xref: /openbmc/linux/kernel/cpu.c (revision 0be3ff0c)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42 
43 #include "smpboot.h"
44 
45 /**
46  * struct cpuhp_cpu_state - Per cpu hotplug state storage
47  * @state:	The current cpu state
48  * @target:	The target state
49  * @fail:	Current CPU hotplug callback state
50  * @thread:	Pointer to the hotplug thread
51  * @should_run:	Thread should execute
52  * @rollback:	Perform a rollback
53  * @single:	Single callback invocation
54  * @bringup:	Single callback bringup or teardown selector
55  * @cpu:	CPU number
56  * @node:	Remote CPU node; for multi-instance, do a
57  *		single entry callback for install/remove
58  * @last:	For multi-instance rollback, remember how far we got
59  * @cb_state:	The state for a single callback (install/uninstall)
60  * @result:	Result of the operation
61  * @done_up:	Signal completion to the issuer of the task for cpu-up
62  * @done_down:	Signal completion to the issuer of the task for cpu-down
63  */
64 struct cpuhp_cpu_state {
65 	enum cpuhp_state	state;
66 	enum cpuhp_state	target;
67 	enum cpuhp_state	fail;
68 #ifdef CONFIG_SMP
69 	struct task_struct	*thread;
70 	bool			should_run;
71 	bool			rollback;
72 	bool			single;
73 	bool			bringup;
74 	struct hlist_node	*node;
75 	struct hlist_node	*last;
76 	enum cpuhp_state	cb_state;
77 	int			result;
78 	struct completion	done_up;
79 	struct completion	done_down;
80 #endif
81 };
82 
83 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
84 	.fail = CPUHP_INVALID,
85 };
86 
87 #ifdef CONFIG_SMP
88 cpumask_t cpus_booted_once_mask;
89 #endif
90 
91 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
92 static struct lockdep_map cpuhp_state_up_map =
93 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
94 static struct lockdep_map cpuhp_state_down_map =
95 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
96 
97 
98 static inline void cpuhp_lock_acquire(bool bringup)
99 {
100 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102 
103 static inline void cpuhp_lock_release(bool bringup)
104 {
105 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
106 }
107 #else
108 
109 static inline void cpuhp_lock_acquire(bool bringup) { }
110 static inline void cpuhp_lock_release(bool bringup) { }
111 
112 #endif
113 
114 /**
115  * struct cpuhp_step - Hotplug state machine step
116  * @name:	Name of the step
117  * @startup:	Startup function of the step
118  * @teardown:	Teardown function of the step
119  * @cant_stop:	Bringup/teardown can't be stopped at this step
120  * @multi_instance:	State has multiple instances which get added afterwards
121  */
122 struct cpuhp_step {
123 	const char		*name;
124 	union {
125 		int		(*single)(unsigned int cpu);
126 		int		(*multi)(unsigned int cpu,
127 					 struct hlist_node *node);
128 	} startup;
129 	union {
130 		int		(*single)(unsigned int cpu);
131 		int		(*multi)(unsigned int cpu,
132 					 struct hlist_node *node);
133 	} teardown;
134 	/* private: */
135 	struct hlist_head	list;
136 	/* public: */
137 	bool			cant_stop;
138 	bool			multi_instance;
139 };
140 
141 static DEFINE_MUTEX(cpuhp_state_mutex);
142 static struct cpuhp_step cpuhp_hp_states[];
143 
144 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
145 {
146 	return cpuhp_hp_states + state;
147 }
148 
149 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
150 {
151 	return bringup ? !step->startup.single : !step->teardown.single;
152 }
153 
154 /**
155  * cpuhp_invoke_callback - Invoke the callbacks for a given state
156  * @cpu:	The cpu for which the callback should be invoked
157  * @state:	The state to do callbacks for
158  * @bringup:	True if the bringup callback should be invoked
159  * @node:	For multi-instance, do a single entry callback for install/remove
160  * @lastp:	For multi-instance rollback, remember how far we got
161  *
162  * Called from cpu hotplug and from the state register machinery.
163  *
164  * Return: %0 on success or a negative errno code
165  */
166 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
167 				 bool bringup, struct hlist_node *node,
168 				 struct hlist_node **lastp)
169 {
170 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
171 	struct cpuhp_step *step = cpuhp_get_step(state);
172 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
173 	int (*cb)(unsigned int cpu);
174 	int ret, cnt;
175 
176 	if (st->fail == state) {
177 		st->fail = CPUHP_INVALID;
178 		return -EAGAIN;
179 	}
180 
181 	if (cpuhp_step_empty(bringup, step)) {
182 		WARN_ON_ONCE(1);
183 		return 0;
184 	}
185 
186 	if (!step->multi_instance) {
187 		WARN_ON_ONCE(lastp && *lastp);
188 		cb = bringup ? step->startup.single : step->teardown.single;
189 
190 		trace_cpuhp_enter(cpu, st->target, state, cb);
191 		ret = cb(cpu);
192 		trace_cpuhp_exit(cpu, st->state, state, ret);
193 		return ret;
194 	}
195 	cbm = bringup ? step->startup.multi : step->teardown.multi;
196 
197 	/* Single invocation for instance add/remove */
198 	if (node) {
199 		WARN_ON_ONCE(lastp && *lastp);
200 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
201 		ret = cbm(cpu, node);
202 		trace_cpuhp_exit(cpu, st->state, state, ret);
203 		return ret;
204 	}
205 
206 	/* State transition. Invoke on all instances */
207 	cnt = 0;
208 	hlist_for_each(node, &step->list) {
209 		if (lastp && node == *lastp)
210 			break;
211 
212 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
213 		ret = cbm(cpu, node);
214 		trace_cpuhp_exit(cpu, st->state, state, ret);
215 		if (ret) {
216 			if (!lastp)
217 				goto err;
218 
219 			*lastp = node;
220 			return ret;
221 		}
222 		cnt++;
223 	}
224 	if (lastp)
225 		*lastp = NULL;
226 	return 0;
227 err:
228 	/* Rollback the instances if one failed */
229 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
230 	if (!cbm)
231 		return ret;
232 
233 	hlist_for_each(node, &step->list) {
234 		if (!cnt--)
235 			break;
236 
237 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
238 		ret = cbm(cpu, node);
239 		trace_cpuhp_exit(cpu, st->state, state, ret);
240 		/*
241 		 * Rollback must not fail,
242 		 */
243 		WARN_ON_ONCE(ret);
244 	}
245 	return ret;
246 }
247 
248 #ifdef CONFIG_SMP
249 static bool cpuhp_is_ap_state(enum cpuhp_state state)
250 {
251 	/*
252 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
253 	 * purposes as that state is handled explicitly in cpu_down.
254 	 */
255 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
256 }
257 
258 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
259 {
260 	struct completion *done = bringup ? &st->done_up : &st->done_down;
261 	wait_for_completion(done);
262 }
263 
264 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
265 {
266 	struct completion *done = bringup ? &st->done_up : &st->done_down;
267 	complete(done);
268 }
269 
270 /*
271  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
272  */
273 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
274 {
275 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
276 }
277 
278 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
279 static DEFINE_MUTEX(cpu_add_remove_lock);
280 bool cpuhp_tasks_frozen;
281 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
282 
283 /*
284  * The following two APIs (cpu_maps_update_begin/done) must be used when
285  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
286  */
287 void cpu_maps_update_begin(void)
288 {
289 	mutex_lock(&cpu_add_remove_lock);
290 }
291 
292 void cpu_maps_update_done(void)
293 {
294 	mutex_unlock(&cpu_add_remove_lock);
295 }
296 
297 /*
298  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
299  * Should always be manipulated under cpu_add_remove_lock
300  */
301 static int cpu_hotplug_disabled;
302 
303 #ifdef CONFIG_HOTPLUG_CPU
304 
305 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
306 
307 void cpus_read_lock(void)
308 {
309 	percpu_down_read(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_lock);
312 
313 int cpus_read_trylock(void)
314 {
315 	return percpu_down_read_trylock(&cpu_hotplug_lock);
316 }
317 EXPORT_SYMBOL_GPL(cpus_read_trylock);
318 
319 void cpus_read_unlock(void)
320 {
321 	percpu_up_read(&cpu_hotplug_lock);
322 }
323 EXPORT_SYMBOL_GPL(cpus_read_unlock);
324 
325 void cpus_write_lock(void)
326 {
327 	percpu_down_write(&cpu_hotplug_lock);
328 }
329 
330 void cpus_write_unlock(void)
331 {
332 	percpu_up_write(&cpu_hotplug_lock);
333 }
334 
335 void lockdep_assert_cpus_held(void)
336 {
337 	/*
338 	 * We can't have hotplug operations before userspace starts running,
339 	 * and some init codepaths will knowingly not take the hotplug lock.
340 	 * This is all valid, so mute lockdep until it makes sense to report
341 	 * unheld locks.
342 	 */
343 	if (system_state < SYSTEM_RUNNING)
344 		return;
345 
346 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
347 }
348 
349 #ifdef CONFIG_LOCKDEP
350 int lockdep_is_cpus_held(void)
351 {
352 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
353 }
354 #endif
355 
356 static void lockdep_acquire_cpus_lock(void)
357 {
358 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
359 }
360 
361 static void lockdep_release_cpus_lock(void)
362 {
363 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
364 }
365 
366 /*
367  * Wait for currently running CPU hotplug operations to complete (if any) and
368  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
369  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
370  * hotplug path before performing hotplug operations. So acquiring that lock
371  * guarantees mutual exclusion from any currently running hotplug operations.
372  */
373 void cpu_hotplug_disable(void)
374 {
375 	cpu_maps_update_begin();
376 	cpu_hotplug_disabled++;
377 	cpu_maps_update_done();
378 }
379 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
380 
381 static void __cpu_hotplug_enable(void)
382 {
383 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
384 		return;
385 	cpu_hotplug_disabled--;
386 }
387 
388 void cpu_hotplug_enable(void)
389 {
390 	cpu_maps_update_begin();
391 	__cpu_hotplug_enable();
392 	cpu_maps_update_done();
393 }
394 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
395 
396 #else
397 
398 static void lockdep_acquire_cpus_lock(void)
399 {
400 }
401 
402 static void lockdep_release_cpus_lock(void)
403 {
404 }
405 
406 #endif	/* CONFIG_HOTPLUG_CPU */
407 
408 /*
409  * Architectures that need SMT-specific errata handling during SMT hotplug
410  * should override this.
411  */
412 void __weak arch_smt_update(void) { }
413 
414 #ifdef CONFIG_HOTPLUG_SMT
415 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
416 
417 void __init cpu_smt_disable(bool force)
418 {
419 	if (!cpu_smt_possible())
420 		return;
421 
422 	if (force) {
423 		pr_info("SMT: Force disabled\n");
424 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
425 	} else {
426 		pr_info("SMT: disabled\n");
427 		cpu_smt_control = CPU_SMT_DISABLED;
428 	}
429 }
430 
431 /*
432  * The decision whether SMT is supported can only be done after the full
433  * CPU identification. Called from architecture code.
434  */
435 void __init cpu_smt_check_topology(void)
436 {
437 	if (!topology_smt_supported())
438 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
439 }
440 
441 static int __init smt_cmdline_disable(char *str)
442 {
443 	cpu_smt_disable(str && !strcmp(str, "force"));
444 	return 0;
445 }
446 early_param("nosmt", smt_cmdline_disable);
447 
448 static inline bool cpu_smt_allowed(unsigned int cpu)
449 {
450 	if (cpu_smt_control == CPU_SMT_ENABLED)
451 		return true;
452 
453 	if (topology_is_primary_thread(cpu))
454 		return true;
455 
456 	/*
457 	 * On x86 it's required to boot all logical CPUs at least once so
458 	 * that the init code can get a chance to set CR4.MCE on each
459 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
460 	 * core will shutdown the machine.
461 	 */
462 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
463 }
464 
465 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
466 bool cpu_smt_possible(void)
467 {
468 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
469 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
470 }
471 EXPORT_SYMBOL_GPL(cpu_smt_possible);
472 #else
473 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
474 #endif
475 
476 static inline enum cpuhp_state
477 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
478 {
479 	enum cpuhp_state prev_state = st->state;
480 	bool bringup = st->state < target;
481 
482 	st->rollback = false;
483 	st->last = NULL;
484 
485 	st->target = target;
486 	st->single = false;
487 	st->bringup = bringup;
488 	if (cpu_dying(cpu) != !bringup)
489 		set_cpu_dying(cpu, !bringup);
490 
491 	return prev_state;
492 }
493 
494 static inline void
495 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
496 		  enum cpuhp_state prev_state)
497 {
498 	bool bringup = !st->bringup;
499 
500 	st->target = prev_state;
501 
502 	/*
503 	 * Already rolling back. No need invert the bringup value or to change
504 	 * the current state.
505 	 */
506 	if (st->rollback)
507 		return;
508 
509 	st->rollback = true;
510 
511 	/*
512 	 * If we have st->last we need to undo partial multi_instance of this
513 	 * state first. Otherwise start undo at the previous state.
514 	 */
515 	if (!st->last) {
516 		if (st->bringup)
517 			st->state--;
518 		else
519 			st->state++;
520 	}
521 
522 	st->bringup = bringup;
523 	if (cpu_dying(cpu) != !bringup)
524 		set_cpu_dying(cpu, !bringup);
525 }
526 
527 /* Regular hotplug invocation of the AP hotplug thread */
528 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
529 {
530 	if (!st->single && st->state == st->target)
531 		return;
532 
533 	st->result = 0;
534 	/*
535 	 * Make sure the above stores are visible before should_run becomes
536 	 * true. Paired with the mb() above in cpuhp_thread_fun()
537 	 */
538 	smp_mb();
539 	st->should_run = true;
540 	wake_up_process(st->thread);
541 	wait_for_ap_thread(st, st->bringup);
542 }
543 
544 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
545 			 enum cpuhp_state target)
546 {
547 	enum cpuhp_state prev_state;
548 	int ret;
549 
550 	prev_state = cpuhp_set_state(cpu, st, target);
551 	__cpuhp_kick_ap(st);
552 	if ((ret = st->result)) {
553 		cpuhp_reset_state(cpu, st, prev_state);
554 		__cpuhp_kick_ap(st);
555 	}
556 
557 	return ret;
558 }
559 
560 static int bringup_wait_for_ap(unsigned int cpu)
561 {
562 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
563 
564 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
565 	wait_for_ap_thread(st, true);
566 	if (WARN_ON_ONCE((!cpu_online(cpu))))
567 		return -ECANCELED;
568 
569 	/* Unpark the hotplug thread of the target cpu */
570 	kthread_unpark(st->thread);
571 
572 	/*
573 	 * SMT soft disabling on X86 requires to bring the CPU out of the
574 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
575 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
576 	 * cpu_smt_allowed() check will now return false if this is not the
577 	 * primary sibling.
578 	 */
579 	if (!cpu_smt_allowed(cpu))
580 		return -ECANCELED;
581 
582 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
583 		return 0;
584 
585 	return cpuhp_kick_ap(cpu, st, st->target);
586 }
587 
588 static int bringup_cpu(unsigned int cpu)
589 {
590 	struct task_struct *idle = idle_thread_get(cpu);
591 	int ret;
592 
593 	/*
594 	 * Reset stale stack state from the last time this CPU was online.
595 	 */
596 	scs_task_reset(idle);
597 	kasan_unpoison_task_stack(idle);
598 
599 	/*
600 	 * Some architectures have to walk the irq descriptors to
601 	 * setup the vector space for the cpu which comes online.
602 	 * Prevent irq alloc/free across the bringup.
603 	 */
604 	irq_lock_sparse();
605 
606 	/* Arch-specific enabling code. */
607 	ret = __cpu_up(cpu, idle);
608 	irq_unlock_sparse();
609 	if (ret)
610 		return ret;
611 	return bringup_wait_for_ap(cpu);
612 }
613 
614 static int finish_cpu(unsigned int cpu)
615 {
616 	struct task_struct *idle = idle_thread_get(cpu);
617 	struct mm_struct *mm = idle->active_mm;
618 
619 	/*
620 	 * idle_task_exit() will have switched to &init_mm, now
621 	 * clean up any remaining active_mm state.
622 	 */
623 	if (mm != &init_mm)
624 		idle->active_mm = &init_mm;
625 	mmdrop(mm);
626 	return 0;
627 }
628 
629 /*
630  * Hotplug state machine related functions
631  */
632 
633 /*
634  * Get the next state to run. Empty ones will be skipped. Returns true if a
635  * state must be run.
636  *
637  * st->state will be modified ahead of time, to match state_to_run, as if it
638  * has already ran.
639  */
640 static bool cpuhp_next_state(bool bringup,
641 			     enum cpuhp_state *state_to_run,
642 			     struct cpuhp_cpu_state *st,
643 			     enum cpuhp_state target)
644 {
645 	do {
646 		if (bringup) {
647 			if (st->state >= target)
648 				return false;
649 
650 			*state_to_run = ++st->state;
651 		} else {
652 			if (st->state <= target)
653 				return false;
654 
655 			*state_to_run = st->state--;
656 		}
657 
658 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
659 			break;
660 	} while (true);
661 
662 	return true;
663 }
664 
665 static int cpuhp_invoke_callback_range(bool bringup,
666 				       unsigned int cpu,
667 				       struct cpuhp_cpu_state *st,
668 				       enum cpuhp_state target)
669 {
670 	enum cpuhp_state state;
671 	int err = 0;
672 
673 	while (cpuhp_next_state(bringup, &state, st, target)) {
674 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
675 		if (err)
676 			break;
677 	}
678 
679 	return err;
680 }
681 
682 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
683 {
684 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
685 		return true;
686 	/*
687 	 * When CPU hotplug is disabled, then taking the CPU down is not
688 	 * possible because takedown_cpu() and the architecture and
689 	 * subsystem specific mechanisms are not available. So the CPU
690 	 * which would be completely unplugged again needs to stay around
691 	 * in the current state.
692 	 */
693 	return st->state <= CPUHP_BRINGUP_CPU;
694 }
695 
696 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
697 			      enum cpuhp_state target)
698 {
699 	enum cpuhp_state prev_state = st->state;
700 	int ret = 0;
701 
702 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
703 	if (ret) {
704 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
705 			 ret, cpu, cpuhp_get_step(st->state)->name,
706 			 st->state);
707 
708 		cpuhp_reset_state(cpu, st, prev_state);
709 		if (can_rollback_cpu(st))
710 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
711 							    prev_state));
712 	}
713 	return ret;
714 }
715 
716 /*
717  * The cpu hotplug threads manage the bringup and teardown of the cpus
718  */
719 static int cpuhp_should_run(unsigned int cpu)
720 {
721 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
722 
723 	return st->should_run;
724 }
725 
726 /*
727  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
728  * callbacks when a state gets [un]installed at runtime.
729  *
730  * Each invocation of this function by the smpboot thread does a single AP
731  * state callback.
732  *
733  * It has 3 modes of operation:
734  *  - single: runs st->cb_state
735  *  - up:     runs ++st->state, while st->state < st->target
736  *  - down:   runs st->state--, while st->state > st->target
737  *
738  * When complete or on error, should_run is cleared and the completion is fired.
739  */
740 static void cpuhp_thread_fun(unsigned int cpu)
741 {
742 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743 	bool bringup = st->bringup;
744 	enum cpuhp_state state;
745 
746 	if (WARN_ON_ONCE(!st->should_run))
747 		return;
748 
749 	/*
750 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
751 	 * that if we see ->should_run we also see the rest of the state.
752 	 */
753 	smp_mb();
754 
755 	/*
756 	 * The BP holds the hotplug lock, but we're now running on the AP,
757 	 * ensure that anybody asserting the lock is held, will actually find
758 	 * it so.
759 	 */
760 	lockdep_acquire_cpus_lock();
761 	cpuhp_lock_acquire(bringup);
762 
763 	if (st->single) {
764 		state = st->cb_state;
765 		st->should_run = false;
766 	} else {
767 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
768 		if (!st->should_run)
769 			goto end;
770 	}
771 
772 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
773 
774 	if (cpuhp_is_atomic_state(state)) {
775 		local_irq_disable();
776 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
777 		local_irq_enable();
778 
779 		/*
780 		 * STARTING/DYING must not fail!
781 		 */
782 		WARN_ON_ONCE(st->result);
783 	} else {
784 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
785 	}
786 
787 	if (st->result) {
788 		/*
789 		 * If we fail on a rollback, we're up a creek without no
790 		 * paddle, no way forward, no way back. We loose, thanks for
791 		 * playing.
792 		 */
793 		WARN_ON_ONCE(st->rollback);
794 		st->should_run = false;
795 	}
796 
797 end:
798 	cpuhp_lock_release(bringup);
799 	lockdep_release_cpus_lock();
800 
801 	if (!st->should_run)
802 		complete_ap_thread(st, bringup);
803 }
804 
805 /* Invoke a single callback on a remote cpu */
806 static int
807 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
808 			 struct hlist_node *node)
809 {
810 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 	int ret;
812 
813 	if (!cpu_online(cpu))
814 		return 0;
815 
816 	cpuhp_lock_acquire(false);
817 	cpuhp_lock_release(false);
818 
819 	cpuhp_lock_acquire(true);
820 	cpuhp_lock_release(true);
821 
822 	/*
823 	 * If we are up and running, use the hotplug thread. For early calls
824 	 * we invoke the thread function directly.
825 	 */
826 	if (!st->thread)
827 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
828 
829 	st->rollback = false;
830 	st->last = NULL;
831 
832 	st->node = node;
833 	st->bringup = bringup;
834 	st->cb_state = state;
835 	st->single = true;
836 
837 	__cpuhp_kick_ap(st);
838 
839 	/*
840 	 * If we failed and did a partial, do a rollback.
841 	 */
842 	if ((ret = st->result) && st->last) {
843 		st->rollback = true;
844 		st->bringup = !bringup;
845 
846 		__cpuhp_kick_ap(st);
847 	}
848 
849 	/*
850 	 * Clean up the leftovers so the next hotplug operation wont use stale
851 	 * data.
852 	 */
853 	st->node = st->last = NULL;
854 	return ret;
855 }
856 
857 static int cpuhp_kick_ap_work(unsigned int cpu)
858 {
859 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 	enum cpuhp_state prev_state = st->state;
861 	int ret;
862 
863 	cpuhp_lock_acquire(false);
864 	cpuhp_lock_release(false);
865 
866 	cpuhp_lock_acquire(true);
867 	cpuhp_lock_release(true);
868 
869 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
870 	ret = cpuhp_kick_ap(cpu, st, st->target);
871 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
872 
873 	return ret;
874 }
875 
876 static struct smp_hotplug_thread cpuhp_threads = {
877 	.store			= &cpuhp_state.thread,
878 	.thread_should_run	= cpuhp_should_run,
879 	.thread_fn		= cpuhp_thread_fun,
880 	.thread_comm		= "cpuhp/%u",
881 	.selfparking		= true,
882 };
883 
884 static __init void cpuhp_init_state(void)
885 {
886 	struct cpuhp_cpu_state *st;
887 	int cpu;
888 
889 	for_each_possible_cpu(cpu) {
890 		st = per_cpu_ptr(&cpuhp_state, cpu);
891 		init_completion(&st->done_up);
892 		init_completion(&st->done_down);
893 	}
894 }
895 
896 void __init cpuhp_threads_init(void)
897 {
898 	cpuhp_init_state();
899 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
900 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
901 }
902 
903 /*
904  *
905  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
906  * protected region.
907  *
908  * The operation is still serialized against concurrent CPU hotplug via
909  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
910  * serialized against other hotplug related activity like adding or
911  * removing of state callbacks and state instances, which invoke either the
912  * startup or the teardown callback of the affected state.
913  *
914  * This is required for subsystems which are unfixable vs. CPU hotplug and
915  * evade lock inversion problems by scheduling work which has to be
916  * completed _before_ cpu_up()/_cpu_down() returns.
917  *
918  * Don't even think about adding anything to this for any new code or even
919  * drivers. It's only purpose is to keep existing lock order trainwrecks
920  * working.
921  *
922  * For cpu_down() there might be valid reasons to finish cleanups which are
923  * not required to be done under cpu_hotplug_lock, but that's a different
924  * story and would be not invoked via this.
925  */
926 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
927 {
928 	/*
929 	 * cpusets delegate hotplug operations to a worker to "solve" the
930 	 * lock order problems. Wait for the worker, but only if tasks are
931 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
932 	 *
933 	 * The wait is required because otherwise the hotplug operation
934 	 * returns with inconsistent state, which could even be observed in
935 	 * user space when a new CPU is brought up. The CPU plug uevent
936 	 * would be delivered and user space reacting on it would fail to
937 	 * move tasks to the newly plugged CPU up to the point where the
938 	 * work has finished because up to that point the newly plugged CPU
939 	 * is not assignable in cpusets/cgroups. On unplug that's not
940 	 * necessarily a visible issue, but it is still inconsistent state,
941 	 * which is the real problem which needs to be "fixed". This can't
942 	 * prevent the transient state between scheduling the work and
943 	 * returning from waiting for it.
944 	 */
945 	if (!tasks_frozen)
946 		cpuset_wait_for_hotplug();
947 }
948 
949 #ifdef CONFIG_HOTPLUG_CPU
950 #ifndef arch_clear_mm_cpumask_cpu
951 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
952 #endif
953 
954 /**
955  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
956  * @cpu: a CPU id
957  *
958  * This function walks all processes, finds a valid mm struct for each one and
959  * then clears a corresponding bit in mm's cpumask.  While this all sounds
960  * trivial, there are various non-obvious corner cases, which this function
961  * tries to solve in a safe manner.
962  *
963  * Also note that the function uses a somewhat relaxed locking scheme, so it may
964  * be called only for an already offlined CPU.
965  */
966 void clear_tasks_mm_cpumask(int cpu)
967 {
968 	struct task_struct *p;
969 
970 	/*
971 	 * This function is called after the cpu is taken down and marked
972 	 * offline, so its not like new tasks will ever get this cpu set in
973 	 * their mm mask. -- Peter Zijlstra
974 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
975 	 * full-fledged tasklist_lock.
976 	 */
977 	WARN_ON(cpu_online(cpu));
978 	rcu_read_lock();
979 	for_each_process(p) {
980 		struct task_struct *t;
981 
982 		/*
983 		 * Main thread might exit, but other threads may still have
984 		 * a valid mm. Find one.
985 		 */
986 		t = find_lock_task_mm(p);
987 		if (!t)
988 			continue;
989 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
990 		task_unlock(t);
991 	}
992 	rcu_read_unlock();
993 }
994 
995 /* Take this CPU down. */
996 static int take_cpu_down(void *_param)
997 {
998 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
999 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1000 	int err, cpu = smp_processor_id();
1001 	int ret;
1002 
1003 	/* Ensure this CPU doesn't handle any more interrupts. */
1004 	err = __cpu_disable();
1005 	if (err < 0)
1006 		return err;
1007 
1008 	/*
1009 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1010 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1011 	 */
1012 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1013 
1014 	/* Invoke the former CPU_DYING callbacks */
1015 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1016 
1017 	/*
1018 	 * DYING must not fail!
1019 	 */
1020 	WARN_ON_ONCE(ret);
1021 
1022 	/* Give up timekeeping duties */
1023 	tick_handover_do_timer();
1024 	/* Remove CPU from timer broadcasting */
1025 	tick_offline_cpu(cpu);
1026 	/* Park the stopper thread */
1027 	stop_machine_park(cpu);
1028 	return 0;
1029 }
1030 
1031 static int takedown_cpu(unsigned int cpu)
1032 {
1033 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1034 	int err;
1035 
1036 	/* Park the smpboot threads */
1037 	kthread_park(st->thread);
1038 
1039 	/*
1040 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1041 	 * interrupt affinities.
1042 	 */
1043 	irq_lock_sparse();
1044 
1045 	/*
1046 	 * So now all preempt/rcu users must observe !cpu_active().
1047 	 */
1048 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1049 	if (err) {
1050 		/* CPU refused to die */
1051 		irq_unlock_sparse();
1052 		/* Unpark the hotplug thread so we can rollback there */
1053 		kthread_unpark(st->thread);
1054 		return err;
1055 	}
1056 	BUG_ON(cpu_online(cpu));
1057 
1058 	/*
1059 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1060 	 * all runnable tasks from the CPU, there's only the idle task left now
1061 	 * that the migration thread is done doing the stop_machine thing.
1062 	 *
1063 	 * Wait for the stop thread to go away.
1064 	 */
1065 	wait_for_ap_thread(st, false);
1066 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1067 
1068 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1069 	irq_unlock_sparse();
1070 
1071 	hotplug_cpu__broadcast_tick_pull(cpu);
1072 	/* This actually kills the CPU. */
1073 	__cpu_die(cpu);
1074 
1075 	tick_cleanup_dead_cpu(cpu);
1076 	rcutree_migrate_callbacks(cpu);
1077 	return 0;
1078 }
1079 
1080 static void cpuhp_complete_idle_dead(void *arg)
1081 {
1082 	struct cpuhp_cpu_state *st = arg;
1083 
1084 	complete_ap_thread(st, false);
1085 }
1086 
1087 void cpuhp_report_idle_dead(void)
1088 {
1089 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1090 
1091 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1092 	rcu_report_dead(smp_processor_id());
1093 	st->state = CPUHP_AP_IDLE_DEAD;
1094 	/*
1095 	 * We cannot call complete after rcu_report_dead() so we delegate it
1096 	 * to an online cpu.
1097 	 */
1098 	smp_call_function_single(cpumask_first(cpu_online_mask),
1099 				 cpuhp_complete_idle_dead, st, 0);
1100 }
1101 
1102 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1103 				enum cpuhp_state target)
1104 {
1105 	enum cpuhp_state prev_state = st->state;
1106 	int ret = 0;
1107 
1108 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1109 	if (ret) {
1110 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1111 			 ret, cpu, cpuhp_get_step(st->state)->name,
1112 			 st->state);
1113 
1114 		cpuhp_reset_state(cpu, st, prev_state);
1115 
1116 		if (st->state < prev_state)
1117 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1118 							    prev_state));
1119 	}
1120 
1121 	return ret;
1122 }
1123 
1124 /* Requires cpu_add_remove_lock to be held */
1125 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1126 			   enum cpuhp_state target)
1127 {
1128 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129 	int prev_state, ret = 0;
1130 
1131 	if (num_online_cpus() == 1)
1132 		return -EBUSY;
1133 
1134 	if (!cpu_present(cpu))
1135 		return -EINVAL;
1136 
1137 	cpus_write_lock();
1138 
1139 	cpuhp_tasks_frozen = tasks_frozen;
1140 
1141 	prev_state = cpuhp_set_state(cpu, st, target);
1142 	/*
1143 	 * If the current CPU state is in the range of the AP hotplug thread,
1144 	 * then we need to kick the thread.
1145 	 */
1146 	if (st->state > CPUHP_TEARDOWN_CPU) {
1147 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1148 		ret = cpuhp_kick_ap_work(cpu);
1149 		/*
1150 		 * The AP side has done the error rollback already. Just
1151 		 * return the error code..
1152 		 */
1153 		if (ret)
1154 			goto out;
1155 
1156 		/*
1157 		 * We might have stopped still in the range of the AP hotplug
1158 		 * thread. Nothing to do anymore.
1159 		 */
1160 		if (st->state > CPUHP_TEARDOWN_CPU)
1161 			goto out;
1162 
1163 		st->target = target;
1164 	}
1165 	/*
1166 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1167 	 * to do the further cleanups.
1168 	 */
1169 	ret = cpuhp_down_callbacks(cpu, st, target);
1170 	if (ret && st->state < prev_state) {
1171 		if (st->state == CPUHP_TEARDOWN_CPU) {
1172 			cpuhp_reset_state(cpu, st, prev_state);
1173 			__cpuhp_kick_ap(st);
1174 		} else {
1175 			WARN(1, "DEAD callback error for CPU%d", cpu);
1176 		}
1177 	}
1178 
1179 out:
1180 	cpus_write_unlock();
1181 	/*
1182 	 * Do post unplug cleanup. This is still protected against
1183 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1184 	 */
1185 	lockup_detector_cleanup();
1186 	arch_smt_update();
1187 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1188 	return ret;
1189 }
1190 
1191 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1192 {
1193 	if (cpu_hotplug_disabled)
1194 		return -EBUSY;
1195 	return _cpu_down(cpu, 0, target);
1196 }
1197 
1198 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1199 {
1200 	int err;
1201 
1202 	cpu_maps_update_begin();
1203 	err = cpu_down_maps_locked(cpu, target);
1204 	cpu_maps_update_done();
1205 	return err;
1206 }
1207 
1208 /**
1209  * cpu_device_down - Bring down a cpu device
1210  * @dev: Pointer to the cpu device to offline
1211  *
1212  * This function is meant to be used by device core cpu subsystem only.
1213  *
1214  * Other subsystems should use remove_cpu() instead.
1215  *
1216  * Return: %0 on success or a negative errno code
1217  */
1218 int cpu_device_down(struct device *dev)
1219 {
1220 	return cpu_down(dev->id, CPUHP_OFFLINE);
1221 }
1222 
1223 int remove_cpu(unsigned int cpu)
1224 {
1225 	int ret;
1226 
1227 	lock_device_hotplug();
1228 	ret = device_offline(get_cpu_device(cpu));
1229 	unlock_device_hotplug();
1230 
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(remove_cpu);
1234 
1235 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1236 {
1237 	unsigned int cpu;
1238 	int error;
1239 
1240 	cpu_maps_update_begin();
1241 
1242 	/*
1243 	 * Make certain the cpu I'm about to reboot on is online.
1244 	 *
1245 	 * This is inline to what migrate_to_reboot_cpu() already do.
1246 	 */
1247 	if (!cpu_online(primary_cpu))
1248 		primary_cpu = cpumask_first(cpu_online_mask);
1249 
1250 	for_each_online_cpu(cpu) {
1251 		if (cpu == primary_cpu)
1252 			continue;
1253 
1254 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1255 		if (error) {
1256 			pr_err("Failed to offline CPU%d - error=%d",
1257 				cpu, error);
1258 			break;
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Ensure all but the reboot CPU are offline.
1264 	 */
1265 	BUG_ON(num_online_cpus() > 1);
1266 
1267 	/*
1268 	 * Make sure the CPUs won't be enabled by someone else after this
1269 	 * point. Kexec will reboot to a new kernel shortly resetting
1270 	 * everything along the way.
1271 	 */
1272 	cpu_hotplug_disabled++;
1273 
1274 	cpu_maps_update_done();
1275 }
1276 
1277 #else
1278 #define takedown_cpu		NULL
1279 #endif /*CONFIG_HOTPLUG_CPU*/
1280 
1281 /**
1282  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1283  * @cpu: cpu that just started
1284  *
1285  * It must be called by the arch code on the new cpu, before the new cpu
1286  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1287  */
1288 void notify_cpu_starting(unsigned int cpu)
1289 {
1290 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1291 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1292 	int ret;
1293 
1294 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1295 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1296 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1297 
1298 	/*
1299 	 * STARTING must not fail!
1300 	 */
1301 	WARN_ON_ONCE(ret);
1302 }
1303 
1304 /*
1305  * Called from the idle task. Wake up the controlling task which brings the
1306  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1307  * online bringup to the hotplug thread.
1308  */
1309 void cpuhp_online_idle(enum cpuhp_state state)
1310 {
1311 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1312 
1313 	/* Happens for the boot cpu */
1314 	if (state != CPUHP_AP_ONLINE_IDLE)
1315 		return;
1316 
1317 	/*
1318 	 * Unpart the stopper thread before we start the idle loop (and start
1319 	 * scheduling); this ensures the stopper task is always available.
1320 	 */
1321 	stop_machine_unpark(smp_processor_id());
1322 
1323 	st->state = CPUHP_AP_ONLINE_IDLE;
1324 	complete_ap_thread(st, true);
1325 }
1326 
1327 /* Requires cpu_add_remove_lock to be held */
1328 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1329 {
1330 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 	struct task_struct *idle;
1332 	int ret = 0;
1333 
1334 	cpus_write_lock();
1335 
1336 	if (!cpu_present(cpu)) {
1337 		ret = -EINVAL;
1338 		goto out;
1339 	}
1340 
1341 	/*
1342 	 * The caller of cpu_up() might have raced with another
1343 	 * caller. Nothing to do.
1344 	 */
1345 	if (st->state >= target)
1346 		goto out;
1347 
1348 	if (st->state == CPUHP_OFFLINE) {
1349 		/* Let it fail before we try to bring the cpu up */
1350 		idle = idle_thread_get(cpu);
1351 		if (IS_ERR(idle)) {
1352 			ret = PTR_ERR(idle);
1353 			goto out;
1354 		}
1355 	}
1356 
1357 	cpuhp_tasks_frozen = tasks_frozen;
1358 
1359 	cpuhp_set_state(cpu, st, target);
1360 	/*
1361 	 * If the current CPU state is in the range of the AP hotplug thread,
1362 	 * then we need to kick the thread once more.
1363 	 */
1364 	if (st->state > CPUHP_BRINGUP_CPU) {
1365 		ret = cpuhp_kick_ap_work(cpu);
1366 		/*
1367 		 * The AP side has done the error rollback already. Just
1368 		 * return the error code..
1369 		 */
1370 		if (ret)
1371 			goto out;
1372 	}
1373 
1374 	/*
1375 	 * Try to reach the target state. We max out on the BP at
1376 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1377 	 * responsible for bringing it up to the target state.
1378 	 */
1379 	target = min((int)target, CPUHP_BRINGUP_CPU);
1380 	ret = cpuhp_up_callbacks(cpu, st, target);
1381 out:
1382 	cpus_write_unlock();
1383 	arch_smt_update();
1384 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1385 	return ret;
1386 }
1387 
1388 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1389 {
1390 	int err = 0;
1391 
1392 	if (!cpu_possible(cpu)) {
1393 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1394 		       cpu);
1395 #if defined(CONFIG_IA64)
1396 		pr_err("please check additional_cpus= boot parameter\n");
1397 #endif
1398 		return -EINVAL;
1399 	}
1400 
1401 	err = try_online_node(cpu_to_node(cpu));
1402 	if (err)
1403 		return err;
1404 
1405 	cpu_maps_update_begin();
1406 
1407 	if (cpu_hotplug_disabled) {
1408 		err = -EBUSY;
1409 		goto out;
1410 	}
1411 	if (!cpu_smt_allowed(cpu)) {
1412 		err = -EPERM;
1413 		goto out;
1414 	}
1415 
1416 	err = _cpu_up(cpu, 0, target);
1417 out:
1418 	cpu_maps_update_done();
1419 	return err;
1420 }
1421 
1422 /**
1423  * cpu_device_up - Bring up a cpu device
1424  * @dev: Pointer to the cpu device to online
1425  *
1426  * This function is meant to be used by device core cpu subsystem only.
1427  *
1428  * Other subsystems should use add_cpu() instead.
1429  *
1430  * Return: %0 on success or a negative errno code
1431  */
1432 int cpu_device_up(struct device *dev)
1433 {
1434 	return cpu_up(dev->id, CPUHP_ONLINE);
1435 }
1436 
1437 int add_cpu(unsigned int cpu)
1438 {
1439 	int ret;
1440 
1441 	lock_device_hotplug();
1442 	ret = device_online(get_cpu_device(cpu));
1443 	unlock_device_hotplug();
1444 
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(add_cpu);
1448 
1449 /**
1450  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1451  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1452  *
1453  * On some architectures like arm64, we can hibernate on any CPU, but on
1454  * wake up the CPU we hibernated on might be offline as a side effect of
1455  * using maxcpus= for example.
1456  *
1457  * Return: %0 on success or a negative errno code
1458  */
1459 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1460 {
1461 	int ret;
1462 
1463 	if (!cpu_online(sleep_cpu)) {
1464 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1465 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1466 		if (ret) {
1467 			pr_err("Failed to bring hibernate-CPU up!\n");
1468 			return ret;
1469 		}
1470 	}
1471 	return 0;
1472 }
1473 
1474 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1475 {
1476 	unsigned int cpu;
1477 
1478 	for_each_present_cpu(cpu) {
1479 		if (num_online_cpus() >= setup_max_cpus)
1480 			break;
1481 		if (!cpu_online(cpu))
1482 			cpu_up(cpu, CPUHP_ONLINE);
1483 	}
1484 }
1485 
1486 #ifdef CONFIG_PM_SLEEP_SMP
1487 static cpumask_var_t frozen_cpus;
1488 
1489 int freeze_secondary_cpus(int primary)
1490 {
1491 	int cpu, error = 0;
1492 
1493 	cpu_maps_update_begin();
1494 	if (primary == -1) {
1495 		primary = cpumask_first(cpu_online_mask);
1496 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1497 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1498 	} else {
1499 		if (!cpu_online(primary))
1500 			primary = cpumask_first(cpu_online_mask);
1501 	}
1502 
1503 	/*
1504 	 * We take down all of the non-boot CPUs in one shot to avoid races
1505 	 * with the userspace trying to use the CPU hotplug at the same time
1506 	 */
1507 	cpumask_clear(frozen_cpus);
1508 
1509 	pr_info("Disabling non-boot CPUs ...\n");
1510 	for_each_online_cpu(cpu) {
1511 		if (cpu == primary)
1512 			continue;
1513 
1514 		if (pm_wakeup_pending()) {
1515 			pr_info("Wakeup pending. Abort CPU freeze\n");
1516 			error = -EBUSY;
1517 			break;
1518 		}
1519 
1520 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1521 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1522 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1523 		if (!error)
1524 			cpumask_set_cpu(cpu, frozen_cpus);
1525 		else {
1526 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1527 			break;
1528 		}
1529 	}
1530 
1531 	if (!error)
1532 		BUG_ON(num_online_cpus() > 1);
1533 	else
1534 		pr_err("Non-boot CPUs are not disabled\n");
1535 
1536 	/*
1537 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1538 	 * this even in case of failure as all freeze_secondary_cpus() users are
1539 	 * supposed to do thaw_secondary_cpus() on the failure path.
1540 	 */
1541 	cpu_hotplug_disabled++;
1542 
1543 	cpu_maps_update_done();
1544 	return error;
1545 }
1546 
1547 void __weak arch_thaw_secondary_cpus_begin(void)
1548 {
1549 }
1550 
1551 void __weak arch_thaw_secondary_cpus_end(void)
1552 {
1553 }
1554 
1555 void thaw_secondary_cpus(void)
1556 {
1557 	int cpu, error;
1558 
1559 	/* Allow everyone to use the CPU hotplug again */
1560 	cpu_maps_update_begin();
1561 	__cpu_hotplug_enable();
1562 	if (cpumask_empty(frozen_cpus))
1563 		goto out;
1564 
1565 	pr_info("Enabling non-boot CPUs ...\n");
1566 
1567 	arch_thaw_secondary_cpus_begin();
1568 
1569 	for_each_cpu(cpu, frozen_cpus) {
1570 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1571 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1572 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1573 		if (!error) {
1574 			pr_info("CPU%d is up\n", cpu);
1575 			continue;
1576 		}
1577 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1578 	}
1579 
1580 	arch_thaw_secondary_cpus_end();
1581 
1582 	cpumask_clear(frozen_cpus);
1583 out:
1584 	cpu_maps_update_done();
1585 }
1586 
1587 static int __init alloc_frozen_cpus(void)
1588 {
1589 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1590 		return -ENOMEM;
1591 	return 0;
1592 }
1593 core_initcall(alloc_frozen_cpus);
1594 
1595 /*
1596  * When callbacks for CPU hotplug notifications are being executed, we must
1597  * ensure that the state of the system with respect to the tasks being frozen
1598  * or not, as reported by the notification, remains unchanged *throughout the
1599  * duration* of the execution of the callbacks.
1600  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1601  *
1602  * This synchronization is implemented by mutually excluding regular CPU
1603  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1604  * Hibernate notifications.
1605  */
1606 static int
1607 cpu_hotplug_pm_callback(struct notifier_block *nb,
1608 			unsigned long action, void *ptr)
1609 {
1610 	switch (action) {
1611 
1612 	case PM_SUSPEND_PREPARE:
1613 	case PM_HIBERNATION_PREPARE:
1614 		cpu_hotplug_disable();
1615 		break;
1616 
1617 	case PM_POST_SUSPEND:
1618 	case PM_POST_HIBERNATION:
1619 		cpu_hotplug_enable();
1620 		break;
1621 
1622 	default:
1623 		return NOTIFY_DONE;
1624 	}
1625 
1626 	return NOTIFY_OK;
1627 }
1628 
1629 
1630 static int __init cpu_hotplug_pm_sync_init(void)
1631 {
1632 	/*
1633 	 * cpu_hotplug_pm_callback has higher priority than x86
1634 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1635 	 * to disable cpu hotplug to avoid cpu hotplug race.
1636 	 */
1637 	pm_notifier(cpu_hotplug_pm_callback, 0);
1638 	return 0;
1639 }
1640 core_initcall(cpu_hotplug_pm_sync_init);
1641 
1642 #endif /* CONFIG_PM_SLEEP_SMP */
1643 
1644 int __boot_cpu_id;
1645 
1646 #endif /* CONFIG_SMP */
1647 
1648 /* Boot processor state steps */
1649 static struct cpuhp_step cpuhp_hp_states[] = {
1650 	[CPUHP_OFFLINE] = {
1651 		.name			= "offline",
1652 		.startup.single		= NULL,
1653 		.teardown.single	= NULL,
1654 	},
1655 #ifdef CONFIG_SMP
1656 	[CPUHP_CREATE_THREADS]= {
1657 		.name			= "threads:prepare",
1658 		.startup.single		= smpboot_create_threads,
1659 		.teardown.single	= NULL,
1660 		.cant_stop		= true,
1661 	},
1662 	[CPUHP_PERF_PREPARE] = {
1663 		.name			= "perf:prepare",
1664 		.startup.single		= perf_event_init_cpu,
1665 		.teardown.single	= perf_event_exit_cpu,
1666 	},
1667 	[CPUHP_RANDOM_PREPARE] = {
1668 		.name			= "random:prepare",
1669 		.startup.single		= random_prepare_cpu,
1670 		.teardown.single	= NULL,
1671 	},
1672 	[CPUHP_WORKQUEUE_PREP] = {
1673 		.name			= "workqueue:prepare",
1674 		.startup.single		= workqueue_prepare_cpu,
1675 		.teardown.single	= NULL,
1676 	},
1677 	[CPUHP_HRTIMERS_PREPARE] = {
1678 		.name			= "hrtimers:prepare",
1679 		.startup.single		= hrtimers_prepare_cpu,
1680 		.teardown.single	= hrtimers_dead_cpu,
1681 	},
1682 	[CPUHP_SMPCFD_PREPARE] = {
1683 		.name			= "smpcfd:prepare",
1684 		.startup.single		= smpcfd_prepare_cpu,
1685 		.teardown.single	= smpcfd_dead_cpu,
1686 	},
1687 	[CPUHP_RELAY_PREPARE] = {
1688 		.name			= "relay:prepare",
1689 		.startup.single		= relay_prepare_cpu,
1690 		.teardown.single	= NULL,
1691 	},
1692 	[CPUHP_SLAB_PREPARE] = {
1693 		.name			= "slab:prepare",
1694 		.startup.single		= slab_prepare_cpu,
1695 		.teardown.single	= slab_dead_cpu,
1696 	},
1697 	[CPUHP_RCUTREE_PREP] = {
1698 		.name			= "RCU/tree:prepare",
1699 		.startup.single		= rcutree_prepare_cpu,
1700 		.teardown.single	= rcutree_dead_cpu,
1701 	},
1702 	/*
1703 	 * On the tear-down path, timers_dead_cpu() must be invoked
1704 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1705 	 * otherwise a RCU stall occurs.
1706 	 */
1707 	[CPUHP_TIMERS_PREPARE] = {
1708 		.name			= "timers:prepare",
1709 		.startup.single		= timers_prepare_cpu,
1710 		.teardown.single	= timers_dead_cpu,
1711 	},
1712 	/* Kicks the plugged cpu into life */
1713 	[CPUHP_BRINGUP_CPU] = {
1714 		.name			= "cpu:bringup",
1715 		.startup.single		= bringup_cpu,
1716 		.teardown.single	= finish_cpu,
1717 		.cant_stop		= true,
1718 	},
1719 	/* Final state before CPU kills itself */
1720 	[CPUHP_AP_IDLE_DEAD] = {
1721 		.name			= "idle:dead",
1722 	},
1723 	/*
1724 	 * Last state before CPU enters the idle loop to die. Transient state
1725 	 * for synchronization.
1726 	 */
1727 	[CPUHP_AP_OFFLINE] = {
1728 		.name			= "ap:offline",
1729 		.cant_stop		= true,
1730 	},
1731 	/* First state is scheduler control. Interrupts are disabled */
1732 	[CPUHP_AP_SCHED_STARTING] = {
1733 		.name			= "sched:starting",
1734 		.startup.single		= sched_cpu_starting,
1735 		.teardown.single	= sched_cpu_dying,
1736 	},
1737 	[CPUHP_AP_RCUTREE_DYING] = {
1738 		.name			= "RCU/tree:dying",
1739 		.startup.single		= NULL,
1740 		.teardown.single	= rcutree_dying_cpu,
1741 	},
1742 	[CPUHP_AP_SMPCFD_DYING] = {
1743 		.name			= "smpcfd:dying",
1744 		.startup.single		= NULL,
1745 		.teardown.single	= smpcfd_dying_cpu,
1746 	},
1747 	/* Entry state on starting. Interrupts enabled from here on. Transient
1748 	 * state for synchronsization */
1749 	[CPUHP_AP_ONLINE] = {
1750 		.name			= "ap:online",
1751 	},
1752 	/*
1753 	 * Handled on control processor until the plugged processor manages
1754 	 * this itself.
1755 	 */
1756 	[CPUHP_TEARDOWN_CPU] = {
1757 		.name			= "cpu:teardown",
1758 		.startup.single		= NULL,
1759 		.teardown.single	= takedown_cpu,
1760 		.cant_stop		= true,
1761 	},
1762 
1763 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1764 		.name			= "sched:waitempty",
1765 		.startup.single		= NULL,
1766 		.teardown.single	= sched_cpu_wait_empty,
1767 	},
1768 
1769 	/* Handle smpboot threads park/unpark */
1770 	[CPUHP_AP_SMPBOOT_THREADS] = {
1771 		.name			= "smpboot/threads:online",
1772 		.startup.single		= smpboot_unpark_threads,
1773 		.teardown.single	= smpboot_park_threads,
1774 	},
1775 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1776 		.name			= "irq/affinity:online",
1777 		.startup.single		= irq_affinity_online_cpu,
1778 		.teardown.single	= NULL,
1779 	},
1780 	[CPUHP_AP_PERF_ONLINE] = {
1781 		.name			= "perf:online",
1782 		.startup.single		= perf_event_init_cpu,
1783 		.teardown.single	= perf_event_exit_cpu,
1784 	},
1785 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1786 		.name			= "lockup_detector:online",
1787 		.startup.single		= lockup_detector_online_cpu,
1788 		.teardown.single	= lockup_detector_offline_cpu,
1789 	},
1790 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1791 		.name			= "workqueue:online",
1792 		.startup.single		= workqueue_online_cpu,
1793 		.teardown.single	= workqueue_offline_cpu,
1794 	},
1795 	[CPUHP_AP_RANDOM_ONLINE] = {
1796 		.name			= "random:online",
1797 		.startup.single		= random_online_cpu,
1798 		.teardown.single	= NULL,
1799 	},
1800 	[CPUHP_AP_RCUTREE_ONLINE] = {
1801 		.name			= "RCU/tree:online",
1802 		.startup.single		= rcutree_online_cpu,
1803 		.teardown.single	= rcutree_offline_cpu,
1804 	},
1805 #endif
1806 	/*
1807 	 * The dynamically registered state space is here
1808 	 */
1809 
1810 #ifdef CONFIG_SMP
1811 	/* Last state is scheduler control setting the cpu active */
1812 	[CPUHP_AP_ACTIVE] = {
1813 		.name			= "sched:active",
1814 		.startup.single		= sched_cpu_activate,
1815 		.teardown.single	= sched_cpu_deactivate,
1816 	},
1817 #endif
1818 
1819 	/* CPU is fully up and running. */
1820 	[CPUHP_ONLINE] = {
1821 		.name			= "online",
1822 		.startup.single		= NULL,
1823 		.teardown.single	= NULL,
1824 	},
1825 };
1826 
1827 /* Sanity check for callbacks */
1828 static int cpuhp_cb_check(enum cpuhp_state state)
1829 {
1830 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1831 		return -EINVAL;
1832 	return 0;
1833 }
1834 
1835 /*
1836  * Returns a free for dynamic slot assignment of the Online state. The states
1837  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1838  * by having no name assigned.
1839  */
1840 static int cpuhp_reserve_state(enum cpuhp_state state)
1841 {
1842 	enum cpuhp_state i, end;
1843 	struct cpuhp_step *step;
1844 
1845 	switch (state) {
1846 	case CPUHP_AP_ONLINE_DYN:
1847 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1848 		end = CPUHP_AP_ONLINE_DYN_END;
1849 		break;
1850 	case CPUHP_BP_PREPARE_DYN:
1851 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1852 		end = CPUHP_BP_PREPARE_DYN_END;
1853 		break;
1854 	default:
1855 		return -EINVAL;
1856 	}
1857 
1858 	for (i = state; i <= end; i++, step++) {
1859 		if (!step->name)
1860 			return i;
1861 	}
1862 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1863 	return -ENOSPC;
1864 }
1865 
1866 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1867 				 int (*startup)(unsigned int cpu),
1868 				 int (*teardown)(unsigned int cpu),
1869 				 bool multi_instance)
1870 {
1871 	/* (Un)Install the callbacks for further cpu hotplug operations */
1872 	struct cpuhp_step *sp;
1873 	int ret = 0;
1874 
1875 	/*
1876 	 * If name is NULL, then the state gets removed.
1877 	 *
1878 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1879 	 * the first allocation from these dynamic ranges, so the removal
1880 	 * would trigger a new allocation and clear the wrong (already
1881 	 * empty) state, leaving the callbacks of the to be cleared state
1882 	 * dangling, which causes wreckage on the next hotplug operation.
1883 	 */
1884 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1885 		     state == CPUHP_BP_PREPARE_DYN)) {
1886 		ret = cpuhp_reserve_state(state);
1887 		if (ret < 0)
1888 			return ret;
1889 		state = ret;
1890 	}
1891 	sp = cpuhp_get_step(state);
1892 	if (name && sp->name)
1893 		return -EBUSY;
1894 
1895 	sp->startup.single = startup;
1896 	sp->teardown.single = teardown;
1897 	sp->name = name;
1898 	sp->multi_instance = multi_instance;
1899 	INIT_HLIST_HEAD(&sp->list);
1900 	return ret;
1901 }
1902 
1903 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1904 {
1905 	return cpuhp_get_step(state)->teardown.single;
1906 }
1907 
1908 /*
1909  * Call the startup/teardown function for a step either on the AP or
1910  * on the current CPU.
1911  */
1912 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1913 			    struct hlist_node *node)
1914 {
1915 	struct cpuhp_step *sp = cpuhp_get_step(state);
1916 	int ret;
1917 
1918 	/*
1919 	 * If there's nothing to do, we done.
1920 	 * Relies on the union for multi_instance.
1921 	 */
1922 	if (cpuhp_step_empty(bringup, sp))
1923 		return 0;
1924 	/*
1925 	 * The non AP bound callbacks can fail on bringup. On teardown
1926 	 * e.g. module removal we crash for now.
1927 	 */
1928 #ifdef CONFIG_SMP
1929 	if (cpuhp_is_ap_state(state))
1930 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1931 	else
1932 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1933 #else
1934 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1935 #endif
1936 	BUG_ON(ret && !bringup);
1937 	return ret;
1938 }
1939 
1940 /*
1941  * Called from __cpuhp_setup_state on a recoverable failure.
1942  *
1943  * Note: The teardown callbacks for rollback are not allowed to fail!
1944  */
1945 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1946 				   struct hlist_node *node)
1947 {
1948 	int cpu;
1949 
1950 	/* Roll back the already executed steps on the other cpus */
1951 	for_each_present_cpu(cpu) {
1952 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1953 		int cpustate = st->state;
1954 
1955 		if (cpu >= failedcpu)
1956 			break;
1957 
1958 		/* Did we invoke the startup call on that cpu ? */
1959 		if (cpustate >= state)
1960 			cpuhp_issue_call(cpu, state, false, node);
1961 	}
1962 }
1963 
1964 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1965 					  struct hlist_node *node,
1966 					  bool invoke)
1967 {
1968 	struct cpuhp_step *sp;
1969 	int cpu;
1970 	int ret;
1971 
1972 	lockdep_assert_cpus_held();
1973 
1974 	sp = cpuhp_get_step(state);
1975 	if (sp->multi_instance == false)
1976 		return -EINVAL;
1977 
1978 	mutex_lock(&cpuhp_state_mutex);
1979 
1980 	if (!invoke || !sp->startup.multi)
1981 		goto add_node;
1982 
1983 	/*
1984 	 * Try to call the startup callback for each present cpu
1985 	 * depending on the hotplug state of the cpu.
1986 	 */
1987 	for_each_present_cpu(cpu) {
1988 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1989 		int cpustate = st->state;
1990 
1991 		if (cpustate < state)
1992 			continue;
1993 
1994 		ret = cpuhp_issue_call(cpu, state, true, node);
1995 		if (ret) {
1996 			if (sp->teardown.multi)
1997 				cpuhp_rollback_install(cpu, state, node);
1998 			goto unlock;
1999 		}
2000 	}
2001 add_node:
2002 	ret = 0;
2003 	hlist_add_head(node, &sp->list);
2004 unlock:
2005 	mutex_unlock(&cpuhp_state_mutex);
2006 	return ret;
2007 }
2008 
2009 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2010 			       bool invoke)
2011 {
2012 	int ret;
2013 
2014 	cpus_read_lock();
2015 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2016 	cpus_read_unlock();
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2020 
2021 /**
2022  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2023  * @state:		The state to setup
2024  * @name:		Name of the step
2025  * @invoke:		If true, the startup function is invoked for cpus where
2026  *			cpu state >= @state
2027  * @startup:		startup callback function
2028  * @teardown:		teardown callback function
2029  * @multi_instance:	State is set up for multiple instances which get
2030  *			added afterwards.
2031  *
2032  * The caller needs to hold cpus read locked while calling this function.
2033  * Return:
2034  *   On success:
2035  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2036  *      0 for all other states
2037  *   On failure: proper (negative) error code
2038  */
2039 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2040 				   const char *name, bool invoke,
2041 				   int (*startup)(unsigned int cpu),
2042 				   int (*teardown)(unsigned int cpu),
2043 				   bool multi_instance)
2044 {
2045 	int cpu, ret = 0;
2046 	bool dynstate;
2047 
2048 	lockdep_assert_cpus_held();
2049 
2050 	if (cpuhp_cb_check(state) || !name)
2051 		return -EINVAL;
2052 
2053 	mutex_lock(&cpuhp_state_mutex);
2054 
2055 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2056 				    multi_instance);
2057 
2058 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2059 	if (ret > 0 && dynstate) {
2060 		state = ret;
2061 		ret = 0;
2062 	}
2063 
2064 	if (ret || !invoke || !startup)
2065 		goto out;
2066 
2067 	/*
2068 	 * Try to call the startup callback for each present cpu
2069 	 * depending on the hotplug state of the cpu.
2070 	 */
2071 	for_each_present_cpu(cpu) {
2072 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2073 		int cpustate = st->state;
2074 
2075 		if (cpustate < state)
2076 			continue;
2077 
2078 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2079 		if (ret) {
2080 			if (teardown)
2081 				cpuhp_rollback_install(cpu, state, NULL);
2082 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2083 			goto out;
2084 		}
2085 	}
2086 out:
2087 	mutex_unlock(&cpuhp_state_mutex);
2088 	/*
2089 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2090 	 * dynamically allocated state in case of success.
2091 	 */
2092 	if (!ret && dynstate)
2093 		return state;
2094 	return ret;
2095 }
2096 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2097 
2098 int __cpuhp_setup_state(enum cpuhp_state state,
2099 			const char *name, bool invoke,
2100 			int (*startup)(unsigned int cpu),
2101 			int (*teardown)(unsigned int cpu),
2102 			bool multi_instance)
2103 {
2104 	int ret;
2105 
2106 	cpus_read_lock();
2107 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2108 					     teardown, multi_instance);
2109 	cpus_read_unlock();
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL(__cpuhp_setup_state);
2113 
2114 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2115 				  struct hlist_node *node, bool invoke)
2116 {
2117 	struct cpuhp_step *sp = cpuhp_get_step(state);
2118 	int cpu;
2119 
2120 	BUG_ON(cpuhp_cb_check(state));
2121 
2122 	if (!sp->multi_instance)
2123 		return -EINVAL;
2124 
2125 	cpus_read_lock();
2126 	mutex_lock(&cpuhp_state_mutex);
2127 
2128 	if (!invoke || !cpuhp_get_teardown_cb(state))
2129 		goto remove;
2130 	/*
2131 	 * Call the teardown callback for each present cpu depending
2132 	 * on the hotplug state of the cpu. This function is not
2133 	 * allowed to fail currently!
2134 	 */
2135 	for_each_present_cpu(cpu) {
2136 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2137 		int cpustate = st->state;
2138 
2139 		if (cpustate >= state)
2140 			cpuhp_issue_call(cpu, state, false, node);
2141 	}
2142 
2143 remove:
2144 	hlist_del(node);
2145 	mutex_unlock(&cpuhp_state_mutex);
2146 	cpus_read_unlock();
2147 
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2151 
2152 /**
2153  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2154  * @state:	The state to remove
2155  * @invoke:	If true, the teardown function is invoked for cpus where
2156  *		cpu state >= @state
2157  *
2158  * The caller needs to hold cpus read locked while calling this function.
2159  * The teardown callback is currently not allowed to fail. Think
2160  * about module removal!
2161  */
2162 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2163 {
2164 	struct cpuhp_step *sp = cpuhp_get_step(state);
2165 	int cpu;
2166 
2167 	BUG_ON(cpuhp_cb_check(state));
2168 
2169 	lockdep_assert_cpus_held();
2170 
2171 	mutex_lock(&cpuhp_state_mutex);
2172 	if (sp->multi_instance) {
2173 		WARN(!hlist_empty(&sp->list),
2174 		     "Error: Removing state %d which has instances left.\n",
2175 		     state);
2176 		goto remove;
2177 	}
2178 
2179 	if (!invoke || !cpuhp_get_teardown_cb(state))
2180 		goto remove;
2181 
2182 	/*
2183 	 * Call the teardown callback for each present cpu depending
2184 	 * on the hotplug state of the cpu. This function is not
2185 	 * allowed to fail currently!
2186 	 */
2187 	for_each_present_cpu(cpu) {
2188 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2189 		int cpustate = st->state;
2190 
2191 		if (cpustate >= state)
2192 			cpuhp_issue_call(cpu, state, false, NULL);
2193 	}
2194 remove:
2195 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2196 	mutex_unlock(&cpuhp_state_mutex);
2197 }
2198 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2199 
2200 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2201 {
2202 	cpus_read_lock();
2203 	__cpuhp_remove_state_cpuslocked(state, invoke);
2204 	cpus_read_unlock();
2205 }
2206 EXPORT_SYMBOL(__cpuhp_remove_state);
2207 
2208 #ifdef CONFIG_HOTPLUG_SMT
2209 static void cpuhp_offline_cpu_device(unsigned int cpu)
2210 {
2211 	struct device *dev = get_cpu_device(cpu);
2212 
2213 	dev->offline = true;
2214 	/* Tell user space about the state change */
2215 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2216 }
2217 
2218 static void cpuhp_online_cpu_device(unsigned int cpu)
2219 {
2220 	struct device *dev = get_cpu_device(cpu);
2221 
2222 	dev->offline = false;
2223 	/* Tell user space about the state change */
2224 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2225 }
2226 
2227 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2228 {
2229 	int cpu, ret = 0;
2230 
2231 	cpu_maps_update_begin();
2232 	for_each_online_cpu(cpu) {
2233 		if (topology_is_primary_thread(cpu))
2234 			continue;
2235 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2236 		if (ret)
2237 			break;
2238 		/*
2239 		 * As this needs to hold the cpu maps lock it's impossible
2240 		 * to call device_offline() because that ends up calling
2241 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2242 		 * needs to be held as this might race against in kernel
2243 		 * abusers of the hotplug machinery (thermal management).
2244 		 *
2245 		 * So nothing would update device:offline state. That would
2246 		 * leave the sysfs entry stale and prevent onlining after
2247 		 * smt control has been changed to 'off' again. This is
2248 		 * called under the sysfs hotplug lock, so it is properly
2249 		 * serialized against the regular offline usage.
2250 		 */
2251 		cpuhp_offline_cpu_device(cpu);
2252 	}
2253 	if (!ret)
2254 		cpu_smt_control = ctrlval;
2255 	cpu_maps_update_done();
2256 	return ret;
2257 }
2258 
2259 int cpuhp_smt_enable(void)
2260 {
2261 	int cpu, ret = 0;
2262 
2263 	cpu_maps_update_begin();
2264 	cpu_smt_control = CPU_SMT_ENABLED;
2265 	for_each_present_cpu(cpu) {
2266 		/* Skip online CPUs and CPUs on offline nodes */
2267 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2268 			continue;
2269 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2270 		if (ret)
2271 			break;
2272 		/* See comment in cpuhp_smt_disable() */
2273 		cpuhp_online_cpu_device(cpu);
2274 	}
2275 	cpu_maps_update_done();
2276 	return ret;
2277 }
2278 #endif
2279 
2280 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2281 static ssize_t state_show(struct device *dev,
2282 			  struct device_attribute *attr, char *buf)
2283 {
2284 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2285 
2286 	return sprintf(buf, "%d\n", st->state);
2287 }
2288 static DEVICE_ATTR_RO(state);
2289 
2290 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2291 			    const char *buf, size_t count)
2292 {
2293 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2294 	struct cpuhp_step *sp;
2295 	int target, ret;
2296 
2297 	ret = kstrtoint(buf, 10, &target);
2298 	if (ret)
2299 		return ret;
2300 
2301 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2302 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2303 		return -EINVAL;
2304 #else
2305 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2306 		return -EINVAL;
2307 #endif
2308 
2309 	ret = lock_device_hotplug_sysfs();
2310 	if (ret)
2311 		return ret;
2312 
2313 	mutex_lock(&cpuhp_state_mutex);
2314 	sp = cpuhp_get_step(target);
2315 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2316 	mutex_unlock(&cpuhp_state_mutex);
2317 	if (ret)
2318 		goto out;
2319 
2320 	if (st->state < target)
2321 		ret = cpu_up(dev->id, target);
2322 	else
2323 		ret = cpu_down(dev->id, target);
2324 out:
2325 	unlock_device_hotplug();
2326 	return ret ? ret : count;
2327 }
2328 
2329 static ssize_t target_show(struct device *dev,
2330 			   struct device_attribute *attr, char *buf)
2331 {
2332 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2333 
2334 	return sprintf(buf, "%d\n", st->target);
2335 }
2336 static DEVICE_ATTR_RW(target);
2337 
2338 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2339 			  const char *buf, size_t count)
2340 {
2341 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2342 	struct cpuhp_step *sp;
2343 	int fail, ret;
2344 
2345 	ret = kstrtoint(buf, 10, &fail);
2346 	if (ret)
2347 		return ret;
2348 
2349 	if (fail == CPUHP_INVALID) {
2350 		st->fail = fail;
2351 		return count;
2352 	}
2353 
2354 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2355 		return -EINVAL;
2356 
2357 	/*
2358 	 * Cannot fail STARTING/DYING callbacks.
2359 	 */
2360 	if (cpuhp_is_atomic_state(fail))
2361 		return -EINVAL;
2362 
2363 	/*
2364 	 * DEAD callbacks cannot fail...
2365 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2366 	 * triggering STARTING callbacks, a failure in this state would
2367 	 * hinder rollback.
2368 	 */
2369 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2370 		return -EINVAL;
2371 
2372 	/*
2373 	 * Cannot fail anything that doesn't have callbacks.
2374 	 */
2375 	mutex_lock(&cpuhp_state_mutex);
2376 	sp = cpuhp_get_step(fail);
2377 	if (!sp->startup.single && !sp->teardown.single)
2378 		ret = -EINVAL;
2379 	mutex_unlock(&cpuhp_state_mutex);
2380 	if (ret)
2381 		return ret;
2382 
2383 	st->fail = fail;
2384 
2385 	return count;
2386 }
2387 
2388 static ssize_t fail_show(struct device *dev,
2389 			 struct device_attribute *attr, char *buf)
2390 {
2391 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2392 
2393 	return sprintf(buf, "%d\n", st->fail);
2394 }
2395 
2396 static DEVICE_ATTR_RW(fail);
2397 
2398 static struct attribute *cpuhp_cpu_attrs[] = {
2399 	&dev_attr_state.attr,
2400 	&dev_attr_target.attr,
2401 	&dev_attr_fail.attr,
2402 	NULL
2403 };
2404 
2405 static const struct attribute_group cpuhp_cpu_attr_group = {
2406 	.attrs = cpuhp_cpu_attrs,
2407 	.name = "hotplug",
2408 	NULL
2409 };
2410 
2411 static ssize_t states_show(struct device *dev,
2412 				 struct device_attribute *attr, char *buf)
2413 {
2414 	ssize_t cur, res = 0;
2415 	int i;
2416 
2417 	mutex_lock(&cpuhp_state_mutex);
2418 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2419 		struct cpuhp_step *sp = cpuhp_get_step(i);
2420 
2421 		if (sp->name) {
2422 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2423 			buf += cur;
2424 			res += cur;
2425 		}
2426 	}
2427 	mutex_unlock(&cpuhp_state_mutex);
2428 	return res;
2429 }
2430 static DEVICE_ATTR_RO(states);
2431 
2432 static struct attribute *cpuhp_cpu_root_attrs[] = {
2433 	&dev_attr_states.attr,
2434 	NULL
2435 };
2436 
2437 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2438 	.attrs = cpuhp_cpu_root_attrs,
2439 	.name = "hotplug",
2440 	NULL
2441 };
2442 
2443 #ifdef CONFIG_HOTPLUG_SMT
2444 
2445 static ssize_t
2446 __store_smt_control(struct device *dev, struct device_attribute *attr,
2447 		    const char *buf, size_t count)
2448 {
2449 	int ctrlval, ret;
2450 
2451 	if (sysfs_streq(buf, "on"))
2452 		ctrlval = CPU_SMT_ENABLED;
2453 	else if (sysfs_streq(buf, "off"))
2454 		ctrlval = CPU_SMT_DISABLED;
2455 	else if (sysfs_streq(buf, "forceoff"))
2456 		ctrlval = CPU_SMT_FORCE_DISABLED;
2457 	else
2458 		return -EINVAL;
2459 
2460 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2461 		return -EPERM;
2462 
2463 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2464 		return -ENODEV;
2465 
2466 	ret = lock_device_hotplug_sysfs();
2467 	if (ret)
2468 		return ret;
2469 
2470 	if (ctrlval != cpu_smt_control) {
2471 		switch (ctrlval) {
2472 		case CPU_SMT_ENABLED:
2473 			ret = cpuhp_smt_enable();
2474 			break;
2475 		case CPU_SMT_DISABLED:
2476 		case CPU_SMT_FORCE_DISABLED:
2477 			ret = cpuhp_smt_disable(ctrlval);
2478 			break;
2479 		}
2480 	}
2481 
2482 	unlock_device_hotplug();
2483 	return ret ? ret : count;
2484 }
2485 
2486 #else /* !CONFIG_HOTPLUG_SMT */
2487 static ssize_t
2488 __store_smt_control(struct device *dev, struct device_attribute *attr,
2489 		    const char *buf, size_t count)
2490 {
2491 	return -ENODEV;
2492 }
2493 #endif /* CONFIG_HOTPLUG_SMT */
2494 
2495 static const char *smt_states[] = {
2496 	[CPU_SMT_ENABLED]		= "on",
2497 	[CPU_SMT_DISABLED]		= "off",
2498 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2499 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2500 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2501 };
2502 
2503 static ssize_t control_show(struct device *dev,
2504 			    struct device_attribute *attr, char *buf)
2505 {
2506 	const char *state = smt_states[cpu_smt_control];
2507 
2508 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2509 }
2510 
2511 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2512 			     const char *buf, size_t count)
2513 {
2514 	return __store_smt_control(dev, attr, buf, count);
2515 }
2516 static DEVICE_ATTR_RW(control);
2517 
2518 static ssize_t active_show(struct device *dev,
2519 			   struct device_attribute *attr, char *buf)
2520 {
2521 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2522 }
2523 static DEVICE_ATTR_RO(active);
2524 
2525 static struct attribute *cpuhp_smt_attrs[] = {
2526 	&dev_attr_control.attr,
2527 	&dev_attr_active.attr,
2528 	NULL
2529 };
2530 
2531 static const struct attribute_group cpuhp_smt_attr_group = {
2532 	.attrs = cpuhp_smt_attrs,
2533 	.name = "smt",
2534 	NULL
2535 };
2536 
2537 static int __init cpu_smt_sysfs_init(void)
2538 {
2539 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2540 				  &cpuhp_smt_attr_group);
2541 }
2542 
2543 static int __init cpuhp_sysfs_init(void)
2544 {
2545 	int cpu, ret;
2546 
2547 	ret = cpu_smt_sysfs_init();
2548 	if (ret)
2549 		return ret;
2550 
2551 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2552 				 &cpuhp_cpu_root_attr_group);
2553 	if (ret)
2554 		return ret;
2555 
2556 	for_each_possible_cpu(cpu) {
2557 		struct device *dev = get_cpu_device(cpu);
2558 
2559 		if (!dev)
2560 			continue;
2561 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2562 		if (ret)
2563 			return ret;
2564 	}
2565 	return 0;
2566 }
2567 device_initcall(cpuhp_sysfs_init);
2568 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2569 
2570 /*
2571  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2572  * represents all NR_CPUS bits binary values of 1<<nr.
2573  *
2574  * It is used by cpumask_of() to get a constant address to a CPU
2575  * mask value that has a single bit set only.
2576  */
2577 
2578 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2579 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2580 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2581 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2582 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2583 
2584 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2585 
2586 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2587 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2588 #if BITS_PER_LONG > 32
2589 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2590 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2591 #endif
2592 };
2593 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2594 
2595 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2596 EXPORT_SYMBOL(cpu_all_bits);
2597 
2598 #ifdef CONFIG_INIT_ALL_POSSIBLE
2599 struct cpumask __cpu_possible_mask __read_mostly
2600 	= {CPU_BITS_ALL};
2601 #else
2602 struct cpumask __cpu_possible_mask __read_mostly;
2603 #endif
2604 EXPORT_SYMBOL(__cpu_possible_mask);
2605 
2606 struct cpumask __cpu_online_mask __read_mostly;
2607 EXPORT_SYMBOL(__cpu_online_mask);
2608 
2609 struct cpumask __cpu_present_mask __read_mostly;
2610 EXPORT_SYMBOL(__cpu_present_mask);
2611 
2612 struct cpumask __cpu_active_mask __read_mostly;
2613 EXPORT_SYMBOL(__cpu_active_mask);
2614 
2615 struct cpumask __cpu_dying_mask __read_mostly;
2616 EXPORT_SYMBOL(__cpu_dying_mask);
2617 
2618 atomic_t __num_online_cpus __read_mostly;
2619 EXPORT_SYMBOL(__num_online_cpus);
2620 
2621 void init_cpu_present(const struct cpumask *src)
2622 {
2623 	cpumask_copy(&__cpu_present_mask, src);
2624 }
2625 
2626 void init_cpu_possible(const struct cpumask *src)
2627 {
2628 	cpumask_copy(&__cpu_possible_mask, src);
2629 }
2630 
2631 void init_cpu_online(const struct cpumask *src)
2632 {
2633 	cpumask_copy(&__cpu_online_mask, src);
2634 }
2635 
2636 void set_cpu_online(unsigned int cpu, bool online)
2637 {
2638 	/*
2639 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2640 	 * function by the reboot and kexec code which invoke it from
2641 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2642 	 * regular CPU hotplug is properly serialized.
2643 	 *
2644 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2645 	 * does not protect readers which are not serialized against
2646 	 * concurrent hotplug operations.
2647 	 */
2648 	if (online) {
2649 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2650 			atomic_inc(&__num_online_cpus);
2651 	} else {
2652 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2653 			atomic_dec(&__num_online_cpus);
2654 	}
2655 }
2656 
2657 /*
2658  * Activate the first processor.
2659  */
2660 void __init boot_cpu_init(void)
2661 {
2662 	int cpu = smp_processor_id();
2663 
2664 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2665 	set_cpu_online(cpu, true);
2666 	set_cpu_active(cpu, true);
2667 	set_cpu_present(cpu, true);
2668 	set_cpu_possible(cpu, true);
2669 
2670 #ifdef CONFIG_SMP
2671 	__boot_cpu_id = cpu;
2672 #endif
2673 }
2674 
2675 /*
2676  * Must be called _AFTER_ setting up the per_cpu areas
2677  */
2678 void __init boot_cpu_hotplug_init(void)
2679 {
2680 #ifdef CONFIG_SMP
2681 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2682 #endif
2683 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2684 }
2685 
2686 /*
2687  * These are used for a global "mitigations=" cmdline option for toggling
2688  * optional CPU mitigations.
2689  */
2690 enum cpu_mitigations {
2691 	CPU_MITIGATIONS_OFF,
2692 	CPU_MITIGATIONS_AUTO,
2693 	CPU_MITIGATIONS_AUTO_NOSMT,
2694 };
2695 
2696 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2697 	CPU_MITIGATIONS_AUTO;
2698 
2699 static int __init mitigations_parse_cmdline(char *arg)
2700 {
2701 	if (!strcmp(arg, "off"))
2702 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2703 	else if (!strcmp(arg, "auto"))
2704 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2705 	else if (!strcmp(arg, "auto,nosmt"))
2706 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2707 	else
2708 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2709 			arg);
2710 
2711 	return 0;
2712 }
2713 early_param("mitigations", mitigations_parse_cmdline);
2714 
2715 /* mitigations=off */
2716 bool cpu_mitigations_off(void)
2717 {
2718 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2719 }
2720 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2721 
2722 /* mitigations=auto,nosmt */
2723 bool cpu_mitigations_auto_nosmt(void)
2724 {
2725 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2726 }
2727 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2728