1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/oom.h> 14 #include <linux/rcupdate.h> 15 #include <linux/export.h> 16 #include <linux/bug.h> 17 #include <linux/kthread.h> 18 #include <linux/stop_machine.h> 19 #include <linux/mutex.h> 20 #include <linux/gfp.h> 21 #include <linux/suspend.h> 22 #include <linux/lockdep.h> 23 #include <linux/tick.h> 24 #include <linux/irq.h> 25 #include <linux/smpboot.h> 26 #include <linux/relay.h> 27 #include <linux/slab.h> 28 29 #include <trace/events/power.h> 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/cpuhp.h> 32 33 #include "smpboot.h" 34 35 /** 36 * cpuhp_cpu_state - Per cpu hotplug state storage 37 * @state: The current cpu state 38 * @target: The target state 39 * @thread: Pointer to the hotplug thread 40 * @should_run: Thread should execute 41 * @rollback: Perform a rollback 42 * @single: Single callback invocation 43 * @bringup: Single callback bringup or teardown selector 44 * @cb_state: The state for a single callback (install/uninstall) 45 * @result: Result of the operation 46 * @done: Signal completion to the issuer of the task 47 */ 48 struct cpuhp_cpu_state { 49 enum cpuhp_state state; 50 enum cpuhp_state target; 51 #ifdef CONFIG_SMP 52 struct task_struct *thread; 53 bool should_run; 54 bool rollback; 55 bool single; 56 bool bringup; 57 struct hlist_node *node; 58 enum cpuhp_state cb_state; 59 int result; 60 struct completion done; 61 #endif 62 }; 63 64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state); 65 66 /** 67 * cpuhp_step - Hotplug state machine step 68 * @name: Name of the step 69 * @startup: Startup function of the step 70 * @teardown: Teardown function of the step 71 * @skip_onerr: Do not invoke the functions on error rollback 72 * Will go away once the notifiers are gone 73 * @cant_stop: Bringup/teardown can't be stopped at this step 74 */ 75 struct cpuhp_step { 76 const char *name; 77 union { 78 int (*single)(unsigned int cpu); 79 int (*multi)(unsigned int cpu, 80 struct hlist_node *node); 81 } startup; 82 union { 83 int (*single)(unsigned int cpu); 84 int (*multi)(unsigned int cpu, 85 struct hlist_node *node); 86 } teardown; 87 struct hlist_head list; 88 bool skip_onerr; 89 bool cant_stop; 90 bool multi_instance; 91 }; 92 93 static DEFINE_MUTEX(cpuhp_state_mutex); 94 static struct cpuhp_step cpuhp_bp_states[]; 95 static struct cpuhp_step cpuhp_ap_states[]; 96 97 static bool cpuhp_is_ap_state(enum cpuhp_state state) 98 { 99 /* 100 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 101 * purposes as that state is handled explicitly in cpu_down. 102 */ 103 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 104 } 105 106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 107 { 108 struct cpuhp_step *sp; 109 110 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; 111 return sp + state; 112 } 113 114 /** 115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 116 * @cpu: The cpu for which the callback should be invoked 117 * @step: The step in the state machine 118 * @bringup: True if the bringup callback should be invoked 119 * 120 * Called from cpu hotplug and from the state register machinery. 121 */ 122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 123 bool bringup, struct hlist_node *node) 124 { 125 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 126 struct cpuhp_step *step = cpuhp_get_step(state); 127 int (*cbm)(unsigned int cpu, struct hlist_node *node); 128 int (*cb)(unsigned int cpu); 129 int ret, cnt; 130 131 if (!step->multi_instance) { 132 cb = bringup ? step->startup.single : step->teardown.single; 133 if (!cb) 134 return 0; 135 trace_cpuhp_enter(cpu, st->target, state, cb); 136 ret = cb(cpu); 137 trace_cpuhp_exit(cpu, st->state, state, ret); 138 return ret; 139 } 140 cbm = bringup ? step->startup.multi : step->teardown.multi; 141 if (!cbm) 142 return 0; 143 144 /* Single invocation for instance add/remove */ 145 if (node) { 146 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 147 ret = cbm(cpu, node); 148 trace_cpuhp_exit(cpu, st->state, state, ret); 149 return ret; 150 } 151 152 /* State transition. Invoke on all instances */ 153 cnt = 0; 154 hlist_for_each(node, &step->list) { 155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 156 ret = cbm(cpu, node); 157 trace_cpuhp_exit(cpu, st->state, state, ret); 158 if (ret) 159 goto err; 160 cnt++; 161 } 162 return 0; 163 err: 164 /* Rollback the instances if one failed */ 165 cbm = !bringup ? step->startup.multi : step->teardown.multi; 166 if (!cbm) 167 return ret; 168 169 hlist_for_each(node, &step->list) { 170 if (!cnt--) 171 break; 172 cbm(cpu, node); 173 } 174 return ret; 175 } 176 177 #ifdef CONFIG_SMP 178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 179 static DEFINE_MUTEX(cpu_add_remove_lock); 180 bool cpuhp_tasks_frozen; 181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 182 183 /* 184 * The following two APIs (cpu_maps_update_begin/done) must be used when 185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 186 */ 187 void cpu_maps_update_begin(void) 188 { 189 mutex_lock(&cpu_add_remove_lock); 190 } 191 192 void cpu_maps_update_done(void) 193 { 194 mutex_unlock(&cpu_add_remove_lock); 195 } 196 197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 198 * Should always be manipulated under cpu_add_remove_lock 199 */ 200 static int cpu_hotplug_disabled; 201 202 #ifdef CONFIG_HOTPLUG_CPU 203 204 static struct { 205 struct task_struct *active_writer; 206 /* wait queue to wake up the active_writer */ 207 wait_queue_head_t wq; 208 /* verifies that no writer will get active while readers are active */ 209 struct mutex lock; 210 /* 211 * Also blocks the new readers during 212 * an ongoing cpu hotplug operation. 213 */ 214 atomic_t refcount; 215 216 #ifdef CONFIG_DEBUG_LOCK_ALLOC 217 struct lockdep_map dep_map; 218 #endif 219 } cpu_hotplug = { 220 .active_writer = NULL, 221 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq), 222 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 223 #ifdef CONFIG_DEBUG_LOCK_ALLOC 224 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map), 225 #endif 226 }; 227 228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */ 229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map) 230 #define cpuhp_lock_acquire_tryread() \ 231 lock_map_acquire_tryread(&cpu_hotplug.dep_map) 232 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map) 233 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map) 234 235 236 void get_online_cpus(void) 237 { 238 might_sleep(); 239 if (cpu_hotplug.active_writer == current) 240 return; 241 cpuhp_lock_acquire_read(); 242 mutex_lock(&cpu_hotplug.lock); 243 atomic_inc(&cpu_hotplug.refcount); 244 mutex_unlock(&cpu_hotplug.lock); 245 } 246 EXPORT_SYMBOL_GPL(get_online_cpus); 247 248 void put_online_cpus(void) 249 { 250 int refcount; 251 252 if (cpu_hotplug.active_writer == current) 253 return; 254 255 refcount = atomic_dec_return(&cpu_hotplug.refcount); 256 if (WARN_ON(refcount < 0)) /* try to fix things up */ 257 atomic_inc(&cpu_hotplug.refcount); 258 259 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq)) 260 wake_up(&cpu_hotplug.wq); 261 262 cpuhp_lock_release(); 263 264 } 265 EXPORT_SYMBOL_GPL(put_online_cpus); 266 267 /* 268 * This ensures that the hotplug operation can begin only when the 269 * refcount goes to zero. 270 * 271 * Note that during a cpu-hotplug operation, the new readers, if any, 272 * will be blocked by the cpu_hotplug.lock 273 * 274 * Since cpu_hotplug_begin() is always called after invoking 275 * cpu_maps_update_begin(), we can be sure that only one writer is active. 276 * 277 * Note that theoretically, there is a possibility of a livelock: 278 * - Refcount goes to zero, last reader wakes up the sleeping 279 * writer. 280 * - Last reader unlocks the cpu_hotplug.lock. 281 * - A new reader arrives at this moment, bumps up the refcount. 282 * - The writer acquires the cpu_hotplug.lock finds the refcount 283 * non zero and goes to sleep again. 284 * 285 * However, this is very difficult to achieve in practice since 286 * get_online_cpus() not an api which is called all that often. 287 * 288 */ 289 void cpu_hotplug_begin(void) 290 { 291 DEFINE_WAIT(wait); 292 293 cpu_hotplug.active_writer = current; 294 cpuhp_lock_acquire(); 295 296 for (;;) { 297 mutex_lock(&cpu_hotplug.lock); 298 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE); 299 if (likely(!atomic_read(&cpu_hotplug.refcount))) 300 break; 301 mutex_unlock(&cpu_hotplug.lock); 302 schedule(); 303 } 304 finish_wait(&cpu_hotplug.wq, &wait); 305 } 306 307 void cpu_hotplug_done(void) 308 { 309 cpu_hotplug.active_writer = NULL; 310 mutex_unlock(&cpu_hotplug.lock); 311 cpuhp_lock_release(); 312 } 313 314 /* 315 * Wait for currently running CPU hotplug operations to complete (if any) and 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 318 * hotplug path before performing hotplug operations. So acquiring that lock 319 * guarantees mutual exclusion from any currently running hotplug operations. 320 */ 321 void cpu_hotplug_disable(void) 322 { 323 cpu_maps_update_begin(); 324 cpu_hotplug_disabled++; 325 cpu_maps_update_done(); 326 } 327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 328 329 static void __cpu_hotplug_enable(void) 330 { 331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 332 return; 333 cpu_hotplug_disabled--; 334 } 335 336 void cpu_hotplug_enable(void) 337 { 338 cpu_maps_update_begin(); 339 __cpu_hotplug_enable(); 340 cpu_maps_update_done(); 341 } 342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 343 #endif /* CONFIG_HOTPLUG_CPU */ 344 345 /* Notifier wrappers for transitioning to state machine */ 346 347 static int bringup_wait_for_ap(unsigned int cpu) 348 { 349 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 350 351 wait_for_completion(&st->done); 352 return st->result; 353 } 354 355 static int bringup_cpu(unsigned int cpu) 356 { 357 struct task_struct *idle = idle_thread_get(cpu); 358 int ret; 359 360 /* 361 * Some architectures have to walk the irq descriptors to 362 * setup the vector space for the cpu which comes online. 363 * Prevent irq alloc/free across the bringup. 364 */ 365 irq_lock_sparse(); 366 367 /* Arch-specific enabling code. */ 368 ret = __cpu_up(cpu, idle); 369 irq_unlock_sparse(); 370 if (ret) 371 return ret; 372 ret = bringup_wait_for_ap(cpu); 373 BUG_ON(!cpu_online(cpu)); 374 return ret; 375 } 376 377 /* 378 * Hotplug state machine related functions 379 */ 380 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 381 { 382 for (st->state++; st->state < st->target; st->state++) { 383 struct cpuhp_step *step = cpuhp_get_step(st->state); 384 385 if (!step->skip_onerr) 386 cpuhp_invoke_callback(cpu, st->state, true, NULL); 387 } 388 } 389 390 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 391 enum cpuhp_state target) 392 { 393 enum cpuhp_state prev_state = st->state; 394 int ret = 0; 395 396 for (; st->state > target; st->state--) { 397 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL); 398 if (ret) { 399 st->target = prev_state; 400 undo_cpu_down(cpu, st); 401 break; 402 } 403 } 404 return ret; 405 } 406 407 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 408 { 409 for (st->state--; st->state > st->target; st->state--) { 410 struct cpuhp_step *step = cpuhp_get_step(st->state); 411 412 if (!step->skip_onerr) 413 cpuhp_invoke_callback(cpu, st->state, false, NULL); 414 } 415 } 416 417 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 418 enum cpuhp_state target) 419 { 420 enum cpuhp_state prev_state = st->state; 421 int ret = 0; 422 423 while (st->state < target) { 424 st->state++; 425 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL); 426 if (ret) { 427 st->target = prev_state; 428 undo_cpu_up(cpu, st); 429 break; 430 } 431 } 432 return ret; 433 } 434 435 /* 436 * The cpu hotplug threads manage the bringup and teardown of the cpus 437 */ 438 static void cpuhp_create(unsigned int cpu) 439 { 440 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 441 442 init_completion(&st->done); 443 } 444 445 static int cpuhp_should_run(unsigned int cpu) 446 { 447 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 448 449 return st->should_run; 450 } 451 452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */ 453 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st) 454 { 455 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU); 456 457 return cpuhp_down_callbacks(cpu, st, target); 458 } 459 460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */ 461 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st) 462 { 463 return cpuhp_up_callbacks(cpu, st, st->target); 464 } 465 466 /* 467 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 468 * callbacks when a state gets [un]installed at runtime. 469 */ 470 static void cpuhp_thread_fun(unsigned int cpu) 471 { 472 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 473 int ret = 0; 474 475 /* 476 * Paired with the mb() in cpuhp_kick_ap_work and 477 * cpuhp_invoke_ap_callback, so the work set is consistent visible. 478 */ 479 smp_mb(); 480 if (!st->should_run) 481 return; 482 483 st->should_run = false; 484 485 /* Single callback invocation for [un]install ? */ 486 if (st->single) { 487 if (st->cb_state < CPUHP_AP_ONLINE) { 488 local_irq_disable(); 489 ret = cpuhp_invoke_callback(cpu, st->cb_state, 490 st->bringup, st->node); 491 local_irq_enable(); 492 } else { 493 ret = cpuhp_invoke_callback(cpu, st->cb_state, 494 st->bringup, st->node); 495 } 496 } else if (st->rollback) { 497 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 498 499 undo_cpu_down(cpu, st); 500 st->rollback = false; 501 } else { 502 /* Cannot happen .... */ 503 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 504 505 /* Regular hotplug work */ 506 if (st->state < st->target) 507 ret = cpuhp_ap_online(cpu, st); 508 else if (st->state > st->target) 509 ret = cpuhp_ap_offline(cpu, st); 510 } 511 st->result = ret; 512 complete(&st->done); 513 } 514 515 /* Invoke a single callback on a remote cpu */ 516 static int 517 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 518 struct hlist_node *node) 519 { 520 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 521 522 if (!cpu_online(cpu)) 523 return 0; 524 525 /* 526 * If we are up and running, use the hotplug thread. For early calls 527 * we invoke the thread function directly. 528 */ 529 if (!st->thread) 530 return cpuhp_invoke_callback(cpu, state, bringup, node); 531 532 st->cb_state = state; 533 st->single = true; 534 st->bringup = bringup; 535 st->node = node; 536 537 /* 538 * Make sure the above stores are visible before should_run becomes 539 * true. Paired with the mb() above in cpuhp_thread_fun() 540 */ 541 smp_mb(); 542 st->should_run = true; 543 wake_up_process(st->thread); 544 wait_for_completion(&st->done); 545 return st->result; 546 } 547 548 /* Regular hotplug invocation of the AP hotplug thread */ 549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st) 550 { 551 st->result = 0; 552 st->single = false; 553 /* 554 * Make sure the above stores are visible before should_run becomes 555 * true. Paired with the mb() above in cpuhp_thread_fun() 556 */ 557 smp_mb(); 558 st->should_run = true; 559 wake_up_process(st->thread); 560 } 561 562 static int cpuhp_kick_ap_work(unsigned int cpu) 563 { 564 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 565 enum cpuhp_state state = st->state; 566 567 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work); 568 __cpuhp_kick_ap_work(st); 569 wait_for_completion(&st->done); 570 trace_cpuhp_exit(cpu, st->state, state, st->result); 571 return st->result; 572 } 573 574 static struct smp_hotplug_thread cpuhp_threads = { 575 .store = &cpuhp_state.thread, 576 .create = &cpuhp_create, 577 .thread_should_run = cpuhp_should_run, 578 .thread_fn = cpuhp_thread_fun, 579 .thread_comm = "cpuhp/%u", 580 .selfparking = true, 581 }; 582 583 void __init cpuhp_threads_init(void) 584 { 585 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 586 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 587 } 588 589 #ifdef CONFIG_HOTPLUG_CPU 590 /** 591 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 592 * @cpu: a CPU id 593 * 594 * This function walks all processes, finds a valid mm struct for each one and 595 * then clears a corresponding bit in mm's cpumask. While this all sounds 596 * trivial, there are various non-obvious corner cases, which this function 597 * tries to solve in a safe manner. 598 * 599 * Also note that the function uses a somewhat relaxed locking scheme, so it may 600 * be called only for an already offlined CPU. 601 */ 602 void clear_tasks_mm_cpumask(int cpu) 603 { 604 struct task_struct *p; 605 606 /* 607 * This function is called after the cpu is taken down and marked 608 * offline, so its not like new tasks will ever get this cpu set in 609 * their mm mask. -- Peter Zijlstra 610 * Thus, we may use rcu_read_lock() here, instead of grabbing 611 * full-fledged tasklist_lock. 612 */ 613 WARN_ON(cpu_online(cpu)); 614 rcu_read_lock(); 615 for_each_process(p) { 616 struct task_struct *t; 617 618 /* 619 * Main thread might exit, but other threads may still have 620 * a valid mm. Find one. 621 */ 622 t = find_lock_task_mm(p); 623 if (!t) 624 continue; 625 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 626 task_unlock(t); 627 } 628 rcu_read_unlock(); 629 } 630 631 static inline void check_for_tasks(int dead_cpu) 632 { 633 struct task_struct *g, *p; 634 635 read_lock(&tasklist_lock); 636 for_each_process_thread(g, p) { 637 if (!p->on_rq) 638 continue; 639 /* 640 * We do the check with unlocked task_rq(p)->lock. 641 * Order the reading to do not warn about a task, 642 * which was running on this cpu in the past, and 643 * it's just been woken on another cpu. 644 */ 645 rmb(); 646 if (task_cpu(p) != dead_cpu) 647 continue; 648 649 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n", 650 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags); 651 } 652 read_unlock(&tasklist_lock); 653 } 654 655 /* Take this CPU down. */ 656 static int take_cpu_down(void *_param) 657 { 658 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 659 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 660 int err, cpu = smp_processor_id(); 661 662 /* Ensure this CPU doesn't handle any more interrupts. */ 663 err = __cpu_disable(); 664 if (err < 0) 665 return err; 666 667 /* 668 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 669 * do this step again. 670 */ 671 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 672 st->state--; 673 /* Invoke the former CPU_DYING callbacks */ 674 for (; st->state > target; st->state--) 675 cpuhp_invoke_callback(cpu, st->state, false, NULL); 676 677 /* Give up timekeeping duties */ 678 tick_handover_do_timer(); 679 /* Park the stopper thread */ 680 stop_machine_park(cpu); 681 return 0; 682 } 683 684 static int takedown_cpu(unsigned int cpu) 685 { 686 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 687 int err; 688 689 /* Park the smpboot threads */ 690 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 691 smpboot_park_threads(cpu); 692 693 /* 694 * Prevent irq alloc/free while the dying cpu reorganizes the 695 * interrupt affinities. 696 */ 697 irq_lock_sparse(); 698 699 /* 700 * So now all preempt/rcu users must observe !cpu_active(). 701 */ 702 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu)); 703 if (err) { 704 /* CPU refused to die */ 705 irq_unlock_sparse(); 706 /* Unpark the hotplug thread so we can rollback there */ 707 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 708 return err; 709 } 710 BUG_ON(cpu_online(cpu)); 711 712 /* 713 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all 714 * runnable tasks from the cpu, there's only the idle task left now 715 * that the migration thread is done doing the stop_machine thing. 716 * 717 * Wait for the stop thread to go away. 718 */ 719 wait_for_completion(&st->done); 720 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 721 722 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 723 irq_unlock_sparse(); 724 725 hotplug_cpu__broadcast_tick_pull(cpu); 726 /* This actually kills the CPU. */ 727 __cpu_die(cpu); 728 729 tick_cleanup_dead_cpu(cpu); 730 return 0; 731 } 732 733 static void cpuhp_complete_idle_dead(void *arg) 734 { 735 struct cpuhp_cpu_state *st = arg; 736 737 complete(&st->done); 738 } 739 740 void cpuhp_report_idle_dead(void) 741 { 742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 743 744 BUG_ON(st->state != CPUHP_AP_OFFLINE); 745 rcu_report_dead(smp_processor_id()); 746 st->state = CPUHP_AP_IDLE_DEAD; 747 /* 748 * We cannot call complete after rcu_report_dead() so we delegate it 749 * to an online cpu. 750 */ 751 smp_call_function_single(cpumask_first(cpu_online_mask), 752 cpuhp_complete_idle_dead, st, 0); 753 } 754 755 #else 756 #define takedown_cpu NULL 757 #endif 758 759 #ifdef CONFIG_HOTPLUG_CPU 760 761 /* Requires cpu_add_remove_lock to be held */ 762 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 763 enum cpuhp_state target) 764 { 765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 766 int prev_state, ret = 0; 767 768 if (num_online_cpus() == 1) 769 return -EBUSY; 770 771 if (!cpu_present(cpu)) 772 return -EINVAL; 773 774 cpu_hotplug_begin(); 775 776 cpuhp_tasks_frozen = tasks_frozen; 777 778 prev_state = st->state; 779 st->target = target; 780 /* 781 * If the current CPU state is in the range of the AP hotplug thread, 782 * then we need to kick the thread. 783 */ 784 if (st->state > CPUHP_TEARDOWN_CPU) { 785 ret = cpuhp_kick_ap_work(cpu); 786 /* 787 * The AP side has done the error rollback already. Just 788 * return the error code.. 789 */ 790 if (ret) 791 goto out; 792 793 /* 794 * We might have stopped still in the range of the AP hotplug 795 * thread. Nothing to do anymore. 796 */ 797 if (st->state > CPUHP_TEARDOWN_CPU) 798 goto out; 799 } 800 /* 801 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 802 * to do the further cleanups. 803 */ 804 ret = cpuhp_down_callbacks(cpu, st, target); 805 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 806 st->target = prev_state; 807 st->rollback = true; 808 cpuhp_kick_ap_work(cpu); 809 } 810 811 out: 812 cpu_hotplug_done(); 813 return ret; 814 } 815 816 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 817 { 818 int err; 819 820 cpu_maps_update_begin(); 821 822 if (cpu_hotplug_disabled) { 823 err = -EBUSY; 824 goto out; 825 } 826 827 err = _cpu_down(cpu, 0, target); 828 829 out: 830 cpu_maps_update_done(); 831 return err; 832 } 833 int cpu_down(unsigned int cpu) 834 { 835 return do_cpu_down(cpu, CPUHP_OFFLINE); 836 } 837 EXPORT_SYMBOL(cpu_down); 838 #endif /*CONFIG_HOTPLUG_CPU*/ 839 840 /** 841 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 842 * @cpu: cpu that just started 843 * 844 * It must be called by the arch code on the new cpu, before the new cpu 845 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 846 */ 847 void notify_cpu_starting(unsigned int cpu) 848 { 849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 850 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 851 852 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 853 while (st->state < target) { 854 st->state++; 855 cpuhp_invoke_callback(cpu, st->state, true, NULL); 856 } 857 } 858 859 /* 860 * Called from the idle task. We need to set active here, so we can kick off 861 * the stopper thread and unpark the smpboot threads. If the target state is 862 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the 863 * cpu further. 864 */ 865 void cpuhp_online_idle(enum cpuhp_state state) 866 { 867 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 868 unsigned int cpu = smp_processor_id(); 869 870 /* Happens for the boot cpu */ 871 if (state != CPUHP_AP_ONLINE_IDLE) 872 return; 873 874 st->state = CPUHP_AP_ONLINE_IDLE; 875 876 /* Unpark the stopper thread and the hotplug thread of this cpu */ 877 stop_machine_unpark(cpu); 878 kthread_unpark(st->thread); 879 880 /* Should we go further up ? */ 881 if (st->target > CPUHP_AP_ONLINE_IDLE) 882 __cpuhp_kick_ap_work(st); 883 else 884 complete(&st->done); 885 } 886 887 /* Requires cpu_add_remove_lock to be held */ 888 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 889 { 890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 891 struct task_struct *idle; 892 int ret = 0; 893 894 cpu_hotplug_begin(); 895 896 if (!cpu_present(cpu)) { 897 ret = -EINVAL; 898 goto out; 899 } 900 901 /* 902 * The caller of do_cpu_up might have raced with another 903 * caller. Ignore it for now. 904 */ 905 if (st->state >= target) 906 goto out; 907 908 if (st->state == CPUHP_OFFLINE) { 909 /* Let it fail before we try to bring the cpu up */ 910 idle = idle_thread_get(cpu); 911 if (IS_ERR(idle)) { 912 ret = PTR_ERR(idle); 913 goto out; 914 } 915 } 916 917 cpuhp_tasks_frozen = tasks_frozen; 918 919 st->target = target; 920 /* 921 * If the current CPU state is in the range of the AP hotplug thread, 922 * then we need to kick the thread once more. 923 */ 924 if (st->state > CPUHP_BRINGUP_CPU) { 925 ret = cpuhp_kick_ap_work(cpu); 926 /* 927 * The AP side has done the error rollback already. Just 928 * return the error code.. 929 */ 930 if (ret) 931 goto out; 932 } 933 934 /* 935 * Try to reach the target state. We max out on the BP at 936 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 937 * responsible for bringing it up to the target state. 938 */ 939 target = min((int)target, CPUHP_BRINGUP_CPU); 940 ret = cpuhp_up_callbacks(cpu, st, target); 941 out: 942 cpu_hotplug_done(); 943 return ret; 944 } 945 946 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 947 { 948 int err = 0; 949 950 if (!cpu_possible(cpu)) { 951 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 952 cpu); 953 #if defined(CONFIG_IA64) 954 pr_err("please check additional_cpus= boot parameter\n"); 955 #endif 956 return -EINVAL; 957 } 958 959 err = try_online_node(cpu_to_node(cpu)); 960 if (err) 961 return err; 962 963 cpu_maps_update_begin(); 964 965 if (cpu_hotplug_disabled) { 966 err = -EBUSY; 967 goto out; 968 } 969 970 err = _cpu_up(cpu, 0, target); 971 out: 972 cpu_maps_update_done(); 973 return err; 974 } 975 976 int cpu_up(unsigned int cpu) 977 { 978 return do_cpu_up(cpu, CPUHP_ONLINE); 979 } 980 EXPORT_SYMBOL_GPL(cpu_up); 981 982 #ifdef CONFIG_PM_SLEEP_SMP 983 static cpumask_var_t frozen_cpus; 984 985 int freeze_secondary_cpus(int primary) 986 { 987 int cpu, error = 0; 988 989 cpu_maps_update_begin(); 990 if (!cpu_online(primary)) 991 primary = cpumask_first(cpu_online_mask); 992 /* 993 * We take down all of the non-boot CPUs in one shot to avoid races 994 * with the userspace trying to use the CPU hotplug at the same time 995 */ 996 cpumask_clear(frozen_cpus); 997 998 pr_info("Disabling non-boot CPUs ...\n"); 999 for_each_online_cpu(cpu) { 1000 if (cpu == primary) 1001 continue; 1002 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1003 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1005 if (!error) 1006 cpumask_set_cpu(cpu, frozen_cpus); 1007 else { 1008 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1009 break; 1010 } 1011 } 1012 1013 if (!error) 1014 BUG_ON(num_online_cpus() > 1); 1015 else 1016 pr_err("Non-boot CPUs are not disabled\n"); 1017 1018 /* 1019 * Make sure the CPUs won't be enabled by someone else. We need to do 1020 * this even in case of failure as all disable_nonboot_cpus() users are 1021 * supposed to do enable_nonboot_cpus() on the failure path. 1022 */ 1023 cpu_hotplug_disabled++; 1024 1025 cpu_maps_update_done(); 1026 return error; 1027 } 1028 1029 void __weak arch_enable_nonboot_cpus_begin(void) 1030 { 1031 } 1032 1033 void __weak arch_enable_nonboot_cpus_end(void) 1034 { 1035 } 1036 1037 void enable_nonboot_cpus(void) 1038 { 1039 int cpu, error; 1040 1041 /* Allow everyone to use the CPU hotplug again */ 1042 cpu_maps_update_begin(); 1043 __cpu_hotplug_enable(); 1044 if (cpumask_empty(frozen_cpus)) 1045 goto out; 1046 1047 pr_info("Enabling non-boot CPUs ...\n"); 1048 1049 arch_enable_nonboot_cpus_begin(); 1050 1051 for_each_cpu(cpu, frozen_cpus) { 1052 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1053 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1054 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1055 if (!error) { 1056 pr_info("CPU%d is up\n", cpu); 1057 continue; 1058 } 1059 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1060 } 1061 1062 arch_enable_nonboot_cpus_end(); 1063 1064 cpumask_clear(frozen_cpus); 1065 out: 1066 cpu_maps_update_done(); 1067 } 1068 1069 static int __init alloc_frozen_cpus(void) 1070 { 1071 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1072 return -ENOMEM; 1073 return 0; 1074 } 1075 core_initcall(alloc_frozen_cpus); 1076 1077 /* 1078 * When callbacks for CPU hotplug notifications are being executed, we must 1079 * ensure that the state of the system with respect to the tasks being frozen 1080 * or not, as reported by the notification, remains unchanged *throughout the 1081 * duration* of the execution of the callbacks. 1082 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1083 * 1084 * This synchronization is implemented by mutually excluding regular CPU 1085 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1086 * Hibernate notifications. 1087 */ 1088 static int 1089 cpu_hotplug_pm_callback(struct notifier_block *nb, 1090 unsigned long action, void *ptr) 1091 { 1092 switch (action) { 1093 1094 case PM_SUSPEND_PREPARE: 1095 case PM_HIBERNATION_PREPARE: 1096 cpu_hotplug_disable(); 1097 break; 1098 1099 case PM_POST_SUSPEND: 1100 case PM_POST_HIBERNATION: 1101 cpu_hotplug_enable(); 1102 break; 1103 1104 default: 1105 return NOTIFY_DONE; 1106 } 1107 1108 return NOTIFY_OK; 1109 } 1110 1111 1112 static int __init cpu_hotplug_pm_sync_init(void) 1113 { 1114 /* 1115 * cpu_hotplug_pm_callback has higher priority than x86 1116 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1117 * to disable cpu hotplug to avoid cpu hotplug race. 1118 */ 1119 pm_notifier(cpu_hotplug_pm_callback, 0); 1120 return 0; 1121 } 1122 core_initcall(cpu_hotplug_pm_sync_init); 1123 1124 #endif /* CONFIG_PM_SLEEP_SMP */ 1125 1126 #endif /* CONFIG_SMP */ 1127 1128 /* Boot processor state steps */ 1129 static struct cpuhp_step cpuhp_bp_states[] = { 1130 [CPUHP_OFFLINE] = { 1131 .name = "offline", 1132 .startup.single = NULL, 1133 .teardown.single = NULL, 1134 }, 1135 #ifdef CONFIG_SMP 1136 [CPUHP_CREATE_THREADS]= { 1137 .name = "threads:prepare", 1138 .startup.single = smpboot_create_threads, 1139 .teardown.single = NULL, 1140 .cant_stop = true, 1141 }, 1142 [CPUHP_PERF_PREPARE] = { 1143 .name = "perf:prepare", 1144 .startup.single = perf_event_init_cpu, 1145 .teardown.single = perf_event_exit_cpu, 1146 }, 1147 [CPUHP_WORKQUEUE_PREP] = { 1148 .name = "workqueue:prepare", 1149 .startup.single = workqueue_prepare_cpu, 1150 .teardown.single = NULL, 1151 }, 1152 [CPUHP_HRTIMERS_PREPARE] = { 1153 .name = "hrtimers:prepare", 1154 .startup.single = hrtimers_prepare_cpu, 1155 .teardown.single = hrtimers_dead_cpu, 1156 }, 1157 [CPUHP_SMPCFD_PREPARE] = { 1158 .name = "smpcfd:prepare", 1159 .startup.single = smpcfd_prepare_cpu, 1160 .teardown.single = smpcfd_dead_cpu, 1161 }, 1162 [CPUHP_RELAY_PREPARE] = { 1163 .name = "relay:prepare", 1164 .startup.single = relay_prepare_cpu, 1165 .teardown.single = NULL, 1166 }, 1167 [CPUHP_SLAB_PREPARE] = { 1168 .name = "slab:prepare", 1169 .startup.single = slab_prepare_cpu, 1170 .teardown.single = slab_dead_cpu, 1171 }, 1172 [CPUHP_RCUTREE_PREP] = { 1173 .name = "RCU/tree:prepare", 1174 .startup.single = rcutree_prepare_cpu, 1175 .teardown.single = rcutree_dead_cpu, 1176 }, 1177 /* 1178 * On the tear-down path, timers_dead_cpu() must be invoked 1179 * before blk_mq_queue_reinit_notify() from notify_dead(), 1180 * otherwise a RCU stall occurs. 1181 */ 1182 [CPUHP_TIMERS_DEAD] = { 1183 .name = "timers:dead", 1184 .startup.single = NULL, 1185 .teardown.single = timers_dead_cpu, 1186 }, 1187 /* Kicks the plugged cpu into life */ 1188 [CPUHP_BRINGUP_CPU] = { 1189 .name = "cpu:bringup", 1190 .startup.single = bringup_cpu, 1191 .teardown.single = NULL, 1192 .cant_stop = true, 1193 }, 1194 [CPUHP_AP_SMPCFD_DYING] = { 1195 .name = "smpcfd:dying", 1196 .startup.single = NULL, 1197 .teardown.single = smpcfd_dying_cpu, 1198 }, 1199 /* 1200 * Handled on controll processor until the plugged processor manages 1201 * this itself. 1202 */ 1203 [CPUHP_TEARDOWN_CPU] = { 1204 .name = "cpu:teardown", 1205 .startup.single = NULL, 1206 .teardown.single = takedown_cpu, 1207 .cant_stop = true, 1208 }, 1209 #else 1210 [CPUHP_BRINGUP_CPU] = { }, 1211 #endif 1212 }; 1213 1214 /* Application processor state steps */ 1215 static struct cpuhp_step cpuhp_ap_states[] = { 1216 #ifdef CONFIG_SMP 1217 /* Final state before CPU kills itself */ 1218 [CPUHP_AP_IDLE_DEAD] = { 1219 .name = "idle:dead", 1220 }, 1221 /* 1222 * Last state before CPU enters the idle loop to die. Transient state 1223 * for synchronization. 1224 */ 1225 [CPUHP_AP_OFFLINE] = { 1226 .name = "ap:offline", 1227 .cant_stop = true, 1228 }, 1229 /* First state is scheduler control. Interrupts are disabled */ 1230 [CPUHP_AP_SCHED_STARTING] = { 1231 .name = "sched:starting", 1232 .startup.single = sched_cpu_starting, 1233 .teardown.single = sched_cpu_dying, 1234 }, 1235 [CPUHP_AP_RCUTREE_DYING] = { 1236 .name = "RCU/tree:dying", 1237 .startup.single = NULL, 1238 .teardown.single = rcutree_dying_cpu, 1239 }, 1240 /* Entry state on starting. Interrupts enabled from here on. Transient 1241 * state for synchronsization */ 1242 [CPUHP_AP_ONLINE] = { 1243 .name = "ap:online", 1244 }, 1245 /* Handle smpboot threads park/unpark */ 1246 [CPUHP_AP_SMPBOOT_THREADS] = { 1247 .name = "smpboot/threads:online", 1248 .startup.single = smpboot_unpark_threads, 1249 .teardown.single = NULL, 1250 }, 1251 [CPUHP_AP_PERF_ONLINE] = { 1252 .name = "perf:online", 1253 .startup.single = perf_event_init_cpu, 1254 .teardown.single = perf_event_exit_cpu, 1255 }, 1256 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1257 .name = "workqueue:online", 1258 .startup.single = workqueue_online_cpu, 1259 .teardown.single = workqueue_offline_cpu, 1260 }, 1261 [CPUHP_AP_RCUTREE_ONLINE] = { 1262 .name = "RCU/tree:online", 1263 .startup.single = rcutree_online_cpu, 1264 .teardown.single = rcutree_offline_cpu, 1265 }, 1266 #endif 1267 /* 1268 * The dynamically registered state space is here 1269 */ 1270 1271 #ifdef CONFIG_SMP 1272 /* Last state is scheduler control setting the cpu active */ 1273 [CPUHP_AP_ACTIVE] = { 1274 .name = "sched:active", 1275 .startup.single = sched_cpu_activate, 1276 .teardown.single = sched_cpu_deactivate, 1277 }, 1278 #endif 1279 1280 /* CPU is fully up and running. */ 1281 [CPUHP_ONLINE] = { 1282 .name = "online", 1283 .startup.single = NULL, 1284 .teardown.single = NULL, 1285 }, 1286 }; 1287 1288 /* Sanity check for callbacks */ 1289 static int cpuhp_cb_check(enum cpuhp_state state) 1290 { 1291 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1292 return -EINVAL; 1293 return 0; 1294 } 1295 1296 /* 1297 * Returns a free for dynamic slot assignment of the Online state. The states 1298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1299 * by having no name assigned. 1300 */ 1301 static int cpuhp_reserve_state(enum cpuhp_state state) 1302 { 1303 enum cpuhp_state i, end; 1304 struct cpuhp_step *step; 1305 1306 switch (state) { 1307 case CPUHP_AP_ONLINE_DYN: 1308 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 1309 end = CPUHP_AP_ONLINE_DYN_END; 1310 break; 1311 case CPUHP_BP_PREPARE_DYN: 1312 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 1313 end = CPUHP_BP_PREPARE_DYN_END; 1314 break; 1315 default: 1316 return -EINVAL; 1317 } 1318 1319 for (i = state; i <= end; i++, step++) { 1320 if (!step->name) 1321 return i; 1322 } 1323 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1324 return -ENOSPC; 1325 } 1326 1327 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1328 int (*startup)(unsigned int cpu), 1329 int (*teardown)(unsigned int cpu), 1330 bool multi_instance) 1331 { 1332 /* (Un)Install the callbacks for further cpu hotplug operations */ 1333 struct cpuhp_step *sp; 1334 int ret = 0; 1335 1336 mutex_lock(&cpuhp_state_mutex); 1337 1338 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) { 1339 ret = cpuhp_reserve_state(state); 1340 if (ret < 0) 1341 goto out; 1342 state = ret; 1343 } 1344 sp = cpuhp_get_step(state); 1345 if (name && sp->name) { 1346 ret = -EBUSY; 1347 goto out; 1348 } 1349 sp->startup.single = startup; 1350 sp->teardown.single = teardown; 1351 sp->name = name; 1352 sp->multi_instance = multi_instance; 1353 INIT_HLIST_HEAD(&sp->list); 1354 out: 1355 mutex_unlock(&cpuhp_state_mutex); 1356 return ret; 1357 } 1358 1359 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1360 { 1361 return cpuhp_get_step(state)->teardown.single; 1362 } 1363 1364 /* 1365 * Call the startup/teardown function for a step either on the AP or 1366 * on the current CPU. 1367 */ 1368 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1369 struct hlist_node *node) 1370 { 1371 struct cpuhp_step *sp = cpuhp_get_step(state); 1372 int ret; 1373 1374 if ((bringup && !sp->startup.single) || 1375 (!bringup && !sp->teardown.single)) 1376 return 0; 1377 /* 1378 * The non AP bound callbacks can fail on bringup. On teardown 1379 * e.g. module removal we crash for now. 1380 */ 1381 #ifdef CONFIG_SMP 1382 if (cpuhp_is_ap_state(state)) 1383 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1384 else 1385 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1386 #else 1387 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1388 #endif 1389 BUG_ON(ret && !bringup); 1390 return ret; 1391 } 1392 1393 /* 1394 * Called from __cpuhp_setup_state on a recoverable failure. 1395 * 1396 * Note: The teardown callbacks for rollback are not allowed to fail! 1397 */ 1398 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1399 struct hlist_node *node) 1400 { 1401 int cpu; 1402 1403 /* Roll back the already executed steps on the other cpus */ 1404 for_each_present_cpu(cpu) { 1405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1406 int cpustate = st->state; 1407 1408 if (cpu >= failedcpu) 1409 break; 1410 1411 /* Did we invoke the startup call on that cpu ? */ 1412 if (cpustate >= state) 1413 cpuhp_issue_call(cpu, state, false, node); 1414 } 1415 } 1416 1417 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1418 bool invoke) 1419 { 1420 struct cpuhp_step *sp; 1421 int cpu; 1422 int ret; 1423 1424 sp = cpuhp_get_step(state); 1425 if (sp->multi_instance == false) 1426 return -EINVAL; 1427 1428 get_online_cpus(); 1429 1430 if (!invoke || !sp->startup.multi) 1431 goto add_node; 1432 1433 /* 1434 * Try to call the startup callback for each present cpu 1435 * depending on the hotplug state of the cpu. 1436 */ 1437 for_each_present_cpu(cpu) { 1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1439 int cpustate = st->state; 1440 1441 if (cpustate < state) 1442 continue; 1443 1444 ret = cpuhp_issue_call(cpu, state, true, node); 1445 if (ret) { 1446 if (sp->teardown.multi) 1447 cpuhp_rollback_install(cpu, state, node); 1448 goto err; 1449 } 1450 } 1451 add_node: 1452 ret = 0; 1453 mutex_lock(&cpuhp_state_mutex); 1454 hlist_add_head(node, &sp->list); 1455 mutex_unlock(&cpuhp_state_mutex); 1456 1457 err: 1458 put_online_cpus(); 1459 return ret; 1460 } 1461 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1462 1463 /** 1464 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state 1465 * @state: The state to setup 1466 * @invoke: If true, the startup function is invoked for cpus where 1467 * cpu state >= @state 1468 * @startup: startup callback function 1469 * @teardown: teardown callback function 1470 * @multi_instance: State is set up for multiple instances which get 1471 * added afterwards. 1472 * 1473 * Returns: 1474 * On success: 1475 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1476 * 0 for all other states 1477 * On failure: proper (negative) error code 1478 */ 1479 int __cpuhp_setup_state(enum cpuhp_state state, 1480 const char *name, bool invoke, 1481 int (*startup)(unsigned int cpu), 1482 int (*teardown)(unsigned int cpu), 1483 bool multi_instance) 1484 { 1485 int cpu, ret = 0; 1486 bool dynstate; 1487 1488 if (cpuhp_cb_check(state) || !name) 1489 return -EINVAL; 1490 1491 get_online_cpus(); 1492 1493 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1494 multi_instance); 1495 1496 dynstate = state == CPUHP_AP_ONLINE_DYN; 1497 if (ret > 0 && dynstate) { 1498 state = ret; 1499 ret = 0; 1500 } 1501 1502 if (ret || !invoke || !startup) 1503 goto out; 1504 1505 /* 1506 * Try to call the startup callback for each present cpu 1507 * depending on the hotplug state of the cpu. 1508 */ 1509 for_each_present_cpu(cpu) { 1510 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1511 int cpustate = st->state; 1512 1513 if (cpustate < state) 1514 continue; 1515 1516 ret = cpuhp_issue_call(cpu, state, true, NULL); 1517 if (ret) { 1518 if (teardown) 1519 cpuhp_rollback_install(cpu, state, NULL); 1520 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1521 goto out; 1522 } 1523 } 1524 out: 1525 put_online_cpus(); 1526 /* 1527 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1528 * dynamically allocated state in case of success. 1529 */ 1530 if (!ret && dynstate) 1531 return state; 1532 return ret; 1533 } 1534 EXPORT_SYMBOL(__cpuhp_setup_state); 1535 1536 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1537 struct hlist_node *node, bool invoke) 1538 { 1539 struct cpuhp_step *sp = cpuhp_get_step(state); 1540 int cpu; 1541 1542 BUG_ON(cpuhp_cb_check(state)); 1543 1544 if (!sp->multi_instance) 1545 return -EINVAL; 1546 1547 get_online_cpus(); 1548 if (!invoke || !cpuhp_get_teardown_cb(state)) 1549 goto remove; 1550 /* 1551 * Call the teardown callback for each present cpu depending 1552 * on the hotplug state of the cpu. This function is not 1553 * allowed to fail currently! 1554 */ 1555 for_each_present_cpu(cpu) { 1556 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1557 int cpustate = st->state; 1558 1559 if (cpustate >= state) 1560 cpuhp_issue_call(cpu, state, false, node); 1561 } 1562 1563 remove: 1564 mutex_lock(&cpuhp_state_mutex); 1565 hlist_del(node); 1566 mutex_unlock(&cpuhp_state_mutex); 1567 put_online_cpus(); 1568 1569 return 0; 1570 } 1571 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1572 /** 1573 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state 1574 * @state: The state to remove 1575 * @invoke: If true, the teardown function is invoked for cpus where 1576 * cpu state >= @state 1577 * 1578 * The teardown callback is currently not allowed to fail. Think 1579 * about module removal! 1580 */ 1581 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1582 { 1583 struct cpuhp_step *sp = cpuhp_get_step(state); 1584 int cpu; 1585 1586 BUG_ON(cpuhp_cb_check(state)); 1587 1588 get_online_cpus(); 1589 1590 if (sp->multi_instance) { 1591 WARN(!hlist_empty(&sp->list), 1592 "Error: Removing state %d which has instances left.\n", 1593 state); 1594 goto remove; 1595 } 1596 1597 if (!invoke || !cpuhp_get_teardown_cb(state)) 1598 goto remove; 1599 1600 /* 1601 * Call the teardown callback for each present cpu depending 1602 * on the hotplug state of the cpu. This function is not 1603 * allowed to fail currently! 1604 */ 1605 for_each_present_cpu(cpu) { 1606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1607 int cpustate = st->state; 1608 1609 if (cpustate >= state) 1610 cpuhp_issue_call(cpu, state, false, NULL); 1611 } 1612 remove: 1613 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1614 put_online_cpus(); 1615 } 1616 EXPORT_SYMBOL(__cpuhp_remove_state); 1617 1618 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1619 static ssize_t show_cpuhp_state(struct device *dev, 1620 struct device_attribute *attr, char *buf) 1621 { 1622 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1623 1624 return sprintf(buf, "%d\n", st->state); 1625 } 1626 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1627 1628 static ssize_t write_cpuhp_target(struct device *dev, 1629 struct device_attribute *attr, 1630 const char *buf, size_t count) 1631 { 1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1633 struct cpuhp_step *sp; 1634 int target, ret; 1635 1636 ret = kstrtoint(buf, 10, &target); 1637 if (ret) 1638 return ret; 1639 1640 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1641 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1642 return -EINVAL; 1643 #else 1644 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1645 return -EINVAL; 1646 #endif 1647 1648 ret = lock_device_hotplug_sysfs(); 1649 if (ret) 1650 return ret; 1651 1652 mutex_lock(&cpuhp_state_mutex); 1653 sp = cpuhp_get_step(target); 1654 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1655 mutex_unlock(&cpuhp_state_mutex); 1656 if (ret) 1657 return ret; 1658 1659 if (st->state < target) 1660 ret = do_cpu_up(dev->id, target); 1661 else 1662 ret = do_cpu_down(dev->id, target); 1663 1664 unlock_device_hotplug(); 1665 return ret ? ret : count; 1666 } 1667 1668 static ssize_t show_cpuhp_target(struct device *dev, 1669 struct device_attribute *attr, char *buf) 1670 { 1671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1672 1673 return sprintf(buf, "%d\n", st->target); 1674 } 1675 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1676 1677 static struct attribute *cpuhp_cpu_attrs[] = { 1678 &dev_attr_state.attr, 1679 &dev_attr_target.attr, 1680 NULL 1681 }; 1682 1683 static struct attribute_group cpuhp_cpu_attr_group = { 1684 .attrs = cpuhp_cpu_attrs, 1685 .name = "hotplug", 1686 NULL 1687 }; 1688 1689 static ssize_t show_cpuhp_states(struct device *dev, 1690 struct device_attribute *attr, char *buf) 1691 { 1692 ssize_t cur, res = 0; 1693 int i; 1694 1695 mutex_lock(&cpuhp_state_mutex); 1696 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1697 struct cpuhp_step *sp = cpuhp_get_step(i); 1698 1699 if (sp->name) { 1700 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1701 buf += cur; 1702 res += cur; 1703 } 1704 } 1705 mutex_unlock(&cpuhp_state_mutex); 1706 return res; 1707 } 1708 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1709 1710 static struct attribute *cpuhp_cpu_root_attrs[] = { 1711 &dev_attr_states.attr, 1712 NULL 1713 }; 1714 1715 static struct attribute_group cpuhp_cpu_root_attr_group = { 1716 .attrs = cpuhp_cpu_root_attrs, 1717 .name = "hotplug", 1718 NULL 1719 }; 1720 1721 static int __init cpuhp_sysfs_init(void) 1722 { 1723 int cpu, ret; 1724 1725 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1726 &cpuhp_cpu_root_attr_group); 1727 if (ret) 1728 return ret; 1729 1730 for_each_possible_cpu(cpu) { 1731 struct device *dev = get_cpu_device(cpu); 1732 1733 if (!dev) 1734 continue; 1735 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1736 if (ret) 1737 return ret; 1738 } 1739 return 0; 1740 } 1741 device_initcall(cpuhp_sysfs_init); 1742 #endif 1743 1744 /* 1745 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1746 * represents all NR_CPUS bits binary values of 1<<nr. 1747 * 1748 * It is used by cpumask_of() to get a constant address to a CPU 1749 * mask value that has a single bit set only. 1750 */ 1751 1752 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1753 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1754 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1755 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1756 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1757 1758 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1759 1760 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1761 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1762 #if BITS_PER_LONG > 32 1763 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1764 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1765 #endif 1766 }; 1767 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1768 1769 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1770 EXPORT_SYMBOL(cpu_all_bits); 1771 1772 #ifdef CONFIG_INIT_ALL_POSSIBLE 1773 struct cpumask __cpu_possible_mask __read_mostly 1774 = {CPU_BITS_ALL}; 1775 #else 1776 struct cpumask __cpu_possible_mask __read_mostly; 1777 #endif 1778 EXPORT_SYMBOL(__cpu_possible_mask); 1779 1780 struct cpumask __cpu_online_mask __read_mostly; 1781 EXPORT_SYMBOL(__cpu_online_mask); 1782 1783 struct cpumask __cpu_present_mask __read_mostly; 1784 EXPORT_SYMBOL(__cpu_present_mask); 1785 1786 struct cpumask __cpu_active_mask __read_mostly; 1787 EXPORT_SYMBOL(__cpu_active_mask); 1788 1789 void init_cpu_present(const struct cpumask *src) 1790 { 1791 cpumask_copy(&__cpu_present_mask, src); 1792 } 1793 1794 void init_cpu_possible(const struct cpumask *src) 1795 { 1796 cpumask_copy(&__cpu_possible_mask, src); 1797 } 1798 1799 void init_cpu_online(const struct cpumask *src) 1800 { 1801 cpumask_copy(&__cpu_online_mask, src); 1802 } 1803 1804 /* 1805 * Activate the first processor. 1806 */ 1807 void __init boot_cpu_init(void) 1808 { 1809 int cpu = smp_processor_id(); 1810 1811 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 1812 set_cpu_online(cpu, true); 1813 set_cpu_active(cpu, true); 1814 set_cpu_present(cpu, true); 1815 set_cpu_possible(cpu, true); 1816 } 1817 1818 /* 1819 * Must be called _AFTER_ setting up the per_cpu areas 1820 */ 1821 void __init boot_cpu_state_init(void) 1822 { 1823 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 1824 } 1825