xref: /openbmc/linux/kernel/cpu.c (revision 110e6f26)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30 
31 #include "smpboot.h"
32 
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:	The current cpu state
36  * @target:	The target state
37  * @thread:	Pointer to the hotplug thread
38  * @should_run:	Thread should execute
39  * @cb_stat:	The state for a single callback (install/uninstall)
40  * @cb:		Single callback function (install/uninstall)
41  * @result:	Result of the operation
42  * @done:	Signal completion to the issuer of the task
43  */
44 struct cpuhp_cpu_state {
45 	enum cpuhp_state	state;
46 	enum cpuhp_state	target;
47 #ifdef CONFIG_SMP
48 	struct task_struct	*thread;
49 	bool			should_run;
50 	enum cpuhp_state	cb_state;
51 	int			(*cb)(unsigned int cpu);
52 	int			result;
53 	struct completion	done;
54 #endif
55 };
56 
57 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
58 
59 /**
60  * cpuhp_step - Hotplug state machine step
61  * @name:	Name of the step
62  * @startup:	Startup function of the step
63  * @teardown:	Teardown function of the step
64  * @skip_onerr:	Do not invoke the functions on error rollback
65  *		Will go away once the notifiers	are gone
66  * @cant_stop:	Bringup/teardown can't be stopped at this step
67  */
68 struct cpuhp_step {
69 	const char	*name;
70 	int		(*startup)(unsigned int cpu);
71 	int		(*teardown)(unsigned int cpu);
72 	bool		skip_onerr;
73 	bool		cant_stop;
74 };
75 
76 static DEFINE_MUTEX(cpuhp_state_mutex);
77 static struct cpuhp_step cpuhp_bp_states[];
78 static struct cpuhp_step cpuhp_ap_states[];
79 
80 /**
81  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
82  * @cpu:	The cpu for which the callback should be invoked
83  * @step:	The step in the state machine
84  * @cb:		The callback function to invoke
85  *
86  * Called from cpu hotplug and from the state register machinery
87  */
88 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
89 				 int (*cb)(unsigned int))
90 {
91 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
92 	int ret = 0;
93 
94 	if (cb) {
95 		trace_cpuhp_enter(cpu, st->target, step, cb);
96 		ret = cb(cpu);
97 		trace_cpuhp_exit(cpu, st->state, step, ret);
98 	}
99 	return ret;
100 }
101 
102 #ifdef CONFIG_SMP
103 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
104 static DEFINE_MUTEX(cpu_add_remove_lock);
105 bool cpuhp_tasks_frozen;
106 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
107 
108 /*
109  * The following two APIs (cpu_maps_update_begin/done) must be used when
110  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
111  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
112  * hotplug callback (un)registration performed using __register_cpu_notifier()
113  * or __unregister_cpu_notifier().
114  */
115 void cpu_maps_update_begin(void)
116 {
117 	mutex_lock(&cpu_add_remove_lock);
118 }
119 EXPORT_SYMBOL(cpu_notifier_register_begin);
120 
121 void cpu_maps_update_done(void)
122 {
123 	mutex_unlock(&cpu_add_remove_lock);
124 }
125 EXPORT_SYMBOL(cpu_notifier_register_done);
126 
127 static RAW_NOTIFIER_HEAD(cpu_chain);
128 
129 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
130  * Should always be manipulated under cpu_add_remove_lock
131  */
132 static int cpu_hotplug_disabled;
133 
134 #ifdef CONFIG_HOTPLUG_CPU
135 
136 static struct {
137 	struct task_struct *active_writer;
138 	/* wait queue to wake up the active_writer */
139 	wait_queue_head_t wq;
140 	/* verifies that no writer will get active while readers are active */
141 	struct mutex lock;
142 	/*
143 	 * Also blocks the new readers during
144 	 * an ongoing cpu hotplug operation.
145 	 */
146 	atomic_t refcount;
147 
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 	struct lockdep_map dep_map;
150 #endif
151 } cpu_hotplug = {
152 	.active_writer = NULL,
153 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
154 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
156 	.dep_map = {.name = "cpu_hotplug.lock" },
157 #endif
158 };
159 
160 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
161 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
162 #define cpuhp_lock_acquire_tryread() \
163 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
165 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
166 
167 
168 void get_online_cpus(void)
169 {
170 	might_sleep();
171 	if (cpu_hotplug.active_writer == current)
172 		return;
173 	cpuhp_lock_acquire_read();
174 	mutex_lock(&cpu_hotplug.lock);
175 	atomic_inc(&cpu_hotplug.refcount);
176 	mutex_unlock(&cpu_hotplug.lock);
177 }
178 EXPORT_SYMBOL_GPL(get_online_cpus);
179 
180 void put_online_cpus(void)
181 {
182 	int refcount;
183 
184 	if (cpu_hotplug.active_writer == current)
185 		return;
186 
187 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
188 	if (WARN_ON(refcount < 0)) /* try to fix things up */
189 		atomic_inc(&cpu_hotplug.refcount);
190 
191 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
192 		wake_up(&cpu_hotplug.wq);
193 
194 	cpuhp_lock_release();
195 
196 }
197 EXPORT_SYMBOL_GPL(put_online_cpus);
198 
199 /*
200  * This ensures that the hotplug operation can begin only when the
201  * refcount goes to zero.
202  *
203  * Note that during a cpu-hotplug operation, the new readers, if any,
204  * will be blocked by the cpu_hotplug.lock
205  *
206  * Since cpu_hotplug_begin() is always called after invoking
207  * cpu_maps_update_begin(), we can be sure that only one writer is active.
208  *
209  * Note that theoretically, there is a possibility of a livelock:
210  * - Refcount goes to zero, last reader wakes up the sleeping
211  *   writer.
212  * - Last reader unlocks the cpu_hotplug.lock.
213  * - A new reader arrives at this moment, bumps up the refcount.
214  * - The writer acquires the cpu_hotplug.lock finds the refcount
215  *   non zero and goes to sleep again.
216  *
217  * However, this is very difficult to achieve in practice since
218  * get_online_cpus() not an api which is called all that often.
219  *
220  */
221 void cpu_hotplug_begin(void)
222 {
223 	DEFINE_WAIT(wait);
224 
225 	cpu_hotplug.active_writer = current;
226 	cpuhp_lock_acquire();
227 
228 	for (;;) {
229 		mutex_lock(&cpu_hotplug.lock);
230 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
231 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
232 				break;
233 		mutex_unlock(&cpu_hotplug.lock);
234 		schedule();
235 	}
236 	finish_wait(&cpu_hotplug.wq, &wait);
237 }
238 
239 void cpu_hotplug_done(void)
240 {
241 	cpu_hotplug.active_writer = NULL;
242 	mutex_unlock(&cpu_hotplug.lock);
243 	cpuhp_lock_release();
244 }
245 
246 /*
247  * Wait for currently running CPU hotplug operations to complete (if any) and
248  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
249  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
250  * hotplug path before performing hotplug operations. So acquiring that lock
251  * guarantees mutual exclusion from any currently running hotplug operations.
252  */
253 void cpu_hotplug_disable(void)
254 {
255 	cpu_maps_update_begin();
256 	cpu_hotplug_disabled++;
257 	cpu_maps_update_done();
258 }
259 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
260 
261 void cpu_hotplug_enable(void)
262 {
263 	cpu_maps_update_begin();
264 	WARN_ON(--cpu_hotplug_disabled < 0);
265 	cpu_maps_update_done();
266 }
267 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
268 #endif	/* CONFIG_HOTPLUG_CPU */
269 
270 /* Need to know about CPUs going up/down? */
271 int register_cpu_notifier(struct notifier_block *nb)
272 {
273 	int ret;
274 	cpu_maps_update_begin();
275 	ret = raw_notifier_chain_register(&cpu_chain, nb);
276 	cpu_maps_update_done();
277 	return ret;
278 }
279 
280 int __register_cpu_notifier(struct notifier_block *nb)
281 {
282 	return raw_notifier_chain_register(&cpu_chain, nb);
283 }
284 
285 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
286 			int *nr_calls)
287 {
288 	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
289 	void *hcpu = (void *)(long)cpu;
290 
291 	int ret;
292 
293 	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
294 					nr_calls);
295 
296 	return notifier_to_errno(ret);
297 }
298 
299 static int cpu_notify(unsigned long val, unsigned int cpu)
300 {
301 	return __cpu_notify(val, cpu, -1, NULL);
302 }
303 
304 /* Notifier wrappers for transitioning to state machine */
305 static int notify_prepare(unsigned int cpu)
306 {
307 	int nr_calls = 0;
308 	int ret;
309 
310 	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
311 	if (ret) {
312 		nr_calls--;
313 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
314 				__func__, cpu);
315 		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
316 	}
317 	return ret;
318 }
319 
320 static int notify_online(unsigned int cpu)
321 {
322 	cpu_notify(CPU_ONLINE, cpu);
323 	return 0;
324 }
325 
326 static int notify_starting(unsigned int cpu)
327 {
328 	cpu_notify(CPU_STARTING, cpu);
329 	return 0;
330 }
331 
332 static int bringup_wait_for_ap(unsigned int cpu)
333 {
334 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
335 
336 	wait_for_completion(&st->done);
337 	return st->result;
338 }
339 
340 static int bringup_cpu(unsigned int cpu)
341 {
342 	struct task_struct *idle = idle_thread_get(cpu);
343 	int ret;
344 
345 	/* Arch-specific enabling code. */
346 	ret = __cpu_up(cpu, idle);
347 	if (ret) {
348 		cpu_notify(CPU_UP_CANCELED, cpu);
349 		return ret;
350 	}
351 	ret = bringup_wait_for_ap(cpu);
352 	BUG_ON(!cpu_online(cpu));
353 	return ret;
354 }
355 
356 /*
357  * Hotplug state machine related functions
358  */
359 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
360 			  struct cpuhp_step *steps)
361 {
362 	for (st->state++; st->state < st->target; st->state++) {
363 		struct cpuhp_step *step = steps + st->state;
364 
365 		if (!step->skip_onerr)
366 			cpuhp_invoke_callback(cpu, st->state, step->startup);
367 	}
368 }
369 
370 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
371 				struct cpuhp_step *steps, enum cpuhp_state target)
372 {
373 	enum cpuhp_state prev_state = st->state;
374 	int ret = 0;
375 
376 	for (; st->state > target; st->state--) {
377 		struct cpuhp_step *step = steps + st->state;
378 
379 		ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
380 		if (ret) {
381 			st->target = prev_state;
382 			undo_cpu_down(cpu, st, steps);
383 			break;
384 		}
385 	}
386 	return ret;
387 }
388 
389 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
390 			struct cpuhp_step *steps)
391 {
392 	for (st->state--; st->state > st->target; st->state--) {
393 		struct cpuhp_step *step = steps + st->state;
394 
395 		if (!step->skip_onerr)
396 			cpuhp_invoke_callback(cpu, st->state, step->teardown);
397 	}
398 }
399 
400 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
401 			      struct cpuhp_step *steps, enum cpuhp_state target)
402 {
403 	enum cpuhp_state prev_state = st->state;
404 	int ret = 0;
405 
406 	while (st->state < target) {
407 		struct cpuhp_step *step;
408 
409 		st->state++;
410 		step = steps + st->state;
411 		ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
412 		if (ret) {
413 			st->target = prev_state;
414 			undo_cpu_up(cpu, st, steps);
415 			break;
416 		}
417 	}
418 	return ret;
419 }
420 
421 /*
422  * The cpu hotplug threads manage the bringup and teardown of the cpus
423  */
424 static void cpuhp_create(unsigned int cpu)
425 {
426 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
427 
428 	init_completion(&st->done);
429 }
430 
431 static int cpuhp_should_run(unsigned int cpu)
432 {
433 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
434 
435 	return st->should_run;
436 }
437 
438 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
439 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
440 {
441 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
442 
443 	return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
444 }
445 
446 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
447 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
448 {
449 	return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
450 }
451 
452 /*
453  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
454  * callbacks when a state gets [un]installed at runtime.
455  */
456 static void cpuhp_thread_fun(unsigned int cpu)
457 {
458 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
459 	int ret = 0;
460 
461 	/*
462 	 * Paired with the mb() in cpuhp_kick_ap_work and
463 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
464 	 */
465 	smp_mb();
466 	if (!st->should_run)
467 		return;
468 
469 	st->should_run = false;
470 
471 	/* Single callback invocation for [un]install ? */
472 	if (st->cb) {
473 		if (st->cb_state < CPUHP_AP_ONLINE) {
474 			local_irq_disable();
475 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
476 			local_irq_enable();
477 		} else {
478 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
479 		}
480 	} else {
481 		/* Cannot happen .... */
482 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
483 
484 		/* Regular hotplug work */
485 		if (st->state < st->target)
486 			ret = cpuhp_ap_online(cpu, st);
487 		else if (st->state > st->target)
488 			ret = cpuhp_ap_offline(cpu, st);
489 	}
490 	st->result = ret;
491 	complete(&st->done);
492 }
493 
494 /* Invoke a single callback on a remote cpu */
495 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
496 				    int (*cb)(unsigned int))
497 {
498 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
499 
500 	if (!cpu_online(cpu))
501 		return 0;
502 
503 	st->cb_state = state;
504 	st->cb = cb;
505 	/*
506 	 * Make sure the above stores are visible before should_run becomes
507 	 * true. Paired with the mb() above in cpuhp_thread_fun()
508 	 */
509 	smp_mb();
510 	st->should_run = true;
511 	wake_up_process(st->thread);
512 	wait_for_completion(&st->done);
513 	return st->result;
514 }
515 
516 /* Regular hotplug invocation of the AP hotplug thread */
517 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
518 {
519 	st->result = 0;
520 	st->cb = NULL;
521 	/*
522 	 * Make sure the above stores are visible before should_run becomes
523 	 * true. Paired with the mb() above in cpuhp_thread_fun()
524 	 */
525 	smp_mb();
526 	st->should_run = true;
527 	wake_up_process(st->thread);
528 }
529 
530 static int cpuhp_kick_ap_work(unsigned int cpu)
531 {
532 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
533 	enum cpuhp_state state = st->state;
534 
535 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
536 	__cpuhp_kick_ap_work(st);
537 	wait_for_completion(&st->done);
538 	trace_cpuhp_exit(cpu, st->state, state, st->result);
539 	return st->result;
540 }
541 
542 static struct smp_hotplug_thread cpuhp_threads = {
543 	.store			= &cpuhp_state.thread,
544 	.create			= &cpuhp_create,
545 	.thread_should_run	= cpuhp_should_run,
546 	.thread_fn		= cpuhp_thread_fun,
547 	.thread_comm		= "cpuhp/%u",
548 	.selfparking		= true,
549 };
550 
551 void __init cpuhp_threads_init(void)
552 {
553 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
554 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
555 }
556 
557 #ifdef CONFIG_HOTPLUG_CPU
558 EXPORT_SYMBOL(register_cpu_notifier);
559 EXPORT_SYMBOL(__register_cpu_notifier);
560 void unregister_cpu_notifier(struct notifier_block *nb)
561 {
562 	cpu_maps_update_begin();
563 	raw_notifier_chain_unregister(&cpu_chain, nb);
564 	cpu_maps_update_done();
565 }
566 EXPORT_SYMBOL(unregister_cpu_notifier);
567 
568 void __unregister_cpu_notifier(struct notifier_block *nb)
569 {
570 	raw_notifier_chain_unregister(&cpu_chain, nb);
571 }
572 EXPORT_SYMBOL(__unregister_cpu_notifier);
573 
574 /**
575  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
576  * @cpu: a CPU id
577  *
578  * This function walks all processes, finds a valid mm struct for each one and
579  * then clears a corresponding bit in mm's cpumask.  While this all sounds
580  * trivial, there are various non-obvious corner cases, which this function
581  * tries to solve in a safe manner.
582  *
583  * Also note that the function uses a somewhat relaxed locking scheme, so it may
584  * be called only for an already offlined CPU.
585  */
586 void clear_tasks_mm_cpumask(int cpu)
587 {
588 	struct task_struct *p;
589 
590 	/*
591 	 * This function is called after the cpu is taken down and marked
592 	 * offline, so its not like new tasks will ever get this cpu set in
593 	 * their mm mask. -- Peter Zijlstra
594 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
595 	 * full-fledged tasklist_lock.
596 	 */
597 	WARN_ON(cpu_online(cpu));
598 	rcu_read_lock();
599 	for_each_process(p) {
600 		struct task_struct *t;
601 
602 		/*
603 		 * Main thread might exit, but other threads may still have
604 		 * a valid mm. Find one.
605 		 */
606 		t = find_lock_task_mm(p);
607 		if (!t)
608 			continue;
609 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
610 		task_unlock(t);
611 	}
612 	rcu_read_unlock();
613 }
614 
615 static inline void check_for_tasks(int dead_cpu)
616 {
617 	struct task_struct *g, *p;
618 
619 	read_lock(&tasklist_lock);
620 	for_each_process_thread(g, p) {
621 		if (!p->on_rq)
622 			continue;
623 		/*
624 		 * We do the check with unlocked task_rq(p)->lock.
625 		 * Order the reading to do not warn about a task,
626 		 * which was running on this cpu in the past, and
627 		 * it's just been woken on another cpu.
628 		 */
629 		rmb();
630 		if (task_cpu(p) != dead_cpu)
631 			continue;
632 
633 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
634 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
635 	}
636 	read_unlock(&tasklist_lock);
637 }
638 
639 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
640 {
641 	BUG_ON(cpu_notify(val, cpu));
642 }
643 
644 static int notify_down_prepare(unsigned int cpu)
645 {
646 	int err, nr_calls = 0;
647 
648 	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
649 	if (err) {
650 		nr_calls--;
651 		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
652 		pr_warn("%s: attempt to take down CPU %u failed\n",
653 				__func__, cpu);
654 	}
655 	return err;
656 }
657 
658 static int notify_dying(unsigned int cpu)
659 {
660 	cpu_notify(CPU_DYING, cpu);
661 	return 0;
662 }
663 
664 /* Take this CPU down. */
665 static int take_cpu_down(void *_param)
666 {
667 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
668 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
669 	int err, cpu = smp_processor_id();
670 
671 	/* Ensure this CPU doesn't handle any more interrupts. */
672 	err = __cpu_disable();
673 	if (err < 0)
674 		return err;
675 
676 	/* Invoke the former CPU_DYING callbacks */
677 	for (; st->state > target; st->state--) {
678 		struct cpuhp_step *step = cpuhp_ap_states + st->state;
679 
680 		cpuhp_invoke_callback(cpu, st->state, step->teardown);
681 	}
682 	/* Give up timekeeping duties */
683 	tick_handover_do_timer();
684 	/* Park the stopper thread */
685 	stop_machine_park(cpu);
686 	return 0;
687 }
688 
689 static int takedown_cpu(unsigned int cpu)
690 {
691 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
692 	int err;
693 
694 	/*
695 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
696 	 * and RCU users of this state to go away such that all new such users
697 	 * will observe it.
698 	 *
699 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
700 	 * not imply sync_sched(), so wait for both.
701 	 *
702 	 * Do sync before park smpboot threads to take care the rcu boost case.
703 	 */
704 	if (IS_ENABLED(CONFIG_PREEMPT))
705 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
706 	else
707 		synchronize_rcu();
708 
709 	/* Park the smpboot threads */
710 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
711 	smpboot_park_threads(cpu);
712 
713 	/*
714 	 * Prevent irq alloc/free while the dying cpu reorganizes the
715 	 * interrupt affinities.
716 	 */
717 	irq_lock_sparse();
718 
719 	/*
720 	 * So now all preempt/rcu users must observe !cpu_active().
721 	 */
722 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
723 	if (err) {
724 		/* CPU didn't die: tell everyone.  Can't complain. */
725 		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
726 		irq_unlock_sparse();
727 		return err;
728 	}
729 	BUG_ON(cpu_online(cpu));
730 
731 	/*
732 	 * The migration_call() CPU_DYING callback will have removed all
733 	 * runnable tasks from the cpu, there's only the idle task left now
734 	 * that the migration thread is done doing the stop_machine thing.
735 	 *
736 	 * Wait for the stop thread to go away.
737 	 */
738 	wait_for_completion(&st->done);
739 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
740 
741 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
742 	irq_unlock_sparse();
743 
744 	hotplug_cpu__broadcast_tick_pull(cpu);
745 	/* This actually kills the CPU. */
746 	__cpu_die(cpu);
747 
748 	tick_cleanup_dead_cpu(cpu);
749 	return 0;
750 }
751 
752 static int notify_dead(unsigned int cpu)
753 {
754 	cpu_notify_nofail(CPU_DEAD, cpu);
755 	check_for_tasks(cpu);
756 	return 0;
757 }
758 
759 static void cpuhp_complete_idle_dead(void *arg)
760 {
761 	struct cpuhp_cpu_state *st = arg;
762 
763 	complete(&st->done);
764 }
765 
766 void cpuhp_report_idle_dead(void)
767 {
768 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
769 
770 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
771 	rcu_report_dead(smp_processor_id());
772 	st->state = CPUHP_AP_IDLE_DEAD;
773 	/*
774 	 * We cannot call complete after rcu_report_dead() so we delegate it
775 	 * to an online cpu.
776 	 */
777 	smp_call_function_single(cpumask_first(cpu_online_mask),
778 				 cpuhp_complete_idle_dead, st, 0);
779 }
780 
781 #else
782 #define notify_down_prepare	NULL
783 #define takedown_cpu		NULL
784 #define notify_dead		NULL
785 #define notify_dying		NULL
786 #endif
787 
788 #ifdef CONFIG_HOTPLUG_CPU
789 
790 /* Requires cpu_add_remove_lock to be held */
791 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
792 			   enum cpuhp_state target)
793 {
794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 	int prev_state, ret = 0;
796 	bool hasdied = false;
797 
798 	if (num_online_cpus() == 1)
799 		return -EBUSY;
800 
801 	if (!cpu_present(cpu))
802 		return -EINVAL;
803 
804 	cpu_hotplug_begin();
805 
806 	cpuhp_tasks_frozen = tasks_frozen;
807 
808 	prev_state = st->state;
809 	st->target = target;
810 	/*
811 	 * If the current CPU state is in the range of the AP hotplug thread,
812 	 * then we need to kick the thread.
813 	 */
814 	if (st->state > CPUHP_TEARDOWN_CPU) {
815 		ret = cpuhp_kick_ap_work(cpu);
816 		/*
817 		 * The AP side has done the error rollback already. Just
818 		 * return the error code..
819 		 */
820 		if (ret)
821 			goto out;
822 
823 		/*
824 		 * We might have stopped still in the range of the AP hotplug
825 		 * thread. Nothing to do anymore.
826 		 */
827 		if (st->state > CPUHP_TEARDOWN_CPU)
828 			goto out;
829 	}
830 	/*
831 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
832 	 * to do the further cleanups.
833 	 */
834 	ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
835 
836 	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
837 out:
838 	cpu_hotplug_done();
839 	/* This post dead nonsense must die */
840 	if (!ret && hasdied)
841 		cpu_notify_nofail(CPU_POST_DEAD, cpu);
842 	return ret;
843 }
844 
845 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
846 {
847 	int err;
848 
849 	cpu_maps_update_begin();
850 
851 	if (cpu_hotplug_disabled) {
852 		err = -EBUSY;
853 		goto out;
854 	}
855 
856 	err = _cpu_down(cpu, 0, target);
857 
858 out:
859 	cpu_maps_update_done();
860 	return err;
861 }
862 int cpu_down(unsigned int cpu)
863 {
864 	return do_cpu_down(cpu, CPUHP_OFFLINE);
865 }
866 EXPORT_SYMBOL(cpu_down);
867 #endif /*CONFIG_HOTPLUG_CPU*/
868 
869 /**
870  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
871  * @cpu: cpu that just started
872  *
873  * This function calls the cpu_chain notifiers with CPU_STARTING.
874  * It must be called by the arch code on the new cpu, before the new cpu
875  * enables interrupts and before the "boot" cpu returns from __cpu_up().
876  */
877 void notify_cpu_starting(unsigned int cpu)
878 {
879 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
880 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
881 
882 	while (st->state < target) {
883 		struct cpuhp_step *step;
884 
885 		st->state++;
886 		step = cpuhp_ap_states + st->state;
887 		cpuhp_invoke_callback(cpu, st->state, step->startup);
888 	}
889 }
890 
891 /*
892  * Called from the idle task. We need to set active here, so we can kick off
893  * the stopper thread and unpark the smpboot threads. If the target state is
894  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
895  * cpu further.
896  */
897 void cpuhp_online_idle(enum cpuhp_state state)
898 {
899 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
900 	unsigned int cpu = smp_processor_id();
901 
902 	/* Happens for the boot cpu */
903 	if (state != CPUHP_AP_ONLINE_IDLE)
904 		return;
905 
906 	st->state = CPUHP_AP_ONLINE_IDLE;
907 
908 	/* The cpu is marked online, set it active now */
909 	set_cpu_active(cpu, true);
910 	/* Unpark the stopper thread and the hotplug thread of this cpu */
911 	stop_machine_unpark(cpu);
912 	kthread_unpark(st->thread);
913 
914 	/* Should we go further up ? */
915 	if (st->target > CPUHP_AP_ONLINE_IDLE)
916 		__cpuhp_kick_ap_work(st);
917 	else
918 		complete(&st->done);
919 }
920 
921 /* Requires cpu_add_remove_lock to be held */
922 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
923 {
924 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
925 	struct task_struct *idle;
926 	int ret = 0;
927 
928 	cpu_hotplug_begin();
929 
930 	if (!cpu_present(cpu)) {
931 		ret = -EINVAL;
932 		goto out;
933 	}
934 
935 	/*
936 	 * The caller of do_cpu_up might have raced with another
937 	 * caller. Ignore it for now.
938 	 */
939 	if (st->state >= target)
940 		goto out;
941 
942 	if (st->state == CPUHP_OFFLINE) {
943 		/* Let it fail before we try to bring the cpu up */
944 		idle = idle_thread_get(cpu);
945 		if (IS_ERR(idle)) {
946 			ret = PTR_ERR(idle);
947 			goto out;
948 		}
949 	}
950 
951 	cpuhp_tasks_frozen = tasks_frozen;
952 
953 	st->target = target;
954 	/*
955 	 * If the current CPU state is in the range of the AP hotplug thread,
956 	 * then we need to kick the thread once more.
957 	 */
958 	if (st->state > CPUHP_BRINGUP_CPU) {
959 		ret = cpuhp_kick_ap_work(cpu);
960 		/*
961 		 * The AP side has done the error rollback already. Just
962 		 * return the error code..
963 		 */
964 		if (ret)
965 			goto out;
966 	}
967 
968 	/*
969 	 * Try to reach the target state. We max out on the BP at
970 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
971 	 * responsible for bringing it up to the target state.
972 	 */
973 	target = min((int)target, CPUHP_BRINGUP_CPU);
974 	ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
975 out:
976 	cpu_hotplug_done();
977 	return ret;
978 }
979 
980 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
981 {
982 	int err = 0;
983 
984 	if (!cpu_possible(cpu)) {
985 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
986 		       cpu);
987 #if defined(CONFIG_IA64)
988 		pr_err("please check additional_cpus= boot parameter\n");
989 #endif
990 		return -EINVAL;
991 	}
992 
993 	err = try_online_node(cpu_to_node(cpu));
994 	if (err)
995 		return err;
996 
997 	cpu_maps_update_begin();
998 
999 	if (cpu_hotplug_disabled) {
1000 		err = -EBUSY;
1001 		goto out;
1002 	}
1003 
1004 	err = _cpu_up(cpu, 0, target);
1005 out:
1006 	cpu_maps_update_done();
1007 	return err;
1008 }
1009 
1010 int cpu_up(unsigned int cpu)
1011 {
1012 	return do_cpu_up(cpu, CPUHP_ONLINE);
1013 }
1014 EXPORT_SYMBOL_GPL(cpu_up);
1015 
1016 #ifdef CONFIG_PM_SLEEP_SMP
1017 static cpumask_var_t frozen_cpus;
1018 
1019 int disable_nonboot_cpus(void)
1020 {
1021 	int cpu, first_cpu, error = 0;
1022 
1023 	cpu_maps_update_begin();
1024 	first_cpu = cpumask_first(cpu_online_mask);
1025 	/*
1026 	 * We take down all of the non-boot CPUs in one shot to avoid races
1027 	 * with the userspace trying to use the CPU hotplug at the same time
1028 	 */
1029 	cpumask_clear(frozen_cpus);
1030 
1031 	pr_info("Disabling non-boot CPUs ...\n");
1032 	for_each_online_cpu(cpu) {
1033 		if (cpu == first_cpu)
1034 			continue;
1035 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1036 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1037 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1038 		if (!error)
1039 			cpumask_set_cpu(cpu, frozen_cpus);
1040 		else {
1041 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1042 			break;
1043 		}
1044 	}
1045 
1046 	if (!error)
1047 		BUG_ON(num_online_cpus() > 1);
1048 	else
1049 		pr_err("Non-boot CPUs are not disabled\n");
1050 
1051 	/*
1052 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1053 	 * this even in case of failure as all disable_nonboot_cpus() users are
1054 	 * supposed to do enable_nonboot_cpus() on the failure path.
1055 	 */
1056 	cpu_hotplug_disabled++;
1057 
1058 	cpu_maps_update_done();
1059 	return error;
1060 }
1061 
1062 void __weak arch_enable_nonboot_cpus_begin(void)
1063 {
1064 }
1065 
1066 void __weak arch_enable_nonboot_cpus_end(void)
1067 {
1068 }
1069 
1070 void enable_nonboot_cpus(void)
1071 {
1072 	int cpu, error;
1073 
1074 	/* Allow everyone to use the CPU hotplug again */
1075 	cpu_maps_update_begin();
1076 	WARN_ON(--cpu_hotplug_disabled < 0);
1077 	if (cpumask_empty(frozen_cpus))
1078 		goto out;
1079 
1080 	pr_info("Enabling non-boot CPUs ...\n");
1081 
1082 	arch_enable_nonboot_cpus_begin();
1083 
1084 	for_each_cpu(cpu, frozen_cpus) {
1085 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1086 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1087 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1088 		if (!error) {
1089 			pr_info("CPU%d is up\n", cpu);
1090 			continue;
1091 		}
1092 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1093 	}
1094 
1095 	arch_enable_nonboot_cpus_end();
1096 
1097 	cpumask_clear(frozen_cpus);
1098 out:
1099 	cpu_maps_update_done();
1100 }
1101 
1102 static int __init alloc_frozen_cpus(void)
1103 {
1104 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1105 		return -ENOMEM;
1106 	return 0;
1107 }
1108 core_initcall(alloc_frozen_cpus);
1109 
1110 /*
1111  * When callbacks for CPU hotplug notifications are being executed, we must
1112  * ensure that the state of the system with respect to the tasks being frozen
1113  * or not, as reported by the notification, remains unchanged *throughout the
1114  * duration* of the execution of the callbacks.
1115  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1116  *
1117  * This synchronization is implemented by mutually excluding regular CPU
1118  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1119  * Hibernate notifications.
1120  */
1121 static int
1122 cpu_hotplug_pm_callback(struct notifier_block *nb,
1123 			unsigned long action, void *ptr)
1124 {
1125 	switch (action) {
1126 
1127 	case PM_SUSPEND_PREPARE:
1128 	case PM_HIBERNATION_PREPARE:
1129 		cpu_hotplug_disable();
1130 		break;
1131 
1132 	case PM_POST_SUSPEND:
1133 	case PM_POST_HIBERNATION:
1134 		cpu_hotplug_enable();
1135 		break;
1136 
1137 	default:
1138 		return NOTIFY_DONE;
1139 	}
1140 
1141 	return NOTIFY_OK;
1142 }
1143 
1144 
1145 static int __init cpu_hotplug_pm_sync_init(void)
1146 {
1147 	/*
1148 	 * cpu_hotplug_pm_callback has higher priority than x86
1149 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1150 	 * to disable cpu hotplug to avoid cpu hotplug race.
1151 	 */
1152 	pm_notifier(cpu_hotplug_pm_callback, 0);
1153 	return 0;
1154 }
1155 core_initcall(cpu_hotplug_pm_sync_init);
1156 
1157 #endif /* CONFIG_PM_SLEEP_SMP */
1158 
1159 #endif /* CONFIG_SMP */
1160 
1161 /* Boot processor state steps */
1162 static struct cpuhp_step cpuhp_bp_states[] = {
1163 	[CPUHP_OFFLINE] = {
1164 		.name			= "offline",
1165 		.startup		= NULL,
1166 		.teardown		= NULL,
1167 	},
1168 #ifdef CONFIG_SMP
1169 	[CPUHP_CREATE_THREADS]= {
1170 		.name			= "threads:create",
1171 		.startup		= smpboot_create_threads,
1172 		.teardown		= NULL,
1173 		.cant_stop		= true,
1174 	},
1175 	/*
1176 	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1177 	 * are converted to states.
1178 	 */
1179 	[CPUHP_NOTIFY_PREPARE] = {
1180 		.name			= "notify:prepare",
1181 		.startup		= notify_prepare,
1182 		.teardown		= notify_dead,
1183 		.skip_onerr		= true,
1184 		.cant_stop		= true,
1185 	},
1186 	/* Kicks the plugged cpu into life */
1187 	[CPUHP_BRINGUP_CPU] = {
1188 		.name			= "cpu:bringup",
1189 		.startup		= bringup_cpu,
1190 		.teardown		= NULL,
1191 		.cant_stop		= true,
1192 	},
1193 	/*
1194 	 * Handled on controll processor until the plugged processor manages
1195 	 * this itself.
1196 	 */
1197 	[CPUHP_TEARDOWN_CPU] = {
1198 		.name			= "cpu:teardown",
1199 		.startup		= NULL,
1200 		.teardown		= takedown_cpu,
1201 		.cant_stop		= true,
1202 	},
1203 #endif
1204 };
1205 
1206 /* Application processor state steps */
1207 static struct cpuhp_step cpuhp_ap_states[] = {
1208 #ifdef CONFIG_SMP
1209 	/* Final state before CPU kills itself */
1210 	[CPUHP_AP_IDLE_DEAD] = {
1211 		.name			= "idle:dead",
1212 	},
1213 	/*
1214 	 * Last state before CPU enters the idle loop to die. Transient state
1215 	 * for synchronization.
1216 	 */
1217 	[CPUHP_AP_OFFLINE] = {
1218 		.name			= "ap:offline",
1219 		.cant_stop		= true,
1220 	},
1221 	/*
1222 	 * Low level startup/teardown notifiers. Run with interrupts
1223 	 * disabled. Will be removed once the notifiers are converted to
1224 	 * states.
1225 	 */
1226 	[CPUHP_AP_NOTIFY_STARTING] = {
1227 		.name			= "notify:starting",
1228 		.startup		= notify_starting,
1229 		.teardown		= notify_dying,
1230 		.skip_onerr		= true,
1231 		.cant_stop		= true,
1232 	},
1233 	/* Entry state on starting. Interrupts enabled from here on. Transient
1234 	 * state for synchronsization */
1235 	[CPUHP_AP_ONLINE] = {
1236 		.name			= "ap:online",
1237 	},
1238 	/* Handle smpboot threads park/unpark */
1239 	[CPUHP_AP_SMPBOOT_THREADS] = {
1240 		.name			= "smpboot:threads",
1241 		.startup		= smpboot_unpark_threads,
1242 		.teardown		= NULL,
1243 	},
1244 	/*
1245 	 * Online/down_prepare notifiers. Will be removed once the notifiers
1246 	 * are converted to states.
1247 	 */
1248 	[CPUHP_AP_NOTIFY_ONLINE] = {
1249 		.name			= "notify:online",
1250 		.startup		= notify_online,
1251 		.teardown		= notify_down_prepare,
1252 	},
1253 #endif
1254 	/*
1255 	 * The dynamically registered state space is here
1256 	 */
1257 
1258 	/* CPU is fully up and running. */
1259 	[CPUHP_ONLINE] = {
1260 		.name			= "online",
1261 		.startup		= NULL,
1262 		.teardown		= NULL,
1263 	},
1264 };
1265 
1266 /* Sanity check for callbacks */
1267 static int cpuhp_cb_check(enum cpuhp_state state)
1268 {
1269 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1270 		return -EINVAL;
1271 	return 0;
1272 }
1273 
1274 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1275 {
1276 	/*
1277 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1278 	 * purposes as that state is handled explicitely in cpu_down.
1279 	 */
1280 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1281 }
1282 
1283 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1284 {
1285 	struct cpuhp_step *sp;
1286 
1287 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1288 	return sp + state;
1289 }
1290 
1291 static void cpuhp_store_callbacks(enum cpuhp_state state,
1292 				  const char *name,
1293 				  int (*startup)(unsigned int cpu),
1294 				  int (*teardown)(unsigned int cpu))
1295 {
1296 	/* (Un)Install the callbacks for further cpu hotplug operations */
1297 	struct cpuhp_step *sp;
1298 
1299 	mutex_lock(&cpuhp_state_mutex);
1300 	sp = cpuhp_get_step(state);
1301 	sp->startup = startup;
1302 	sp->teardown = teardown;
1303 	sp->name = name;
1304 	mutex_unlock(&cpuhp_state_mutex);
1305 }
1306 
1307 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1308 {
1309 	return cpuhp_get_step(state)->teardown;
1310 }
1311 
1312 /*
1313  * Call the startup/teardown function for a step either on the AP or
1314  * on the current CPU.
1315  */
1316 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1317 			    int (*cb)(unsigned int), bool bringup)
1318 {
1319 	int ret;
1320 
1321 	if (!cb)
1322 		return 0;
1323 	/*
1324 	 * The non AP bound callbacks can fail on bringup. On teardown
1325 	 * e.g. module removal we crash for now.
1326 	 */
1327 #ifdef CONFIG_SMP
1328 	if (cpuhp_is_ap_state(state))
1329 		ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1330 	else
1331 		ret = cpuhp_invoke_callback(cpu, state, cb);
1332 #else
1333 	ret = cpuhp_invoke_callback(cpu, state, cb);
1334 #endif
1335 	BUG_ON(ret && !bringup);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * Called from __cpuhp_setup_state on a recoverable failure.
1341  *
1342  * Note: The teardown callbacks for rollback are not allowed to fail!
1343  */
1344 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1345 				   int (*teardown)(unsigned int cpu))
1346 {
1347 	int cpu;
1348 
1349 	if (!teardown)
1350 		return;
1351 
1352 	/* Roll back the already executed steps on the other cpus */
1353 	for_each_present_cpu(cpu) {
1354 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1355 		int cpustate = st->state;
1356 
1357 		if (cpu >= failedcpu)
1358 			break;
1359 
1360 		/* Did we invoke the startup call on that cpu ? */
1361 		if (cpustate >= state)
1362 			cpuhp_issue_call(cpu, state, teardown, false);
1363 	}
1364 }
1365 
1366 /*
1367  * Returns a free for dynamic slot assignment of the Online state. The states
1368  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1369  * by having no name assigned.
1370  */
1371 static int cpuhp_reserve_state(enum cpuhp_state state)
1372 {
1373 	enum cpuhp_state i;
1374 
1375 	mutex_lock(&cpuhp_state_mutex);
1376 	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1377 		if (cpuhp_ap_states[i].name)
1378 			continue;
1379 
1380 		cpuhp_ap_states[i].name = "Reserved";
1381 		mutex_unlock(&cpuhp_state_mutex);
1382 		return i;
1383 	}
1384 	mutex_unlock(&cpuhp_state_mutex);
1385 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1386 	return -ENOSPC;
1387 }
1388 
1389 /**
1390  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1391  * @state:	The state to setup
1392  * @invoke:	If true, the startup function is invoked for cpus where
1393  *		cpu state >= @state
1394  * @startup:	startup callback function
1395  * @teardown:	teardown callback function
1396  *
1397  * Returns 0 if successful, otherwise a proper error code
1398  */
1399 int __cpuhp_setup_state(enum cpuhp_state state,
1400 			const char *name, bool invoke,
1401 			int (*startup)(unsigned int cpu),
1402 			int (*teardown)(unsigned int cpu))
1403 {
1404 	int cpu, ret = 0;
1405 	int dyn_state = 0;
1406 
1407 	if (cpuhp_cb_check(state) || !name)
1408 		return -EINVAL;
1409 
1410 	get_online_cpus();
1411 
1412 	/* currently assignments for the ONLINE state are possible */
1413 	if (state == CPUHP_AP_ONLINE_DYN) {
1414 		dyn_state = 1;
1415 		ret = cpuhp_reserve_state(state);
1416 		if (ret < 0)
1417 			goto out;
1418 		state = ret;
1419 	}
1420 
1421 	cpuhp_store_callbacks(state, name, startup, teardown);
1422 
1423 	if (!invoke || !startup)
1424 		goto out;
1425 
1426 	/*
1427 	 * Try to call the startup callback for each present cpu
1428 	 * depending on the hotplug state of the cpu.
1429 	 */
1430 	for_each_present_cpu(cpu) {
1431 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1432 		int cpustate = st->state;
1433 
1434 		if (cpustate < state)
1435 			continue;
1436 
1437 		ret = cpuhp_issue_call(cpu, state, startup, true);
1438 		if (ret) {
1439 			cpuhp_rollback_install(cpu, state, teardown);
1440 			cpuhp_store_callbacks(state, NULL, NULL, NULL);
1441 			goto out;
1442 		}
1443 	}
1444 out:
1445 	put_online_cpus();
1446 	if (!ret && dyn_state)
1447 		return state;
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(__cpuhp_setup_state);
1451 
1452 /**
1453  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1454  * @state:	The state to remove
1455  * @invoke:	If true, the teardown function is invoked for cpus where
1456  *		cpu state >= @state
1457  *
1458  * The teardown callback is currently not allowed to fail. Think
1459  * about module removal!
1460  */
1461 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1462 {
1463 	int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1464 	int cpu;
1465 
1466 	BUG_ON(cpuhp_cb_check(state));
1467 
1468 	get_online_cpus();
1469 
1470 	if (!invoke || !teardown)
1471 		goto remove;
1472 
1473 	/*
1474 	 * Call the teardown callback for each present cpu depending
1475 	 * on the hotplug state of the cpu. This function is not
1476 	 * allowed to fail currently!
1477 	 */
1478 	for_each_present_cpu(cpu) {
1479 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1480 		int cpustate = st->state;
1481 
1482 		if (cpustate >= state)
1483 			cpuhp_issue_call(cpu, state, teardown, false);
1484 	}
1485 remove:
1486 	cpuhp_store_callbacks(state, NULL, NULL, NULL);
1487 	put_online_cpus();
1488 }
1489 EXPORT_SYMBOL(__cpuhp_remove_state);
1490 
1491 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1492 static ssize_t show_cpuhp_state(struct device *dev,
1493 				struct device_attribute *attr, char *buf)
1494 {
1495 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1496 
1497 	return sprintf(buf, "%d\n", st->state);
1498 }
1499 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1500 
1501 static ssize_t write_cpuhp_target(struct device *dev,
1502 				  struct device_attribute *attr,
1503 				  const char *buf, size_t count)
1504 {
1505 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1506 	struct cpuhp_step *sp;
1507 	int target, ret;
1508 
1509 	ret = kstrtoint(buf, 10, &target);
1510 	if (ret)
1511 		return ret;
1512 
1513 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1514 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1515 		return -EINVAL;
1516 #else
1517 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1518 		return -EINVAL;
1519 #endif
1520 
1521 	ret = lock_device_hotplug_sysfs();
1522 	if (ret)
1523 		return ret;
1524 
1525 	mutex_lock(&cpuhp_state_mutex);
1526 	sp = cpuhp_get_step(target);
1527 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1528 	mutex_unlock(&cpuhp_state_mutex);
1529 	if (ret)
1530 		return ret;
1531 
1532 	if (st->state < target)
1533 		ret = do_cpu_up(dev->id, target);
1534 	else
1535 		ret = do_cpu_down(dev->id, target);
1536 
1537 	unlock_device_hotplug();
1538 	return ret ? ret : count;
1539 }
1540 
1541 static ssize_t show_cpuhp_target(struct device *dev,
1542 				 struct device_attribute *attr, char *buf)
1543 {
1544 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1545 
1546 	return sprintf(buf, "%d\n", st->target);
1547 }
1548 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1549 
1550 static struct attribute *cpuhp_cpu_attrs[] = {
1551 	&dev_attr_state.attr,
1552 	&dev_attr_target.attr,
1553 	NULL
1554 };
1555 
1556 static struct attribute_group cpuhp_cpu_attr_group = {
1557 	.attrs = cpuhp_cpu_attrs,
1558 	.name = "hotplug",
1559 	NULL
1560 };
1561 
1562 static ssize_t show_cpuhp_states(struct device *dev,
1563 				 struct device_attribute *attr, char *buf)
1564 {
1565 	ssize_t cur, res = 0;
1566 	int i;
1567 
1568 	mutex_lock(&cpuhp_state_mutex);
1569 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1570 		struct cpuhp_step *sp = cpuhp_get_step(i);
1571 
1572 		if (sp->name) {
1573 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1574 			buf += cur;
1575 			res += cur;
1576 		}
1577 	}
1578 	mutex_unlock(&cpuhp_state_mutex);
1579 	return res;
1580 }
1581 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1582 
1583 static struct attribute *cpuhp_cpu_root_attrs[] = {
1584 	&dev_attr_states.attr,
1585 	NULL
1586 };
1587 
1588 static struct attribute_group cpuhp_cpu_root_attr_group = {
1589 	.attrs = cpuhp_cpu_root_attrs,
1590 	.name = "hotplug",
1591 	NULL
1592 };
1593 
1594 static int __init cpuhp_sysfs_init(void)
1595 {
1596 	int cpu, ret;
1597 
1598 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1599 				 &cpuhp_cpu_root_attr_group);
1600 	if (ret)
1601 		return ret;
1602 
1603 	for_each_possible_cpu(cpu) {
1604 		struct device *dev = get_cpu_device(cpu);
1605 
1606 		if (!dev)
1607 			continue;
1608 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1609 		if (ret)
1610 			return ret;
1611 	}
1612 	return 0;
1613 }
1614 device_initcall(cpuhp_sysfs_init);
1615 #endif
1616 
1617 /*
1618  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1619  * represents all NR_CPUS bits binary values of 1<<nr.
1620  *
1621  * It is used by cpumask_of() to get a constant address to a CPU
1622  * mask value that has a single bit set only.
1623  */
1624 
1625 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1626 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1627 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1628 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1629 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1630 
1631 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1632 
1633 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1634 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1635 #if BITS_PER_LONG > 32
1636 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1637 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1638 #endif
1639 };
1640 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1641 
1642 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1643 EXPORT_SYMBOL(cpu_all_bits);
1644 
1645 #ifdef CONFIG_INIT_ALL_POSSIBLE
1646 struct cpumask __cpu_possible_mask __read_mostly
1647 	= {CPU_BITS_ALL};
1648 #else
1649 struct cpumask __cpu_possible_mask __read_mostly;
1650 #endif
1651 EXPORT_SYMBOL(__cpu_possible_mask);
1652 
1653 struct cpumask __cpu_online_mask __read_mostly;
1654 EXPORT_SYMBOL(__cpu_online_mask);
1655 
1656 struct cpumask __cpu_present_mask __read_mostly;
1657 EXPORT_SYMBOL(__cpu_present_mask);
1658 
1659 struct cpumask __cpu_active_mask __read_mostly;
1660 EXPORT_SYMBOL(__cpu_active_mask);
1661 
1662 void init_cpu_present(const struct cpumask *src)
1663 {
1664 	cpumask_copy(&__cpu_present_mask, src);
1665 }
1666 
1667 void init_cpu_possible(const struct cpumask *src)
1668 {
1669 	cpumask_copy(&__cpu_possible_mask, src);
1670 }
1671 
1672 void init_cpu_online(const struct cpumask *src)
1673 {
1674 	cpumask_copy(&__cpu_online_mask, src);
1675 }
1676 
1677 /*
1678  * Activate the first processor.
1679  */
1680 void __init boot_cpu_init(void)
1681 {
1682 	int cpu = smp_processor_id();
1683 
1684 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1685 	set_cpu_online(cpu, true);
1686 	set_cpu_active(cpu, true);
1687 	set_cpu_present(cpu, true);
1688 	set_cpu_possible(cpu, true);
1689 }
1690 
1691 /*
1692  * Must be called _AFTER_ setting up the per_cpu areas
1693  */
1694 void __init boot_cpu_state_init(void)
1695 {
1696 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1697 }
1698