xref: /openbmc/linux/kernel/cpu.c (revision 1eb4c977)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/export.h>
14 #include <linux/kthread.h>
15 #include <linux/stop_machine.h>
16 #include <linux/mutex.h>
17 #include <linux/gfp.h>
18 #include <linux/suspend.h>
19 
20 #ifdef CONFIG_SMP
21 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
22 static DEFINE_MUTEX(cpu_add_remove_lock);
23 
24 /*
25  * The following two API's must be used when attempting
26  * to serialize the updates to cpu_online_mask, cpu_present_mask.
27  */
28 void cpu_maps_update_begin(void)
29 {
30 	mutex_lock(&cpu_add_remove_lock);
31 }
32 
33 void cpu_maps_update_done(void)
34 {
35 	mutex_unlock(&cpu_add_remove_lock);
36 }
37 
38 static RAW_NOTIFIER_HEAD(cpu_chain);
39 
40 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
41  * Should always be manipulated under cpu_add_remove_lock
42  */
43 static int cpu_hotplug_disabled;
44 
45 #ifdef CONFIG_HOTPLUG_CPU
46 
47 static struct {
48 	struct task_struct *active_writer;
49 	struct mutex lock; /* Synchronizes accesses to refcount, */
50 	/*
51 	 * Also blocks the new readers during
52 	 * an ongoing cpu hotplug operation.
53 	 */
54 	int refcount;
55 } cpu_hotplug = {
56 	.active_writer = NULL,
57 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
58 	.refcount = 0,
59 };
60 
61 void get_online_cpus(void)
62 {
63 	might_sleep();
64 	if (cpu_hotplug.active_writer == current)
65 		return;
66 	mutex_lock(&cpu_hotplug.lock);
67 	cpu_hotplug.refcount++;
68 	mutex_unlock(&cpu_hotplug.lock);
69 
70 }
71 EXPORT_SYMBOL_GPL(get_online_cpus);
72 
73 void put_online_cpus(void)
74 {
75 	if (cpu_hotplug.active_writer == current)
76 		return;
77 	mutex_lock(&cpu_hotplug.lock);
78 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
79 		wake_up_process(cpu_hotplug.active_writer);
80 	mutex_unlock(&cpu_hotplug.lock);
81 
82 }
83 EXPORT_SYMBOL_GPL(put_online_cpus);
84 
85 /*
86  * This ensures that the hotplug operation can begin only when the
87  * refcount goes to zero.
88  *
89  * Note that during a cpu-hotplug operation, the new readers, if any,
90  * will be blocked by the cpu_hotplug.lock
91  *
92  * Since cpu_hotplug_begin() is always called after invoking
93  * cpu_maps_update_begin(), we can be sure that only one writer is active.
94  *
95  * Note that theoretically, there is a possibility of a livelock:
96  * - Refcount goes to zero, last reader wakes up the sleeping
97  *   writer.
98  * - Last reader unlocks the cpu_hotplug.lock.
99  * - A new reader arrives at this moment, bumps up the refcount.
100  * - The writer acquires the cpu_hotplug.lock finds the refcount
101  *   non zero and goes to sleep again.
102  *
103  * However, this is very difficult to achieve in practice since
104  * get_online_cpus() not an api which is called all that often.
105  *
106  */
107 static void cpu_hotplug_begin(void)
108 {
109 	cpu_hotplug.active_writer = current;
110 
111 	for (;;) {
112 		mutex_lock(&cpu_hotplug.lock);
113 		if (likely(!cpu_hotplug.refcount))
114 			break;
115 		__set_current_state(TASK_UNINTERRUPTIBLE);
116 		mutex_unlock(&cpu_hotplug.lock);
117 		schedule();
118 	}
119 }
120 
121 static void cpu_hotplug_done(void)
122 {
123 	cpu_hotplug.active_writer = NULL;
124 	mutex_unlock(&cpu_hotplug.lock);
125 }
126 
127 #else /* #if CONFIG_HOTPLUG_CPU */
128 static void cpu_hotplug_begin(void) {}
129 static void cpu_hotplug_done(void) {}
130 #endif	/* #else #if CONFIG_HOTPLUG_CPU */
131 
132 /* Need to know about CPUs going up/down? */
133 int __ref register_cpu_notifier(struct notifier_block *nb)
134 {
135 	int ret;
136 	cpu_maps_update_begin();
137 	ret = raw_notifier_chain_register(&cpu_chain, nb);
138 	cpu_maps_update_done();
139 	return ret;
140 }
141 
142 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
143 			int *nr_calls)
144 {
145 	int ret;
146 
147 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
148 					nr_calls);
149 
150 	return notifier_to_errno(ret);
151 }
152 
153 static int cpu_notify(unsigned long val, void *v)
154 {
155 	return __cpu_notify(val, v, -1, NULL);
156 }
157 
158 #ifdef CONFIG_HOTPLUG_CPU
159 
160 static void cpu_notify_nofail(unsigned long val, void *v)
161 {
162 	BUG_ON(cpu_notify(val, v));
163 }
164 EXPORT_SYMBOL(register_cpu_notifier);
165 
166 void __ref unregister_cpu_notifier(struct notifier_block *nb)
167 {
168 	cpu_maps_update_begin();
169 	raw_notifier_chain_unregister(&cpu_chain, nb);
170 	cpu_maps_update_done();
171 }
172 EXPORT_SYMBOL(unregister_cpu_notifier);
173 
174 static inline void check_for_tasks(int cpu)
175 {
176 	struct task_struct *p;
177 
178 	write_lock_irq(&tasklist_lock);
179 	for_each_process(p) {
180 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
181 		    (p->utime || p->stime))
182 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
183 				"(state = %ld, flags = %x)\n",
184 				p->comm, task_pid_nr(p), cpu,
185 				p->state, p->flags);
186 	}
187 	write_unlock_irq(&tasklist_lock);
188 }
189 
190 struct take_cpu_down_param {
191 	unsigned long mod;
192 	void *hcpu;
193 };
194 
195 /* Take this CPU down. */
196 static int __ref take_cpu_down(void *_param)
197 {
198 	struct take_cpu_down_param *param = _param;
199 	int err;
200 
201 	/* Ensure this CPU doesn't handle any more interrupts. */
202 	err = __cpu_disable();
203 	if (err < 0)
204 		return err;
205 
206 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
207 	return 0;
208 }
209 
210 /* Requires cpu_add_remove_lock to be held */
211 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
212 {
213 	int err, nr_calls = 0;
214 	void *hcpu = (void *)(long)cpu;
215 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
216 	struct take_cpu_down_param tcd_param = {
217 		.mod = mod,
218 		.hcpu = hcpu,
219 	};
220 
221 	if (num_online_cpus() == 1)
222 		return -EBUSY;
223 
224 	if (!cpu_online(cpu))
225 		return -EINVAL;
226 
227 	cpu_hotplug_begin();
228 
229 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
230 	if (err) {
231 		nr_calls--;
232 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
233 		printk("%s: attempt to take down CPU %u failed\n",
234 				__func__, cpu);
235 		goto out_release;
236 	}
237 
238 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
239 	if (err) {
240 		/* CPU didn't die: tell everyone.  Can't complain. */
241 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
242 
243 		goto out_release;
244 	}
245 	BUG_ON(cpu_online(cpu));
246 
247 	/*
248 	 * The migration_call() CPU_DYING callback will have removed all
249 	 * runnable tasks from the cpu, there's only the idle task left now
250 	 * that the migration thread is done doing the stop_machine thing.
251 	 *
252 	 * Wait for the stop thread to go away.
253 	 */
254 	while (!idle_cpu(cpu))
255 		cpu_relax();
256 
257 	/* This actually kills the CPU. */
258 	__cpu_die(cpu);
259 
260 	/* CPU is completely dead: tell everyone.  Too late to complain. */
261 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
262 
263 	check_for_tasks(cpu);
264 
265 out_release:
266 	cpu_hotplug_done();
267 	if (!err)
268 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
269 	return err;
270 }
271 
272 int __ref cpu_down(unsigned int cpu)
273 {
274 	int err;
275 
276 	cpu_maps_update_begin();
277 
278 	if (cpu_hotplug_disabled) {
279 		err = -EBUSY;
280 		goto out;
281 	}
282 
283 	err = _cpu_down(cpu, 0);
284 
285 out:
286 	cpu_maps_update_done();
287 	return err;
288 }
289 EXPORT_SYMBOL(cpu_down);
290 #endif /*CONFIG_HOTPLUG_CPU*/
291 
292 /* Requires cpu_add_remove_lock to be held */
293 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
294 {
295 	int ret, nr_calls = 0;
296 	void *hcpu = (void *)(long)cpu;
297 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
298 
299 	if (cpu_online(cpu) || !cpu_present(cpu))
300 		return -EINVAL;
301 
302 	cpu_hotplug_begin();
303 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
304 	if (ret) {
305 		nr_calls--;
306 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
307 				__func__, cpu);
308 		goto out_notify;
309 	}
310 
311 	/* Arch-specific enabling code. */
312 	ret = __cpu_up(cpu);
313 	if (ret != 0)
314 		goto out_notify;
315 	BUG_ON(!cpu_online(cpu));
316 
317 	/* Now call notifier in preparation. */
318 	cpu_notify(CPU_ONLINE | mod, hcpu);
319 
320 out_notify:
321 	if (ret != 0)
322 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
323 	cpu_hotplug_done();
324 
325 	return ret;
326 }
327 
328 int __cpuinit cpu_up(unsigned int cpu)
329 {
330 	int err = 0;
331 
332 #ifdef	CONFIG_MEMORY_HOTPLUG
333 	int nid;
334 	pg_data_t	*pgdat;
335 #endif
336 
337 	if (!cpu_possible(cpu)) {
338 		printk(KERN_ERR "can't online cpu %d because it is not "
339 			"configured as may-hotadd at boot time\n", cpu);
340 #if defined(CONFIG_IA64)
341 		printk(KERN_ERR "please check additional_cpus= boot "
342 				"parameter\n");
343 #endif
344 		return -EINVAL;
345 	}
346 
347 #ifdef	CONFIG_MEMORY_HOTPLUG
348 	nid = cpu_to_node(cpu);
349 	if (!node_online(nid)) {
350 		err = mem_online_node(nid);
351 		if (err)
352 			return err;
353 	}
354 
355 	pgdat = NODE_DATA(nid);
356 	if (!pgdat) {
357 		printk(KERN_ERR
358 			"Can't online cpu %d due to NULL pgdat\n", cpu);
359 		return -ENOMEM;
360 	}
361 
362 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
363 		mutex_lock(&zonelists_mutex);
364 		build_all_zonelists(NULL);
365 		mutex_unlock(&zonelists_mutex);
366 	}
367 #endif
368 
369 	cpu_maps_update_begin();
370 
371 	if (cpu_hotplug_disabled) {
372 		err = -EBUSY;
373 		goto out;
374 	}
375 
376 	err = _cpu_up(cpu, 0);
377 
378 out:
379 	cpu_maps_update_done();
380 	return err;
381 }
382 EXPORT_SYMBOL_GPL(cpu_up);
383 
384 #ifdef CONFIG_PM_SLEEP_SMP
385 static cpumask_var_t frozen_cpus;
386 
387 void __weak arch_disable_nonboot_cpus_begin(void)
388 {
389 }
390 
391 void __weak arch_disable_nonboot_cpus_end(void)
392 {
393 }
394 
395 int disable_nonboot_cpus(void)
396 {
397 	int cpu, first_cpu, error = 0;
398 
399 	cpu_maps_update_begin();
400 	first_cpu = cpumask_first(cpu_online_mask);
401 	/*
402 	 * We take down all of the non-boot CPUs in one shot to avoid races
403 	 * with the userspace trying to use the CPU hotplug at the same time
404 	 */
405 	cpumask_clear(frozen_cpus);
406 	arch_disable_nonboot_cpus_begin();
407 
408 	printk("Disabling non-boot CPUs ...\n");
409 	for_each_online_cpu(cpu) {
410 		if (cpu == first_cpu)
411 			continue;
412 		error = _cpu_down(cpu, 1);
413 		if (!error)
414 			cpumask_set_cpu(cpu, frozen_cpus);
415 		else {
416 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
417 				cpu, error);
418 			break;
419 		}
420 	}
421 
422 	arch_disable_nonboot_cpus_end();
423 
424 	if (!error) {
425 		BUG_ON(num_online_cpus() > 1);
426 		/* Make sure the CPUs won't be enabled by someone else */
427 		cpu_hotplug_disabled = 1;
428 	} else {
429 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
430 	}
431 	cpu_maps_update_done();
432 	return error;
433 }
434 
435 void __weak arch_enable_nonboot_cpus_begin(void)
436 {
437 }
438 
439 void __weak arch_enable_nonboot_cpus_end(void)
440 {
441 }
442 
443 void __ref enable_nonboot_cpus(void)
444 {
445 	int cpu, error;
446 
447 	/* Allow everyone to use the CPU hotplug again */
448 	cpu_maps_update_begin();
449 	cpu_hotplug_disabled = 0;
450 	if (cpumask_empty(frozen_cpus))
451 		goto out;
452 
453 	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
454 
455 	arch_enable_nonboot_cpus_begin();
456 
457 	for_each_cpu(cpu, frozen_cpus) {
458 		error = _cpu_up(cpu, 1);
459 		if (!error) {
460 			printk(KERN_INFO "CPU%d is up\n", cpu);
461 			continue;
462 		}
463 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
464 	}
465 
466 	arch_enable_nonboot_cpus_end();
467 
468 	cpumask_clear(frozen_cpus);
469 out:
470 	cpu_maps_update_done();
471 }
472 
473 static int __init alloc_frozen_cpus(void)
474 {
475 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
476 		return -ENOMEM;
477 	return 0;
478 }
479 core_initcall(alloc_frozen_cpus);
480 
481 /*
482  * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
483  * hotplug when tasks are about to be frozen. Also, don't allow the freezer
484  * to continue until any currently running CPU hotplug operation gets
485  * completed.
486  * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
487  * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
488  * CPU hotplug path and released only after it is complete. Thus, we
489  * (and hence the freezer) will block here until any currently running CPU
490  * hotplug operation gets completed.
491  */
492 void cpu_hotplug_disable_before_freeze(void)
493 {
494 	cpu_maps_update_begin();
495 	cpu_hotplug_disabled = 1;
496 	cpu_maps_update_done();
497 }
498 
499 
500 /*
501  * When tasks have been thawed, re-enable regular CPU hotplug (which had been
502  * disabled while beginning to freeze tasks).
503  */
504 void cpu_hotplug_enable_after_thaw(void)
505 {
506 	cpu_maps_update_begin();
507 	cpu_hotplug_disabled = 0;
508 	cpu_maps_update_done();
509 }
510 
511 /*
512  * When callbacks for CPU hotplug notifications are being executed, we must
513  * ensure that the state of the system with respect to the tasks being frozen
514  * or not, as reported by the notification, remains unchanged *throughout the
515  * duration* of the execution of the callbacks.
516  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
517  *
518  * This synchronization is implemented by mutually excluding regular CPU
519  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
520  * Hibernate notifications.
521  */
522 static int
523 cpu_hotplug_pm_callback(struct notifier_block *nb,
524 			unsigned long action, void *ptr)
525 {
526 	switch (action) {
527 
528 	case PM_SUSPEND_PREPARE:
529 	case PM_HIBERNATION_PREPARE:
530 		cpu_hotplug_disable_before_freeze();
531 		break;
532 
533 	case PM_POST_SUSPEND:
534 	case PM_POST_HIBERNATION:
535 		cpu_hotplug_enable_after_thaw();
536 		break;
537 
538 	default:
539 		return NOTIFY_DONE;
540 	}
541 
542 	return NOTIFY_OK;
543 }
544 
545 
546 static int __init cpu_hotplug_pm_sync_init(void)
547 {
548 	pm_notifier(cpu_hotplug_pm_callback, 0);
549 	return 0;
550 }
551 core_initcall(cpu_hotplug_pm_sync_init);
552 
553 #endif /* CONFIG_PM_SLEEP_SMP */
554 
555 /**
556  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
557  * @cpu: cpu that just started
558  *
559  * This function calls the cpu_chain notifiers with CPU_STARTING.
560  * It must be called by the arch code on the new cpu, before the new cpu
561  * enables interrupts and before the "boot" cpu returns from __cpu_up().
562  */
563 void __cpuinit notify_cpu_starting(unsigned int cpu)
564 {
565 	unsigned long val = CPU_STARTING;
566 
567 #ifdef CONFIG_PM_SLEEP_SMP
568 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
569 		val = CPU_STARTING_FROZEN;
570 #endif /* CONFIG_PM_SLEEP_SMP */
571 	cpu_notify(val, (void *)(long)cpu);
572 }
573 
574 #endif /* CONFIG_SMP */
575 
576 /*
577  * cpu_bit_bitmap[] is a special, "compressed" data structure that
578  * represents all NR_CPUS bits binary values of 1<<nr.
579  *
580  * It is used by cpumask_of() to get a constant address to a CPU
581  * mask value that has a single bit set only.
582  */
583 
584 /* cpu_bit_bitmap[0] is empty - so we can back into it */
585 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
586 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
587 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
588 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
589 
590 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
591 
592 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
593 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
594 #if BITS_PER_LONG > 32
595 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
596 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
597 #endif
598 };
599 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
600 
601 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
602 EXPORT_SYMBOL(cpu_all_bits);
603 
604 #ifdef CONFIG_INIT_ALL_POSSIBLE
605 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
606 	= CPU_BITS_ALL;
607 #else
608 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
609 #endif
610 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
611 EXPORT_SYMBOL(cpu_possible_mask);
612 
613 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
614 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
615 EXPORT_SYMBOL(cpu_online_mask);
616 
617 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
618 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
619 EXPORT_SYMBOL(cpu_present_mask);
620 
621 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
622 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
623 EXPORT_SYMBOL(cpu_active_mask);
624 
625 void set_cpu_possible(unsigned int cpu, bool possible)
626 {
627 	if (possible)
628 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
629 	else
630 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
631 }
632 
633 void set_cpu_present(unsigned int cpu, bool present)
634 {
635 	if (present)
636 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
637 	else
638 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
639 }
640 
641 void set_cpu_online(unsigned int cpu, bool online)
642 {
643 	if (online)
644 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
645 	else
646 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
647 }
648 
649 void set_cpu_active(unsigned int cpu, bool active)
650 {
651 	if (active)
652 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
653 	else
654 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
655 }
656 
657 void init_cpu_present(const struct cpumask *src)
658 {
659 	cpumask_copy(to_cpumask(cpu_present_bits), src);
660 }
661 
662 void init_cpu_possible(const struct cpumask *src)
663 {
664 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
665 }
666 
667 void init_cpu_online(const struct cpumask *src)
668 {
669 	cpumask_copy(to_cpumask(cpu_online_bits), src);
670 }
671