xref: /openbmc/linux/kernel/cpu.c (revision 2359ccdd)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32 
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36 
37 #include "smpboot.h"
38 
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:	The current cpu state
42  * @target:	The target state
43  * @thread:	Pointer to the hotplug thread
44  * @should_run:	Thread should execute
45  * @rollback:	Perform a rollback
46  * @single:	Single callback invocation
47  * @bringup:	Single callback bringup or teardown selector
48  * @cb_state:	The state for a single callback (install/uninstall)
49  * @result:	Result of the operation
50  * @done_up:	Signal completion to the issuer of the task for cpu-up
51  * @done_down:	Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54 	enum cpuhp_state	state;
55 	enum cpuhp_state	target;
56 	enum cpuhp_state	fail;
57 #ifdef CONFIG_SMP
58 	struct task_struct	*thread;
59 	bool			should_run;
60 	bool			rollback;
61 	bool			single;
62 	bool			bringup;
63 	struct hlist_node	*node;
64 	struct hlist_node	*last;
65 	enum cpuhp_state	cb_state;
66 	int			result;
67 	struct completion	done_up;
68 	struct completion	done_down;
69 #endif
70 };
71 
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 	.fail = CPUHP_INVALID,
74 };
75 
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81 
82 
83 static inline void cpuhp_lock_acquire(bool bringup)
84 {
85 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87 
88 static inline void cpuhp_lock_release(bool bringup)
89 {
90 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93 
94 static inline void cpuhp_lock_acquire(bool bringup) { }
95 static inline void cpuhp_lock_release(bool bringup) { }
96 
97 #endif
98 
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:	Name of the step
102  * @startup:	Startup function of the step
103  * @teardown:	Teardown function of the step
104  * @skip_onerr:	Do not invoke the functions on error rollback
105  *		Will go away once the notifiers	are gone
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			skip_onerr;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_hp_states[];
128 
129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 {
131 	return cpuhp_hp_states + state;
132 }
133 
134 /**
135  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136  * @cpu:	The cpu for which the callback should be invoked
137  * @state:	The state to do callbacks for
138  * @bringup:	True if the bringup callback should be invoked
139  * @node:	For multi-instance, do a single entry callback for install/remove
140  * @lastp:	For multi-instance rollback, remember how far we got
141  *
142  * Called from cpu hotplug and from the state register machinery.
143  */
144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
145 				 bool bringup, struct hlist_node *node,
146 				 struct hlist_node **lastp)
147 {
148 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
149 	struct cpuhp_step *step = cpuhp_get_step(state);
150 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
151 	int (*cb)(unsigned int cpu);
152 	int ret, cnt;
153 
154 	if (st->fail == state) {
155 		st->fail = CPUHP_INVALID;
156 
157 		if (!(bringup ? step->startup.single : step->teardown.single))
158 			return 0;
159 
160 		return -EAGAIN;
161 	}
162 
163 	if (!step->multi_instance) {
164 		WARN_ON_ONCE(lastp && *lastp);
165 		cb = bringup ? step->startup.single : step->teardown.single;
166 		if (!cb)
167 			return 0;
168 		trace_cpuhp_enter(cpu, st->target, state, cb);
169 		ret = cb(cpu);
170 		trace_cpuhp_exit(cpu, st->state, state, ret);
171 		return ret;
172 	}
173 	cbm = bringup ? step->startup.multi : step->teardown.multi;
174 	if (!cbm)
175 		return 0;
176 
177 	/* Single invocation for instance add/remove */
178 	if (node) {
179 		WARN_ON_ONCE(lastp && *lastp);
180 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
181 		ret = cbm(cpu, node);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 
186 	/* State transition. Invoke on all instances */
187 	cnt = 0;
188 	hlist_for_each(node, &step->list) {
189 		if (lastp && node == *lastp)
190 			break;
191 
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		if (ret) {
196 			if (!lastp)
197 				goto err;
198 
199 			*lastp = node;
200 			return ret;
201 		}
202 		cnt++;
203 	}
204 	if (lastp)
205 		*lastp = NULL;
206 	return 0;
207 err:
208 	/* Rollback the instances if one failed */
209 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
210 	if (!cbm)
211 		return ret;
212 
213 	hlist_for_each(node, &step->list) {
214 		if (!cnt--)
215 			break;
216 
217 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
218 		ret = cbm(cpu, node);
219 		trace_cpuhp_exit(cpu, st->state, state, ret);
220 		/*
221 		 * Rollback must not fail,
222 		 */
223 		WARN_ON_ONCE(ret);
224 	}
225 	return ret;
226 }
227 
228 #ifdef CONFIG_SMP
229 static bool cpuhp_is_ap_state(enum cpuhp_state state)
230 {
231 	/*
232 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 	 * purposes as that state is handled explicitly in cpu_down.
234 	 */
235 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
236 }
237 
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 {
240 	struct completion *done = bringup ? &st->done_up : &st->done_down;
241 	wait_for_completion(done);
242 }
243 
244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	complete(done);
248 }
249 
250 /*
251  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252  */
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 {
255 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
256 }
257 
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock);
260 bool cpuhp_tasks_frozen;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
262 
263 /*
264  * The following two APIs (cpu_maps_update_begin/done) must be used when
265  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266  */
267 void cpu_maps_update_begin(void)
268 {
269 	mutex_lock(&cpu_add_remove_lock);
270 }
271 
272 void cpu_maps_update_done(void)
273 {
274 	mutex_unlock(&cpu_add_remove_lock);
275 }
276 
277 /*
278  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279  * Should always be manipulated under cpu_add_remove_lock
280  */
281 static int cpu_hotplug_disabled;
282 
283 #ifdef CONFIG_HOTPLUG_CPU
284 
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286 
287 void cpus_read_lock(void)
288 {
289 	percpu_down_read(&cpu_hotplug_lock);
290 }
291 EXPORT_SYMBOL_GPL(cpus_read_lock);
292 
293 void cpus_read_unlock(void)
294 {
295 	percpu_up_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_unlock);
298 
299 void cpus_write_lock(void)
300 {
301 	percpu_down_write(&cpu_hotplug_lock);
302 }
303 
304 void cpus_write_unlock(void)
305 {
306 	percpu_up_write(&cpu_hotplug_lock);
307 }
308 
309 void lockdep_assert_cpus_held(void)
310 {
311 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
312 }
313 
314 /*
315  * Wait for currently running CPU hotplug operations to complete (if any) and
316  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318  * hotplug path before performing hotplug operations. So acquiring that lock
319  * guarantees mutual exclusion from any currently running hotplug operations.
320  */
321 void cpu_hotplug_disable(void)
322 {
323 	cpu_maps_update_begin();
324 	cpu_hotplug_disabled++;
325 	cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328 
329 static void __cpu_hotplug_enable(void)
330 {
331 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 		return;
333 	cpu_hotplug_disabled--;
334 }
335 
336 void cpu_hotplug_enable(void)
337 {
338 	cpu_maps_update_begin();
339 	__cpu_hotplug_enable();
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif	/* CONFIG_HOTPLUG_CPU */
344 
345 static inline enum cpuhp_state
346 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
347 {
348 	enum cpuhp_state prev_state = st->state;
349 
350 	st->rollback = false;
351 	st->last = NULL;
352 
353 	st->target = target;
354 	st->single = false;
355 	st->bringup = st->state < target;
356 
357 	return prev_state;
358 }
359 
360 static inline void
361 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
362 {
363 	st->rollback = true;
364 
365 	/*
366 	 * If we have st->last we need to undo partial multi_instance of this
367 	 * state first. Otherwise start undo at the previous state.
368 	 */
369 	if (!st->last) {
370 		if (st->bringup)
371 			st->state--;
372 		else
373 			st->state++;
374 	}
375 
376 	st->target = prev_state;
377 	st->bringup = !st->bringup;
378 }
379 
380 /* Regular hotplug invocation of the AP hotplug thread */
381 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
382 {
383 	if (!st->single && st->state == st->target)
384 		return;
385 
386 	st->result = 0;
387 	/*
388 	 * Make sure the above stores are visible before should_run becomes
389 	 * true. Paired with the mb() above in cpuhp_thread_fun()
390 	 */
391 	smp_mb();
392 	st->should_run = true;
393 	wake_up_process(st->thread);
394 	wait_for_ap_thread(st, st->bringup);
395 }
396 
397 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
398 {
399 	enum cpuhp_state prev_state;
400 	int ret;
401 
402 	prev_state = cpuhp_set_state(st, target);
403 	__cpuhp_kick_ap(st);
404 	if ((ret = st->result)) {
405 		cpuhp_reset_state(st, prev_state);
406 		__cpuhp_kick_ap(st);
407 	}
408 
409 	return ret;
410 }
411 
412 static int bringup_wait_for_ap(unsigned int cpu)
413 {
414 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
415 
416 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
417 	wait_for_ap_thread(st, true);
418 	if (WARN_ON_ONCE((!cpu_online(cpu))))
419 		return -ECANCELED;
420 
421 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
422 	stop_machine_unpark(cpu);
423 	kthread_unpark(st->thread);
424 
425 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
426 		return 0;
427 
428 	return cpuhp_kick_ap(st, st->target);
429 }
430 
431 static int bringup_cpu(unsigned int cpu)
432 {
433 	struct task_struct *idle = idle_thread_get(cpu);
434 	int ret;
435 
436 	/*
437 	 * Some architectures have to walk the irq descriptors to
438 	 * setup the vector space for the cpu which comes online.
439 	 * Prevent irq alloc/free across the bringup.
440 	 */
441 	irq_lock_sparse();
442 
443 	/* Arch-specific enabling code. */
444 	ret = __cpu_up(cpu, idle);
445 	irq_unlock_sparse();
446 	if (ret)
447 		return ret;
448 	return bringup_wait_for_ap(cpu);
449 }
450 
451 /*
452  * Hotplug state machine related functions
453  */
454 
455 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457 	for (st->state--; st->state > st->target; st->state--) {
458 		struct cpuhp_step *step = cpuhp_get_step(st->state);
459 
460 		if (!step->skip_onerr)
461 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
462 	}
463 }
464 
465 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
466 			      enum cpuhp_state target)
467 {
468 	enum cpuhp_state prev_state = st->state;
469 	int ret = 0;
470 
471 	while (st->state < target) {
472 		st->state++;
473 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
474 		if (ret) {
475 			st->target = prev_state;
476 			undo_cpu_up(cpu, st);
477 			break;
478 		}
479 	}
480 	return ret;
481 }
482 
483 /*
484  * The cpu hotplug threads manage the bringup and teardown of the cpus
485  */
486 static void cpuhp_create(unsigned int cpu)
487 {
488 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
489 
490 	init_completion(&st->done_up);
491 	init_completion(&st->done_down);
492 }
493 
494 static int cpuhp_should_run(unsigned int cpu)
495 {
496 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
497 
498 	return st->should_run;
499 }
500 
501 /*
502  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
503  * callbacks when a state gets [un]installed at runtime.
504  *
505  * Each invocation of this function by the smpboot thread does a single AP
506  * state callback.
507  *
508  * It has 3 modes of operation:
509  *  - single: runs st->cb_state
510  *  - up:     runs ++st->state, while st->state < st->target
511  *  - down:   runs st->state--, while st->state > st->target
512  *
513  * When complete or on error, should_run is cleared and the completion is fired.
514  */
515 static void cpuhp_thread_fun(unsigned int cpu)
516 {
517 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
518 	bool bringup = st->bringup;
519 	enum cpuhp_state state;
520 
521 	/*
522 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
523 	 * that if we see ->should_run we also see the rest of the state.
524 	 */
525 	smp_mb();
526 
527 	if (WARN_ON_ONCE(!st->should_run))
528 		return;
529 
530 	cpuhp_lock_acquire(bringup);
531 
532 	if (st->single) {
533 		state = st->cb_state;
534 		st->should_run = false;
535 	} else {
536 		if (bringup) {
537 			st->state++;
538 			state = st->state;
539 			st->should_run = (st->state < st->target);
540 			WARN_ON_ONCE(st->state > st->target);
541 		} else {
542 			state = st->state;
543 			st->state--;
544 			st->should_run = (st->state > st->target);
545 			WARN_ON_ONCE(st->state < st->target);
546 		}
547 	}
548 
549 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
550 
551 	if (st->rollback) {
552 		struct cpuhp_step *step = cpuhp_get_step(state);
553 		if (step->skip_onerr)
554 			goto next;
555 	}
556 
557 	if (cpuhp_is_atomic_state(state)) {
558 		local_irq_disable();
559 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
560 		local_irq_enable();
561 
562 		/*
563 		 * STARTING/DYING must not fail!
564 		 */
565 		WARN_ON_ONCE(st->result);
566 	} else {
567 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
568 	}
569 
570 	if (st->result) {
571 		/*
572 		 * If we fail on a rollback, we're up a creek without no
573 		 * paddle, no way forward, no way back. We loose, thanks for
574 		 * playing.
575 		 */
576 		WARN_ON_ONCE(st->rollback);
577 		st->should_run = false;
578 	}
579 
580 next:
581 	cpuhp_lock_release(bringup);
582 
583 	if (!st->should_run)
584 		complete_ap_thread(st, bringup);
585 }
586 
587 /* Invoke a single callback on a remote cpu */
588 static int
589 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
590 			 struct hlist_node *node)
591 {
592 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
593 	int ret;
594 
595 	if (!cpu_online(cpu))
596 		return 0;
597 
598 	cpuhp_lock_acquire(false);
599 	cpuhp_lock_release(false);
600 
601 	cpuhp_lock_acquire(true);
602 	cpuhp_lock_release(true);
603 
604 	/*
605 	 * If we are up and running, use the hotplug thread. For early calls
606 	 * we invoke the thread function directly.
607 	 */
608 	if (!st->thread)
609 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
610 
611 	st->rollback = false;
612 	st->last = NULL;
613 
614 	st->node = node;
615 	st->bringup = bringup;
616 	st->cb_state = state;
617 	st->single = true;
618 
619 	__cpuhp_kick_ap(st);
620 
621 	/*
622 	 * If we failed and did a partial, do a rollback.
623 	 */
624 	if ((ret = st->result) && st->last) {
625 		st->rollback = true;
626 		st->bringup = !bringup;
627 
628 		__cpuhp_kick_ap(st);
629 	}
630 
631 	/*
632 	 * Clean up the leftovers so the next hotplug operation wont use stale
633 	 * data.
634 	 */
635 	st->node = st->last = NULL;
636 	return ret;
637 }
638 
639 static int cpuhp_kick_ap_work(unsigned int cpu)
640 {
641 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
642 	enum cpuhp_state prev_state = st->state;
643 	int ret;
644 
645 	cpuhp_lock_acquire(false);
646 	cpuhp_lock_release(false);
647 
648 	cpuhp_lock_acquire(true);
649 	cpuhp_lock_release(true);
650 
651 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
652 	ret = cpuhp_kick_ap(st, st->target);
653 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
654 
655 	return ret;
656 }
657 
658 static struct smp_hotplug_thread cpuhp_threads = {
659 	.store			= &cpuhp_state.thread,
660 	.create			= &cpuhp_create,
661 	.thread_should_run	= cpuhp_should_run,
662 	.thread_fn		= cpuhp_thread_fun,
663 	.thread_comm		= "cpuhp/%u",
664 	.selfparking		= true,
665 };
666 
667 void __init cpuhp_threads_init(void)
668 {
669 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
670 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
671 }
672 
673 #ifdef CONFIG_HOTPLUG_CPU
674 /**
675  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
676  * @cpu: a CPU id
677  *
678  * This function walks all processes, finds a valid mm struct for each one and
679  * then clears a corresponding bit in mm's cpumask.  While this all sounds
680  * trivial, there are various non-obvious corner cases, which this function
681  * tries to solve in a safe manner.
682  *
683  * Also note that the function uses a somewhat relaxed locking scheme, so it may
684  * be called only for an already offlined CPU.
685  */
686 void clear_tasks_mm_cpumask(int cpu)
687 {
688 	struct task_struct *p;
689 
690 	/*
691 	 * This function is called after the cpu is taken down and marked
692 	 * offline, so its not like new tasks will ever get this cpu set in
693 	 * their mm mask. -- Peter Zijlstra
694 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
695 	 * full-fledged tasklist_lock.
696 	 */
697 	WARN_ON(cpu_online(cpu));
698 	rcu_read_lock();
699 	for_each_process(p) {
700 		struct task_struct *t;
701 
702 		/*
703 		 * Main thread might exit, but other threads may still have
704 		 * a valid mm. Find one.
705 		 */
706 		t = find_lock_task_mm(p);
707 		if (!t)
708 			continue;
709 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
710 		task_unlock(t);
711 	}
712 	rcu_read_unlock();
713 }
714 
715 /* Take this CPU down. */
716 static int take_cpu_down(void *_param)
717 {
718 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
719 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
720 	int err, cpu = smp_processor_id();
721 	int ret;
722 
723 	/* Ensure this CPU doesn't handle any more interrupts. */
724 	err = __cpu_disable();
725 	if (err < 0)
726 		return err;
727 
728 	/*
729 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
730 	 * do this step again.
731 	 */
732 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
733 	st->state--;
734 	/* Invoke the former CPU_DYING callbacks */
735 	for (; st->state > target; st->state--) {
736 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
737 		/*
738 		 * DYING must not fail!
739 		 */
740 		WARN_ON_ONCE(ret);
741 	}
742 
743 	/* Give up timekeeping duties */
744 	tick_handover_do_timer();
745 	/* Park the stopper thread */
746 	stop_machine_park(cpu);
747 	return 0;
748 }
749 
750 static int takedown_cpu(unsigned int cpu)
751 {
752 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 	int err;
754 
755 	/* Park the smpboot threads */
756 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
757 	smpboot_park_threads(cpu);
758 
759 	/*
760 	 * Prevent irq alloc/free while the dying cpu reorganizes the
761 	 * interrupt affinities.
762 	 */
763 	irq_lock_sparse();
764 
765 	/*
766 	 * So now all preempt/rcu users must observe !cpu_active().
767 	 */
768 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
769 	if (err) {
770 		/* CPU refused to die */
771 		irq_unlock_sparse();
772 		/* Unpark the hotplug thread so we can rollback there */
773 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
774 		return err;
775 	}
776 	BUG_ON(cpu_online(cpu));
777 
778 	/*
779 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
780 	 * all runnable tasks from the CPU, there's only the idle task left now
781 	 * that the migration thread is done doing the stop_machine thing.
782 	 *
783 	 * Wait for the stop thread to go away.
784 	 */
785 	wait_for_ap_thread(st, false);
786 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
787 
788 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
789 	irq_unlock_sparse();
790 
791 	hotplug_cpu__broadcast_tick_pull(cpu);
792 	/* This actually kills the CPU. */
793 	__cpu_die(cpu);
794 
795 	tick_cleanup_dead_cpu(cpu);
796 	rcutree_migrate_callbacks(cpu);
797 	return 0;
798 }
799 
800 static void cpuhp_complete_idle_dead(void *arg)
801 {
802 	struct cpuhp_cpu_state *st = arg;
803 
804 	complete_ap_thread(st, false);
805 }
806 
807 void cpuhp_report_idle_dead(void)
808 {
809 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
810 
811 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
812 	rcu_report_dead(smp_processor_id());
813 	st->state = CPUHP_AP_IDLE_DEAD;
814 	/*
815 	 * We cannot call complete after rcu_report_dead() so we delegate it
816 	 * to an online cpu.
817 	 */
818 	smp_call_function_single(cpumask_first(cpu_online_mask),
819 				 cpuhp_complete_idle_dead, st, 0);
820 }
821 
822 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
823 {
824 	for (st->state++; st->state < st->target; st->state++) {
825 		struct cpuhp_step *step = cpuhp_get_step(st->state);
826 
827 		if (!step->skip_onerr)
828 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
829 	}
830 }
831 
832 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
833 				enum cpuhp_state target)
834 {
835 	enum cpuhp_state prev_state = st->state;
836 	int ret = 0;
837 
838 	for (; st->state > target; st->state--) {
839 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
840 		if (ret) {
841 			st->target = prev_state;
842 			undo_cpu_down(cpu, st);
843 			break;
844 		}
845 	}
846 	return ret;
847 }
848 
849 /* Requires cpu_add_remove_lock to be held */
850 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
851 			   enum cpuhp_state target)
852 {
853 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
854 	int prev_state, ret = 0;
855 
856 	if (num_online_cpus() == 1)
857 		return -EBUSY;
858 
859 	if (!cpu_present(cpu))
860 		return -EINVAL;
861 
862 	cpus_write_lock();
863 
864 	cpuhp_tasks_frozen = tasks_frozen;
865 
866 	prev_state = cpuhp_set_state(st, target);
867 	/*
868 	 * If the current CPU state is in the range of the AP hotplug thread,
869 	 * then we need to kick the thread.
870 	 */
871 	if (st->state > CPUHP_TEARDOWN_CPU) {
872 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
873 		ret = cpuhp_kick_ap_work(cpu);
874 		/*
875 		 * The AP side has done the error rollback already. Just
876 		 * return the error code..
877 		 */
878 		if (ret)
879 			goto out;
880 
881 		/*
882 		 * We might have stopped still in the range of the AP hotplug
883 		 * thread. Nothing to do anymore.
884 		 */
885 		if (st->state > CPUHP_TEARDOWN_CPU)
886 			goto out;
887 
888 		st->target = target;
889 	}
890 	/*
891 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
892 	 * to do the further cleanups.
893 	 */
894 	ret = cpuhp_down_callbacks(cpu, st, target);
895 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
896 		cpuhp_reset_state(st, prev_state);
897 		__cpuhp_kick_ap(st);
898 	}
899 
900 out:
901 	cpus_write_unlock();
902 	/*
903 	 * Do post unplug cleanup. This is still protected against
904 	 * concurrent CPU hotplug via cpu_add_remove_lock.
905 	 */
906 	lockup_detector_cleanup();
907 	return ret;
908 }
909 
910 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
911 {
912 	int err;
913 
914 	cpu_maps_update_begin();
915 
916 	if (cpu_hotplug_disabled) {
917 		err = -EBUSY;
918 		goto out;
919 	}
920 
921 	err = _cpu_down(cpu, 0, target);
922 
923 out:
924 	cpu_maps_update_done();
925 	return err;
926 }
927 
928 int cpu_down(unsigned int cpu)
929 {
930 	return do_cpu_down(cpu, CPUHP_OFFLINE);
931 }
932 EXPORT_SYMBOL(cpu_down);
933 
934 #else
935 #define takedown_cpu		NULL
936 #endif /*CONFIG_HOTPLUG_CPU*/
937 
938 /**
939  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
940  * @cpu: cpu that just started
941  *
942  * It must be called by the arch code on the new cpu, before the new cpu
943  * enables interrupts and before the "boot" cpu returns from __cpu_up().
944  */
945 void notify_cpu_starting(unsigned int cpu)
946 {
947 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
948 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
949 	int ret;
950 
951 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
952 	while (st->state < target) {
953 		st->state++;
954 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
955 		/*
956 		 * STARTING must not fail!
957 		 */
958 		WARN_ON_ONCE(ret);
959 	}
960 }
961 
962 /*
963  * Called from the idle task. Wake up the controlling task which brings the
964  * stopper and the hotplug thread of the upcoming CPU up and then delegates
965  * the rest of the online bringup to the hotplug thread.
966  */
967 void cpuhp_online_idle(enum cpuhp_state state)
968 {
969 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
970 
971 	/* Happens for the boot cpu */
972 	if (state != CPUHP_AP_ONLINE_IDLE)
973 		return;
974 
975 	st->state = CPUHP_AP_ONLINE_IDLE;
976 	complete_ap_thread(st, true);
977 }
978 
979 /* Requires cpu_add_remove_lock to be held */
980 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
981 {
982 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
983 	struct task_struct *idle;
984 	int ret = 0;
985 
986 	cpus_write_lock();
987 
988 	if (!cpu_present(cpu)) {
989 		ret = -EINVAL;
990 		goto out;
991 	}
992 
993 	/*
994 	 * The caller of do_cpu_up might have raced with another
995 	 * caller. Ignore it for now.
996 	 */
997 	if (st->state >= target)
998 		goto out;
999 
1000 	if (st->state == CPUHP_OFFLINE) {
1001 		/* Let it fail before we try to bring the cpu up */
1002 		idle = idle_thread_get(cpu);
1003 		if (IS_ERR(idle)) {
1004 			ret = PTR_ERR(idle);
1005 			goto out;
1006 		}
1007 	}
1008 
1009 	cpuhp_tasks_frozen = tasks_frozen;
1010 
1011 	cpuhp_set_state(st, target);
1012 	/*
1013 	 * If the current CPU state is in the range of the AP hotplug thread,
1014 	 * then we need to kick the thread once more.
1015 	 */
1016 	if (st->state > CPUHP_BRINGUP_CPU) {
1017 		ret = cpuhp_kick_ap_work(cpu);
1018 		/*
1019 		 * The AP side has done the error rollback already. Just
1020 		 * return the error code..
1021 		 */
1022 		if (ret)
1023 			goto out;
1024 	}
1025 
1026 	/*
1027 	 * Try to reach the target state. We max out on the BP at
1028 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029 	 * responsible for bringing it up to the target state.
1030 	 */
1031 	target = min((int)target, CPUHP_BRINGUP_CPU);
1032 	ret = cpuhp_up_callbacks(cpu, st, target);
1033 out:
1034 	cpus_write_unlock();
1035 	return ret;
1036 }
1037 
1038 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039 {
1040 	int err = 0;
1041 
1042 	if (!cpu_possible(cpu)) {
1043 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044 		       cpu);
1045 #if defined(CONFIG_IA64)
1046 		pr_err("please check additional_cpus= boot parameter\n");
1047 #endif
1048 		return -EINVAL;
1049 	}
1050 
1051 	err = try_online_node(cpu_to_node(cpu));
1052 	if (err)
1053 		return err;
1054 
1055 	cpu_maps_update_begin();
1056 
1057 	if (cpu_hotplug_disabled) {
1058 		err = -EBUSY;
1059 		goto out;
1060 	}
1061 
1062 	err = _cpu_up(cpu, 0, target);
1063 out:
1064 	cpu_maps_update_done();
1065 	return err;
1066 }
1067 
1068 int cpu_up(unsigned int cpu)
1069 {
1070 	return do_cpu_up(cpu, CPUHP_ONLINE);
1071 }
1072 EXPORT_SYMBOL_GPL(cpu_up);
1073 
1074 #ifdef CONFIG_PM_SLEEP_SMP
1075 static cpumask_var_t frozen_cpus;
1076 
1077 int freeze_secondary_cpus(int primary)
1078 {
1079 	int cpu, error = 0;
1080 
1081 	cpu_maps_update_begin();
1082 	if (!cpu_online(primary))
1083 		primary = cpumask_first(cpu_online_mask);
1084 	/*
1085 	 * We take down all of the non-boot CPUs in one shot to avoid races
1086 	 * with the userspace trying to use the CPU hotplug at the same time
1087 	 */
1088 	cpumask_clear(frozen_cpus);
1089 
1090 	pr_info("Disabling non-boot CPUs ...\n");
1091 	for_each_online_cpu(cpu) {
1092 		if (cpu == primary)
1093 			continue;
1094 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097 		if (!error)
1098 			cpumask_set_cpu(cpu, frozen_cpus);
1099 		else {
1100 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101 			break;
1102 		}
1103 	}
1104 
1105 	if (!error)
1106 		BUG_ON(num_online_cpus() > 1);
1107 	else
1108 		pr_err("Non-boot CPUs are not disabled\n");
1109 
1110 	/*
1111 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1112 	 * this even in case of failure as all disable_nonboot_cpus() users are
1113 	 * supposed to do enable_nonboot_cpus() on the failure path.
1114 	 */
1115 	cpu_hotplug_disabled++;
1116 
1117 	cpu_maps_update_done();
1118 	return error;
1119 }
1120 
1121 void __weak arch_enable_nonboot_cpus_begin(void)
1122 {
1123 }
1124 
1125 void __weak arch_enable_nonboot_cpus_end(void)
1126 {
1127 }
1128 
1129 void enable_nonboot_cpus(void)
1130 {
1131 	int cpu, error;
1132 
1133 	/* Allow everyone to use the CPU hotplug again */
1134 	cpu_maps_update_begin();
1135 	__cpu_hotplug_enable();
1136 	if (cpumask_empty(frozen_cpus))
1137 		goto out;
1138 
1139 	pr_info("Enabling non-boot CPUs ...\n");
1140 
1141 	arch_enable_nonboot_cpus_begin();
1142 
1143 	for_each_cpu(cpu, frozen_cpus) {
1144 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147 		if (!error) {
1148 			pr_info("CPU%d is up\n", cpu);
1149 			continue;
1150 		}
1151 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152 	}
1153 
1154 	arch_enable_nonboot_cpus_end();
1155 
1156 	cpumask_clear(frozen_cpus);
1157 out:
1158 	cpu_maps_update_done();
1159 }
1160 
1161 static int __init alloc_frozen_cpus(void)
1162 {
1163 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164 		return -ENOMEM;
1165 	return 0;
1166 }
1167 core_initcall(alloc_frozen_cpus);
1168 
1169 /*
1170  * When callbacks for CPU hotplug notifications are being executed, we must
1171  * ensure that the state of the system with respect to the tasks being frozen
1172  * or not, as reported by the notification, remains unchanged *throughout the
1173  * duration* of the execution of the callbacks.
1174  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175  *
1176  * This synchronization is implemented by mutually excluding regular CPU
1177  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178  * Hibernate notifications.
1179  */
1180 static int
1181 cpu_hotplug_pm_callback(struct notifier_block *nb,
1182 			unsigned long action, void *ptr)
1183 {
1184 	switch (action) {
1185 
1186 	case PM_SUSPEND_PREPARE:
1187 	case PM_HIBERNATION_PREPARE:
1188 		cpu_hotplug_disable();
1189 		break;
1190 
1191 	case PM_POST_SUSPEND:
1192 	case PM_POST_HIBERNATION:
1193 		cpu_hotplug_enable();
1194 		break;
1195 
1196 	default:
1197 		return NOTIFY_DONE;
1198 	}
1199 
1200 	return NOTIFY_OK;
1201 }
1202 
1203 
1204 static int __init cpu_hotplug_pm_sync_init(void)
1205 {
1206 	/*
1207 	 * cpu_hotplug_pm_callback has higher priority than x86
1208 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209 	 * to disable cpu hotplug to avoid cpu hotplug race.
1210 	 */
1211 	pm_notifier(cpu_hotplug_pm_callback, 0);
1212 	return 0;
1213 }
1214 core_initcall(cpu_hotplug_pm_sync_init);
1215 
1216 #endif /* CONFIG_PM_SLEEP_SMP */
1217 
1218 int __boot_cpu_id;
1219 
1220 #endif /* CONFIG_SMP */
1221 
1222 /* Boot processor state steps */
1223 static struct cpuhp_step cpuhp_hp_states[] = {
1224 	[CPUHP_OFFLINE] = {
1225 		.name			= "offline",
1226 		.startup.single		= NULL,
1227 		.teardown.single	= NULL,
1228 	},
1229 #ifdef CONFIG_SMP
1230 	[CPUHP_CREATE_THREADS]= {
1231 		.name			= "threads:prepare",
1232 		.startup.single		= smpboot_create_threads,
1233 		.teardown.single	= NULL,
1234 		.cant_stop		= true,
1235 	},
1236 	[CPUHP_PERF_PREPARE] = {
1237 		.name			= "perf:prepare",
1238 		.startup.single		= perf_event_init_cpu,
1239 		.teardown.single	= perf_event_exit_cpu,
1240 	},
1241 	[CPUHP_WORKQUEUE_PREP] = {
1242 		.name			= "workqueue:prepare",
1243 		.startup.single		= workqueue_prepare_cpu,
1244 		.teardown.single	= NULL,
1245 	},
1246 	[CPUHP_HRTIMERS_PREPARE] = {
1247 		.name			= "hrtimers:prepare",
1248 		.startup.single		= hrtimers_prepare_cpu,
1249 		.teardown.single	= hrtimers_dead_cpu,
1250 	},
1251 	[CPUHP_SMPCFD_PREPARE] = {
1252 		.name			= "smpcfd:prepare",
1253 		.startup.single		= smpcfd_prepare_cpu,
1254 		.teardown.single	= smpcfd_dead_cpu,
1255 	},
1256 	[CPUHP_RELAY_PREPARE] = {
1257 		.name			= "relay:prepare",
1258 		.startup.single		= relay_prepare_cpu,
1259 		.teardown.single	= NULL,
1260 	},
1261 	[CPUHP_SLAB_PREPARE] = {
1262 		.name			= "slab:prepare",
1263 		.startup.single		= slab_prepare_cpu,
1264 		.teardown.single	= slab_dead_cpu,
1265 	},
1266 	[CPUHP_RCUTREE_PREP] = {
1267 		.name			= "RCU/tree:prepare",
1268 		.startup.single		= rcutree_prepare_cpu,
1269 		.teardown.single	= rcutree_dead_cpu,
1270 	},
1271 	/*
1272 	 * On the tear-down path, timers_dead_cpu() must be invoked
1273 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1274 	 * otherwise a RCU stall occurs.
1275 	 */
1276 	[CPUHP_TIMERS_PREPARE] = {
1277 		.name			= "timers:dead",
1278 		.startup.single		= timers_prepare_cpu,
1279 		.teardown.single	= timers_dead_cpu,
1280 	},
1281 	/* Kicks the plugged cpu into life */
1282 	[CPUHP_BRINGUP_CPU] = {
1283 		.name			= "cpu:bringup",
1284 		.startup.single		= bringup_cpu,
1285 		.teardown.single	= NULL,
1286 		.cant_stop		= true,
1287 	},
1288 	/* Final state before CPU kills itself */
1289 	[CPUHP_AP_IDLE_DEAD] = {
1290 		.name			= "idle:dead",
1291 	},
1292 	/*
1293 	 * Last state before CPU enters the idle loop to die. Transient state
1294 	 * for synchronization.
1295 	 */
1296 	[CPUHP_AP_OFFLINE] = {
1297 		.name			= "ap:offline",
1298 		.cant_stop		= true,
1299 	},
1300 	/* First state is scheduler control. Interrupts are disabled */
1301 	[CPUHP_AP_SCHED_STARTING] = {
1302 		.name			= "sched:starting",
1303 		.startup.single		= sched_cpu_starting,
1304 		.teardown.single	= sched_cpu_dying,
1305 	},
1306 	[CPUHP_AP_RCUTREE_DYING] = {
1307 		.name			= "RCU/tree:dying",
1308 		.startup.single		= NULL,
1309 		.teardown.single	= rcutree_dying_cpu,
1310 	},
1311 	[CPUHP_AP_SMPCFD_DYING] = {
1312 		.name			= "smpcfd:dying",
1313 		.startup.single		= NULL,
1314 		.teardown.single	= smpcfd_dying_cpu,
1315 	},
1316 	/* Entry state on starting. Interrupts enabled from here on. Transient
1317 	 * state for synchronsization */
1318 	[CPUHP_AP_ONLINE] = {
1319 		.name			= "ap:online",
1320 	},
1321 	/*
1322 	 * Handled on controll processor until the plugged processor manages
1323 	 * this itself.
1324 	 */
1325 	[CPUHP_TEARDOWN_CPU] = {
1326 		.name			= "cpu:teardown",
1327 		.startup.single		= NULL,
1328 		.teardown.single	= takedown_cpu,
1329 		.cant_stop		= true,
1330 	},
1331 	/* Handle smpboot threads park/unpark */
1332 	[CPUHP_AP_SMPBOOT_THREADS] = {
1333 		.name			= "smpboot/threads:online",
1334 		.startup.single		= smpboot_unpark_threads,
1335 		.teardown.single	= NULL,
1336 	},
1337 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338 		.name			= "irq/affinity:online",
1339 		.startup.single		= irq_affinity_online_cpu,
1340 		.teardown.single	= NULL,
1341 	},
1342 	[CPUHP_AP_PERF_ONLINE] = {
1343 		.name			= "perf:online",
1344 		.startup.single		= perf_event_init_cpu,
1345 		.teardown.single	= perf_event_exit_cpu,
1346 	},
1347 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1348 		.name			= "workqueue:online",
1349 		.startup.single		= workqueue_online_cpu,
1350 		.teardown.single	= workqueue_offline_cpu,
1351 	},
1352 	[CPUHP_AP_RCUTREE_ONLINE] = {
1353 		.name			= "RCU/tree:online",
1354 		.startup.single		= rcutree_online_cpu,
1355 		.teardown.single	= rcutree_offline_cpu,
1356 	},
1357 #endif
1358 	/*
1359 	 * The dynamically registered state space is here
1360 	 */
1361 
1362 #ifdef CONFIG_SMP
1363 	/* Last state is scheduler control setting the cpu active */
1364 	[CPUHP_AP_ACTIVE] = {
1365 		.name			= "sched:active",
1366 		.startup.single		= sched_cpu_activate,
1367 		.teardown.single	= sched_cpu_deactivate,
1368 	},
1369 #endif
1370 
1371 	/* CPU is fully up and running. */
1372 	[CPUHP_ONLINE] = {
1373 		.name			= "online",
1374 		.startup.single		= NULL,
1375 		.teardown.single	= NULL,
1376 	},
1377 };
1378 
1379 /* Sanity check for callbacks */
1380 static int cpuhp_cb_check(enum cpuhp_state state)
1381 {
1382 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1383 		return -EINVAL;
1384 	return 0;
1385 }
1386 
1387 /*
1388  * Returns a free for dynamic slot assignment of the Online state. The states
1389  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1390  * by having no name assigned.
1391  */
1392 static int cpuhp_reserve_state(enum cpuhp_state state)
1393 {
1394 	enum cpuhp_state i, end;
1395 	struct cpuhp_step *step;
1396 
1397 	switch (state) {
1398 	case CPUHP_AP_ONLINE_DYN:
1399 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1400 		end = CPUHP_AP_ONLINE_DYN_END;
1401 		break;
1402 	case CPUHP_BP_PREPARE_DYN:
1403 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1404 		end = CPUHP_BP_PREPARE_DYN_END;
1405 		break;
1406 	default:
1407 		return -EINVAL;
1408 	}
1409 
1410 	for (i = state; i <= end; i++, step++) {
1411 		if (!step->name)
1412 			return i;
1413 	}
1414 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1415 	return -ENOSPC;
1416 }
1417 
1418 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1419 				 int (*startup)(unsigned int cpu),
1420 				 int (*teardown)(unsigned int cpu),
1421 				 bool multi_instance)
1422 {
1423 	/* (Un)Install the callbacks for further cpu hotplug operations */
1424 	struct cpuhp_step *sp;
1425 	int ret = 0;
1426 
1427 	/*
1428 	 * If name is NULL, then the state gets removed.
1429 	 *
1430 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1431 	 * the first allocation from these dynamic ranges, so the removal
1432 	 * would trigger a new allocation and clear the wrong (already
1433 	 * empty) state, leaving the callbacks of the to be cleared state
1434 	 * dangling, which causes wreckage on the next hotplug operation.
1435 	 */
1436 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1437 		     state == CPUHP_BP_PREPARE_DYN)) {
1438 		ret = cpuhp_reserve_state(state);
1439 		if (ret < 0)
1440 			return ret;
1441 		state = ret;
1442 	}
1443 	sp = cpuhp_get_step(state);
1444 	if (name && sp->name)
1445 		return -EBUSY;
1446 
1447 	sp->startup.single = startup;
1448 	sp->teardown.single = teardown;
1449 	sp->name = name;
1450 	sp->multi_instance = multi_instance;
1451 	INIT_HLIST_HEAD(&sp->list);
1452 	return ret;
1453 }
1454 
1455 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1456 {
1457 	return cpuhp_get_step(state)->teardown.single;
1458 }
1459 
1460 /*
1461  * Call the startup/teardown function for a step either on the AP or
1462  * on the current CPU.
1463  */
1464 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1465 			    struct hlist_node *node)
1466 {
1467 	struct cpuhp_step *sp = cpuhp_get_step(state);
1468 	int ret;
1469 
1470 	/*
1471 	 * If there's nothing to do, we done.
1472 	 * Relies on the union for multi_instance.
1473 	 */
1474 	if ((bringup && !sp->startup.single) ||
1475 	    (!bringup && !sp->teardown.single))
1476 		return 0;
1477 	/*
1478 	 * The non AP bound callbacks can fail on bringup. On teardown
1479 	 * e.g. module removal we crash for now.
1480 	 */
1481 #ifdef CONFIG_SMP
1482 	if (cpuhp_is_ap_state(state))
1483 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1484 	else
1485 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1486 #else
1487 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1488 #endif
1489 	BUG_ON(ret && !bringup);
1490 	return ret;
1491 }
1492 
1493 /*
1494  * Called from __cpuhp_setup_state on a recoverable failure.
1495  *
1496  * Note: The teardown callbacks for rollback are not allowed to fail!
1497  */
1498 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1499 				   struct hlist_node *node)
1500 {
1501 	int cpu;
1502 
1503 	/* Roll back the already executed steps on the other cpus */
1504 	for_each_present_cpu(cpu) {
1505 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506 		int cpustate = st->state;
1507 
1508 		if (cpu >= failedcpu)
1509 			break;
1510 
1511 		/* Did we invoke the startup call on that cpu ? */
1512 		if (cpustate >= state)
1513 			cpuhp_issue_call(cpu, state, false, node);
1514 	}
1515 }
1516 
1517 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1518 					  struct hlist_node *node,
1519 					  bool invoke)
1520 {
1521 	struct cpuhp_step *sp;
1522 	int cpu;
1523 	int ret;
1524 
1525 	lockdep_assert_cpus_held();
1526 
1527 	sp = cpuhp_get_step(state);
1528 	if (sp->multi_instance == false)
1529 		return -EINVAL;
1530 
1531 	mutex_lock(&cpuhp_state_mutex);
1532 
1533 	if (!invoke || !sp->startup.multi)
1534 		goto add_node;
1535 
1536 	/*
1537 	 * Try to call the startup callback for each present cpu
1538 	 * depending on the hotplug state of the cpu.
1539 	 */
1540 	for_each_present_cpu(cpu) {
1541 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1542 		int cpustate = st->state;
1543 
1544 		if (cpustate < state)
1545 			continue;
1546 
1547 		ret = cpuhp_issue_call(cpu, state, true, node);
1548 		if (ret) {
1549 			if (sp->teardown.multi)
1550 				cpuhp_rollback_install(cpu, state, node);
1551 			goto unlock;
1552 		}
1553 	}
1554 add_node:
1555 	ret = 0;
1556 	hlist_add_head(node, &sp->list);
1557 unlock:
1558 	mutex_unlock(&cpuhp_state_mutex);
1559 	return ret;
1560 }
1561 
1562 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1563 			       bool invoke)
1564 {
1565 	int ret;
1566 
1567 	cpus_read_lock();
1568 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1569 	cpus_read_unlock();
1570 	return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1573 
1574 /**
1575  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1576  * @state:		The state to setup
1577  * @invoke:		If true, the startup function is invoked for cpus where
1578  *			cpu state >= @state
1579  * @startup:		startup callback function
1580  * @teardown:		teardown callback function
1581  * @multi_instance:	State is set up for multiple instances which get
1582  *			added afterwards.
1583  *
1584  * The caller needs to hold cpus read locked while calling this function.
1585  * Returns:
1586  *   On success:
1587  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1588  *      0 for all other states
1589  *   On failure: proper (negative) error code
1590  */
1591 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1592 				   const char *name, bool invoke,
1593 				   int (*startup)(unsigned int cpu),
1594 				   int (*teardown)(unsigned int cpu),
1595 				   bool multi_instance)
1596 {
1597 	int cpu, ret = 0;
1598 	bool dynstate;
1599 
1600 	lockdep_assert_cpus_held();
1601 
1602 	if (cpuhp_cb_check(state) || !name)
1603 		return -EINVAL;
1604 
1605 	mutex_lock(&cpuhp_state_mutex);
1606 
1607 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1608 				    multi_instance);
1609 
1610 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1611 	if (ret > 0 && dynstate) {
1612 		state = ret;
1613 		ret = 0;
1614 	}
1615 
1616 	if (ret || !invoke || !startup)
1617 		goto out;
1618 
1619 	/*
1620 	 * Try to call the startup callback for each present cpu
1621 	 * depending on the hotplug state of the cpu.
1622 	 */
1623 	for_each_present_cpu(cpu) {
1624 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625 		int cpustate = st->state;
1626 
1627 		if (cpustate < state)
1628 			continue;
1629 
1630 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1631 		if (ret) {
1632 			if (teardown)
1633 				cpuhp_rollback_install(cpu, state, NULL);
1634 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635 			goto out;
1636 		}
1637 	}
1638 out:
1639 	mutex_unlock(&cpuhp_state_mutex);
1640 	/*
1641 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1642 	 * dynamically allocated state in case of success.
1643 	 */
1644 	if (!ret && dynstate)
1645 		return state;
1646 	return ret;
1647 }
1648 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1649 
1650 int __cpuhp_setup_state(enum cpuhp_state state,
1651 			const char *name, bool invoke,
1652 			int (*startup)(unsigned int cpu),
1653 			int (*teardown)(unsigned int cpu),
1654 			bool multi_instance)
1655 {
1656 	int ret;
1657 
1658 	cpus_read_lock();
1659 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1660 					     teardown, multi_instance);
1661 	cpus_read_unlock();
1662 	return ret;
1663 }
1664 EXPORT_SYMBOL(__cpuhp_setup_state);
1665 
1666 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667 				  struct hlist_node *node, bool invoke)
1668 {
1669 	struct cpuhp_step *sp = cpuhp_get_step(state);
1670 	int cpu;
1671 
1672 	BUG_ON(cpuhp_cb_check(state));
1673 
1674 	if (!sp->multi_instance)
1675 		return -EINVAL;
1676 
1677 	cpus_read_lock();
1678 	mutex_lock(&cpuhp_state_mutex);
1679 
1680 	if (!invoke || !cpuhp_get_teardown_cb(state))
1681 		goto remove;
1682 	/*
1683 	 * Call the teardown callback for each present cpu depending
1684 	 * on the hotplug state of the cpu. This function is not
1685 	 * allowed to fail currently!
1686 	 */
1687 	for_each_present_cpu(cpu) {
1688 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689 		int cpustate = st->state;
1690 
1691 		if (cpustate >= state)
1692 			cpuhp_issue_call(cpu, state, false, node);
1693 	}
1694 
1695 remove:
1696 	hlist_del(node);
1697 	mutex_unlock(&cpuhp_state_mutex);
1698 	cpus_read_unlock();
1699 
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703 
1704 /**
1705  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1706  * @state:	The state to remove
1707  * @invoke:	If true, the teardown function is invoked for cpus where
1708  *		cpu state >= @state
1709  *
1710  * The caller needs to hold cpus read locked while calling this function.
1711  * The teardown callback is currently not allowed to fail. Think
1712  * about module removal!
1713  */
1714 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1715 {
1716 	struct cpuhp_step *sp = cpuhp_get_step(state);
1717 	int cpu;
1718 
1719 	BUG_ON(cpuhp_cb_check(state));
1720 
1721 	lockdep_assert_cpus_held();
1722 
1723 	mutex_lock(&cpuhp_state_mutex);
1724 	if (sp->multi_instance) {
1725 		WARN(!hlist_empty(&sp->list),
1726 		     "Error: Removing state %d which has instances left.\n",
1727 		     state);
1728 		goto remove;
1729 	}
1730 
1731 	if (!invoke || !cpuhp_get_teardown_cb(state))
1732 		goto remove;
1733 
1734 	/*
1735 	 * Call the teardown callback for each present cpu depending
1736 	 * on the hotplug state of the cpu. This function is not
1737 	 * allowed to fail currently!
1738 	 */
1739 	for_each_present_cpu(cpu) {
1740 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741 		int cpustate = st->state;
1742 
1743 		if (cpustate >= state)
1744 			cpuhp_issue_call(cpu, state, false, NULL);
1745 	}
1746 remove:
1747 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1748 	mutex_unlock(&cpuhp_state_mutex);
1749 }
1750 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1751 
1752 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1753 {
1754 	cpus_read_lock();
1755 	__cpuhp_remove_state_cpuslocked(state, invoke);
1756 	cpus_read_unlock();
1757 }
1758 EXPORT_SYMBOL(__cpuhp_remove_state);
1759 
1760 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1761 static ssize_t show_cpuhp_state(struct device *dev,
1762 				struct device_attribute *attr, char *buf)
1763 {
1764 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1765 
1766 	return sprintf(buf, "%d\n", st->state);
1767 }
1768 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1769 
1770 static ssize_t write_cpuhp_target(struct device *dev,
1771 				  struct device_attribute *attr,
1772 				  const char *buf, size_t count)
1773 {
1774 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1775 	struct cpuhp_step *sp;
1776 	int target, ret;
1777 
1778 	ret = kstrtoint(buf, 10, &target);
1779 	if (ret)
1780 		return ret;
1781 
1782 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1783 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1784 		return -EINVAL;
1785 #else
1786 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1787 		return -EINVAL;
1788 #endif
1789 
1790 	ret = lock_device_hotplug_sysfs();
1791 	if (ret)
1792 		return ret;
1793 
1794 	mutex_lock(&cpuhp_state_mutex);
1795 	sp = cpuhp_get_step(target);
1796 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1797 	mutex_unlock(&cpuhp_state_mutex);
1798 	if (ret)
1799 		goto out;
1800 
1801 	if (st->state < target)
1802 		ret = do_cpu_up(dev->id, target);
1803 	else
1804 		ret = do_cpu_down(dev->id, target);
1805 out:
1806 	unlock_device_hotplug();
1807 	return ret ? ret : count;
1808 }
1809 
1810 static ssize_t show_cpuhp_target(struct device *dev,
1811 				 struct device_attribute *attr, char *buf)
1812 {
1813 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1814 
1815 	return sprintf(buf, "%d\n", st->target);
1816 }
1817 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1818 
1819 
1820 static ssize_t write_cpuhp_fail(struct device *dev,
1821 				struct device_attribute *attr,
1822 				const char *buf, size_t count)
1823 {
1824 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825 	struct cpuhp_step *sp;
1826 	int fail, ret;
1827 
1828 	ret = kstrtoint(buf, 10, &fail);
1829 	if (ret)
1830 		return ret;
1831 
1832 	/*
1833 	 * Cannot fail STARTING/DYING callbacks.
1834 	 */
1835 	if (cpuhp_is_atomic_state(fail))
1836 		return -EINVAL;
1837 
1838 	/*
1839 	 * Cannot fail anything that doesn't have callbacks.
1840 	 */
1841 	mutex_lock(&cpuhp_state_mutex);
1842 	sp = cpuhp_get_step(fail);
1843 	if (!sp->startup.single && !sp->teardown.single)
1844 		ret = -EINVAL;
1845 	mutex_unlock(&cpuhp_state_mutex);
1846 	if (ret)
1847 		return ret;
1848 
1849 	st->fail = fail;
1850 
1851 	return count;
1852 }
1853 
1854 static ssize_t show_cpuhp_fail(struct device *dev,
1855 			       struct device_attribute *attr, char *buf)
1856 {
1857 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1858 
1859 	return sprintf(buf, "%d\n", st->fail);
1860 }
1861 
1862 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1863 
1864 static struct attribute *cpuhp_cpu_attrs[] = {
1865 	&dev_attr_state.attr,
1866 	&dev_attr_target.attr,
1867 	&dev_attr_fail.attr,
1868 	NULL
1869 };
1870 
1871 static const struct attribute_group cpuhp_cpu_attr_group = {
1872 	.attrs = cpuhp_cpu_attrs,
1873 	.name = "hotplug",
1874 	NULL
1875 };
1876 
1877 static ssize_t show_cpuhp_states(struct device *dev,
1878 				 struct device_attribute *attr, char *buf)
1879 {
1880 	ssize_t cur, res = 0;
1881 	int i;
1882 
1883 	mutex_lock(&cpuhp_state_mutex);
1884 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1885 		struct cpuhp_step *sp = cpuhp_get_step(i);
1886 
1887 		if (sp->name) {
1888 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1889 			buf += cur;
1890 			res += cur;
1891 		}
1892 	}
1893 	mutex_unlock(&cpuhp_state_mutex);
1894 	return res;
1895 }
1896 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1897 
1898 static struct attribute *cpuhp_cpu_root_attrs[] = {
1899 	&dev_attr_states.attr,
1900 	NULL
1901 };
1902 
1903 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1904 	.attrs = cpuhp_cpu_root_attrs,
1905 	.name = "hotplug",
1906 	NULL
1907 };
1908 
1909 static int __init cpuhp_sysfs_init(void)
1910 {
1911 	int cpu, ret;
1912 
1913 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1914 				 &cpuhp_cpu_root_attr_group);
1915 	if (ret)
1916 		return ret;
1917 
1918 	for_each_possible_cpu(cpu) {
1919 		struct device *dev = get_cpu_device(cpu);
1920 
1921 		if (!dev)
1922 			continue;
1923 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1924 		if (ret)
1925 			return ret;
1926 	}
1927 	return 0;
1928 }
1929 device_initcall(cpuhp_sysfs_init);
1930 #endif
1931 
1932 /*
1933  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1934  * represents all NR_CPUS bits binary values of 1<<nr.
1935  *
1936  * It is used by cpumask_of() to get a constant address to a CPU
1937  * mask value that has a single bit set only.
1938  */
1939 
1940 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1941 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1942 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1943 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1944 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1945 
1946 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1947 
1948 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1949 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1950 #if BITS_PER_LONG > 32
1951 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1952 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1953 #endif
1954 };
1955 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1956 
1957 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1958 EXPORT_SYMBOL(cpu_all_bits);
1959 
1960 #ifdef CONFIG_INIT_ALL_POSSIBLE
1961 struct cpumask __cpu_possible_mask __read_mostly
1962 	= {CPU_BITS_ALL};
1963 #else
1964 struct cpumask __cpu_possible_mask __read_mostly;
1965 #endif
1966 EXPORT_SYMBOL(__cpu_possible_mask);
1967 
1968 struct cpumask __cpu_online_mask __read_mostly;
1969 EXPORT_SYMBOL(__cpu_online_mask);
1970 
1971 struct cpumask __cpu_present_mask __read_mostly;
1972 EXPORT_SYMBOL(__cpu_present_mask);
1973 
1974 struct cpumask __cpu_active_mask __read_mostly;
1975 EXPORT_SYMBOL(__cpu_active_mask);
1976 
1977 void init_cpu_present(const struct cpumask *src)
1978 {
1979 	cpumask_copy(&__cpu_present_mask, src);
1980 }
1981 
1982 void init_cpu_possible(const struct cpumask *src)
1983 {
1984 	cpumask_copy(&__cpu_possible_mask, src);
1985 }
1986 
1987 void init_cpu_online(const struct cpumask *src)
1988 {
1989 	cpumask_copy(&__cpu_online_mask, src);
1990 }
1991 
1992 /*
1993  * Activate the first processor.
1994  */
1995 void __init boot_cpu_init(void)
1996 {
1997 	int cpu = smp_processor_id();
1998 
1999 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2000 	set_cpu_online(cpu, true);
2001 	set_cpu_active(cpu, true);
2002 	set_cpu_present(cpu, true);
2003 	set_cpu_possible(cpu, true);
2004 
2005 #ifdef CONFIG_SMP
2006 	__boot_cpu_id = cpu;
2007 #endif
2008 }
2009 
2010 /*
2011  * Must be called _AFTER_ setting up the per_cpu areas
2012  */
2013 void __init boot_cpu_state_init(void)
2014 {
2015 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2016 }
2017