 struct task_struct *idle = idle_thread_get(cpu); 438 int ret; 439 440 /* 441 * Some architectures have to walk the irq descriptors to 442 * setup the vector space for the cpu which comes online. 443 * Prevent irq alloc/free across the bringup. 444 */ 445 irq_lock_sparse(); 446 447 /* Arch-specific enabling code. */ 448 ret = __cpu_up(cpu, idle); 449 irq_unlock_sparse(); 450 if (ret) 451 return ret; 452 return bringup_wait_for_ap(cpu); 453 } 454 455 /* 456 * Hotplug state machine related functions 457 */ 458 459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 460 { 461 for (st->state--; st->state > st->target; st->state--) { 462 struct cpuhp_step *step = cpuhp_get_step(st->state); 463 464 if (!step->skip_onerr) 465 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 466 } 467 } 468 469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 470 enum cpuhp_state target) 471 { 472 enum cpuhp_state prev_state = st->state; 473 int ret = 0; 474 475 while (st->state < target) { 476 st->state++; 477 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 478 if (ret) { 479 st->target = prev_state; 480 undo_cpu_up(cpu, st); 481 break; 482 } 483 } 484 return ret; 485 } 486 487 /* 488 * The cpu hotplug threads manage the bringup and teardown of the cpus 489 */ 490 static void cpuhp_create(unsigned int cpu) 491 { 492 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 493 494 init_completion(&st->done_up); 495 init_completion(&st->done_down); 496 } 497 498 static int cpuhp_should_run(unsigned int cpu) 499 { 500 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 501 502 return st->should_run; 503 } 504 505 /* 506 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 507 * callbacks when a state gets [un]installed at runtime. 508 * 509 * Each invocation of this function by the smpboot thread does a single AP 510 * state callback. 511 * 512 * It has 3 modes of operation: 513 * - single: runs st->cb_state 514 * - up: runs ++st->state, while st->state < st->target 515 * - down: runs st->state--, while st->state > st->target 516 * 517 * When complete or on error, should_run is cleared and the completion is fired. 518 */ 519 static void cpuhp_thread_fun(unsigned int cpu) 520 { 521 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 522 bool bringup = st->bringup; 523 enum cpuhp_state state; 524 525 /* 526 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 527 * that if we see ->should_run we also see the rest of the state. 528 */ 529 smp_mb(); 530 531 if (WARN_ON_ONCE(!st->should_run)) 532 return; 533 534 cpuhp_lock_acquire(bringup); 535 536 if (st->single) { 537 state = st->cb_state; 538 st->should_run = false; 539 } else { 540 if (bringup) { 541 st->state++; 542 state = st->state; 543 st->should_run = (st->state < st->target); 544 WARN_ON_ONCE(st->state > st->target); 545 } else { 546 state = st->state; 547 st->state--; 548 st->should_run = (st->state > st->target); 549 WARN_ON_ONCE(st->state < st->target); 550 } 551 } 552 553 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 554 555 if (st->rollback) { 556 struct cpuhp_step *step = cpuhp_get_step(state); 557 if (step->skip_onerr) 558 goto next; 559 } 560 561 if (cpuhp_is_atomic_state(state)) { 562 local_irq_disable(); 563 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 564 local_irq_enable(); 565 566 /* 567 * STARTING/DYING must not fail! 568 */ 569 WARN_ON_ONCE(st->result); 570 } else { 571 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 572 } 573 574 if (st->result) { 575 /* 576 * If we fail on a rollback, we're up a creek without no 577 * paddle, no way forward, no way back. We loose, thanks for 578 * playing. 579 */ 580 WARN_ON_ONCE(st->rollback); 581 st->should_run = false; 582 } 583 584 next: 585 cpuhp_lock_release(bringup); 586 587 if (!st->should_run) 588 complete_ap_thread(st, bringup); 589 } 590 591 /* Invoke a single callback on a remote cpu */ 592 static int 593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 594 struct hlist_node *node) 595 { 596 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 597 int ret; 598 599 if (!cpu_online(cpu)) 600 return 0; 601 602 cpuhp_lock_acquire(false); 603 cpuhp_lock_release(false); 604 605 cpuhp_lock_acquire(true); 606 cpuhp_lock_release(true); 607 608 /* 609 * If we are up and running, use the hotplug thread. For early calls 610 * we invoke the thread function directly. 611 */ 612 if (!st->thread) 613 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 614 615 st->rollback = false; 616 st->last = NULL; 617 618 st->node = node; 619 st->bringup = bringup; 620 st->cb_state = state; 621 st->single = true; 622 623 __cpuhp_kick_ap(st); 624 625 /* 626 * If we failed and did a partial, do a rollback. 627 */ 628 if ((ret = st->result) && st->last) { 629 st->rollback = true; 630 st->bringup = !bringup; 631 632 __cpuhp_kick_ap(st); 633 } 634 635 return ret; 636 } 637 638 static int cpuhp_kick_ap_work(unsigned int cpu) 639 { 640 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 641 enum cpuhp_state prev_state = st->state; 642 int ret; 643 644 cpuhp_lock_acquire(false); 645 cpuhp_lock_release(false); 646 647 cpuhp_lock_acquire(true); 648 cpuhp_lock_release(true); 649 650 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 651 ret = cpuhp_kick_ap(st, st->target); 652 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 653 654 return ret; 655 } 656 657 static struct smp_hotplug_thread cpuhp_threads = { 658 .store = &cpuhp_state.thread, 659 .create = &cpuhp_create, 660 .thread_should_run = cpuhp_should_run, 661 .thread_fn = cpuhp_thread_fun, 662 .thread_comm = "cpuhp/%u", 663 .selfparking = true, 664 }; 665 666 void __init cpuhp_threads_init(void) 667 { 668 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 669 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 670 } 671 672 #ifdef CONFIG_HOTPLUG_CPU 673 /** 674 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 675 * @cpu: a CPU id 676 * 677 * This function walks all processes, finds a valid mm struct for each one and 678 * then clears a corresponding bit in mm's cpumask. While this all sounds 679 * trivial, there are various non-obvious corner cases, which this function 680 * tries to solve in a safe manner. 681 * 682 * Also note that the function uses a somewhat relaxed locking scheme, so it may 683 * be called only for an already offlined CPU. 684 */ 685 void clear_tasks_mm_cpumask(int cpu) 686 { 687 struct task_struct *p; 688 689 /* 690 * This function is called after the cpu is taken down and marked 691 * offline, so its not like new tasks will ever get this cpu set in 692 * their mm mask. -- Peter Zijlstra 693 * Thus, we may use rcu_read_lock() here, instead of grabbing 694 * full-fledged tasklist_lock. 695 */ 696 WARN_ON(cpu_online(cpu)); 697 rcu_read_lock(); 698 for_each_process(p) { 699 struct task_struct *t; 700 701 /* 702 * Main thread might exit, but other threads may still have 703 * a valid mm. Find one. 704 */ 705 t = find_lock_task_mm(p); 706 if (!t) 707 continue; 708 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 709 task_unlock(t); 710 } 711 rcu_read_unlock(); 712 } 713 714 /* Take this CPU down. */ 715 static int take_cpu_down(void *_param) 716 { 717 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 718 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 719 int err, cpu = smp_processor_id(); 720 int ret; 721 722 /* Ensure this CPU doesn't handle any more interrupts. */ 723 err = __cpu_disable(); 724 if (err < 0) 725 return err; 726 727 /* 728 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 729 * do this step again. 730 */ 731 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 732 st->state--; 733 /* Invoke the former CPU_DYING callbacks */ 734 for (; st->state > target; st->state--) { 735 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 736 /* 737 * DYING must not fail! 738 */ 739 WARN_ON_ONCE(ret); 740 } 741 742 /* Give up timekeeping duties */ 743 tick_handover_do_timer(); 744 /* Park the stopper thread */ 745 stop_machine_park(cpu); 746 return 0; 747 } 748 749 static int takedown_cpu(unsigned int cpu) 750 { 751 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 752 int err; 753 754 /* Park the smpboot threads */ 755 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 756 smpboot_park_threads(cpu); 757 758 /* 759 * Prevent irq alloc/free while the dying cpu reorganizes the 760 * interrupt affinities. 761 */ 762 irq_lock_sparse(); 763 764 /* 765 * So now all preempt/rcu users must observe !cpu_active(). 766 */ 767 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 768 if (err) { 769 /* CPU refused to die */ 770 irq_unlock_sparse(); 771 /* Unpark the hotplug thread so we can rollback there */ 772 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 773 return err; 774 } 775 BUG_ON(cpu_online(cpu)); 776 777 /* 778 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all 779 * runnable tasks from the cpu, there's only the idle task left now 780 * that the migration thread is done doing the stop_machine thing. 781 * 782 * Wait for the stop thread to go away. 783 */ 784 wait_for_ap_thread(st, false); 785 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 786 787 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 788 irq_unlock_sparse(); 789 790 hotplug_cpu__broadcast_tick_pull(cpu); 791 /* This actually kills the CPU. */ 792 __cpu_die(cpu); 793 794 tick_cleanup_dead_cpu(cpu); 795 rcutree_migrate_callbacks(cpu); 796 return 0; 797 } 798 799 static void cpuhp_complete_idle_dead(void *arg) 800 { 801 struct cpuhp_cpu_state *st = arg; 802 803 complete_ap_thread(st, false); 804 } 805 806 void cpuhp_report_idle_dead(void) 807 { 808 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 809 810 BUG_ON(st->state != CPUHP_AP_OFFLINE); 811 rcu_report_dead(smp_processor_id()); 812 st->state = CPUHP_AP_IDLE_DEAD; 813 /* 814 * We cannot call complete after rcu_report_dead() so we delegate it 815 * to an online cpu. 816 */ 817 smp_call_function_single(cpumask_first(cpu_online_mask), 818 cpuhp_complete_idle_dead, st, 0); 819 } 820 821 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 822 { 823 for (st->state++; st->state < st->target; st->state++) { 824 struct cpuhp_step *step = cpuhp_get_step(st->state); 825 826 if (!step->skip_onerr) 827 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 828 } 829 } 830 831 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 832 enum cpuhp_state target) 833 { 834 enum cpuhp_state prev_state = st->state; 835 int ret = 0; 836 837 for (; st->state > target; st->state--) { 838 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 839 if (ret) { 840 st->target = prev_state; 841 undo_cpu_down(cpu, st); 842 break; 843 } 844 } 845 return ret; 846 } 847 848 /* Requires cpu_add_remove_lock to be held */ 849 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 850 enum cpuhp_state target) 851 { 852 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 853 int prev_state, ret = 0; 854 855 if (num_online_cpus() == 1) 856 return -EBUSY; 857 858 if (!cpu_present(cpu)) 859 return -EINVAL; 860 861 cpus_write_lock(); 862 863 cpuhp_tasks_frozen = tasks_frozen; 864 865 prev_state = cpuhp_set_state(st, target); 866 /* 867 * If the current CPU state is in the range of the AP hotplug thread, 868 * then we need to kick the thread. 869 */ 870 if (st->state > CPUHP_TEARDOWN_CPU) { 871 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 872 ret = cpuhp_kick_ap_work(cpu); 873 /* 874 * The AP side has done the error rollback already. Just 875 * return the error code.. 876 */ 877 if (ret) 878 goto out; 879 880 /* 881 * We might have stopped still in the range of the AP hotplug 882 * thread. Nothing to do anymore. 883 */ 884 if (st->state > CPUHP_TEARDOWN_CPU) 885 goto out; 886 887 st->target = target; 888 } 889 /* 890 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 891 * to do the further cleanups. 892 */ 893 ret = cpuhp_down_callbacks(cpu, st, target); 894 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 895 cpuhp_reset_state(st, prev_state); 896 __cpuhp_kick_ap(st); 897 } 898 899 out: 900 cpus_write_unlock(); 901 /* 902 * Do post unplug cleanup. This is still protected against 903 * concurrent CPU hotplug via cpu_add_remove_lock. 904 */ 905 lockup_detector_cleanup(); 906 return ret; 907 } 908 909 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 910 { 911 int err; 912 913 cpu_maps_update_begin(); 914 915 if (cpu_hotplug_disabled) { 916 err = -EBUSY; 917 goto out; 918 } 919 920 err = _cpu_down(cpu, 0, target); 921 922 out: 923 cpu_maps_update_done(); 924 return err; 925 } 926 927 int cpu_down(unsigned int cpu) 928 { 929 return do_cpu_down(cpu, CPUHP_OFFLINE); 930 } 931 EXPORT_SYMBOL(cpu_down); 932 933 #else 934 #define takedown_cpu NULL 935 #endif /*CONFIG_HOTPLUG_CPU*/ 936 937 /** 938 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 939 * @cpu: cpu that just started 940 * 941 * It must be called by the arch code on the new cpu, before the new cpu 942 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 943 */ 944 void notify_cpu_starting(unsigned int cpu) 945 { 946 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 947 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 948 int ret; 949 950 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 951 while (st->state < target) { 952 st->state++; 953 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 954 /* 955 * STARTING must not fail! 956 */ 957 WARN_ON_ONCE(ret); 958 } 959 } 960 961 /* 962 * Called from the idle task. Wake up the controlling task which brings the 963 * stopper and the hotplug thread of the upcoming CPU up and then delegates 964 * the rest of the online bringup to the hotplug thread. 965 */ 966 void cpuhp_online_idle(enum cpuhp_state state) 967 { 968 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 969 970 /* Happens for the boot cpu */ 971 if (state != CPUHP_AP_ONLINE_IDLE) 972 return; 973 974 st->state = CPUHP_AP_ONLINE_IDLE; 975 complete_ap_thread(st, true); 976 } 977 978 /* Requires cpu_add_remove_lock to be held */ 979 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 980 { 981 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 982 struct task_struct *idle; 983 int ret = 0; 984 985 cpus_write_lock(); 986 987 if (!cpu_present(cpu)) { 988 ret = -EINVAL; 989 goto out; 990 } 991 992 /* 993 * The caller of do_cpu_up might have raced with another 994 * caller. Ignore it for now. 995 */ 996 if (st->state >= target) 997 goto out; 998 999 if (st->state == CPUHP_OFFLINE) { 1000 /* Let it fail before we try to bring the cpu up */ 1001 idle = idle_thread_get(cpu); 1002 if (IS_ERR(idle)) { 1003 ret = PTR_ERR(idle); 1004 goto out; 1005 } 1006 } 1007 1008 cpuhp_tasks_frozen = tasks_frozen; 1009 1010 cpuhp_set_state(st, target); 1011 /* 1012 * If the current CPU state is in the range of the AP hotplug thread, 1013 * then we need to kick the thread once more. 1014 */ 1015 if (st->state > CPUHP_BRINGUP_CPU) { 1016 ret = cpuhp_kick_ap_work(cpu); 1017 /* 1018 * The AP side has done the error rollback already. Just 1019 * return the error code.. 1020 */ 1021 if (ret) 1022 goto out; 1023 } 1024 1025 /* 1026 * Try to reach the target state. We max out on the BP at 1027 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1028 * responsible for bringing it up to the target state. 1029 */ 1030 target = min((int)target, CPUHP_BRINGUP_CPU); 1031 ret = cpuhp_up_callbacks(cpu, st, target); 1032 out: 1033 cpus_write_unlock(); 1034 return ret; 1035 } 1036 1037 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1038 { 1039 int err = 0; 1040 1041 if (!cpu_possible(cpu)) { 1042 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1043 cpu); 1044 #if defined(CONFIG_IA64) 1045 pr_err("please check additional_cpus= boot parameter\n"); 1046 #endif 1047 return -EINVAL; 1048 } 1049 1050 err = try_online_node(cpu_to_node(cpu)); 1051 if (err) 1052 return err; 1053 1054 cpu_maps_update_begin(); 1055 1056 if (cpu_hotplug_disabled) { 1057 err = -EBUSY; 1058 goto out; 1059 } 1060 1061 err = _cpu_up(cpu, 0, target); 1062 out: 1063 cpu_maps_update_done(); 1064 return err; 1065 } 1066 1067 int cpu_up(unsigned int cpu) 1068 { 1069 return do_cpu_up(cpu, CPUHP_ONLINE); 1070 } 1071 EXPORT_SYMBOL_GPL(cpu_up); 1072 1073 #ifdef CONFIG_PM_SLEEP_SMP 1074 static cpumask_var_t frozen_cpus; 1075 1076 int freeze_secondary_cpus(int primary) 1077 { 1078 int cpu, error = 0; 1079 1080 cpu_maps_update_begin(); 1081 if (!cpu_online(primary)) 1082 primary = cpumask_first(cpu_online_mask); 1083 /* 1084 * We take down all of the non-boot CPUs in one shot to avoid races 1085 * with the userspace trying to use the CPU hotplug at the same time 1086 */ 1087 cpumask_clear(frozen_cpus); 1088 1089 pr_info("Disabling non-boot CPUs ...\n"); 1090 for_each_online_cpu(cpu) { 1091 if (cpu == primary) 1092 continue; 1093 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1094 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1095 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1096 if (!error) 1097 cpumask_set_cpu(cpu, frozen_cpus); 1098 else { 1099 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1100 break; 1101 } 1102 } 1103 1104 if (!error) 1105 BUG_ON(num_online_cpus() > 1); 1106 else 1107 pr_err("Non-boot CPUs are not disabled\n"); 1108 1109 /* 1110 * Make sure the CPUs won't be enabled by someone else. We need to do 1111 * this even in case of failure as all disable_nonboot_cpus() users are 1112 * supposed to do enable_nonboot_cpus() on the failure path. 1113 */ 1114 cpu_hotplug_disabled++; 1115 1116 cpu_maps_update_done(); 1117 return error; 1118 } 1119 1120 void __weak arch_enable_nonboot_cpus_begin(void) 1121 { 1122 } 1123 1124 void __weak arch_enable_nonboot_cpus_end(void) 1125 { 1126 } 1127 1128 void enable_nonboot_cpus(void) 1129 { 1130 int cpu, error; 1131 1132 /* Allow everyone to use the CPU hotplug again */ 1133 cpu_maps_update_begin(); 1134 __cpu_hotplug_enable(); 1135 if (cpumask_empty(frozen_cpus)) 1136 goto out; 1137 1138 pr_info("Enabling non-boot CPUs ...\n"); 1139 1140 arch_enable_nonboot_cpus_begin(); 1141 1142 for_each_cpu(cpu, frozen_cpus) { 1143 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1144 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1145 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1146 if (!error) { 1147 pr_info("CPU%d is up\n", cpu); 1148 continue; 1149 } 1150 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1151 } 1152 1153 arch_enable_nonboot_cpus_end(); 1154 1155 cpumask_clear(frozen_cpus); 1156 out: 1157 cpu_maps_update_done(); 1158 } 1159 1160 static int __init alloc_frozen_cpus(void) 1161 { 1162 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1163 return -ENOMEM; 1164 return 0; 1165 } 1166 core_initcall(alloc_frozen_cpus); 1167 1168 /* 1169 * When callbacks for CPU hotplug notifications are being executed, we must 1170 * ensure that the state of the system with respect to the tasks being frozen 1171 * or not, as reported by the notification, remains unchanged *throughout the 1172 * duration* of the execution of the callbacks. 1173 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1174 * 1175 * This synchronization is implemented by mutually excluding regular CPU 1176 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1177 * Hibernate notifications. 1178 */ 1179 static int 1180 cpu_hotplug_pm_callback(struct notifier_block *nb, 1181 unsigned long action, void *ptr) 1182 { 1183 switch (action) { 1184 1185 case PM_SUSPEND_PREPARE: 1186 case PM_HIBERNATION_PREPARE: 1187 cpu_hotplug_disable(); 1188 break; 1189 1190 case PM_POST_SUSPEND: 1191 case PM_POST_HIBERNATION: 1192 cpu_hotplug_enable(); 1193 break; 1194 1195 default: 1196 return NOTIFY_DONE; 1197 } 1198 1199 return NOTIFY_OK; 1200 } 1201 1202 1203 static int __init cpu_hotplug_pm_sync_init(void) 1204 { 1205 /* 1206 * cpu_hotplug_pm_callback has higher priority than x86 1207 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1208 * to disable cpu hotplug to avoid cpu hotplug race. 1209 */ 1210 pm_notifier(cpu_hotplug_pm_callback, 0); 1211 return 0; 1212 } 1213 core_initcall(cpu_hotplug_pm_sync_init); 1214 1215 #endif /* CONFIG_PM_SLEEP_SMP */ 1216 1217 int __boot_cpu_id; 1218 1219 #endif /* CONFIG_SMP */ 1220 1221 /* Boot processor state steps */ 1222 static struct cpuhp_step cpuhp_bp_states[] = { 1223 [CPUHP_OFFLINE] = { 1224 .name = "offline", 1225 .startup.single = NULL, 1226 .teardown.single = NULL, 1227 }, 1228 #ifdef CONFIG_SMP 1229 [CPUHP_CREATE_THREADS]= { 1230 .name = "threads:prepare", 1231 .startup.single = smpboot_create_threads, 1232 .teardown.single = NULL, 1233 .cant_stop = true, 1234 }, 1235 [CPUHP_PERF_PREPARE] = { 1236 .name = "perf:prepare", 1237 .startup.single = perf_event_init_cpu, 1238 .teardown.single = perf_event_exit_cpu, 1239 }, 1240 [CPUHP_WORKQUEUE_PREP] = { 1241 .name = "workqueue:prepare", 1242 .startup.single = workqueue_prepare_cpu, 1243 .teardown.single = NULL, 1244 }, 1245 [CPUHP_HRTIMERS_PREPARE] = { 1246 .name = "hrtimers:prepare", 1247 .startup.single = hrtimers_prepare_cpu, 1248 .teardown.single = hrtimers_dead_cpu, 1249 }, 1250 [CPUHP_SMPCFD_PREPARE] = { 1251 .name = "smpcfd:prepare", 1252 .startup.single = smpcfd_prepare_cpu, 1253 .teardown.single = smpcfd_dead_cpu, 1254 }, 1255 [CPUHP_RELAY_PREPARE] = { 1256 .name = "relay:prepare", 1257 .startup.single = relay_prepare_cpu, 1258 .teardown.single = NULL, 1259 }, 1260 [CPUHP_SLAB_PREPARE] = { 1261 .name = "slab:prepare", 1262 .startup.single = slab_prepare_cpu, 1263 .teardown.single = slab_dead_cpu, 1264 }, 1265 [CPUHP_RCUTREE_PREP] = { 1266 .name = "RCU/tree:prepare", 1267 .startup.single = rcutree_prepare_cpu, 1268 .teardown.single = rcutree_dead_cpu, 1269 }, 1270 /* 1271 * On the tear-down path, timers_dead_cpu() must be invoked 1272 * before blk_mq_queue_reinit_notify() from notify_dead(), 1273 * otherwise a RCU stall occurs. 1274 */ 1275 [CPUHP_TIMERS_DEAD] = { 1276 .name = "timers:dead", 1277 .startup.single = NULL, 1278 .teardown.single = timers_dead_cpu, 1279 }, 1280 /* Kicks the plugged cpu into life */ 1281 [CPUHP_BRINGUP_CPU] = { 1282 .name = "cpu:bringup", 1283 .startup.single = bringup_cpu, 1284 .teardown.single = NULL, 1285 .cant_stop = true, 1286 }, 1287 [CPUHP_AP_SMPCFD_DYING] = { 1288 .name = "smpcfd:dying", 1289 .startup.single = NULL, 1290 .teardown.single = smpcfd_dying_cpu, 1291 }, 1292 /* 1293 * Handled on controll processor until the plugged processor manages 1294 * this itself. 1295 */ 1296 [CPUHP_TEARDOWN_CPU] = { 1297 .name = "cpu:teardown", 1298 .startup.single = NULL, 1299 .teardown.single = takedown_cpu, 1300 .cant_stop = true, 1301 }, 1302 #else 1303 [CPUHP_BRINGUP_CPU] = { }, 1304 #endif 1305 }; 1306 1307 /* Application processor state steps */ 1308 static struct cpuhp_step cpuhp_ap_states[] = { 1309 #ifdef CONFIG_SMP 1310 /* Final state before CPU kills itself */ 1311 [CPUHP_AP_IDLE_DEAD] = { 1312 .name = "idle:dead", 1313 }, 1314 /* 1315 * Last state before CPU enters the idle loop to die. Transient state 1316 * for synchronization. 1317 */ 1318 [CPUHP_AP_OFFLINE] = { 1319 .name = "ap:offline", 1320 .cant_stop = true, 1321 }, 1322 /* First state is scheduler control. Interrupts are disabled */ 1323 [CPUHP_AP_SCHED_STARTING] = { 1324 .name = "sched:starting", 1325 .startup.single = sched_cpu_starting, 1326 .teardown.single = sched_cpu_dying, 1327 }, 1328 [CPUHP_AP_RCUTREE_DYING] = { 1329 .name = "RCU/tree:dying", 1330 .startup.single = NULL, 1331 .teardown.single = rcutree_dying_cpu, 1332 }, 1333 /* Entry state on starting. Interrupts enabled from here on. Transient 1334 * state for synchronsization */ 1335 [CPUHP_AP_ONLINE] = { 1336 .name = "ap:online", 1337 }, 1338 /* Handle smpboot threads park/unpark */ 1339 [CPUHP_AP_SMPBOOT_THREADS] = { 1340 .name = "smpboot/threads:online", 1341 .startup.single = smpboot_unpark_threads, 1342 .teardown.single = NULL, 1343 }, 1344 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1345 .name = "irq/affinity:online", 1346 .startup.single = irq_affinity_online_cpu, 1347 .teardown.single = NULL, 1348 }, 1349 [CPUHP_AP_PERF_ONLINE] = { 1350 .name = "perf:online", 1351 .startup.single = perf_event_init_cpu, 1352 .teardown.single = perf_event_exit_cpu, 1353 }, 1354 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1355 .name = "workqueue:online", 1356 .startup.single = workqueue_online_cpu, 1357 .teardown.single = workqueue_offline_cpu, 1358 }, 1359 [CPUHP_AP_RCUTREE_ONLINE] = { 1360 .name = "RCU/tree:online", 1361 .startup.single = rcutree_online_cpu, 1362 .teardown.single = rcutree_offline_cpu, 1363 }, 1364 #endif 1365 /* 1366 * The dynamically registered state space is here 1367 */ 1368 1369 #ifdef CONFIG_SMP 1370 /* Last state is scheduler control setting the cpu active */ 1371 [CPUHP_AP_ACTIVE] = { 1372 .name = "sched:active", 1373 .startup.single = sched_cpu_activate, 1374 .teardown.single = sched_cpu_deactivate, 1375 }, 1376 #endif 1377 1378 /* CPU is fully up and running. */ 1379 [CPUHP_ONLINE] = { 1380 .name = "online", 1381 .startup.single = NULL, 1382 .teardown.single = NULL, 1383 }, 1384 }; 1385 1386 /* Sanity check for callbacks */ 1387 static int cpuhp_cb_check(enum cpuhp_state state) 1388 { 1389 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1390 return -EINVAL; 1391 return 0; 1392 } 1393 1394 /* 1395 * Returns a free for dynamic slot assignment of the Online state. The states 1396 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1397 * by having no name assigned. 1398 */ 1399 static int cpuhp_reserve_state(enum cpuhp_state state) 1400 { 1401 enum cpuhp_state i, end; 1402 struct cpuhp_step *step; 1403 1404 switch (state) { 1405 case CPUHP_AP_ONLINE_DYN: 1406 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 1407 end = CPUHP_AP_ONLINE_DYN_END; 1408 break; 1409 case CPUHP_BP_PREPARE_DYN: 1410 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 1411 end = CPUHP_BP_PREPARE_DYN_END; 1412 break; 1413 default: 1414 return -EINVAL; 1415 } 1416 1417 for (i = state; i <= end; i++, step++) { 1418 if (!step->name) 1419 return i; 1420 } 1421 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1422 return -ENOSPC; 1423 } 1424 1425 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1426 int (*startup)(unsigned int cpu), 1427 int (*teardown)(unsigned int cpu), 1428 bool multi_instance) 1429 { 1430 /* (Un)Install the callbacks for further cpu hotplug operations */ 1431 struct cpuhp_step *sp; 1432 int ret = 0; 1433 1434 /* 1435 * If name is NULL, then the state gets removed. 1436 * 1437 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1438 * the first allocation from these dynamic ranges, so the removal 1439 * would trigger a new allocation and clear the wrong (already 1440 * empty) state, leaving the callbacks of the to be cleared state 1441 * dangling, which causes wreckage on the next hotplug operation. 1442 */ 1443 if (name && (state == CPUHP_AP_ONLINE_DYN || 1444 state == CPUHP_BP_PREPARE_DYN)) { 1445 ret = cpuhp_reserve_state(state); 1446 if (ret < 0) 1447 return ret; 1448 state = ret; 1449 } 1450 sp = cpuhp_get_step(state); 1451 if (name && sp->name) 1452 return -EBUSY; 1453 1454 sp->startup.single = startup; 1455 sp->teardown.single = teardown; 1456 sp->name = name; 1457 sp->multi_instance = multi_instance; 1458 INIT_HLIST_HEAD(&sp->list); 1459 return ret; 1460 } 1461 1462 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1463 { 1464 return cpuhp_get_step(state)->teardown.single; 1465 } 1466 1467 /* 1468 * Call the startup/teardown function for a step either on the AP or 1469 * on the current CPU. 1470 */ 1471 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1472 struct hlist_node *node) 1473 { 1474 struct cpuhp_step *sp = cpuhp_get_step(state); 1475 int ret; 1476 1477 /* 1478 * If there's nothing to do, we done. 1479 * Relies on the union for multi_instance. 1480 */ 1481 if ((bringup && !sp->startup.single) || 1482 (!bringup && !sp->teardown.single)) 1483 return 0; 1484 /* 1485 * The non AP bound callbacks can fail on bringup. On teardown 1486 * e.g. module removal we crash for now. 1487 */ 1488 #ifdef CONFIG_SMP 1489 if (cpuhp_is_ap_state(state)) 1490 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1491 else 1492 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1493 #else 1494 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1495 #endif 1496 BUG_ON(ret && !bringup); 1497 return ret; 1498 } 1499 1500 /* 1501 * Called from __cpuhp_setup_state on a recoverable failure. 1502 * 1503 * Note: The teardown callbacks for rollback are not allowed to fail! 1504 */ 1505 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1506 struct hlist_node *node) 1507 { 1508 int cpu; 1509 1510 /* Roll back the already executed steps on the other cpus */ 1511 for_each_present_cpu(cpu) { 1512 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1513 int cpustate = st->state; 1514 1515 if (cpu >= failedcpu) 1516 break; 1517 1518 /* Did we invoke the startup call on that cpu ? */ 1519 if (cpustate >= state) 1520 cpuhp_issue_call(cpu, state, false, node); 1521 } 1522 } 1523 1524 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1525 struct hlist_node *node, 1526 bool invoke) 1527 { 1528 struct cpuhp_step *sp; 1529 int cpu; 1530 int ret; 1531 1532 lockdep_assert_cpus_held(); 1533 1534 sp = cpuhp_get_step(state); 1535 if (sp->multi_instance == false) 1536 return -EINVAL; 1537 1538 mutex_lock(&cpuhp_state_mutex); 1539 1540 if (!invoke || !sp->startup.multi) 1541 goto add_node; 1542 1543 /* 1544 * Try to call the startup callback for each present cpu 1545 * depending on the hotplug state of the cpu. 1546 */ 1547 for_each_present_cpu(cpu) { 1548 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1549 int cpustate = st->state; 1550 1551 if (cpustate < state) 1552 continue; 1553 1554 ret = cpuhp_issue_call(cpu, state, true, node); 1555 if (ret) { 1556 if (sp->teardown.multi) 1557 cpuhp_rollback_install(cpu, state, node); 1558 goto unlock; 1559 } 1560 } 1561 add_node: 1562 ret = 0; 1563 hlist_add_head(node, &sp->list); 1564 unlock: 1565 mutex_unlock(&cpuhp_state_mutex); 1566 return ret; 1567 } 1568 1569 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1570 bool invoke) 1571 { 1572 int ret; 1573 1574 cpus_read_lock(); 1575 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1576 cpus_read_unlock(); 1577 return ret; 1578 } 1579 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1580 1581 /** 1582 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1583 * @state: The state to setup 1584 * @invoke: If true, the startup function is invoked for cpus where 1585 * cpu state >= @state 1586 * @startup: startup callback function 1587 * @teardown: teardown callback function 1588 * @multi_instance: State is set up for multiple instances which get 1589 * added afterwards. 1590 * 1591 * The caller needs to hold cpus read locked while calling this function. 1592 * Returns: 1593 * On success: 1594 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1595 * 0 for all other states 1596 * On failure: proper (negative) error code 1597 */ 1598 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1599 const char *name, bool invoke, 1600 int (*startup)(unsigned int cpu), 1601 int (*teardown)(unsigned int cpu), 1602 bool multi_instance) 1603 { 1604 int cpu, ret = 0; 1605 bool dynstate; 1606 1607 lockdep_assert_cpus_held(); 1608 1609 if (cpuhp_cb_check(state) || !name) 1610 return -EINVAL; 1611 1612 mutex_lock(&cpuhp_state_mutex); 1613 1614 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1615 multi_instance); 1616 1617 dynstate = state == CPUHP_AP_ONLINE_DYN; 1618 if (ret > 0 && dynstate) { 1619 state = ret; 1620 ret = 0; 1621 } 1622 1623 if (ret || !invoke || !startup) 1624 goto out; 1625 1626 /* 1627 * Try to call the startup callback for each present cpu 1628 * depending on the hotplug state of the cpu. 1629 */ 1630 for_each_present_cpu(cpu) { 1631 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1632 int cpustate = st->state; 1633 1634 if (cpustate < state) 1635 continue; 1636 1637 ret = cpuhp_issue_call(cpu, state, true, NULL); 1638 if (ret) { 1639 if (teardown) 1640 cpuhp_rollback_install(cpu, state, NULL); 1641 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1642 goto out; 1643 } 1644 } 1645 out: 1646 mutex_unlock(&cpuhp_state_mutex); 1647 /* 1648 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1649 * dynamically allocated state in case of success. 1650 */ 1651 if (!ret && dynstate) 1652 return state; 1653 return ret; 1654 } 1655 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1656 1657 int __cpuhp_setup_state(enum cpuhp_state state, 1658 const char *name, bool invoke, 1659 int (*startup)(unsigned int cpu), 1660 int (*teardown)(unsigned int cpu), 1661 bool multi_instance) 1662 { 1663 int ret; 1664 1665 cpus_read_lock(); 1666 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1667 teardown, multi_instance); 1668 cpus_read_unlock(); 1669 return ret; 1670 } 1671 EXPORT_SYMBOL(__cpuhp_setup_state); 1672 1673 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1674 struct hlist_node *node, bool invoke) 1675 { 1676 struct cpuhp_step *sp = cpuhp_get_step(state); 1677 int cpu; 1678 1679 BUG_ON(cpuhp_cb_check(state)); 1680 1681 if (!sp->multi_instance) 1682 return -EINVAL; 1683 1684 cpus_read_lock(); 1685 mutex_lock(&cpuhp_state_mutex); 1686 1687 if (!invoke || !cpuhp_get_teardown_cb(state)) 1688 goto remove; 1689 /* 1690 * Call the teardown callback for each present cpu depending 1691 * on the hotplug state of the cpu. This function is not 1692 * allowed to fail currently! 1693 */ 1694 for_each_present_cpu(cpu) { 1695 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1696 int cpustate = st->state; 1697 1698 if (cpustate >= state) 1699 cpuhp_issue_call(cpu, state, false, node); 1700 } 1701 1702 remove: 1703 hlist_del(node); 1704 mutex_unlock(&cpuhp_state_mutex); 1705 cpus_read_unlock(); 1706 1707 return 0; 1708 } 1709 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1710 1711 /** 1712 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1713 * @state: The state to remove 1714 * @invoke: If true, the teardown function is invoked for cpus where 1715 * cpu state >= @state 1716 * 1717 * The caller needs to hold cpus read locked while calling this function. 1718 * The teardown callback is currently not allowed to fail. Think 1719 * about module removal! 1720 */ 1721 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1722 { 1723 struct cpuhp_step *sp = cpuhp_get_step(state); 1724 int cpu; 1725 1726 BUG_ON(cpuhp_cb_check(state)); 1727 1728 lockdep_assert_cpus_held(); 1729 1730 mutex_lock(&cpuhp_state_mutex); 1731 if (sp->multi_instance) { 1732 WARN(!hlist_empty(&sp->list), 1733 "Error: Removing state %d which has instances left.\n", 1734 state); 1735 goto remove; 1736 } 1737 1738 if (!invoke || !cpuhp_get_teardown_cb(state)) 1739 goto remove; 1740 1741 /* 1742 * Call the teardown callback for each present cpu depending 1743 * on the hotplug state of the cpu. This function is not 1744 * allowed to fail currently! 1745 */ 1746 for_each_present_cpu(cpu) { 1747 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1748 int cpustate = st->state; 1749 1750 if (cpustate >= state) 1751 cpuhp_issue_call(cpu, state, false, NULL); 1752 } 1753 remove: 1754 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1755 mutex_unlock(&cpuhp_state_mutex); 1756 } 1757 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1758 1759 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1760 { 1761 cpus_read_lock(); 1762 __cpuhp_remove_state_cpuslocked(state, invoke); 1763 cpus_read_unlock(); 1764 } 1765 EXPORT_SYMBOL(__cpuhp_remove_state); 1766 1767 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1768 static ssize_t show_cpuhp_state(struct device *dev, 1769 struct device_attribute *attr, char *buf) 1770 { 1771 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1772 1773 return sprintf(buf, "%d\n", st->state); 1774 } 1775 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1776 1777 static ssize_t write_cpuhp_target(struct device *dev, 1778 struct device_attribute *attr, 1779 const char *buf, size_t count) 1780 { 1781 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1782 struct cpuhp_step *sp; 1783 int target, ret; 1784 1785 ret = kstrtoint(buf, 10, &target); 1786 if (ret) 1787 return ret; 1788 1789 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1790 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1791 return -EINVAL; 1792 #else 1793 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1794 return -EINVAL; 1795 #endif 1796 1797 ret = lock_device_hotplug_sysfs(); 1798 if (ret) 1799 return ret; 1800 1801 mutex_lock(&cpuhp_state_mutex); 1802 sp = cpuhp_get_step(target); 1803 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1804 mutex_unlock(&cpuhp_state_mutex); 1805 if (ret) 1806 goto out; 1807 1808 if (st->state < target) 1809 ret = do_cpu_up(dev->id, target); 1810 else 1811 ret = do_cpu_down(dev->id, target); 1812 out: 1813 unlock_device_hotplug(); 1814 return ret ? ret : count; 1815 } 1816 1817 static ssize_t show_cpuhp_target(struct device *dev, 1818 struct device_attribute *attr, char *buf) 1819 { 1820 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1821 1822 return sprintf(buf, "%d\n", st->target); 1823 } 1824 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1825 1826 1827 static ssize_t write_cpuhp_fail(struct device *dev, 1828 struct device_attribute *attr, 1829 const char *buf, size_t count) 1830 { 1831 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1832 struct cpuhp_step *sp; 1833 int fail, ret; 1834 1835 ret = kstrtoint(buf, 10, &fail); 1836 if (ret) 1837 return ret; 1838 1839 /* 1840 * Cannot fail STARTING/DYING callbacks. 1841 */ 1842 if (cpuhp_is_atomic_state(fail)) 1843 return -EINVAL; 1844 1845 /* 1846 * Cannot fail anything that doesn't have callbacks. 1847 */ 1848 mutex_lock(&cpuhp_state_mutex); 1849 sp = cpuhp_get_step(fail); 1850 if (!sp->startup.single && !sp->teardown.single) 1851 ret = -EINVAL; 1852 mutex_unlock(&cpuhp_state_mutex); 1853 if (ret) 1854 return ret; 1855 1856 st->fail = fail; 1857 1858 return count; 1859 } 1860 1861 static ssize_t show_cpuhp_fail(struct device *dev, 1862 struct device_attribute *attr, char *buf) 1863 { 1864 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1865 1866 return sprintf(buf, "%d\n", st->fail); 1867 } 1868 1869 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1870 1871 static struct attribute *cpuhp_cpu_attrs[] = { 1872 &dev_attr_state.attr, 1873 &dev_attr_target.attr, 1874 &dev_attr_fail.attr, 1875 NULL 1876 }; 1877 1878 static const struct attribute_group cpuhp_cpu_attr_group = { 1879 .attrs = cpuhp_cpu_attrs, 1880 .name = "hotplug", 1881 NULL 1882 }; 1883 1884 static ssize_t show_cpuhp_states(struct device *dev, 1885 struct device_attribute *attr, char *buf) 1886 { 1887 ssize_t cur, res = 0; 1888 int i; 1889 1890 mutex_lock(&cpuhp_state_mutex); 1891 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1892 struct cpuhp_step *sp = cpuhp_get_step(i); 1893 1894 if (sp->name) { 1895 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1896 buf += cur; 1897 res += cur; 1898 } 1899 } 1900 mutex_unlock(&cpuhp_state_mutex); 1901 return res; 1902 } 1903 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1904 1905 static struct attribute *cpuhp_cpu_root_attrs[] = { 1906 &dev_attr_states.attr, 1907 NULL 1908 }; 1909 1910 static const struct attribute_group cpuhp_cpu_root_attr_group = { 1911 .attrs = cpuhp_cpu_root_attrs, 1912 .name = "hotplug", 1913 NULL 1914 }; 1915 1916 static int __init cpuhp_sysfs_init(void) 1917 { 1918 int cpu, ret; 1919 1920 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1921 &cpuhp_cpu_root_attr_group); 1922 if (ret) 1923 return ret; 1924 1925 for_each_possible_cpu(cpu) { 1926 struct device *dev = get_cpu_device(cpu); 1927 1928 if (!dev) 1929 continue; 1930 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1931 if (ret) 1932 return ret; 1933 } 1934 return 0; 1935 } 1936 device_initcall(cpuhp_sysfs_init); 1937 #endif 1938 1939 /* 1940 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1941 * represents all NR_CPUS bits binary values of 1<<nr. 1942 * 1943 * It is used by cpumask_of() to get a constant address to a CPU 1944 * mask value that has a single bit set only. 1945 */ 1946 1947 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1948 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1949 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1950 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1951 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1952 1953 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1954 1955 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1956 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1957 #if BITS_PER_LONG > 32 1958 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1959 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1960 #endif 1961 }; 1962 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1963 1964 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1965 EXPORT_SYMBOL(cpu_all_bits); 1966 1967 #ifdef CONFIG_INIT_ALL_POSSIBLE 1968 struct cpumask __cpu_possible_mask __read_mostly 1969 = {CPU_BITS_ALL}; 1970 #else 1971 struct cpumask __cpu_possible_mask __read_mostly; 1972 #endif 1973 EXPORT_SYMBOL(__cpu_possible_mask); 1974 1975 struct cpumask __cpu_online_mask __read_mostly; 1976 EXPORT_SYMBOL(__cpu_online_mask); 1977 1978 struct cpumask __cpu_present_mask __read_mostly; 1979 EXPORT_SYMBOL(__cpu_present_mask); 1980 1981 struct cpumask __cpu_active_mask __read_mostly; 1982 EXPORT_SYMBOL(__cpu_active_mask); 1983 1984 void init_cpu_present(const struct cpumask *src) 1985 { 1986 cpumask_copy(&__cpu_present_mask, src); 1987 } 1988 1989 void init_cpu_possible(const struct cpumask *src) 1990 { 1991 cpumask_copy(&__cpu_possible_mask, src); 1992 } 1993 1994 void init_cpu_online(const struct cpumask *src) 1995 { 1996 cpumask_copy(&__cpu_online_mask, src); 1997 } 1998 1999 /* 2000 * Activate the first processor. 2001 */ 2002 void __init boot_cpu_init(void) 2003 { 2004 int cpu = smp_processor_id(); 2005 2006 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2007 set_cpu_online(cpu, true); 2008 set_cpu_active(cpu, true); 2009 set_cpu_present(cpu, true); 2010 set_cpu_possible(cpu, true); 2011 2012 #ifdef CONFIG_SMP 2013 __boot_cpu_id = cpu; 2014 #endif 2015 } 2016 2017 /* 2018 * Must be called _AFTER_ setting up the per_cpu areas 2019 */ 2020 void __init boot_cpu_state_init(void) 2021 { 2022 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 2023 } 2024