xref: /openbmc/linux/kernel/cpu.c (revision 4b33b5ff)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42 
43 #include "smpboot.h"
44 
45 /**
46  * struct cpuhp_cpu_state - Per cpu hotplug state storage
47  * @state:	The current cpu state
48  * @target:	The target state
49  * @fail:	Current CPU hotplug callback state
50  * @thread:	Pointer to the hotplug thread
51  * @should_run:	Thread should execute
52  * @rollback:	Perform a rollback
53  * @single:	Single callback invocation
54  * @bringup:	Single callback bringup or teardown selector
55  * @cpu:	CPU number
56  * @node:	Remote CPU node; for multi-instance, do a
57  *		single entry callback for install/remove
58  * @last:	For multi-instance rollback, remember how far we got
59  * @cb_state:	The state for a single callback (install/uninstall)
60  * @result:	Result of the operation
61  * @done_up:	Signal completion to the issuer of the task for cpu-up
62  * @done_down:	Signal completion to the issuer of the task for cpu-down
63  */
64 struct cpuhp_cpu_state {
65 	enum cpuhp_state	state;
66 	enum cpuhp_state	target;
67 	enum cpuhp_state	fail;
68 #ifdef CONFIG_SMP
69 	struct task_struct	*thread;
70 	bool			should_run;
71 	bool			rollback;
72 	bool			single;
73 	bool			bringup;
74 	struct hlist_node	*node;
75 	struct hlist_node	*last;
76 	enum cpuhp_state	cb_state;
77 	int			result;
78 	struct completion	done_up;
79 	struct completion	done_down;
80 #endif
81 };
82 
83 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
84 	.fail = CPUHP_INVALID,
85 };
86 
87 #ifdef CONFIG_SMP
88 cpumask_t cpus_booted_once_mask;
89 #endif
90 
91 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
92 static struct lockdep_map cpuhp_state_up_map =
93 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
94 static struct lockdep_map cpuhp_state_down_map =
95 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
96 
97 
98 static inline void cpuhp_lock_acquire(bool bringup)
99 {
100 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102 
103 static inline void cpuhp_lock_release(bool bringup)
104 {
105 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
106 }
107 #else
108 
109 static inline void cpuhp_lock_acquire(bool bringup) { }
110 static inline void cpuhp_lock_release(bool bringup) { }
111 
112 #endif
113 
114 /**
115  * struct cpuhp_step - Hotplug state machine step
116  * @name:	Name of the step
117  * @startup:	Startup function of the step
118  * @teardown:	Teardown function of the step
119  * @cant_stop:	Bringup/teardown can't be stopped at this step
120  * @multi_instance:	State has multiple instances which get added afterwards
121  */
122 struct cpuhp_step {
123 	const char		*name;
124 	union {
125 		int		(*single)(unsigned int cpu);
126 		int		(*multi)(unsigned int cpu,
127 					 struct hlist_node *node);
128 	} startup;
129 	union {
130 		int		(*single)(unsigned int cpu);
131 		int		(*multi)(unsigned int cpu,
132 					 struct hlist_node *node);
133 	} teardown;
134 	/* private: */
135 	struct hlist_head	list;
136 	/* public: */
137 	bool			cant_stop;
138 	bool			multi_instance;
139 };
140 
141 static DEFINE_MUTEX(cpuhp_state_mutex);
142 static struct cpuhp_step cpuhp_hp_states[];
143 
144 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
145 {
146 	return cpuhp_hp_states + state;
147 }
148 
149 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
150 {
151 	return bringup ? !step->startup.single : !step->teardown.single;
152 }
153 
154 /**
155  * cpuhp_invoke_callback - Invoke the callbacks for a given state
156  * @cpu:	The cpu for which the callback should be invoked
157  * @state:	The state to do callbacks for
158  * @bringup:	True if the bringup callback should be invoked
159  * @node:	For multi-instance, do a single entry callback for install/remove
160  * @lastp:	For multi-instance rollback, remember how far we got
161  *
162  * Called from cpu hotplug and from the state register machinery.
163  *
164  * Return: %0 on success or a negative errno code
165  */
166 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
167 				 bool bringup, struct hlist_node *node,
168 				 struct hlist_node **lastp)
169 {
170 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
171 	struct cpuhp_step *step = cpuhp_get_step(state);
172 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
173 	int (*cb)(unsigned int cpu);
174 	int ret, cnt;
175 
176 	if (st->fail == state) {
177 		st->fail = CPUHP_INVALID;
178 		return -EAGAIN;
179 	}
180 
181 	if (cpuhp_step_empty(bringup, step)) {
182 		WARN_ON_ONCE(1);
183 		return 0;
184 	}
185 
186 	if (!step->multi_instance) {
187 		WARN_ON_ONCE(lastp && *lastp);
188 		cb = bringup ? step->startup.single : step->teardown.single;
189 
190 		trace_cpuhp_enter(cpu, st->target, state, cb);
191 		ret = cb(cpu);
192 		trace_cpuhp_exit(cpu, st->state, state, ret);
193 		return ret;
194 	}
195 	cbm = bringup ? step->startup.multi : step->teardown.multi;
196 
197 	/* Single invocation for instance add/remove */
198 	if (node) {
199 		WARN_ON_ONCE(lastp && *lastp);
200 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
201 		ret = cbm(cpu, node);
202 		trace_cpuhp_exit(cpu, st->state, state, ret);
203 		return ret;
204 	}
205 
206 	/* State transition. Invoke on all instances */
207 	cnt = 0;
208 	hlist_for_each(node, &step->list) {
209 		if (lastp && node == *lastp)
210 			break;
211 
212 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
213 		ret = cbm(cpu, node);
214 		trace_cpuhp_exit(cpu, st->state, state, ret);
215 		if (ret) {
216 			if (!lastp)
217 				goto err;
218 
219 			*lastp = node;
220 			return ret;
221 		}
222 		cnt++;
223 	}
224 	if (lastp)
225 		*lastp = NULL;
226 	return 0;
227 err:
228 	/* Rollback the instances if one failed */
229 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
230 	if (!cbm)
231 		return ret;
232 
233 	hlist_for_each(node, &step->list) {
234 		if (!cnt--)
235 			break;
236 
237 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
238 		ret = cbm(cpu, node);
239 		trace_cpuhp_exit(cpu, st->state, state, ret);
240 		/*
241 		 * Rollback must not fail,
242 		 */
243 		WARN_ON_ONCE(ret);
244 	}
245 	return ret;
246 }
247 
248 #ifdef CONFIG_SMP
249 static bool cpuhp_is_ap_state(enum cpuhp_state state)
250 {
251 	/*
252 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
253 	 * purposes as that state is handled explicitly in cpu_down.
254 	 */
255 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
256 }
257 
258 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
259 {
260 	struct completion *done = bringup ? &st->done_up : &st->done_down;
261 	wait_for_completion(done);
262 }
263 
264 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
265 {
266 	struct completion *done = bringup ? &st->done_up : &st->done_down;
267 	complete(done);
268 }
269 
270 /*
271  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
272  */
273 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
274 {
275 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
276 }
277 
278 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
279 static DEFINE_MUTEX(cpu_add_remove_lock);
280 bool cpuhp_tasks_frozen;
281 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
282 
283 /*
284  * The following two APIs (cpu_maps_update_begin/done) must be used when
285  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
286  */
287 void cpu_maps_update_begin(void)
288 {
289 	mutex_lock(&cpu_add_remove_lock);
290 }
291 
292 void cpu_maps_update_done(void)
293 {
294 	mutex_unlock(&cpu_add_remove_lock);
295 }
296 
297 /*
298  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
299  * Should always be manipulated under cpu_add_remove_lock
300  */
301 static int cpu_hotplug_disabled;
302 
303 #ifdef CONFIG_HOTPLUG_CPU
304 
305 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
306 
307 void cpus_read_lock(void)
308 {
309 	percpu_down_read(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_lock);
312 
313 int cpus_read_trylock(void)
314 {
315 	return percpu_down_read_trylock(&cpu_hotplug_lock);
316 }
317 EXPORT_SYMBOL_GPL(cpus_read_trylock);
318 
319 void cpus_read_unlock(void)
320 {
321 	percpu_up_read(&cpu_hotplug_lock);
322 }
323 EXPORT_SYMBOL_GPL(cpus_read_unlock);
324 
325 void cpus_write_lock(void)
326 {
327 	percpu_down_write(&cpu_hotplug_lock);
328 }
329 
330 void cpus_write_unlock(void)
331 {
332 	percpu_up_write(&cpu_hotplug_lock);
333 }
334 
335 void lockdep_assert_cpus_held(void)
336 {
337 	/*
338 	 * We can't have hotplug operations before userspace starts running,
339 	 * and some init codepaths will knowingly not take the hotplug lock.
340 	 * This is all valid, so mute lockdep until it makes sense to report
341 	 * unheld locks.
342 	 */
343 	if (system_state < SYSTEM_RUNNING)
344 		return;
345 
346 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
347 }
348 
349 #ifdef CONFIG_LOCKDEP
350 int lockdep_is_cpus_held(void)
351 {
352 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
353 }
354 #endif
355 
356 static void lockdep_acquire_cpus_lock(void)
357 {
358 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
359 }
360 
361 static void lockdep_release_cpus_lock(void)
362 {
363 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
364 }
365 
366 /*
367  * Wait for currently running CPU hotplug operations to complete (if any) and
368  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
369  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
370  * hotplug path before performing hotplug operations. So acquiring that lock
371  * guarantees mutual exclusion from any currently running hotplug operations.
372  */
373 void cpu_hotplug_disable(void)
374 {
375 	cpu_maps_update_begin();
376 	cpu_hotplug_disabled++;
377 	cpu_maps_update_done();
378 }
379 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
380 
381 static void __cpu_hotplug_enable(void)
382 {
383 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
384 		return;
385 	cpu_hotplug_disabled--;
386 }
387 
388 void cpu_hotplug_enable(void)
389 {
390 	cpu_maps_update_begin();
391 	__cpu_hotplug_enable();
392 	cpu_maps_update_done();
393 }
394 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
395 
396 #else
397 
398 static void lockdep_acquire_cpus_lock(void)
399 {
400 }
401 
402 static void lockdep_release_cpus_lock(void)
403 {
404 }
405 
406 #endif	/* CONFIG_HOTPLUG_CPU */
407 
408 /*
409  * Architectures that need SMT-specific errata handling during SMT hotplug
410  * should override this.
411  */
412 void __weak arch_smt_update(void) { }
413 
414 #ifdef CONFIG_HOTPLUG_SMT
415 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
416 
417 void __init cpu_smt_disable(bool force)
418 {
419 	if (!cpu_smt_possible())
420 		return;
421 
422 	if (force) {
423 		pr_info("SMT: Force disabled\n");
424 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
425 	} else {
426 		pr_info("SMT: disabled\n");
427 		cpu_smt_control = CPU_SMT_DISABLED;
428 	}
429 }
430 
431 /*
432  * The decision whether SMT is supported can only be done after the full
433  * CPU identification. Called from architecture code.
434  */
435 void __init cpu_smt_check_topology(void)
436 {
437 	if (!topology_smt_supported())
438 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
439 }
440 
441 static int __init smt_cmdline_disable(char *str)
442 {
443 	cpu_smt_disable(str && !strcmp(str, "force"));
444 	return 0;
445 }
446 early_param("nosmt", smt_cmdline_disable);
447 
448 static inline bool cpu_smt_allowed(unsigned int cpu)
449 {
450 	if (cpu_smt_control == CPU_SMT_ENABLED)
451 		return true;
452 
453 	if (topology_is_primary_thread(cpu))
454 		return true;
455 
456 	/*
457 	 * On x86 it's required to boot all logical CPUs at least once so
458 	 * that the init code can get a chance to set CR4.MCE on each
459 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
460 	 * core will shutdown the machine.
461 	 */
462 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
463 }
464 
465 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
466 bool cpu_smt_possible(void)
467 {
468 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
469 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
470 }
471 EXPORT_SYMBOL_GPL(cpu_smt_possible);
472 #else
473 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
474 #endif
475 
476 static inline enum cpuhp_state
477 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
478 {
479 	enum cpuhp_state prev_state = st->state;
480 	bool bringup = st->state < target;
481 
482 	st->rollback = false;
483 	st->last = NULL;
484 
485 	st->target = target;
486 	st->single = false;
487 	st->bringup = bringup;
488 	if (cpu_dying(cpu) != !bringup)
489 		set_cpu_dying(cpu, !bringup);
490 
491 	return prev_state;
492 }
493 
494 static inline void
495 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
496 		  enum cpuhp_state prev_state)
497 {
498 	bool bringup = !st->bringup;
499 
500 	st->target = prev_state;
501 
502 	/*
503 	 * Already rolling back. No need invert the bringup value or to change
504 	 * the current state.
505 	 */
506 	if (st->rollback)
507 		return;
508 
509 	st->rollback = true;
510 
511 	/*
512 	 * If we have st->last we need to undo partial multi_instance of this
513 	 * state first. Otherwise start undo at the previous state.
514 	 */
515 	if (!st->last) {
516 		if (st->bringup)
517 			st->state--;
518 		else
519 			st->state++;
520 	}
521 
522 	st->bringup = bringup;
523 	if (cpu_dying(cpu) != !bringup)
524 		set_cpu_dying(cpu, !bringup);
525 }
526 
527 /* Regular hotplug invocation of the AP hotplug thread */
528 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
529 {
530 	if (!st->single && st->state == st->target)
531 		return;
532 
533 	st->result = 0;
534 	/*
535 	 * Make sure the above stores are visible before should_run becomes
536 	 * true. Paired with the mb() above in cpuhp_thread_fun()
537 	 */
538 	smp_mb();
539 	st->should_run = true;
540 	wake_up_process(st->thread);
541 	wait_for_ap_thread(st, st->bringup);
542 }
543 
544 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
545 			 enum cpuhp_state target)
546 {
547 	enum cpuhp_state prev_state;
548 	int ret;
549 
550 	prev_state = cpuhp_set_state(cpu, st, target);
551 	__cpuhp_kick_ap(st);
552 	if ((ret = st->result)) {
553 		cpuhp_reset_state(cpu, st, prev_state);
554 		__cpuhp_kick_ap(st);
555 	}
556 
557 	return ret;
558 }
559 
560 static int bringup_wait_for_ap(unsigned int cpu)
561 {
562 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
563 
564 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
565 	wait_for_ap_thread(st, true);
566 	if (WARN_ON_ONCE((!cpu_online(cpu))))
567 		return -ECANCELED;
568 
569 	/* Unpark the hotplug thread of the target cpu */
570 	kthread_unpark(st->thread);
571 
572 	/*
573 	 * SMT soft disabling on X86 requires to bring the CPU out of the
574 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
575 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
576 	 * cpu_smt_allowed() check will now return false if this is not the
577 	 * primary sibling.
578 	 */
579 	if (!cpu_smt_allowed(cpu))
580 		return -ECANCELED;
581 
582 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
583 		return 0;
584 
585 	return cpuhp_kick_ap(cpu, st, st->target);
586 }
587 
588 static int bringup_cpu(unsigned int cpu)
589 {
590 	struct task_struct *idle = idle_thread_get(cpu);
591 	int ret;
592 
593 	/*
594 	 * Reset stale stack state from the last time this CPU was online.
595 	 */
596 	scs_task_reset(idle);
597 	kasan_unpoison_task_stack(idle);
598 
599 	/*
600 	 * Some architectures have to walk the irq descriptors to
601 	 * setup the vector space for the cpu which comes online.
602 	 * Prevent irq alloc/free across the bringup.
603 	 */
604 	irq_lock_sparse();
605 
606 	/* Arch-specific enabling code. */
607 	ret = __cpu_up(cpu, idle);
608 	irq_unlock_sparse();
609 	if (ret)
610 		return ret;
611 	return bringup_wait_for_ap(cpu);
612 }
613 
614 static int finish_cpu(unsigned int cpu)
615 {
616 	struct task_struct *idle = idle_thread_get(cpu);
617 	struct mm_struct *mm = idle->active_mm;
618 
619 	/*
620 	 * idle_task_exit() will have switched to &init_mm, now
621 	 * clean up any remaining active_mm state.
622 	 */
623 	if (mm != &init_mm)
624 		idle->active_mm = &init_mm;
625 	mmdrop(mm);
626 	return 0;
627 }
628 
629 /*
630  * Hotplug state machine related functions
631  */
632 
633 /*
634  * Get the next state to run. Empty ones will be skipped. Returns true if a
635  * state must be run.
636  *
637  * st->state will be modified ahead of time, to match state_to_run, as if it
638  * has already ran.
639  */
640 static bool cpuhp_next_state(bool bringup,
641 			     enum cpuhp_state *state_to_run,
642 			     struct cpuhp_cpu_state *st,
643 			     enum cpuhp_state target)
644 {
645 	do {
646 		if (bringup) {
647 			if (st->state >= target)
648 				return false;
649 
650 			*state_to_run = ++st->state;
651 		} else {
652 			if (st->state <= target)
653 				return false;
654 
655 			*state_to_run = st->state--;
656 		}
657 
658 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
659 			break;
660 	} while (true);
661 
662 	return true;
663 }
664 
665 static int cpuhp_invoke_callback_range(bool bringup,
666 				       unsigned int cpu,
667 				       struct cpuhp_cpu_state *st,
668 				       enum cpuhp_state target)
669 {
670 	enum cpuhp_state state;
671 	int err = 0;
672 
673 	while (cpuhp_next_state(bringup, &state, st, target)) {
674 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
675 		if (err)
676 			break;
677 	}
678 
679 	return err;
680 }
681 
682 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
683 {
684 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
685 		return true;
686 	/*
687 	 * When CPU hotplug is disabled, then taking the CPU down is not
688 	 * possible because takedown_cpu() and the architecture and
689 	 * subsystem specific mechanisms are not available. So the CPU
690 	 * which would be completely unplugged again needs to stay around
691 	 * in the current state.
692 	 */
693 	return st->state <= CPUHP_BRINGUP_CPU;
694 }
695 
696 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
697 			      enum cpuhp_state target)
698 {
699 	enum cpuhp_state prev_state = st->state;
700 	int ret = 0;
701 
702 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
703 	if (ret) {
704 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
705 			 ret, cpu, cpuhp_get_step(st->state)->name,
706 			 st->state);
707 
708 		cpuhp_reset_state(cpu, st, prev_state);
709 		if (can_rollback_cpu(st))
710 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
711 							    prev_state));
712 	}
713 	return ret;
714 }
715 
716 /*
717  * The cpu hotplug threads manage the bringup and teardown of the cpus
718  */
719 static void cpuhp_create(unsigned int cpu)
720 {
721 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
722 
723 	init_completion(&st->done_up);
724 	init_completion(&st->done_down);
725 }
726 
727 static int cpuhp_should_run(unsigned int cpu)
728 {
729 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
730 
731 	return st->should_run;
732 }
733 
734 /*
735  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
736  * callbacks when a state gets [un]installed at runtime.
737  *
738  * Each invocation of this function by the smpboot thread does a single AP
739  * state callback.
740  *
741  * It has 3 modes of operation:
742  *  - single: runs st->cb_state
743  *  - up:     runs ++st->state, while st->state < st->target
744  *  - down:   runs st->state--, while st->state > st->target
745  *
746  * When complete or on error, should_run is cleared and the completion is fired.
747  */
748 static void cpuhp_thread_fun(unsigned int cpu)
749 {
750 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
751 	bool bringup = st->bringup;
752 	enum cpuhp_state state;
753 
754 	if (WARN_ON_ONCE(!st->should_run))
755 		return;
756 
757 	/*
758 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
759 	 * that if we see ->should_run we also see the rest of the state.
760 	 */
761 	smp_mb();
762 
763 	/*
764 	 * The BP holds the hotplug lock, but we're now running on the AP,
765 	 * ensure that anybody asserting the lock is held, will actually find
766 	 * it so.
767 	 */
768 	lockdep_acquire_cpus_lock();
769 	cpuhp_lock_acquire(bringup);
770 
771 	if (st->single) {
772 		state = st->cb_state;
773 		st->should_run = false;
774 	} else {
775 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
776 		if (!st->should_run)
777 			goto end;
778 	}
779 
780 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
781 
782 	if (cpuhp_is_atomic_state(state)) {
783 		local_irq_disable();
784 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
785 		local_irq_enable();
786 
787 		/*
788 		 * STARTING/DYING must not fail!
789 		 */
790 		WARN_ON_ONCE(st->result);
791 	} else {
792 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
793 	}
794 
795 	if (st->result) {
796 		/*
797 		 * If we fail on a rollback, we're up a creek without no
798 		 * paddle, no way forward, no way back. We loose, thanks for
799 		 * playing.
800 		 */
801 		WARN_ON_ONCE(st->rollback);
802 		st->should_run = false;
803 	}
804 
805 end:
806 	cpuhp_lock_release(bringup);
807 	lockdep_release_cpus_lock();
808 
809 	if (!st->should_run)
810 		complete_ap_thread(st, bringup);
811 }
812 
813 /* Invoke a single callback on a remote cpu */
814 static int
815 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
816 			 struct hlist_node *node)
817 {
818 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819 	int ret;
820 
821 	if (!cpu_online(cpu))
822 		return 0;
823 
824 	cpuhp_lock_acquire(false);
825 	cpuhp_lock_release(false);
826 
827 	cpuhp_lock_acquire(true);
828 	cpuhp_lock_release(true);
829 
830 	/*
831 	 * If we are up and running, use the hotplug thread. For early calls
832 	 * we invoke the thread function directly.
833 	 */
834 	if (!st->thread)
835 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
836 
837 	st->rollback = false;
838 	st->last = NULL;
839 
840 	st->node = node;
841 	st->bringup = bringup;
842 	st->cb_state = state;
843 	st->single = true;
844 
845 	__cpuhp_kick_ap(st);
846 
847 	/*
848 	 * If we failed and did a partial, do a rollback.
849 	 */
850 	if ((ret = st->result) && st->last) {
851 		st->rollback = true;
852 		st->bringup = !bringup;
853 
854 		__cpuhp_kick_ap(st);
855 	}
856 
857 	/*
858 	 * Clean up the leftovers so the next hotplug operation wont use stale
859 	 * data.
860 	 */
861 	st->node = st->last = NULL;
862 	return ret;
863 }
864 
865 static int cpuhp_kick_ap_work(unsigned int cpu)
866 {
867 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
868 	enum cpuhp_state prev_state = st->state;
869 	int ret;
870 
871 	cpuhp_lock_acquire(false);
872 	cpuhp_lock_release(false);
873 
874 	cpuhp_lock_acquire(true);
875 	cpuhp_lock_release(true);
876 
877 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
878 	ret = cpuhp_kick_ap(cpu, st, st->target);
879 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
880 
881 	return ret;
882 }
883 
884 static struct smp_hotplug_thread cpuhp_threads = {
885 	.store			= &cpuhp_state.thread,
886 	.create			= &cpuhp_create,
887 	.thread_should_run	= cpuhp_should_run,
888 	.thread_fn		= cpuhp_thread_fun,
889 	.thread_comm		= "cpuhp/%u",
890 	.selfparking		= true,
891 };
892 
893 void __init cpuhp_threads_init(void)
894 {
895 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
896 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
897 }
898 
899 /*
900  *
901  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
902  * protected region.
903  *
904  * The operation is still serialized against concurrent CPU hotplug via
905  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
906  * serialized against other hotplug related activity like adding or
907  * removing of state callbacks and state instances, which invoke either the
908  * startup or the teardown callback of the affected state.
909  *
910  * This is required for subsystems which are unfixable vs. CPU hotplug and
911  * evade lock inversion problems by scheduling work which has to be
912  * completed _before_ cpu_up()/_cpu_down() returns.
913  *
914  * Don't even think about adding anything to this for any new code or even
915  * drivers. It's only purpose is to keep existing lock order trainwrecks
916  * working.
917  *
918  * For cpu_down() there might be valid reasons to finish cleanups which are
919  * not required to be done under cpu_hotplug_lock, but that's a different
920  * story and would be not invoked via this.
921  */
922 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
923 {
924 	/*
925 	 * cpusets delegate hotplug operations to a worker to "solve" the
926 	 * lock order problems. Wait for the worker, but only if tasks are
927 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
928 	 *
929 	 * The wait is required because otherwise the hotplug operation
930 	 * returns with inconsistent state, which could even be observed in
931 	 * user space when a new CPU is brought up. The CPU plug uevent
932 	 * would be delivered and user space reacting on it would fail to
933 	 * move tasks to the newly plugged CPU up to the point where the
934 	 * work has finished because up to that point the newly plugged CPU
935 	 * is not assignable in cpusets/cgroups. On unplug that's not
936 	 * necessarily a visible issue, but it is still inconsistent state,
937 	 * which is the real problem which needs to be "fixed". This can't
938 	 * prevent the transient state between scheduling the work and
939 	 * returning from waiting for it.
940 	 */
941 	if (!tasks_frozen)
942 		cpuset_wait_for_hotplug();
943 }
944 
945 #ifdef CONFIG_HOTPLUG_CPU
946 #ifndef arch_clear_mm_cpumask_cpu
947 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
948 #endif
949 
950 /**
951  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
952  * @cpu: a CPU id
953  *
954  * This function walks all processes, finds a valid mm struct for each one and
955  * then clears a corresponding bit in mm's cpumask.  While this all sounds
956  * trivial, there are various non-obvious corner cases, which this function
957  * tries to solve in a safe manner.
958  *
959  * Also note that the function uses a somewhat relaxed locking scheme, so it may
960  * be called only for an already offlined CPU.
961  */
962 void clear_tasks_mm_cpumask(int cpu)
963 {
964 	struct task_struct *p;
965 
966 	/*
967 	 * This function is called after the cpu is taken down and marked
968 	 * offline, so its not like new tasks will ever get this cpu set in
969 	 * their mm mask. -- Peter Zijlstra
970 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
971 	 * full-fledged tasklist_lock.
972 	 */
973 	WARN_ON(cpu_online(cpu));
974 	rcu_read_lock();
975 	for_each_process(p) {
976 		struct task_struct *t;
977 
978 		/*
979 		 * Main thread might exit, but other threads may still have
980 		 * a valid mm. Find one.
981 		 */
982 		t = find_lock_task_mm(p);
983 		if (!t)
984 			continue;
985 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
986 		task_unlock(t);
987 	}
988 	rcu_read_unlock();
989 }
990 
991 /* Take this CPU down. */
992 static int take_cpu_down(void *_param)
993 {
994 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
995 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
996 	int err, cpu = smp_processor_id();
997 	int ret;
998 
999 	/* Ensure this CPU doesn't handle any more interrupts. */
1000 	err = __cpu_disable();
1001 	if (err < 0)
1002 		return err;
1003 
1004 	/*
1005 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1006 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1007 	 */
1008 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1009 
1010 	/* Invoke the former CPU_DYING callbacks */
1011 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1012 
1013 	/*
1014 	 * DYING must not fail!
1015 	 */
1016 	WARN_ON_ONCE(ret);
1017 
1018 	/* Give up timekeeping duties */
1019 	tick_handover_do_timer();
1020 	/* Remove CPU from timer broadcasting */
1021 	tick_offline_cpu(cpu);
1022 	/* Park the stopper thread */
1023 	stop_machine_park(cpu);
1024 	return 0;
1025 }
1026 
1027 static int takedown_cpu(unsigned int cpu)
1028 {
1029 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1030 	int err;
1031 
1032 	/* Park the smpboot threads */
1033 	kthread_park(st->thread);
1034 
1035 	/*
1036 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1037 	 * interrupt affinities.
1038 	 */
1039 	irq_lock_sparse();
1040 
1041 	/*
1042 	 * So now all preempt/rcu users must observe !cpu_active().
1043 	 */
1044 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1045 	if (err) {
1046 		/* CPU refused to die */
1047 		irq_unlock_sparse();
1048 		/* Unpark the hotplug thread so we can rollback there */
1049 		kthread_unpark(st->thread);
1050 		return err;
1051 	}
1052 	BUG_ON(cpu_online(cpu));
1053 
1054 	/*
1055 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1056 	 * all runnable tasks from the CPU, there's only the idle task left now
1057 	 * that the migration thread is done doing the stop_machine thing.
1058 	 *
1059 	 * Wait for the stop thread to go away.
1060 	 */
1061 	wait_for_ap_thread(st, false);
1062 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1063 
1064 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1065 	irq_unlock_sparse();
1066 
1067 	hotplug_cpu__broadcast_tick_pull(cpu);
1068 	/* This actually kills the CPU. */
1069 	__cpu_die(cpu);
1070 
1071 	tick_cleanup_dead_cpu(cpu);
1072 	rcutree_migrate_callbacks(cpu);
1073 	return 0;
1074 }
1075 
1076 static void cpuhp_complete_idle_dead(void *arg)
1077 {
1078 	struct cpuhp_cpu_state *st = arg;
1079 
1080 	complete_ap_thread(st, false);
1081 }
1082 
1083 void cpuhp_report_idle_dead(void)
1084 {
1085 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1086 
1087 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1088 	rcu_report_dead(smp_processor_id());
1089 	st->state = CPUHP_AP_IDLE_DEAD;
1090 	/*
1091 	 * We cannot call complete after rcu_report_dead() so we delegate it
1092 	 * to an online cpu.
1093 	 */
1094 	smp_call_function_single(cpumask_first(cpu_online_mask),
1095 				 cpuhp_complete_idle_dead, st, 0);
1096 }
1097 
1098 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1099 				enum cpuhp_state target)
1100 {
1101 	enum cpuhp_state prev_state = st->state;
1102 	int ret = 0;
1103 
1104 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1105 	if (ret) {
1106 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1107 			 ret, cpu, cpuhp_get_step(st->state)->name,
1108 			 st->state);
1109 
1110 		cpuhp_reset_state(cpu, st, prev_state);
1111 
1112 		if (st->state < prev_state)
1113 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1114 							    prev_state));
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 /* Requires cpu_add_remove_lock to be held */
1121 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1122 			   enum cpuhp_state target)
1123 {
1124 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1125 	int prev_state, ret = 0;
1126 
1127 	if (num_online_cpus() == 1)
1128 		return -EBUSY;
1129 
1130 	if (!cpu_present(cpu))
1131 		return -EINVAL;
1132 
1133 	cpus_write_lock();
1134 
1135 	cpuhp_tasks_frozen = tasks_frozen;
1136 
1137 	prev_state = cpuhp_set_state(cpu, st, target);
1138 	/*
1139 	 * If the current CPU state is in the range of the AP hotplug thread,
1140 	 * then we need to kick the thread.
1141 	 */
1142 	if (st->state > CPUHP_TEARDOWN_CPU) {
1143 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1144 		ret = cpuhp_kick_ap_work(cpu);
1145 		/*
1146 		 * The AP side has done the error rollback already. Just
1147 		 * return the error code..
1148 		 */
1149 		if (ret)
1150 			goto out;
1151 
1152 		/*
1153 		 * We might have stopped still in the range of the AP hotplug
1154 		 * thread. Nothing to do anymore.
1155 		 */
1156 		if (st->state > CPUHP_TEARDOWN_CPU)
1157 			goto out;
1158 
1159 		st->target = target;
1160 	}
1161 	/*
1162 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1163 	 * to do the further cleanups.
1164 	 */
1165 	ret = cpuhp_down_callbacks(cpu, st, target);
1166 	if (ret && st->state < prev_state) {
1167 		if (st->state == CPUHP_TEARDOWN_CPU) {
1168 			cpuhp_reset_state(cpu, st, prev_state);
1169 			__cpuhp_kick_ap(st);
1170 		} else {
1171 			WARN(1, "DEAD callback error for CPU%d", cpu);
1172 		}
1173 	}
1174 
1175 out:
1176 	cpus_write_unlock();
1177 	/*
1178 	 * Do post unplug cleanup. This is still protected against
1179 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1180 	 */
1181 	lockup_detector_cleanup();
1182 	arch_smt_update();
1183 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1184 	return ret;
1185 }
1186 
1187 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1188 {
1189 	if (cpu_hotplug_disabled)
1190 		return -EBUSY;
1191 	return _cpu_down(cpu, 0, target);
1192 }
1193 
1194 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1195 {
1196 	int err;
1197 
1198 	cpu_maps_update_begin();
1199 	err = cpu_down_maps_locked(cpu, target);
1200 	cpu_maps_update_done();
1201 	return err;
1202 }
1203 
1204 /**
1205  * cpu_device_down - Bring down a cpu device
1206  * @dev: Pointer to the cpu device to offline
1207  *
1208  * This function is meant to be used by device core cpu subsystem only.
1209  *
1210  * Other subsystems should use remove_cpu() instead.
1211  *
1212  * Return: %0 on success or a negative errno code
1213  */
1214 int cpu_device_down(struct device *dev)
1215 {
1216 	return cpu_down(dev->id, CPUHP_OFFLINE);
1217 }
1218 
1219 int remove_cpu(unsigned int cpu)
1220 {
1221 	int ret;
1222 
1223 	lock_device_hotplug();
1224 	ret = device_offline(get_cpu_device(cpu));
1225 	unlock_device_hotplug();
1226 
1227 	return ret;
1228 }
1229 EXPORT_SYMBOL_GPL(remove_cpu);
1230 
1231 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1232 {
1233 	unsigned int cpu;
1234 	int error;
1235 
1236 	cpu_maps_update_begin();
1237 
1238 	/*
1239 	 * Make certain the cpu I'm about to reboot on is online.
1240 	 *
1241 	 * This is inline to what migrate_to_reboot_cpu() already do.
1242 	 */
1243 	if (!cpu_online(primary_cpu))
1244 		primary_cpu = cpumask_first(cpu_online_mask);
1245 
1246 	for_each_online_cpu(cpu) {
1247 		if (cpu == primary_cpu)
1248 			continue;
1249 
1250 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1251 		if (error) {
1252 			pr_err("Failed to offline CPU%d - error=%d",
1253 				cpu, error);
1254 			break;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Ensure all but the reboot CPU are offline.
1260 	 */
1261 	BUG_ON(num_online_cpus() > 1);
1262 
1263 	/*
1264 	 * Make sure the CPUs won't be enabled by someone else after this
1265 	 * point. Kexec will reboot to a new kernel shortly resetting
1266 	 * everything along the way.
1267 	 */
1268 	cpu_hotplug_disabled++;
1269 
1270 	cpu_maps_update_done();
1271 }
1272 
1273 #else
1274 #define takedown_cpu		NULL
1275 #endif /*CONFIG_HOTPLUG_CPU*/
1276 
1277 /**
1278  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1279  * @cpu: cpu that just started
1280  *
1281  * It must be called by the arch code on the new cpu, before the new cpu
1282  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1283  */
1284 void notify_cpu_starting(unsigned int cpu)
1285 {
1286 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1287 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1288 	int ret;
1289 
1290 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1291 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1292 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1293 
1294 	/*
1295 	 * STARTING must not fail!
1296 	 */
1297 	WARN_ON_ONCE(ret);
1298 }
1299 
1300 /*
1301  * Called from the idle task. Wake up the controlling task which brings the
1302  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1303  * online bringup to the hotplug thread.
1304  */
1305 void cpuhp_online_idle(enum cpuhp_state state)
1306 {
1307 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308 
1309 	/* Happens for the boot cpu */
1310 	if (state != CPUHP_AP_ONLINE_IDLE)
1311 		return;
1312 
1313 	/*
1314 	 * Unpart the stopper thread before we start the idle loop (and start
1315 	 * scheduling); this ensures the stopper task is always available.
1316 	 */
1317 	stop_machine_unpark(smp_processor_id());
1318 
1319 	st->state = CPUHP_AP_ONLINE_IDLE;
1320 	complete_ap_thread(st, true);
1321 }
1322 
1323 /* Requires cpu_add_remove_lock to be held */
1324 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1325 {
1326 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1327 	struct task_struct *idle;
1328 	int ret = 0;
1329 
1330 	cpus_write_lock();
1331 
1332 	if (!cpu_present(cpu)) {
1333 		ret = -EINVAL;
1334 		goto out;
1335 	}
1336 
1337 	/*
1338 	 * The caller of cpu_up() might have raced with another
1339 	 * caller. Nothing to do.
1340 	 */
1341 	if (st->state >= target)
1342 		goto out;
1343 
1344 	if (st->state == CPUHP_OFFLINE) {
1345 		/* Let it fail before we try to bring the cpu up */
1346 		idle = idle_thread_get(cpu);
1347 		if (IS_ERR(idle)) {
1348 			ret = PTR_ERR(idle);
1349 			goto out;
1350 		}
1351 	}
1352 
1353 	cpuhp_tasks_frozen = tasks_frozen;
1354 
1355 	cpuhp_set_state(cpu, st, target);
1356 	/*
1357 	 * If the current CPU state is in the range of the AP hotplug thread,
1358 	 * then we need to kick the thread once more.
1359 	 */
1360 	if (st->state > CPUHP_BRINGUP_CPU) {
1361 		ret = cpuhp_kick_ap_work(cpu);
1362 		/*
1363 		 * The AP side has done the error rollback already. Just
1364 		 * return the error code..
1365 		 */
1366 		if (ret)
1367 			goto out;
1368 	}
1369 
1370 	/*
1371 	 * Try to reach the target state. We max out on the BP at
1372 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1373 	 * responsible for bringing it up to the target state.
1374 	 */
1375 	target = min((int)target, CPUHP_BRINGUP_CPU);
1376 	ret = cpuhp_up_callbacks(cpu, st, target);
1377 out:
1378 	cpus_write_unlock();
1379 	arch_smt_update();
1380 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1381 	return ret;
1382 }
1383 
1384 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1385 {
1386 	int err = 0;
1387 
1388 	if (!cpu_possible(cpu)) {
1389 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1390 		       cpu);
1391 #if defined(CONFIG_IA64)
1392 		pr_err("please check additional_cpus= boot parameter\n");
1393 #endif
1394 		return -EINVAL;
1395 	}
1396 
1397 	err = try_online_node(cpu_to_node(cpu));
1398 	if (err)
1399 		return err;
1400 
1401 	cpu_maps_update_begin();
1402 
1403 	if (cpu_hotplug_disabled) {
1404 		err = -EBUSY;
1405 		goto out;
1406 	}
1407 	if (!cpu_smt_allowed(cpu)) {
1408 		err = -EPERM;
1409 		goto out;
1410 	}
1411 
1412 	err = _cpu_up(cpu, 0, target);
1413 out:
1414 	cpu_maps_update_done();
1415 	return err;
1416 }
1417 
1418 /**
1419  * cpu_device_up - Bring up a cpu device
1420  * @dev: Pointer to the cpu device to online
1421  *
1422  * This function is meant to be used by device core cpu subsystem only.
1423  *
1424  * Other subsystems should use add_cpu() instead.
1425  *
1426  * Return: %0 on success or a negative errno code
1427  */
1428 int cpu_device_up(struct device *dev)
1429 {
1430 	return cpu_up(dev->id, CPUHP_ONLINE);
1431 }
1432 
1433 int add_cpu(unsigned int cpu)
1434 {
1435 	int ret;
1436 
1437 	lock_device_hotplug();
1438 	ret = device_online(get_cpu_device(cpu));
1439 	unlock_device_hotplug();
1440 
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(add_cpu);
1444 
1445 /**
1446  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1447  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1448  *
1449  * On some architectures like arm64, we can hibernate on any CPU, but on
1450  * wake up the CPU we hibernated on might be offline as a side effect of
1451  * using maxcpus= for example.
1452  *
1453  * Return: %0 on success or a negative errno code
1454  */
1455 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1456 {
1457 	int ret;
1458 
1459 	if (!cpu_online(sleep_cpu)) {
1460 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1461 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1462 		if (ret) {
1463 			pr_err("Failed to bring hibernate-CPU up!\n");
1464 			return ret;
1465 		}
1466 	}
1467 	return 0;
1468 }
1469 
1470 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1471 {
1472 	unsigned int cpu;
1473 
1474 	for_each_present_cpu(cpu) {
1475 		if (num_online_cpus() >= setup_max_cpus)
1476 			break;
1477 		if (!cpu_online(cpu))
1478 			cpu_up(cpu, CPUHP_ONLINE);
1479 	}
1480 }
1481 
1482 #ifdef CONFIG_PM_SLEEP_SMP
1483 static cpumask_var_t frozen_cpus;
1484 
1485 int freeze_secondary_cpus(int primary)
1486 {
1487 	int cpu, error = 0;
1488 
1489 	cpu_maps_update_begin();
1490 	if (primary == -1) {
1491 		primary = cpumask_first(cpu_online_mask);
1492 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1493 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1494 	} else {
1495 		if (!cpu_online(primary))
1496 			primary = cpumask_first(cpu_online_mask);
1497 	}
1498 
1499 	/*
1500 	 * We take down all of the non-boot CPUs in one shot to avoid races
1501 	 * with the userspace trying to use the CPU hotplug at the same time
1502 	 */
1503 	cpumask_clear(frozen_cpus);
1504 
1505 	pr_info("Disabling non-boot CPUs ...\n");
1506 	for_each_online_cpu(cpu) {
1507 		if (cpu == primary)
1508 			continue;
1509 
1510 		if (pm_wakeup_pending()) {
1511 			pr_info("Wakeup pending. Abort CPU freeze\n");
1512 			error = -EBUSY;
1513 			break;
1514 		}
1515 
1516 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1517 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1518 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1519 		if (!error)
1520 			cpumask_set_cpu(cpu, frozen_cpus);
1521 		else {
1522 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1523 			break;
1524 		}
1525 	}
1526 
1527 	if (!error)
1528 		BUG_ON(num_online_cpus() > 1);
1529 	else
1530 		pr_err("Non-boot CPUs are not disabled\n");
1531 
1532 	/*
1533 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1534 	 * this even in case of failure as all freeze_secondary_cpus() users are
1535 	 * supposed to do thaw_secondary_cpus() on the failure path.
1536 	 */
1537 	cpu_hotplug_disabled++;
1538 
1539 	cpu_maps_update_done();
1540 	return error;
1541 }
1542 
1543 void __weak arch_thaw_secondary_cpus_begin(void)
1544 {
1545 }
1546 
1547 void __weak arch_thaw_secondary_cpus_end(void)
1548 {
1549 }
1550 
1551 void thaw_secondary_cpus(void)
1552 {
1553 	int cpu, error;
1554 
1555 	/* Allow everyone to use the CPU hotplug again */
1556 	cpu_maps_update_begin();
1557 	__cpu_hotplug_enable();
1558 	if (cpumask_empty(frozen_cpus))
1559 		goto out;
1560 
1561 	pr_info("Enabling non-boot CPUs ...\n");
1562 
1563 	arch_thaw_secondary_cpus_begin();
1564 
1565 	for_each_cpu(cpu, frozen_cpus) {
1566 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1567 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1568 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1569 		if (!error) {
1570 			pr_info("CPU%d is up\n", cpu);
1571 			continue;
1572 		}
1573 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1574 	}
1575 
1576 	arch_thaw_secondary_cpus_end();
1577 
1578 	cpumask_clear(frozen_cpus);
1579 out:
1580 	cpu_maps_update_done();
1581 }
1582 
1583 static int __init alloc_frozen_cpus(void)
1584 {
1585 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1586 		return -ENOMEM;
1587 	return 0;
1588 }
1589 core_initcall(alloc_frozen_cpus);
1590 
1591 /*
1592  * When callbacks for CPU hotplug notifications are being executed, we must
1593  * ensure that the state of the system with respect to the tasks being frozen
1594  * or not, as reported by the notification, remains unchanged *throughout the
1595  * duration* of the execution of the callbacks.
1596  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1597  *
1598  * This synchronization is implemented by mutually excluding regular CPU
1599  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1600  * Hibernate notifications.
1601  */
1602 static int
1603 cpu_hotplug_pm_callback(struct notifier_block *nb,
1604 			unsigned long action, void *ptr)
1605 {
1606 	switch (action) {
1607 
1608 	case PM_SUSPEND_PREPARE:
1609 	case PM_HIBERNATION_PREPARE:
1610 		cpu_hotplug_disable();
1611 		break;
1612 
1613 	case PM_POST_SUSPEND:
1614 	case PM_POST_HIBERNATION:
1615 		cpu_hotplug_enable();
1616 		break;
1617 
1618 	default:
1619 		return NOTIFY_DONE;
1620 	}
1621 
1622 	return NOTIFY_OK;
1623 }
1624 
1625 
1626 static int __init cpu_hotplug_pm_sync_init(void)
1627 {
1628 	/*
1629 	 * cpu_hotplug_pm_callback has higher priority than x86
1630 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1631 	 * to disable cpu hotplug to avoid cpu hotplug race.
1632 	 */
1633 	pm_notifier(cpu_hotplug_pm_callback, 0);
1634 	return 0;
1635 }
1636 core_initcall(cpu_hotplug_pm_sync_init);
1637 
1638 #endif /* CONFIG_PM_SLEEP_SMP */
1639 
1640 int __boot_cpu_id;
1641 
1642 #endif /* CONFIG_SMP */
1643 
1644 /* Boot processor state steps */
1645 static struct cpuhp_step cpuhp_hp_states[] = {
1646 	[CPUHP_OFFLINE] = {
1647 		.name			= "offline",
1648 		.startup.single		= NULL,
1649 		.teardown.single	= NULL,
1650 	},
1651 #ifdef CONFIG_SMP
1652 	[CPUHP_CREATE_THREADS]= {
1653 		.name			= "threads:prepare",
1654 		.startup.single		= smpboot_create_threads,
1655 		.teardown.single	= NULL,
1656 		.cant_stop		= true,
1657 	},
1658 	[CPUHP_PERF_PREPARE] = {
1659 		.name			= "perf:prepare",
1660 		.startup.single		= perf_event_init_cpu,
1661 		.teardown.single	= perf_event_exit_cpu,
1662 	},
1663 	[CPUHP_RANDOM_PREPARE] = {
1664 		.name			= "random:prepare",
1665 		.startup.single		= random_prepare_cpu,
1666 		.teardown.single	= NULL,
1667 	},
1668 	[CPUHP_WORKQUEUE_PREP] = {
1669 		.name			= "workqueue:prepare",
1670 		.startup.single		= workqueue_prepare_cpu,
1671 		.teardown.single	= NULL,
1672 	},
1673 	[CPUHP_HRTIMERS_PREPARE] = {
1674 		.name			= "hrtimers:prepare",
1675 		.startup.single		= hrtimers_prepare_cpu,
1676 		.teardown.single	= hrtimers_dead_cpu,
1677 	},
1678 	[CPUHP_SMPCFD_PREPARE] = {
1679 		.name			= "smpcfd:prepare",
1680 		.startup.single		= smpcfd_prepare_cpu,
1681 		.teardown.single	= smpcfd_dead_cpu,
1682 	},
1683 	[CPUHP_RELAY_PREPARE] = {
1684 		.name			= "relay:prepare",
1685 		.startup.single		= relay_prepare_cpu,
1686 		.teardown.single	= NULL,
1687 	},
1688 	[CPUHP_SLAB_PREPARE] = {
1689 		.name			= "slab:prepare",
1690 		.startup.single		= slab_prepare_cpu,
1691 		.teardown.single	= slab_dead_cpu,
1692 	},
1693 	[CPUHP_RCUTREE_PREP] = {
1694 		.name			= "RCU/tree:prepare",
1695 		.startup.single		= rcutree_prepare_cpu,
1696 		.teardown.single	= rcutree_dead_cpu,
1697 	},
1698 	/*
1699 	 * On the tear-down path, timers_dead_cpu() must be invoked
1700 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1701 	 * otherwise a RCU stall occurs.
1702 	 */
1703 	[CPUHP_TIMERS_PREPARE] = {
1704 		.name			= "timers:prepare",
1705 		.startup.single		= timers_prepare_cpu,
1706 		.teardown.single	= timers_dead_cpu,
1707 	},
1708 	/* Kicks the plugged cpu into life */
1709 	[CPUHP_BRINGUP_CPU] = {
1710 		.name			= "cpu:bringup",
1711 		.startup.single		= bringup_cpu,
1712 		.teardown.single	= finish_cpu,
1713 		.cant_stop		= true,
1714 	},
1715 	/* Final state before CPU kills itself */
1716 	[CPUHP_AP_IDLE_DEAD] = {
1717 		.name			= "idle:dead",
1718 	},
1719 	/*
1720 	 * Last state before CPU enters the idle loop to die. Transient state
1721 	 * for synchronization.
1722 	 */
1723 	[CPUHP_AP_OFFLINE] = {
1724 		.name			= "ap:offline",
1725 		.cant_stop		= true,
1726 	},
1727 	/* First state is scheduler control. Interrupts are disabled */
1728 	[CPUHP_AP_SCHED_STARTING] = {
1729 		.name			= "sched:starting",
1730 		.startup.single		= sched_cpu_starting,
1731 		.teardown.single	= sched_cpu_dying,
1732 	},
1733 	[CPUHP_AP_RCUTREE_DYING] = {
1734 		.name			= "RCU/tree:dying",
1735 		.startup.single		= NULL,
1736 		.teardown.single	= rcutree_dying_cpu,
1737 	},
1738 	[CPUHP_AP_SMPCFD_DYING] = {
1739 		.name			= "smpcfd:dying",
1740 		.startup.single		= NULL,
1741 		.teardown.single	= smpcfd_dying_cpu,
1742 	},
1743 	/* Entry state on starting. Interrupts enabled from here on. Transient
1744 	 * state for synchronsization */
1745 	[CPUHP_AP_ONLINE] = {
1746 		.name			= "ap:online",
1747 	},
1748 	/*
1749 	 * Handled on control processor until the plugged processor manages
1750 	 * this itself.
1751 	 */
1752 	[CPUHP_TEARDOWN_CPU] = {
1753 		.name			= "cpu:teardown",
1754 		.startup.single		= NULL,
1755 		.teardown.single	= takedown_cpu,
1756 		.cant_stop		= true,
1757 	},
1758 
1759 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1760 		.name			= "sched:waitempty",
1761 		.startup.single		= NULL,
1762 		.teardown.single	= sched_cpu_wait_empty,
1763 	},
1764 
1765 	/* Handle smpboot threads park/unpark */
1766 	[CPUHP_AP_SMPBOOT_THREADS] = {
1767 		.name			= "smpboot/threads:online",
1768 		.startup.single		= smpboot_unpark_threads,
1769 		.teardown.single	= smpboot_park_threads,
1770 	},
1771 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1772 		.name			= "irq/affinity:online",
1773 		.startup.single		= irq_affinity_online_cpu,
1774 		.teardown.single	= NULL,
1775 	},
1776 	[CPUHP_AP_PERF_ONLINE] = {
1777 		.name			= "perf:online",
1778 		.startup.single		= perf_event_init_cpu,
1779 		.teardown.single	= perf_event_exit_cpu,
1780 	},
1781 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1782 		.name			= "lockup_detector:online",
1783 		.startup.single		= lockup_detector_online_cpu,
1784 		.teardown.single	= lockup_detector_offline_cpu,
1785 	},
1786 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1787 		.name			= "workqueue:online",
1788 		.startup.single		= workqueue_online_cpu,
1789 		.teardown.single	= workqueue_offline_cpu,
1790 	},
1791 	[CPUHP_AP_RANDOM_ONLINE] = {
1792 		.name			= "random:online",
1793 		.startup.single		= random_online_cpu,
1794 		.teardown.single	= NULL,
1795 	},
1796 	[CPUHP_AP_RCUTREE_ONLINE] = {
1797 		.name			= "RCU/tree:online",
1798 		.startup.single		= rcutree_online_cpu,
1799 		.teardown.single	= rcutree_offline_cpu,
1800 	},
1801 #endif
1802 	/*
1803 	 * The dynamically registered state space is here
1804 	 */
1805 
1806 #ifdef CONFIG_SMP
1807 	/* Last state is scheduler control setting the cpu active */
1808 	[CPUHP_AP_ACTIVE] = {
1809 		.name			= "sched:active",
1810 		.startup.single		= sched_cpu_activate,
1811 		.teardown.single	= sched_cpu_deactivate,
1812 	},
1813 #endif
1814 
1815 	/* CPU is fully up and running. */
1816 	[CPUHP_ONLINE] = {
1817 		.name			= "online",
1818 		.startup.single		= NULL,
1819 		.teardown.single	= NULL,
1820 	},
1821 };
1822 
1823 /* Sanity check for callbacks */
1824 static int cpuhp_cb_check(enum cpuhp_state state)
1825 {
1826 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1827 		return -EINVAL;
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Returns a free for dynamic slot assignment of the Online state. The states
1833  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1834  * by having no name assigned.
1835  */
1836 static int cpuhp_reserve_state(enum cpuhp_state state)
1837 {
1838 	enum cpuhp_state i, end;
1839 	struct cpuhp_step *step;
1840 
1841 	switch (state) {
1842 	case CPUHP_AP_ONLINE_DYN:
1843 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1844 		end = CPUHP_AP_ONLINE_DYN_END;
1845 		break;
1846 	case CPUHP_BP_PREPARE_DYN:
1847 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1848 		end = CPUHP_BP_PREPARE_DYN_END;
1849 		break;
1850 	default:
1851 		return -EINVAL;
1852 	}
1853 
1854 	for (i = state; i <= end; i++, step++) {
1855 		if (!step->name)
1856 			return i;
1857 	}
1858 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1859 	return -ENOSPC;
1860 }
1861 
1862 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1863 				 int (*startup)(unsigned int cpu),
1864 				 int (*teardown)(unsigned int cpu),
1865 				 bool multi_instance)
1866 {
1867 	/* (Un)Install the callbacks for further cpu hotplug operations */
1868 	struct cpuhp_step *sp;
1869 	int ret = 0;
1870 
1871 	/*
1872 	 * If name is NULL, then the state gets removed.
1873 	 *
1874 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1875 	 * the first allocation from these dynamic ranges, so the removal
1876 	 * would trigger a new allocation and clear the wrong (already
1877 	 * empty) state, leaving the callbacks of the to be cleared state
1878 	 * dangling, which causes wreckage on the next hotplug operation.
1879 	 */
1880 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1881 		     state == CPUHP_BP_PREPARE_DYN)) {
1882 		ret = cpuhp_reserve_state(state);
1883 		if (ret < 0)
1884 			return ret;
1885 		state = ret;
1886 	}
1887 	sp = cpuhp_get_step(state);
1888 	if (name && sp->name)
1889 		return -EBUSY;
1890 
1891 	sp->startup.single = startup;
1892 	sp->teardown.single = teardown;
1893 	sp->name = name;
1894 	sp->multi_instance = multi_instance;
1895 	INIT_HLIST_HEAD(&sp->list);
1896 	return ret;
1897 }
1898 
1899 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1900 {
1901 	return cpuhp_get_step(state)->teardown.single;
1902 }
1903 
1904 /*
1905  * Call the startup/teardown function for a step either on the AP or
1906  * on the current CPU.
1907  */
1908 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1909 			    struct hlist_node *node)
1910 {
1911 	struct cpuhp_step *sp = cpuhp_get_step(state);
1912 	int ret;
1913 
1914 	/*
1915 	 * If there's nothing to do, we done.
1916 	 * Relies on the union for multi_instance.
1917 	 */
1918 	if (cpuhp_step_empty(bringup, sp))
1919 		return 0;
1920 	/*
1921 	 * The non AP bound callbacks can fail on bringup. On teardown
1922 	 * e.g. module removal we crash for now.
1923 	 */
1924 #ifdef CONFIG_SMP
1925 	if (cpuhp_is_ap_state(state))
1926 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1927 	else
1928 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1929 #else
1930 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1931 #endif
1932 	BUG_ON(ret && !bringup);
1933 	return ret;
1934 }
1935 
1936 /*
1937  * Called from __cpuhp_setup_state on a recoverable failure.
1938  *
1939  * Note: The teardown callbacks for rollback are not allowed to fail!
1940  */
1941 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1942 				   struct hlist_node *node)
1943 {
1944 	int cpu;
1945 
1946 	/* Roll back the already executed steps on the other cpus */
1947 	for_each_present_cpu(cpu) {
1948 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1949 		int cpustate = st->state;
1950 
1951 		if (cpu >= failedcpu)
1952 			break;
1953 
1954 		/* Did we invoke the startup call on that cpu ? */
1955 		if (cpustate >= state)
1956 			cpuhp_issue_call(cpu, state, false, node);
1957 	}
1958 }
1959 
1960 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1961 					  struct hlist_node *node,
1962 					  bool invoke)
1963 {
1964 	struct cpuhp_step *sp;
1965 	int cpu;
1966 	int ret;
1967 
1968 	lockdep_assert_cpus_held();
1969 
1970 	sp = cpuhp_get_step(state);
1971 	if (sp->multi_instance == false)
1972 		return -EINVAL;
1973 
1974 	mutex_lock(&cpuhp_state_mutex);
1975 
1976 	if (!invoke || !sp->startup.multi)
1977 		goto add_node;
1978 
1979 	/*
1980 	 * Try to call the startup callback for each present cpu
1981 	 * depending on the hotplug state of the cpu.
1982 	 */
1983 	for_each_present_cpu(cpu) {
1984 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1985 		int cpustate = st->state;
1986 
1987 		if (cpustate < state)
1988 			continue;
1989 
1990 		ret = cpuhp_issue_call(cpu, state, true, node);
1991 		if (ret) {
1992 			if (sp->teardown.multi)
1993 				cpuhp_rollback_install(cpu, state, node);
1994 			goto unlock;
1995 		}
1996 	}
1997 add_node:
1998 	ret = 0;
1999 	hlist_add_head(node, &sp->list);
2000 unlock:
2001 	mutex_unlock(&cpuhp_state_mutex);
2002 	return ret;
2003 }
2004 
2005 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2006 			       bool invoke)
2007 {
2008 	int ret;
2009 
2010 	cpus_read_lock();
2011 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2012 	cpus_read_unlock();
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2016 
2017 /**
2018  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2019  * @state:		The state to setup
2020  * @name:		Name of the step
2021  * @invoke:		If true, the startup function is invoked for cpus where
2022  *			cpu state >= @state
2023  * @startup:		startup callback function
2024  * @teardown:		teardown callback function
2025  * @multi_instance:	State is set up for multiple instances which get
2026  *			added afterwards.
2027  *
2028  * The caller needs to hold cpus read locked while calling this function.
2029  * Return:
2030  *   On success:
2031  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2032  *      0 for all other states
2033  *   On failure: proper (negative) error code
2034  */
2035 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2036 				   const char *name, bool invoke,
2037 				   int (*startup)(unsigned int cpu),
2038 				   int (*teardown)(unsigned int cpu),
2039 				   bool multi_instance)
2040 {
2041 	int cpu, ret = 0;
2042 	bool dynstate;
2043 
2044 	lockdep_assert_cpus_held();
2045 
2046 	if (cpuhp_cb_check(state) || !name)
2047 		return -EINVAL;
2048 
2049 	mutex_lock(&cpuhp_state_mutex);
2050 
2051 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2052 				    multi_instance);
2053 
2054 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2055 	if (ret > 0 && dynstate) {
2056 		state = ret;
2057 		ret = 0;
2058 	}
2059 
2060 	if (ret || !invoke || !startup)
2061 		goto out;
2062 
2063 	/*
2064 	 * Try to call the startup callback for each present cpu
2065 	 * depending on the hotplug state of the cpu.
2066 	 */
2067 	for_each_present_cpu(cpu) {
2068 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2069 		int cpustate = st->state;
2070 
2071 		if (cpustate < state)
2072 			continue;
2073 
2074 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2075 		if (ret) {
2076 			if (teardown)
2077 				cpuhp_rollback_install(cpu, state, NULL);
2078 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2079 			goto out;
2080 		}
2081 	}
2082 out:
2083 	mutex_unlock(&cpuhp_state_mutex);
2084 	/*
2085 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2086 	 * dynamically allocated state in case of success.
2087 	 */
2088 	if (!ret && dynstate)
2089 		return state;
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2093 
2094 int __cpuhp_setup_state(enum cpuhp_state state,
2095 			const char *name, bool invoke,
2096 			int (*startup)(unsigned int cpu),
2097 			int (*teardown)(unsigned int cpu),
2098 			bool multi_instance)
2099 {
2100 	int ret;
2101 
2102 	cpus_read_lock();
2103 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2104 					     teardown, multi_instance);
2105 	cpus_read_unlock();
2106 	return ret;
2107 }
2108 EXPORT_SYMBOL(__cpuhp_setup_state);
2109 
2110 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2111 				  struct hlist_node *node, bool invoke)
2112 {
2113 	struct cpuhp_step *sp = cpuhp_get_step(state);
2114 	int cpu;
2115 
2116 	BUG_ON(cpuhp_cb_check(state));
2117 
2118 	if (!sp->multi_instance)
2119 		return -EINVAL;
2120 
2121 	cpus_read_lock();
2122 	mutex_lock(&cpuhp_state_mutex);
2123 
2124 	if (!invoke || !cpuhp_get_teardown_cb(state))
2125 		goto remove;
2126 	/*
2127 	 * Call the teardown callback for each present cpu depending
2128 	 * on the hotplug state of the cpu. This function is not
2129 	 * allowed to fail currently!
2130 	 */
2131 	for_each_present_cpu(cpu) {
2132 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2133 		int cpustate = st->state;
2134 
2135 		if (cpustate >= state)
2136 			cpuhp_issue_call(cpu, state, false, node);
2137 	}
2138 
2139 remove:
2140 	hlist_del(node);
2141 	mutex_unlock(&cpuhp_state_mutex);
2142 	cpus_read_unlock();
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2147 
2148 /**
2149  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2150  * @state:	The state to remove
2151  * @invoke:	If true, the teardown function is invoked for cpus where
2152  *		cpu state >= @state
2153  *
2154  * The caller needs to hold cpus read locked while calling this function.
2155  * The teardown callback is currently not allowed to fail. Think
2156  * about module removal!
2157  */
2158 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2159 {
2160 	struct cpuhp_step *sp = cpuhp_get_step(state);
2161 	int cpu;
2162 
2163 	BUG_ON(cpuhp_cb_check(state));
2164 
2165 	lockdep_assert_cpus_held();
2166 
2167 	mutex_lock(&cpuhp_state_mutex);
2168 	if (sp->multi_instance) {
2169 		WARN(!hlist_empty(&sp->list),
2170 		     "Error: Removing state %d which has instances left.\n",
2171 		     state);
2172 		goto remove;
2173 	}
2174 
2175 	if (!invoke || !cpuhp_get_teardown_cb(state))
2176 		goto remove;
2177 
2178 	/*
2179 	 * Call the teardown callback for each present cpu depending
2180 	 * on the hotplug state of the cpu. This function is not
2181 	 * allowed to fail currently!
2182 	 */
2183 	for_each_present_cpu(cpu) {
2184 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2185 		int cpustate = st->state;
2186 
2187 		if (cpustate >= state)
2188 			cpuhp_issue_call(cpu, state, false, NULL);
2189 	}
2190 remove:
2191 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2192 	mutex_unlock(&cpuhp_state_mutex);
2193 }
2194 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2195 
2196 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2197 {
2198 	cpus_read_lock();
2199 	__cpuhp_remove_state_cpuslocked(state, invoke);
2200 	cpus_read_unlock();
2201 }
2202 EXPORT_SYMBOL(__cpuhp_remove_state);
2203 
2204 #ifdef CONFIG_HOTPLUG_SMT
2205 static void cpuhp_offline_cpu_device(unsigned int cpu)
2206 {
2207 	struct device *dev = get_cpu_device(cpu);
2208 
2209 	dev->offline = true;
2210 	/* Tell user space about the state change */
2211 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2212 }
2213 
2214 static void cpuhp_online_cpu_device(unsigned int cpu)
2215 {
2216 	struct device *dev = get_cpu_device(cpu);
2217 
2218 	dev->offline = false;
2219 	/* Tell user space about the state change */
2220 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2221 }
2222 
2223 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2224 {
2225 	int cpu, ret = 0;
2226 
2227 	cpu_maps_update_begin();
2228 	for_each_online_cpu(cpu) {
2229 		if (topology_is_primary_thread(cpu))
2230 			continue;
2231 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2232 		if (ret)
2233 			break;
2234 		/*
2235 		 * As this needs to hold the cpu maps lock it's impossible
2236 		 * to call device_offline() because that ends up calling
2237 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2238 		 * needs to be held as this might race against in kernel
2239 		 * abusers of the hotplug machinery (thermal management).
2240 		 *
2241 		 * So nothing would update device:offline state. That would
2242 		 * leave the sysfs entry stale and prevent onlining after
2243 		 * smt control has been changed to 'off' again. This is
2244 		 * called under the sysfs hotplug lock, so it is properly
2245 		 * serialized against the regular offline usage.
2246 		 */
2247 		cpuhp_offline_cpu_device(cpu);
2248 	}
2249 	if (!ret)
2250 		cpu_smt_control = ctrlval;
2251 	cpu_maps_update_done();
2252 	return ret;
2253 }
2254 
2255 int cpuhp_smt_enable(void)
2256 {
2257 	int cpu, ret = 0;
2258 
2259 	cpu_maps_update_begin();
2260 	cpu_smt_control = CPU_SMT_ENABLED;
2261 	for_each_present_cpu(cpu) {
2262 		/* Skip online CPUs and CPUs on offline nodes */
2263 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2264 			continue;
2265 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2266 		if (ret)
2267 			break;
2268 		/* See comment in cpuhp_smt_disable() */
2269 		cpuhp_online_cpu_device(cpu);
2270 	}
2271 	cpu_maps_update_done();
2272 	return ret;
2273 }
2274 #endif
2275 
2276 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2277 static ssize_t state_show(struct device *dev,
2278 			  struct device_attribute *attr, char *buf)
2279 {
2280 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2281 
2282 	return sprintf(buf, "%d\n", st->state);
2283 }
2284 static DEVICE_ATTR_RO(state);
2285 
2286 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2287 			    const char *buf, size_t count)
2288 {
2289 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2290 	struct cpuhp_step *sp;
2291 	int target, ret;
2292 
2293 	ret = kstrtoint(buf, 10, &target);
2294 	if (ret)
2295 		return ret;
2296 
2297 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2298 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2299 		return -EINVAL;
2300 #else
2301 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2302 		return -EINVAL;
2303 #endif
2304 
2305 	ret = lock_device_hotplug_sysfs();
2306 	if (ret)
2307 		return ret;
2308 
2309 	mutex_lock(&cpuhp_state_mutex);
2310 	sp = cpuhp_get_step(target);
2311 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2312 	mutex_unlock(&cpuhp_state_mutex);
2313 	if (ret)
2314 		goto out;
2315 
2316 	if (st->state < target)
2317 		ret = cpu_up(dev->id, target);
2318 	else
2319 		ret = cpu_down(dev->id, target);
2320 out:
2321 	unlock_device_hotplug();
2322 	return ret ? ret : count;
2323 }
2324 
2325 static ssize_t target_show(struct device *dev,
2326 			   struct device_attribute *attr, char *buf)
2327 {
2328 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2329 
2330 	return sprintf(buf, "%d\n", st->target);
2331 }
2332 static DEVICE_ATTR_RW(target);
2333 
2334 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2335 			  const char *buf, size_t count)
2336 {
2337 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2338 	struct cpuhp_step *sp;
2339 	int fail, ret;
2340 
2341 	ret = kstrtoint(buf, 10, &fail);
2342 	if (ret)
2343 		return ret;
2344 
2345 	if (fail == CPUHP_INVALID) {
2346 		st->fail = fail;
2347 		return count;
2348 	}
2349 
2350 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2351 		return -EINVAL;
2352 
2353 	/*
2354 	 * Cannot fail STARTING/DYING callbacks.
2355 	 */
2356 	if (cpuhp_is_atomic_state(fail))
2357 		return -EINVAL;
2358 
2359 	/*
2360 	 * DEAD callbacks cannot fail...
2361 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2362 	 * triggering STARTING callbacks, a failure in this state would
2363 	 * hinder rollback.
2364 	 */
2365 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2366 		return -EINVAL;
2367 
2368 	/*
2369 	 * Cannot fail anything that doesn't have callbacks.
2370 	 */
2371 	mutex_lock(&cpuhp_state_mutex);
2372 	sp = cpuhp_get_step(fail);
2373 	if (!sp->startup.single && !sp->teardown.single)
2374 		ret = -EINVAL;
2375 	mutex_unlock(&cpuhp_state_mutex);
2376 	if (ret)
2377 		return ret;
2378 
2379 	st->fail = fail;
2380 
2381 	return count;
2382 }
2383 
2384 static ssize_t fail_show(struct device *dev,
2385 			 struct device_attribute *attr, char *buf)
2386 {
2387 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2388 
2389 	return sprintf(buf, "%d\n", st->fail);
2390 }
2391 
2392 static DEVICE_ATTR_RW(fail);
2393 
2394 static struct attribute *cpuhp_cpu_attrs[] = {
2395 	&dev_attr_state.attr,
2396 	&dev_attr_target.attr,
2397 	&dev_attr_fail.attr,
2398 	NULL
2399 };
2400 
2401 static const struct attribute_group cpuhp_cpu_attr_group = {
2402 	.attrs = cpuhp_cpu_attrs,
2403 	.name = "hotplug",
2404 	NULL
2405 };
2406 
2407 static ssize_t states_show(struct device *dev,
2408 				 struct device_attribute *attr, char *buf)
2409 {
2410 	ssize_t cur, res = 0;
2411 	int i;
2412 
2413 	mutex_lock(&cpuhp_state_mutex);
2414 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2415 		struct cpuhp_step *sp = cpuhp_get_step(i);
2416 
2417 		if (sp->name) {
2418 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2419 			buf += cur;
2420 			res += cur;
2421 		}
2422 	}
2423 	mutex_unlock(&cpuhp_state_mutex);
2424 	return res;
2425 }
2426 static DEVICE_ATTR_RO(states);
2427 
2428 static struct attribute *cpuhp_cpu_root_attrs[] = {
2429 	&dev_attr_states.attr,
2430 	NULL
2431 };
2432 
2433 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2434 	.attrs = cpuhp_cpu_root_attrs,
2435 	.name = "hotplug",
2436 	NULL
2437 };
2438 
2439 #ifdef CONFIG_HOTPLUG_SMT
2440 
2441 static ssize_t
2442 __store_smt_control(struct device *dev, struct device_attribute *attr,
2443 		    const char *buf, size_t count)
2444 {
2445 	int ctrlval, ret;
2446 
2447 	if (sysfs_streq(buf, "on"))
2448 		ctrlval = CPU_SMT_ENABLED;
2449 	else if (sysfs_streq(buf, "off"))
2450 		ctrlval = CPU_SMT_DISABLED;
2451 	else if (sysfs_streq(buf, "forceoff"))
2452 		ctrlval = CPU_SMT_FORCE_DISABLED;
2453 	else
2454 		return -EINVAL;
2455 
2456 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2457 		return -EPERM;
2458 
2459 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2460 		return -ENODEV;
2461 
2462 	ret = lock_device_hotplug_sysfs();
2463 	if (ret)
2464 		return ret;
2465 
2466 	if (ctrlval != cpu_smt_control) {
2467 		switch (ctrlval) {
2468 		case CPU_SMT_ENABLED:
2469 			ret = cpuhp_smt_enable();
2470 			break;
2471 		case CPU_SMT_DISABLED:
2472 		case CPU_SMT_FORCE_DISABLED:
2473 			ret = cpuhp_smt_disable(ctrlval);
2474 			break;
2475 		}
2476 	}
2477 
2478 	unlock_device_hotplug();
2479 	return ret ? ret : count;
2480 }
2481 
2482 #else /* !CONFIG_HOTPLUG_SMT */
2483 static ssize_t
2484 __store_smt_control(struct device *dev, struct device_attribute *attr,
2485 		    const char *buf, size_t count)
2486 {
2487 	return -ENODEV;
2488 }
2489 #endif /* CONFIG_HOTPLUG_SMT */
2490 
2491 static const char *smt_states[] = {
2492 	[CPU_SMT_ENABLED]		= "on",
2493 	[CPU_SMT_DISABLED]		= "off",
2494 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2495 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2496 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2497 };
2498 
2499 static ssize_t control_show(struct device *dev,
2500 			    struct device_attribute *attr, char *buf)
2501 {
2502 	const char *state = smt_states[cpu_smt_control];
2503 
2504 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2505 }
2506 
2507 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2508 			     const char *buf, size_t count)
2509 {
2510 	return __store_smt_control(dev, attr, buf, count);
2511 }
2512 static DEVICE_ATTR_RW(control);
2513 
2514 static ssize_t active_show(struct device *dev,
2515 			   struct device_attribute *attr, char *buf)
2516 {
2517 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2518 }
2519 static DEVICE_ATTR_RO(active);
2520 
2521 static struct attribute *cpuhp_smt_attrs[] = {
2522 	&dev_attr_control.attr,
2523 	&dev_attr_active.attr,
2524 	NULL
2525 };
2526 
2527 static const struct attribute_group cpuhp_smt_attr_group = {
2528 	.attrs = cpuhp_smt_attrs,
2529 	.name = "smt",
2530 	NULL
2531 };
2532 
2533 static int __init cpu_smt_sysfs_init(void)
2534 {
2535 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2536 				  &cpuhp_smt_attr_group);
2537 }
2538 
2539 static int __init cpuhp_sysfs_init(void)
2540 {
2541 	int cpu, ret;
2542 
2543 	ret = cpu_smt_sysfs_init();
2544 	if (ret)
2545 		return ret;
2546 
2547 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2548 				 &cpuhp_cpu_root_attr_group);
2549 	if (ret)
2550 		return ret;
2551 
2552 	for_each_possible_cpu(cpu) {
2553 		struct device *dev = get_cpu_device(cpu);
2554 
2555 		if (!dev)
2556 			continue;
2557 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2558 		if (ret)
2559 			return ret;
2560 	}
2561 	return 0;
2562 }
2563 device_initcall(cpuhp_sysfs_init);
2564 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2565 
2566 /*
2567  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2568  * represents all NR_CPUS bits binary values of 1<<nr.
2569  *
2570  * It is used by cpumask_of() to get a constant address to a CPU
2571  * mask value that has a single bit set only.
2572  */
2573 
2574 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2575 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2576 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2577 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2578 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2579 
2580 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2581 
2582 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2583 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2584 #if BITS_PER_LONG > 32
2585 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2586 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2587 #endif
2588 };
2589 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2590 
2591 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2592 EXPORT_SYMBOL(cpu_all_bits);
2593 
2594 #ifdef CONFIG_INIT_ALL_POSSIBLE
2595 struct cpumask __cpu_possible_mask __read_mostly
2596 	= {CPU_BITS_ALL};
2597 #else
2598 struct cpumask __cpu_possible_mask __read_mostly;
2599 #endif
2600 EXPORT_SYMBOL(__cpu_possible_mask);
2601 
2602 struct cpumask __cpu_online_mask __read_mostly;
2603 EXPORT_SYMBOL(__cpu_online_mask);
2604 
2605 struct cpumask __cpu_present_mask __read_mostly;
2606 EXPORT_SYMBOL(__cpu_present_mask);
2607 
2608 struct cpumask __cpu_active_mask __read_mostly;
2609 EXPORT_SYMBOL(__cpu_active_mask);
2610 
2611 struct cpumask __cpu_dying_mask __read_mostly;
2612 EXPORT_SYMBOL(__cpu_dying_mask);
2613 
2614 atomic_t __num_online_cpus __read_mostly;
2615 EXPORT_SYMBOL(__num_online_cpus);
2616 
2617 void init_cpu_present(const struct cpumask *src)
2618 {
2619 	cpumask_copy(&__cpu_present_mask, src);
2620 }
2621 
2622 void init_cpu_possible(const struct cpumask *src)
2623 {
2624 	cpumask_copy(&__cpu_possible_mask, src);
2625 }
2626 
2627 void init_cpu_online(const struct cpumask *src)
2628 {
2629 	cpumask_copy(&__cpu_online_mask, src);
2630 }
2631 
2632 void set_cpu_online(unsigned int cpu, bool online)
2633 {
2634 	/*
2635 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2636 	 * function by the reboot and kexec code which invoke it from
2637 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2638 	 * regular CPU hotplug is properly serialized.
2639 	 *
2640 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2641 	 * does not protect readers which are not serialized against
2642 	 * concurrent hotplug operations.
2643 	 */
2644 	if (online) {
2645 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2646 			atomic_inc(&__num_online_cpus);
2647 	} else {
2648 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2649 			atomic_dec(&__num_online_cpus);
2650 	}
2651 }
2652 
2653 /*
2654  * Activate the first processor.
2655  */
2656 void __init boot_cpu_init(void)
2657 {
2658 	int cpu = smp_processor_id();
2659 
2660 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2661 	set_cpu_online(cpu, true);
2662 	set_cpu_active(cpu, true);
2663 	set_cpu_present(cpu, true);
2664 	set_cpu_possible(cpu, true);
2665 
2666 #ifdef CONFIG_SMP
2667 	__boot_cpu_id = cpu;
2668 #endif
2669 }
2670 
2671 /*
2672  * Must be called _AFTER_ setting up the per_cpu areas
2673  */
2674 void __init boot_cpu_hotplug_init(void)
2675 {
2676 #ifdef CONFIG_SMP
2677 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2678 #endif
2679 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2680 }
2681 
2682 /*
2683  * These are used for a global "mitigations=" cmdline option for toggling
2684  * optional CPU mitigations.
2685  */
2686 enum cpu_mitigations {
2687 	CPU_MITIGATIONS_OFF,
2688 	CPU_MITIGATIONS_AUTO,
2689 	CPU_MITIGATIONS_AUTO_NOSMT,
2690 };
2691 
2692 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2693 	CPU_MITIGATIONS_AUTO;
2694 
2695 static int __init mitigations_parse_cmdline(char *arg)
2696 {
2697 	if (!strcmp(arg, "off"))
2698 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2699 	else if (!strcmp(arg, "auto"))
2700 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2701 	else if (!strcmp(arg, "auto,nosmt"))
2702 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2703 	else
2704 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2705 			arg);
2706 
2707 	return 0;
2708 }
2709 early_param("mitigations", mitigations_parse_cmdline);
2710 
2711 /* mitigations=off */
2712 bool cpu_mitigations_off(void)
2713 {
2714 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2715 }
2716 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2717 
2718 /* mitigations=auto,nosmt */
2719 bool cpu_mitigations_auto_nosmt(void)
2720 {
2721 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2722 }
2723 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2724