1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bug.h> 21 #include <linux/kthread.h> 22 #include <linux/stop_machine.h> 23 #include <linux/mutex.h> 24 #include <linux/gfp.h> 25 #include <linux/suspend.h> 26 #include <linux/lockdep.h> 27 #include <linux/tick.h> 28 #include <linux/irq.h> 29 #include <linux/nmi.h> 30 #include <linux/smpboot.h> 31 #include <linux/relay.h> 32 #include <linux/slab.h> 33 #include <linux/percpu-rwsem.h> 34 35 #include <trace/events/power.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/cpuhp.h> 38 39 #include "smpboot.h" 40 41 /** 42 * cpuhp_cpu_state - Per cpu hotplug state storage 43 * @state: The current cpu state 44 * @target: The target state 45 * @thread: Pointer to the hotplug thread 46 * @should_run: Thread should execute 47 * @rollback: Perform a rollback 48 * @single: Single callback invocation 49 * @bringup: Single callback bringup or teardown selector 50 * @cb_state: The state for a single callback (install/uninstall) 51 * @result: Result of the operation 52 * @done_up: Signal completion to the issuer of the task for cpu-up 53 * @done_down: Signal completion to the issuer of the task for cpu-down 54 */ 55 struct cpuhp_cpu_state { 56 enum cpuhp_state state; 57 enum cpuhp_state target; 58 enum cpuhp_state fail; 59 #ifdef CONFIG_SMP 60 struct task_struct *thread; 61 bool should_run; 62 bool rollback; 63 bool single; 64 bool bringup; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #ifdef CONFIG_SMP 79 cpumask_t cpus_booted_once_mask; 80 #endif 81 82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 83 static struct lockdep_map cpuhp_state_up_map = 84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 85 static struct lockdep_map cpuhp_state_down_map = 86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 87 88 89 static inline void cpuhp_lock_acquire(bool bringup) 90 { 91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 94 static inline void cpuhp_lock_release(bool bringup) 95 { 96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 97 } 98 #else 99 100 static inline void cpuhp_lock_acquire(bool bringup) { } 101 static inline void cpuhp_lock_release(bool bringup) { } 102 103 #endif 104 105 /** 106 * cpuhp_step - Hotplug state machine step 107 * @name: Name of the step 108 * @startup: Startup function of the step 109 * @teardown: Teardown function of the step 110 * @cant_stop: Bringup/teardown can't be stopped at this step 111 */ 112 struct cpuhp_step { 113 const char *name; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } startup; 119 union { 120 int (*single)(unsigned int cpu); 121 int (*multi)(unsigned int cpu, 122 struct hlist_node *node); 123 } teardown; 124 struct hlist_head list; 125 bool cant_stop; 126 bool multi_instance; 127 }; 128 129 static DEFINE_MUTEX(cpuhp_state_mutex); 130 static struct cpuhp_step cpuhp_hp_states[]; 131 132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 133 { 134 return cpuhp_hp_states + state; 135 } 136 137 /** 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 139 * @cpu: The cpu for which the callback should be invoked 140 * @state: The state to do callbacks for 141 * @bringup: True if the bringup callback should be invoked 142 * @node: For multi-instance, do a single entry callback for install/remove 143 * @lastp: For multi-instance rollback, remember how far we got 144 * 145 * Called from cpu hotplug and from the state register machinery. 146 */ 147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 148 bool bringup, struct hlist_node *node, 149 struct hlist_node **lastp) 150 { 151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 152 struct cpuhp_step *step = cpuhp_get_step(state); 153 int (*cbm)(unsigned int cpu, struct hlist_node *node); 154 int (*cb)(unsigned int cpu); 155 int ret, cnt; 156 157 if (st->fail == state) { 158 st->fail = CPUHP_INVALID; 159 160 if (!(bringup ? step->startup.single : step->teardown.single)) 161 return 0; 162 163 return -EAGAIN; 164 } 165 166 if (!step->multi_instance) { 167 WARN_ON_ONCE(lastp && *lastp); 168 cb = bringup ? step->startup.single : step->teardown.single; 169 if (!cb) 170 return 0; 171 trace_cpuhp_enter(cpu, st->target, state, cb); 172 ret = cb(cpu); 173 trace_cpuhp_exit(cpu, st->state, state, ret); 174 return ret; 175 } 176 cbm = bringup ? step->startup.multi : step->teardown.multi; 177 if (!cbm) 178 return 0; 179 180 /* Single invocation for instance add/remove */ 181 if (node) { 182 WARN_ON_ONCE(lastp && *lastp); 183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 184 ret = cbm(cpu, node); 185 trace_cpuhp_exit(cpu, st->state, state, ret); 186 return ret; 187 } 188 189 /* State transition. Invoke on all instances */ 190 cnt = 0; 191 hlist_for_each(node, &step->list) { 192 if (lastp && node == *lastp) 193 break; 194 195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 196 ret = cbm(cpu, node); 197 trace_cpuhp_exit(cpu, st->state, state, ret); 198 if (ret) { 199 if (!lastp) 200 goto err; 201 202 *lastp = node; 203 return ret; 204 } 205 cnt++; 206 } 207 if (lastp) 208 *lastp = NULL; 209 return 0; 210 err: 211 /* Rollback the instances if one failed */ 212 cbm = !bringup ? step->startup.multi : step->teardown.multi; 213 if (!cbm) 214 return ret; 215 216 hlist_for_each(node, &step->list) { 217 if (!cnt--) 218 break; 219 220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 221 ret = cbm(cpu, node); 222 trace_cpuhp_exit(cpu, st->state, state, ret); 223 /* 224 * Rollback must not fail, 225 */ 226 WARN_ON_ONCE(ret); 227 } 228 return ret; 229 } 230 231 #ifdef CONFIG_SMP 232 static bool cpuhp_is_ap_state(enum cpuhp_state state) 233 { 234 /* 235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 236 * purposes as that state is handled explicitly in cpu_down. 237 */ 238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 239 } 240 241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 242 { 243 struct completion *done = bringup ? &st->done_up : &st->done_down; 244 wait_for_completion(done); 245 } 246 247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 complete(done); 251 } 252 253 /* 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 255 */ 256 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 257 { 258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 259 } 260 261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 262 static DEFINE_MUTEX(cpu_add_remove_lock); 263 bool cpuhp_tasks_frozen; 264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 266 /* 267 * The following two APIs (cpu_maps_update_begin/done) must be used when 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 269 */ 270 void cpu_maps_update_begin(void) 271 { 272 mutex_lock(&cpu_add_remove_lock); 273 } 274 275 void cpu_maps_update_done(void) 276 { 277 mutex_unlock(&cpu_add_remove_lock); 278 } 279 280 /* 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 282 * Should always be manipulated under cpu_add_remove_lock 283 */ 284 static int cpu_hotplug_disabled; 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 290 void cpus_read_lock(void) 291 { 292 percpu_down_read(&cpu_hotplug_lock); 293 } 294 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 296 int cpus_read_trylock(void) 297 { 298 return percpu_down_read_trylock(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_trylock); 301 302 void cpus_read_unlock(void) 303 { 304 percpu_up_read(&cpu_hotplug_lock); 305 } 306 EXPORT_SYMBOL_GPL(cpus_read_unlock); 307 308 void cpus_write_lock(void) 309 { 310 percpu_down_write(&cpu_hotplug_lock); 311 } 312 313 void cpus_write_unlock(void) 314 { 315 percpu_up_write(&cpu_hotplug_lock); 316 } 317 318 void lockdep_assert_cpus_held(void) 319 { 320 /* 321 * We can't have hotplug operations before userspace starts running, 322 * and some init codepaths will knowingly not take the hotplug lock. 323 * This is all valid, so mute lockdep until it makes sense to report 324 * unheld locks. 325 */ 326 if (system_state < SYSTEM_RUNNING) 327 return; 328 329 percpu_rwsem_assert_held(&cpu_hotplug_lock); 330 } 331 332 static void lockdep_acquire_cpus_lock(void) 333 { 334 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 335 } 336 337 static void lockdep_release_cpus_lock(void) 338 { 339 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_); 340 } 341 342 /* 343 * Wait for currently running CPU hotplug operations to complete (if any) and 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 346 * hotplug path before performing hotplug operations. So acquiring that lock 347 * guarantees mutual exclusion from any currently running hotplug operations. 348 */ 349 void cpu_hotplug_disable(void) 350 { 351 cpu_maps_update_begin(); 352 cpu_hotplug_disabled++; 353 cpu_maps_update_done(); 354 } 355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 356 357 static void __cpu_hotplug_enable(void) 358 { 359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 360 return; 361 cpu_hotplug_disabled--; 362 } 363 364 void cpu_hotplug_enable(void) 365 { 366 cpu_maps_update_begin(); 367 __cpu_hotplug_enable(); 368 cpu_maps_update_done(); 369 } 370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 371 372 #else 373 374 static void lockdep_acquire_cpus_lock(void) 375 { 376 } 377 378 static void lockdep_release_cpus_lock(void) 379 { 380 } 381 382 #endif /* CONFIG_HOTPLUG_CPU */ 383 384 /* 385 * Architectures that need SMT-specific errata handling during SMT hotplug 386 * should override this. 387 */ 388 void __weak arch_smt_update(void) { } 389 390 #ifdef CONFIG_HOTPLUG_SMT 391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 392 393 void __init cpu_smt_disable(bool force) 394 { 395 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 396 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 397 return; 398 399 if (force) { 400 pr_info("SMT: Force disabled\n"); 401 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 402 } else { 403 pr_info("SMT: disabled\n"); 404 cpu_smt_control = CPU_SMT_DISABLED; 405 } 406 } 407 408 /* 409 * The decision whether SMT is supported can only be done after the full 410 * CPU identification. Called from architecture code. 411 */ 412 void __init cpu_smt_check_topology(void) 413 { 414 if (!topology_smt_supported()) 415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 416 } 417 418 static int __init smt_cmdline_disable(char *str) 419 { 420 cpu_smt_disable(str && !strcmp(str, "force")); 421 return 0; 422 } 423 early_param("nosmt", smt_cmdline_disable); 424 425 static inline bool cpu_smt_allowed(unsigned int cpu) 426 { 427 if (cpu_smt_control == CPU_SMT_ENABLED) 428 return true; 429 430 if (topology_is_primary_thread(cpu)) 431 return true; 432 433 /* 434 * On x86 it's required to boot all logical CPUs at least once so 435 * that the init code can get a chance to set CR4.MCE on each 436 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 437 * core will shutdown the machine. 438 */ 439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 440 } 441 #else 442 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 443 #endif 444 445 static inline enum cpuhp_state 446 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 447 { 448 enum cpuhp_state prev_state = st->state; 449 450 st->rollback = false; 451 st->last = NULL; 452 453 st->target = target; 454 st->single = false; 455 st->bringup = st->state < target; 456 457 return prev_state; 458 } 459 460 static inline void 461 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 462 { 463 st->rollback = true; 464 465 /* 466 * If we have st->last we need to undo partial multi_instance of this 467 * state first. Otherwise start undo at the previous state. 468 */ 469 if (!st->last) { 470 if (st->bringup) 471 st->state--; 472 else 473 st->state++; 474 } 475 476 st->target = prev_state; 477 st->bringup = !st->bringup; 478 } 479 480 /* Regular hotplug invocation of the AP hotplug thread */ 481 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 482 { 483 if (!st->single && st->state == st->target) 484 return; 485 486 st->result = 0; 487 /* 488 * Make sure the above stores are visible before should_run becomes 489 * true. Paired with the mb() above in cpuhp_thread_fun() 490 */ 491 smp_mb(); 492 st->should_run = true; 493 wake_up_process(st->thread); 494 wait_for_ap_thread(st, st->bringup); 495 } 496 497 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 498 { 499 enum cpuhp_state prev_state; 500 int ret; 501 502 prev_state = cpuhp_set_state(st, target); 503 __cpuhp_kick_ap(st); 504 if ((ret = st->result)) { 505 cpuhp_reset_state(st, prev_state); 506 __cpuhp_kick_ap(st); 507 } 508 509 return ret; 510 } 511 512 static int bringup_wait_for_ap(unsigned int cpu) 513 { 514 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 515 516 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 517 wait_for_ap_thread(st, true); 518 if (WARN_ON_ONCE((!cpu_online(cpu)))) 519 return -ECANCELED; 520 521 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 522 stop_machine_unpark(cpu); 523 kthread_unpark(st->thread); 524 525 /* 526 * SMT soft disabling on X86 requires to bring the CPU out of the 527 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 528 * CPU marked itself as booted_once in notify_cpu_starting() so the 529 * cpu_smt_allowed() check will now return false if this is not the 530 * primary sibling. 531 */ 532 if (!cpu_smt_allowed(cpu)) 533 return -ECANCELED; 534 535 if (st->target <= CPUHP_AP_ONLINE_IDLE) 536 return 0; 537 538 return cpuhp_kick_ap(st, st->target); 539 } 540 541 static int bringup_cpu(unsigned int cpu) 542 { 543 struct task_struct *idle = idle_thread_get(cpu); 544 int ret; 545 546 /* 547 * Some architectures have to walk the irq descriptors to 548 * setup the vector space for the cpu which comes online. 549 * Prevent irq alloc/free across the bringup. 550 */ 551 irq_lock_sparse(); 552 553 /* Arch-specific enabling code. */ 554 ret = __cpu_up(cpu, idle); 555 irq_unlock_sparse(); 556 if (ret) 557 return ret; 558 return bringup_wait_for_ap(cpu); 559 } 560 561 /* 562 * Hotplug state machine related functions 563 */ 564 565 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 566 { 567 for (st->state--; st->state > st->target; st->state--) 568 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 569 } 570 571 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 572 { 573 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 574 return true; 575 /* 576 * When CPU hotplug is disabled, then taking the CPU down is not 577 * possible because takedown_cpu() and the architecture and 578 * subsystem specific mechanisms are not available. So the CPU 579 * which would be completely unplugged again needs to stay around 580 * in the current state. 581 */ 582 return st->state <= CPUHP_BRINGUP_CPU; 583 } 584 585 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 586 enum cpuhp_state target) 587 { 588 enum cpuhp_state prev_state = st->state; 589 int ret = 0; 590 591 while (st->state < target) { 592 st->state++; 593 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 594 if (ret) { 595 if (can_rollback_cpu(st)) { 596 st->target = prev_state; 597 undo_cpu_up(cpu, st); 598 } 599 break; 600 } 601 } 602 return ret; 603 } 604 605 /* 606 * The cpu hotplug threads manage the bringup and teardown of the cpus 607 */ 608 static void cpuhp_create(unsigned int cpu) 609 { 610 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 611 612 init_completion(&st->done_up); 613 init_completion(&st->done_down); 614 } 615 616 static int cpuhp_should_run(unsigned int cpu) 617 { 618 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 619 620 return st->should_run; 621 } 622 623 /* 624 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 625 * callbacks when a state gets [un]installed at runtime. 626 * 627 * Each invocation of this function by the smpboot thread does a single AP 628 * state callback. 629 * 630 * It has 3 modes of operation: 631 * - single: runs st->cb_state 632 * - up: runs ++st->state, while st->state < st->target 633 * - down: runs st->state--, while st->state > st->target 634 * 635 * When complete or on error, should_run is cleared and the completion is fired. 636 */ 637 static void cpuhp_thread_fun(unsigned int cpu) 638 { 639 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 640 bool bringup = st->bringup; 641 enum cpuhp_state state; 642 643 if (WARN_ON_ONCE(!st->should_run)) 644 return; 645 646 /* 647 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 648 * that if we see ->should_run we also see the rest of the state. 649 */ 650 smp_mb(); 651 652 /* 653 * The BP holds the hotplug lock, but we're now running on the AP, 654 * ensure that anybody asserting the lock is held, will actually find 655 * it so. 656 */ 657 lockdep_acquire_cpus_lock(); 658 cpuhp_lock_acquire(bringup); 659 660 if (st->single) { 661 state = st->cb_state; 662 st->should_run = false; 663 } else { 664 if (bringup) { 665 st->state++; 666 state = st->state; 667 st->should_run = (st->state < st->target); 668 WARN_ON_ONCE(st->state > st->target); 669 } else { 670 state = st->state; 671 st->state--; 672 st->should_run = (st->state > st->target); 673 WARN_ON_ONCE(st->state < st->target); 674 } 675 } 676 677 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 678 679 if (cpuhp_is_atomic_state(state)) { 680 local_irq_disable(); 681 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 682 local_irq_enable(); 683 684 /* 685 * STARTING/DYING must not fail! 686 */ 687 WARN_ON_ONCE(st->result); 688 } else { 689 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 690 } 691 692 if (st->result) { 693 /* 694 * If we fail on a rollback, we're up a creek without no 695 * paddle, no way forward, no way back. We loose, thanks for 696 * playing. 697 */ 698 WARN_ON_ONCE(st->rollback); 699 st->should_run = false; 700 } 701 702 cpuhp_lock_release(bringup); 703 lockdep_release_cpus_lock(); 704 705 if (!st->should_run) 706 complete_ap_thread(st, bringup); 707 } 708 709 /* Invoke a single callback on a remote cpu */ 710 static int 711 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 712 struct hlist_node *node) 713 { 714 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 715 int ret; 716 717 if (!cpu_online(cpu)) 718 return 0; 719 720 cpuhp_lock_acquire(false); 721 cpuhp_lock_release(false); 722 723 cpuhp_lock_acquire(true); 724 cpuhp_lock_release(true); 725 726 /* 727 * If we are up and running, use the hotplug thread. For early calls 728 * we invoke the thread function directly. 729 */ 730 if (!st->thread) 731 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 732 733 st->rollback = false; 734 st->last = NULL; 735 736 st->node = node; 737 st->bringup = bringup; 738 st->cb_state = state; 739 st->single = true; 740 741 __cpuhp_kick_ap(st); 742 743 /* 744 * If we failed and did a partial, do a rollback. 745 */ 746 if ((ret = st->result) && st->last) { 747 st->rollback = true; 748 st->bringup = !bringup; 749 750 __cpuhp_kick_ap(st); 751 } 752 753 /* 754 * Clean up the leftovers so the next hotplug operation wont use stale 755 * data. 756 */ 757 st->node = st->last = NULL; 758 return ret; 759 } 760 761 static int cpuhp_kick_ap_work(unsigned int cpu) 762 { 763 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 764 enum cpuhp_state prev_state = st->state; 765 int ret; 766 767 cpuhp_lock_acquire(false); 768 cpuhp_lock_release(false); 769 770 cpuhp_lock_acquire(true); 771 cpuhp_lock_release(true); 772 773 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 774 ret = cpuhp_kick_ap(st, st->target); 775 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 776 777 return ret; 778 } 779 780 static struct smp_hotplug_thread cpuhp_threads = { 781 .store = &cpuhp_state.thread, 782 .create = &cpuhp_create, 783 .thread_should_run = cpuhp_should_run, 784 .thread_fn = cpuhp_thread_fun, 785 .thread_comm = "cpuhp/%u", 786 .selfparking = true, 787 }; 788 789 void __init cpuhp_threads_init(void) 790 { 791 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 792 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 793 } 794 795 #ifdef CONFIG_HOTPLUG_CPU 796 /** 797 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 798 * @cpu: a CPU id 799 * 800 * This function walks all processes, finds a valid mm struct for each one and 801 * then clears a corresponding bit in mm's cpumask. While this all sounds 802 * trivial, there are various non-obvious corner cases, which this function 803 * tries to solve in a safe manner. 804 * 805 * Also note that the function uses a somewhat relaxed locking scheme, so it may 806 * be called only for an already offlined CPU. 807 */ 808 void clear_tasks_mm_cpumask(int cpu) 809 { 810 struct task_struct *p; 811 812 /* 813 * This function is called after the cpu is taken down and marked 814 * offline, so its not like new tasks will ever get this cpu set in 815 * their mm mask. -- Peter Zijlstra 816 * Thus, we may use rcu_read_lock() here, instead of grabbing 817 * full-fledged tasklist_lock. 818 */ 819 WARN_ON(cpu_online(cpu)); 820 rcu_read_lock(); 821 for_each_process(p) { 822 struct task_struct *t; 823 824 /* 825 * Main thread might exit, but other threads may still have 826 * a valid mm. Find one. 827 */ 828 t = find_lock_task_mm(p); 829 if (!t) 830 continue; 831 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 832 task_unlock(t); 833 } 834 rcu_read_unlock(); 835 } 836 837 /* Take this CPU down. */ 838 static int take_cpu_down(void *_param) 839 { 840 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 841 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 842 int err, cpu = smp_processor_id(); 843 int ret; 844 845 /* Ensure this CPU doesn't handle any more interrupts. */ 846 err = __cpu_disable(); 847 if (err < 0) 848 return err; 849 850 /* 851 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 852 * do this step again. 853 */ 854 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 855 st->state--; 856 /* Invoke the former CPU_DYING callbacks */ 857 for (; st->state > target; st->state--) { 858 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 859 /* 860 * DYING must not fail! 861 */ 862 WARN_ON_ONCE(ret); 863 } 864 865 /* Give up timekeeping duties */ 866 tick_handover_do_timer(); 867 /* Remove CPU from timer broadcasting */ 868 tick_offline_cpu(cpu); 869 /* Park the stopper thread */ 870 stop_machine_park(cpu); 871 return 0; 872 } 873 874 static int takedown_cpu(unsigned int cpu) 875 { 876 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 877 int err; 878 879 /* Park the smpboot threads */ 880 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 881 882 /* 883 * Prevent irq alloc/free while the dying cpu reorganizes the 884 * interrupt affinities. 885 */ 886 irq_lock_sparse(); 887 888 /* 889 * So now all preempt/rcu users must observe !cpu_active(). 890 */ 891 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 892 if (err) { 893 /* CPU refused to die */ 894 irq_unlock_sparse(); 895 /* Unpark the hotplug thread so we can rollback there */ 896 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 897 return err; 898 } 899 BUG_ON(cpu_online(cpu)); 900 901 /* 902 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 903 * all runnable tasks from the CPU, there's only the idle task left now 904 * that the migration thread is done doing the stop_machine thing. 905 * 906 * Wait for the stop thread to go away. 907 */ 908 wait_for_ap_thread(st, false); 909 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 910 911 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 912 irq_unlock_sparse(); 913 914 hotplug_cpu__broadcast_tick_pull(cpu); 915 /* This actually kills the CPU. */ 916 __cpu_die(cpu); 917 918 tick_cleanup_dead_cpu(cpu); 919 rcutree_migrate_callbacks(cpu); 920 return 0; 921 } 922 923 static void cpuhp_complete_idle_dead(void *arg) 924 { 925 struct cpuhp_cpu_state *st = arg; 926 927 complete_ap_thread(st, false); 928 } 929 930 void cpuhp_report_idle_dead(void) 931 { 932 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 933 934 BUG_ON(st->state != CPUHP_AP_OFFLINE); 935 rcu_report_dead(smp_processor_id()); 936 st->state = CPUHP_AP_IDLE_DEAD; 937 /* 938 * We cannot call complete after rcu_report_dead() so we delegate it 939 * to an online cpu. 940 */ 941 smp_call_function_single(cpumask_first(cpu_online_mask), 942 cpuhp_complete_idle_dead, st, 0); 943 } 944 945 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 946 { 947 for (st->state++; st->state < st->target; st->state++) 948 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 949 } 950 951 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 952 enum cpuhp_state target) 953 { 954 enum cpuhp_state prev_state = st->state; 955 int ret = 0; 956 957 for (; st->state > target; st->state--) { 958 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 959 if (ret) { 960 st->target = prev_state; 961 if (st->state < prev_state) 962 undo_cpu_down(cpu, st); 963 break; 964 } 965 } 966 return ret; 967 } 968 969 /* Requires cpu_add_remove_lock to be held */ 970 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 971 enum cpuhp_state target) 972 { 973 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 974 int prev_state, ret = 0; 975 976 if (num_online_cpus() == 1) 977 return -EBUSY; 978 979 if (!cpu_present(cpu)) 980 return -EINVAL; 981 982 cpus_write_lock(); 983 984 cpuhp_tasks_frozen = tasks_frozen; 985 986 prev_state = cpuhp_set_state(st, target); 987 /* 988 * If the current CPU state is in the range of the AP hotplug thread, 989 * then we need to kick the thread. 990 */ 991 if (st->state > CPUHP_TEARDOWN_CPU) { 992 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 993 ret = cpuhp_kick_ap_work(cpu); 994 /* 995 * The AP side has done the error rollback already. Just 996 * return the error code.. 997 */ 998 if (ret) 999 goto out; 1000 1001 /* 1002 * We might have stopped still in the range of the AP hotplug 1003 * thread. Nothing to do anymore. 1004 */ 1005 if (st->state > CPUHP_TEARDOWN_CPU) 1006 goto out; 1007 1008 st->target = target; 1009 } 1010 /* 1011 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1012 * to do the further cleanups. 1013 */ 1014 ret = cpuhp_down_callbacks(cpu, st, target); 1015 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1016 cpuhp_reset_state(st, prev_state); 1017 __cpuhp_kick_ap(st); 1018 } 1019 1020 out: 1021 cpus_write_unlock(); 1022 /* 1023 * Do post unplug cleanup. This is still protected against 1024 * concurrent CPU hotplug via cpu_add_remove_lock. 1025 */ 1026 lockup_detector_cleanup(); 1027 arch_smt_update(); 1028 return ret; 1029 } 1030 1031 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1032 { 1033 if (cpu_hotplug_disabled) 1034 return -EBUSY; 1035 return _cpu_down(cpu, 0, target); 1036 } 1037 1038 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1039 { 1040 int err; 1041 1042 cpu_maps_update_begin(); 1043 err = cpu_down_maps_locked(cpu, target); 1044 cpu_maps_update_done(); 1045 return err; 1046 } 1047 1048 int cpu_down(unsigned int cpu) 1049 { 1050 return do_cpu_down(cpu, CPUHP_OFFLINE); 1051 } 1052 EXPORT_SYMBOL(cpu_down); 1053 1054 #else 1055 #define takedown_cpu NULL 1056 #endif /*CONFIG_HOTPLUG_CPU*/ 1057 1058 /** 1059 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1060 * @cpu: cpu that just started 1061 * 1062 * It must be called by the arch code on the new cpu, before the new cpu 1063 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1064 */ 1065 void notify_cpu_starting(unsigned int cpu) 1066 { 1067 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1068 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1069 int ret; 1070 1071 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1072 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1073 while (st->state < target) { 1074 st->state++; 1075 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1076 /* 1077 * STARTING must not fail! 1078 */ 1079 WARN_ON_ONCE(ret); 1080 } 1081 } 1082 1083 /* 1084 * Called from the idle task. Wake up the controlling task which brings the 1085 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1086 * the rest of the online bringup to the hotplug thread. 1087 */ 1088 void cpuhp_online_idle(enum cpuhp_state state) 1089 { 1090 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1091 1092 /* Happens for the boot cpu */ 1093 if (state != CPUHP_AP_ONLINE_IDLE) 1094 return; 1095 1096 st->state = CPUHP_AP_ONLINE_IDLE; 1097 complete_ap_thread(st, true); 1098 } 1099 1100 /* Requires cpu_add_remove_lock to be held */ 1101 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1102 { 1103 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1104 struct task_struct *idle; 1105 int ret = 0; 1106 1107 cpus_write_lock(); 1108 1109 if (!cpu_present(cpu)) { 1110 ret = -EINVAL; 1111 goto out; 1112 } 1113 1114 /* 1115 * The caller of do_cpu_up might have raced with another 1116 * caller. Ignore it for now. 1117 */ 1118 if (st->state >= target) 1119 goto out; 1120 1121 if (st->state == CPUHP_OFFLINE) { 1122 /* Let it fail before we try to bring the cpu up */ 1123 idle = idle_thread_get(cpu); 1124 if (IS_ERR(idle)) { 1125 ret = PTR_ERR(idle); 1126 goto out; 1127 } 1128 } 1129 1130 cpuhp_tasks_frozen = tasks_frozen; 1131 1132 cpuhp_set_state(st, target); 1133 /* 1134 * If the current CPU state is in the range of the AP hotplug thread, 1135 * then we need to kick the thread once more. 1136 */ 1137 if (st->state > CPUHP_BRINGUP_CPU) { 1138 ret = cpuhp_kick_ap_work(cpu); 1139 /* 1140 * The AP side has done the error rollback already. Just 1141 * return the error code.. 1142 */ 1143 if (ret) 1144 goto out; 1145 } 1146 1147 /* 1148 * Try to reach the target state. We max out on the BP at 1149 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1150 * responsible for bringing it up to the target state. 1151 */ 1152 target = min((int)target, CPUHP_BRINGUP_CPU); 1153 ret = cpuhp_up_callbacks(cpu, st, target); 1154 out: 1155 cpus_write_unlock(); 1156 arch_smt_update(); 1157 return ret; 1158 } 1159 1160 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1161 { 1162 int err = 0; 1163 1164 if (!cpu_possible(cpu)) { 1165 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1166 cpu); 1167 #if defined(CONFIG_IA64) 1168 pr_err("please check additional_cpus= boot parameter\n"); 1169 #endif 1170 return -EINVAL; 1171 } 1172 1173 err = try_online_node(cpu_to_node(cpu)); 1174 if (err) 1175 return err; 1176 1177 cpu_maps_update_begin(); 1178 1179 if (cpu_hotplug_disabled) { 1180 err = -EBUSY; 1181 goto out; 1182 } 1183 if (!cpu_smt_allowed(cpu)) { 1184 err = -EPERM; 1185 goto out; 1186 } 1187 1188 err = _cpu_up(cpu, 0, target); 1189 out: 1190 cpu_maps_update_done(); 1191 return err; 1192 } 1193 1194 int cpu_up(unsigned int cpu) 1195 { 1196 return do_cpu_up(cpu, CPUHP_ONLINE); 1197 } 1198 EXPORT_SYMBOL_GPL(cpu_up); 1199 1200 #ifdef CONFIG_PM_SLEEP_SMP 1201 static cpumask_var_t frozen_cpus; 1202 1203 int freeze_secondary_cpus(int primary) 1204 { 1205 int cpu, error = 0; 1206 1207 cpu_maps_update_begin(); 1208 if (primary == -1) { 1209 primary = cpumask_first(cpu_online_mask); 1210 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1211 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1212 } else { 1213 if (!cpu_online(primary)) 1214 primary = cpumask_first(cpu_online_mask); 1215 } 1216 1217 /* 1218 * We take down all of the non-boot CPUs in one shot to avoid races 1219 * with the userspace trying to use the CPU hotplug at the same time 1220 */ 1221 cpumask_clear(frozen_cpus); 1222 1223 pr_info("Disabling non-boot CPUs ...\n"); 1224 for_each_online_cpu(cpu) { 1225 if (cpu == primary) 1226 continue; 1227 1228 if (pm_wakeup_pending()) { 1229 pr_info("Wakeup pending. Abort CPU freeze\n"); 1230 error = -EBUSY; 1231 break; 1232 } 1233 1234 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1235 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1236 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1237 if (!error) 1238 cpumask_set_cpu(cpu, frozen_cpus); 1239 else { 1240 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1241 break; 1242 } 1243 } 1244 1245 if (!error) 1246 BUG_ON(num_online_cpus() > 1); 1247 else 1248 pr_err("Non-boot CPUs are not disabled\n"); 1249 1250 /* 1251 * Make sure the CPUs won't be enabled by someone else. We need to do 1252 * this even in case of failure as all disable_nonboot_cpus() users are 1253 * supposed to do enable_nonboot_cpus() on the failure path. 1254 */ 1255 cpu_hotplug_disabled++; 1256 1257 cpu_maps_update_done(); 1258 return error; 1259 } 1260 1261 void __weak arch_enable_nonboot_cpus_begin(void) 1262 { 1263 } 1264 1265 void __weak arch_enable_nonboot_cpus_end(void) 1266 { 1267 } 1268 1269 void enable_nonboot_cpus(void) 1270 { 1271 int cpu, error; 1272 1273 /* Allow everyone to use the CPU hotplug again */ 1274 cpu_maps_update_begin(); 1275 __cpu_hotplug_enable(); 1276 if (cpumask_empty(frozen_cpus)) 1277 goto out; 1278 1279 pr_info("Enabling non-boot CPUs ...\n"); 1280 1281 arch_enable_nonboot_cpus_begin(); 1282 1283 for_each_cpu(cpu, frozen_cpus) { 1284 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1285 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1286 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1287 if (!error) { 1288 pr_info("CPU%d is up\n", cpu); 1289 continue; 1290 } 1291 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1292 } 1293 1294 arch_enable_nonboot_cpus_end(); 1295 1296 cpumask_clear(frozen_cpus); 1297 out: 1298 cpu_maps_update_done(); 1299 } 1300 1301 static int __init alloc_frozen_cpus(void) 1302 { 1303 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1304 return -ENOMEM; 1305 return 0; 1306 } 1307 core_initcall(alloc_frozen_cpus); 1308 1309 /* 1310 * When callbacks for CPU hotplug notifications are being executed, we must 1311 * ensure that the state of the system with respect to the tasks being frozen 1312 * or not, as reported by the notification, remains unchanged *throughout the 1313 * duration* of the execution of the callbacks. 1314 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1315 * 1316 * This synchronization is implemented by mutually excluding regular CPU 1317 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1318 * Hibernate notifications. 1319 */ 1320 static int 1321 cpu_hotplug_pm_callback(struct notifier_block *nb, 1322 unsigned long action, void *ptr) 1323 { 1324 switch (action) { 1325 1326 case PM_SUSPEND_PREPARE: 1327 case PM_HIBERNATION_PREPARE: 1328 cpu_hotplug_disable(); 1329 break; 1330 1331 case PM_POST_SUSPEND: 1332 case PM_POST_HIBERNATION: 1333 cpu_hotplug_enable(); 1334 break; 1335 1336 default: 1337 return NOTIFY_DONE; 1338 } 1339 1340 return NOTIFY_OK; 1341 } 1342 1343 1344 static int __init cpu_hotplug_pm_sync_init(void) 1345 { 1346 /* 1347 * cpu_hotplug_pm_callback has higher priority than x86 1348 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1349 * to disable cpu hotplug to avoid cpu hotplug race. 1350 */ 1351 pm_notifier(cpu_hotplug_pm_callback, 0); 1352 return 0; 1353 } 1354 core_initcall(cpu_hotplug_pm_sync_init); 1355 1356 #endif /* CONFIG_PM_SLEEP_SMP */ 1357 1358 int __boot_cpu_id; 1359 1360 #endif /* CONFIG_SMP */ 1361 1362 /* Boot processor state steps */ 1363 static struct cpuhp_step cpuhp_hp_states[] = { 1364 [CPUHP_OFFLINE] = { 1365 .name = "offline", 1366 .startup.single = NULL, 1367 .teardown.single = NULL, 1368 }, 1369 #ifdef CONFIG_SMP 1370 [CPUHP_CREATE_THREADS]= { 1371 .name = "threads:prepare", 1372 .startup.single = smpboot_create_threads, 1373 .teardown.single = NULL, 1374 .cant_stop = true, 1375 }, 1376 [CPUHP_PERF_PREPARE] = { 1377 .name = "perf:prepare", 1378 .startup.single = perf_event_init_cpu, 1379 .teardown.single = perf_event_exit_cpu, 1380 }, 1381 [CPUHP_WORKQUEUE_PREP] = { 1382 .name = "workqueue:prepare", 1383 .startup.single = workqueue_prepare_cpu, 1384 .teardown.single = NULL, 1385 }, 1386 [CPUHP_HRTIMERS_PREPARE] = { 1387 .name = "hrtimers:prepare", 1388 .startup.single = hrtimers_prepare_cpu, 1389 .teardown.single = hrtimers_dead_cpu, 1390 }, 1391 [CPUHP_SMPCFD_PREPARE] = { 1392 .name = "smpcfd:prepare", 1393 .startup.single = smpcfd_prepare_cpu, 1394 .teardown.single = smpcfd_dead_cpu, 1395 }, 1396 [CPUHP_RELAY_PREPARE] = { 1397 .name = "relay:prepare", 1398 .startup.single = relay_prepare_cpu, 1399 .teardown.single = NULL, 1400 }, 1401 [CPUHP_SLAB_PREPARE] = { 1402 .name = "slab:prepare", 1403 .startup.single = slab_prepare_cpu, 1404 .teardown.single = slab_dead_cpu, 1405 }, 1406 [CPUHP_RCUTREE_PREP] = { 1407 .name = "RCU/tree:prepare", 1408 .startup.single = rcutree_prepare_cpu, 1409 .teardown.single = rcutree_dead_cpu, 1410 }, 1411 /* 1412 * On the tear-down path, timers_dead_cpu() must be invoked 1413 * before blk_mq_queue_reinit_notify() from notify_dead(), 1414 * otherwise a RCU stall occurs. 1415 */ 1416 [CPUHP_TIMERS_PREPARE] = { 1417 .name = "timers:prepare", 1418 .startup.single = timers_prepare_cpu, 1419 .teardown.single = timers_dead_cpu, 1420 }, 1421 /* Kicks the plugged cpu into life */ 1422 [CPUHP_BRINGUP_CPU] = { 1423 .name = "cpu:bringup", 1424 .startup.single = bringup_cpu, 1425 .teardown.single = NULL, 1426 .cant_stop = true, 1427 }, 1428 /* Final state before CPU kills itself */ 1429 [CPUHP_AP_IDLE_DEAD] = { 1430 .name = "idle:dead", 1431 }, 1432 /* 1433 * Last state before CPU enters the idle loop to die. Transient state 1434 * for synchronization. 1435 */ 1436 [CPUHP_AP_OFFLINE] = { 1437 .name = "ap:offline", 1438 .cant_stop = true, 1439 }, 1440 /* First state is scheduler control. Interrupts are disabled */ 1441 [CPUHP_AP_SCHED_STARTING] = { 1442 .name = "sched:starting", 1443 .startup.single = sched_cpu_starting, 1444 .teardown.single = sched_cpu_dying, 1445 }, 1446 [CPUHP_AP_RCUTREE_DYING] = { 1447 .name = "RCU/tree:dying", 1448 .startup.single = NULL, 1449 .teardown.single = rcutree_dying_cpu, 1450 }, 1451 [CPUHP_AP_SMPCFD_DYING] = { 1452 .name = "smpcfd:dying", 1453 .startup.single = NULL, 1454 .teardown.single = smpcfd_dying_cpu, 1455 }, 1456 /* Entry state on starting. Interrupts enabled from here on. Transient 1457 * state for synchronsization */ 1458 [CPUHP_AP_ONLINE] = { 1459 .name = "ap:online", 1460 }, 1461 /* 1462 * Handled on controll processor until the plugged processor manages 1463 * this itself. 1464 */ 1465 [CPUHP_TEARDOWN_CPU] = { 1466 .name = "cpu:teardown", 1467 .startup.single = NULL, 1468 .teardown.single = takedown_cpu, 1469 .cant_stop = true, 1470 }, 1471 /* Handle smpboot threads park/unpark */ 1472 [CPUHP_AP_SMPBOOT_THREADS] = { 1473 .name = "smpboot/threads:online", 1474 .startup.single = smpboot_unpark_threads, 1475 .teardown.single = smpboot_park_threads, 1476 }, 1477 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1478 .name = "irq/affinity:online", 1479 .startup.single = irq_affinity_online_cpu, 1480 .teardown.single = NULL, 1481 }, 1482 [CPUHP_AP_PERF_ONLINE] = { 1483 .name = "perf:online", 1484 .startup.single = perf_event_init_cpu, 1485 .teardown.single = perf_event_exit_cpu, 1486 }, 1487 [CPUHP_AP_WATCHDOG_ONLINE] = { 1488 .name = "lockup_detector:online", 1489 .startup.single = lockup_detector_online_cpu, 1490 .teardown.single = lockup_detector_offline_cpu, 1491 }, 1492 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1493 .name = "workqueue:online", 1494 .startup.single = workqueue_online_cpu, 1495 .teardown.single = workqueue_offline_cpu, 1496 }, 1497 [CPUHP_AP_RCUTREE_ONLINE] = { 1498 .name = "RCU/tree:online", 1499 .startup.single = rcutree_online_cpu, 1500 .teardown.single = rcutree_offline_cpu, 1501 }, 1502 #endif 1503 /* 1504 * The dynamically registered state space is here 1505 */ 1506 1507 #ifdef CONFIG_SMP 1508 /* Last state is scheduler control setting the cpu active */ 1509 [CPUHP_AP_ACTIVE] = { 1510 .name = "sched:active", 1511 .startup.single = sched_cpu_activate, 1512 .teardown.single = sched_cpu_deactivate, 1513 }, 1514 #endif 1515 1516 /* CPU is fully up and running. */ 1517 [CPUHP_ONLINE] = { 1518 .name = "online", 1519 .startup.single = NULL, 1520 .teardown.single = NULL, 1521 }, 1522 }; 1523 1524 /* Sanity check for callbacks */ 1525 static int cpuhp_cb_check(enum cpuhp_state state) 1526 { 1527 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1528 return -EINVAL; 1529 return 0; 1530 } 1531 1532 /* 1533 * Returns a free for dynamic slot assignment of the Online state. The states 1534 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1535 * by having no name assigned. 1536 */ 1537 static int cpuhp_reserve_state(enum cpuhp_state state) 1538 { 1539 enum cpuhp_state i, end; 1540 struct cpuhp_step *step; 1541 1542 switch (state) { 1543 case CPUHP_AP_ONLINE_DYN: 1544 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1545 end = CPUHP_AP_ONLINE_DYN_END; 1546 break; 1547 case CPUHP_BP_PREPARE_DYN: 1548 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1549 end = CPUHP_BP_PREPARE_DYN_END; 1550 break; 1551 default: 1552 return -EINVAL; 1553 } 1554 1555 for (i = state; i <= end; i++, step++) { 1556 if (!step->name) 1557 return i; 1558 } 1559 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1560 return -ENOSPC; 1561 } 1562 1563 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1564 int (*startup)(unsigned int cpu), 1565 int (*teardown)(unsigned int cpu), 1566 bool multi_instance) 1567 { 1568 /* (Un)Install the callbacks for further cpu hotplug operations */ 1569 struct cpuhp_step *sp; 1570 int ret = 0; 1571 1572 /* 1573 * If name is NULL, then the state gets removed. 1574 * 1575 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1576 * the first allocation from these dynamic ranges, so the removal 1577 * would trigger a new allocation and clear the wrong (already 1578 * empty) state, leaving the callbacks of the to be cleared state 1579 * dangling, which causes wreckage on the next hotplug operation. 1580 */ 1581 if (name && (state == CPUHP_AP_ONLINE_DYN || 1582 state == CPUHP_BP_PREPARE_DYN)) { 1583 ret = cpuhp_reserve_state(state); 1584 if (ret < 0) 1585 return ret; 1586 state = ret; 1587 } 1588 sp = cpuhp_get_step(state); 1589 if (name && sp->name) 1590 return -EBUSY; 1591 1592 sp->startup.single = startup; 1593 sp->teardown.single = teardown; 1594 sp->name = name; 1595 sp->multi_instance = multi_instance; 1596 INIT_HLIST_HEAD(&sp->list); 1597 return ret; 1598 } 1599 1600 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1601 { 1602 return cpuhp_get_step(state)->teardown.single; 1603 } 1604 1605 /* 1606 * Call the startup/teardown function for a step either on the AP or 1607 * on the current CPU. 1608 */ 1609 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1610 struct hlist_node *node) 1611 { 1612 struct cpuhp_step *sp = cpuhp_get_step(state); 1613 int ret; 1614 1615 /* 1616 * If there's nothing to do, we done. 1617 * Relies on the union for multi_instance. 1618 */ 1619 if ((bringup && !sp->startup.single) || 1620 (!bringup && !sp->teardown.single)) 1621 return 0; 1622 /* 1623 * The non AP bound callbacks can fail on bringup. On teardown 1624 * e.g. module removal we crash for now. 1625 */ 1626 #ifdef CONFIG_SMP 1627 if (cpuhp_is_ap_state(state)) 1628 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1629 else 1630 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1631 #else 1632 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1633 #endif 1634 BUG_ON(ret && !bringup); 1635 return ret; 1636 } 1637 1638 /* 1639 * Called from __cpuhp_setup_state on a recoverable failure. 1640 * 1641 * Note: The teardown callbacks for rollback are not allowed to fail! 1642 */ 1643 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1644 struct hlist_node *node) 1645 { 1646 int cpu; 1647 1648 /* Roll back the already executed steps on the other cpus */ 1649 for_each_present_cpu(cpu) { 1650 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1651 int cpustate = st->state; 1652 1653 if (cpu >= failedcpu) 1654 break; 1655 1656 /* Did we invoke the startup call on that cpu ? */ 1657 if (cpustate >= state) 1658 cpuhp_issue_call(cpu, state, false, node); 1659 } 1660 } 1661 1662 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1663 struct hlist_node *node, 1664 bool invoke) 1665 { 1666 struct cpuhp_step *sp; 1667 int cpu; 1668 int ret; 1669 1670 lockdep_assert_cpus_held(); 1671 1672 sp = cpuhp_get_step(state); 1673 if (sp->multi_instance == false) 1674 return -EINVAL; 1675 1676 mutex_lock(&cpuhp_state_mutex); 1677 1678 if (!invoke || !sp->startup.multi) 1679 goto add_node; 1680 1681 /* 1682 * Try to call the startup callback for each present cpu 1683 * depending on the hotplug state of the cpu. 1684 */ 1685 for_each_present_cpu(cpu) { 1686 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1687 int cpustate = st->state; 1688 1689 if (cpustate < state) 1690 continue; 1691 1692 ret = cpuhp_issue_call(cpu, state, true, node); 1693 if (ret) { 1694 if (sp->teardown.multi) 1695 cpuhp_rollback_install(cpu, state, node); 1696 goto unlock; 1697 } 1698 } 1699 add_node: 1700 ret = 0; 1701 hlist_add_head(node, &sp->list); 1702 unlock: 1703 mutex_unlock(&cpuhp_state_mutex); 1704 return ret; 1705 } 1706 1707 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1708 bool invoke) 1709 { 1710 int ret; 1711 1712 cpus_read_lock(); 1713 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1714 cpus_read_unlock(); 1715 return ret; 1716 } 1717 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1718 1719 /** 1720 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1721 * @state: The state to setup 1722 * @invoke: If true, the startup function is invoked for cpus where 1723 * cpu state >= @state 1724 * @startup: startup callback function 1725 * @teardown: teardown callback function 1726 * @multi_instance: State is set up for multiple instances which get 1727 * added afterwards. 1728 * 1729 * The caller needs to hold cpus read locked while calling this function. 1730 * Returns: 1731 * On success: 1732 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1733 * 0 for all other states 1734 * On failure: proper (negative) error code 1735 */ 1736 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1737 const char *name, bool invoke, 1738 int (*startup)(unsigned int cpu), 1739 int (*teardown)(unsigned int cpu), 1740 bool multi_instance) 1741 { 1742 int cpu, ret = 0; 1743 bool dynstate; 1744 1745 lockdep_assert_cpus_held(); 1746 1747 if (cpuhp_cb_check(state) || !name) 1748 return -EINVAL; 1749 1750 mutex_lock(&cpuhp_state_mutex); 1751 1752 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1753 multi_instance); 1754 1755 dynstate = state == CPUHP_AP_ONLINE_DYN; 1756 if (ret > 0 && dynstate) { 1757 state = ret; 1758 ret = 0; 1759 } 1760 1761 if (ret || !invoke || !startup) 1762 goto out; 1763 1764 /* 1765 * Try to call the startup callback for each present cpu 1766 * depending on the hotplug state of the cpu. 1767 */ 1768 for_each_present_cpu(cpu) { 1769 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1770 int cpustate = st->state; 1771 1772 if (cpustate < state) 1773 continue; 1774 1775 ret = cpuhp_issue_call(cpu, state, true, NULL); 1776 if (ret) { 1777 if (teardown) 1778 cpuhp_rollback_install(cpu, state, NULL); 1779 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1780 goto out; 1781 } 1782 } 1783 out: 1784 mutex_unlock(&cpuhp_state_mutex); 1785 /* 1786 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1787 * dynamically allocated state in case of success. 1788 */ 1789 if (!ret && dynstate) 1790 return state; 1791 return ret; 1792 } 1793 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1794 1795 int __cpuhp_setup_state(enum cpuhp_state state, 1796 const char *name, bool invoke, 1797 int (*startup)(unsigned int cpu), 1798 int (*teardown)(unsigned int cpu), 1799 bool multi_instance) 1800 { 1801 int ret; 1802 1803 cpus_read_lock(); 1804 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1805 teardown, multi_instance); 1806 cpus_read_unlock(); 1807 return ret; 1808 } 1809 EXPORT_SYMBOL(__cpuhp_setup_state); 1810 1811 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1812 struct hlist_node *node, bool invoke) 1813 { 1814 struct cpuhp_step *sp = cpuhp_get_step(state); 1815 int cpu; 1816 1817 BUG_ON(cpuhp_cb_check(state)); 1818 1819 if (!sp->multi_instance) 1820 return -EINVAL; 1821 1822 cpus_read_lock(); 1823 mutex_lock(&cpuhp_state_mutex); 1824 1825 if (!invoke || !cpuhp_get_teardown_cb(state)) 1826 goto remove; 1827 /* 1828 * Call the teardown callback for each present cpu depending 1829 * on the hotplug state of the cpu. This function is not 1830 * allowed to fail currently! 1831 */ 1832 for_each_present_cpu(cpu) { 1833 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1834 int cpustate = st->state; 1835 1836 if (cpustate >= state) 1837 cpuhp_issue_call(cpu, state, false, node); 1838 } 1839 1840 remove: 1841 hlist_del(node); 1842 mutex_unlock(&cpuhp_state_mutex); 1843 cpus_read_unlock(); 1844 1845 return 0; 1846 } 1847 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1848 1849 /** 1850 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1851 * @state: The state to remove 1852 * @invoke: If true, the teardown function is invoked for cpus where 1853 * cpu state >= @state 1854 * 1855 * The caller needs to hold cpus read locked while calling this function. 1856 * The teardown callback is currently not allowed to fail. Think 1857 * about module removal! 1858 */ 1859 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1860 { 1861 struct cpuhp_step *sp = cpuhp_get_step(state); 1862 int cpu; 1863 1864 BUG_ON(cpuhp_cb_check(state)); 1865 1866 lockdep_assert_cpus_held(); 1867 1868 mutex_lock(&cpuhp_state_mutex); 1869 if (sp->multi_instance) { 1870 WARN(!hlist_empty(&sp->list), 1871 "Error: Removing state %d which has instances left.\n", 1872 state); 1873 goto remove; 1874 } 1875 1876 if (!invoke || !cpuhp_get_teardown_cb(state)) 1877 goto remove; 1878 1879 /* 1880 * Call the teardown callback for each present cpu depending 1881 * on the hotplug state of the cpu. This function is not 1882 * allowed to fail currently! 1883 */ 1884 for_each_present_cpu(cpu) { 1885 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1886 int cpustate = st->state; 1887 1888 if (cpustate >= state) 1889 cpuhp_issue_call(cpu, state, false, NULL); 1890 } 1891 remove: 1892 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1893 mutex_unlock(&cpuhp_state_mutex); 1894 } 1895 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1896 1897 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1898 { 1899 cpus_read_lock(); 1900 __cpuhp_remove_state_cpuslocked(state, invoke); 1901 cpus_read_unlock(); 1902 } 1903 EXPORT_SYMBOL(__cpuhp_remove_state); 1904 1905 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1906 static ssize_t show_cpuhp_state(struct device *dev, 1907 struct device_attribute *attr, char *buf) 1908 { 1909 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1910 1911 return sprintf(buf, "%d\n", st->state); 1912 } 1913 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1914 1915 static ssize_t write_cpuhp_target(struct device *dev, 1916 struct device_attribute *attr, 1917 const char *buf, size_t count) 1918 { 1919 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1920 struct cpuhp_step *sp; 1921 int target, ret; 1922 1923 ret = kstrtoint(buf, 10, &target); 1924 if (ret) 1925 return ret; 1926 1927 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1928 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1929 return -EINVAL; 1930 #else 1931 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1932 return -EINVAL; 1933 #endif 1934 1935 ret = lock_device_hotplug_sysfs(); 1936 if (ret) 1937 return ret; 1938 1939 mutex_lock(&cpuhp_state_mutex); 1940 sp = cpuhp_get_step(target); 1941 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1942 mutex_unlock(&cpuhp_state_mutex); 1943 if (ret) 1944 goto out; 1945 1946 if (st->state < target) 1947 ret = do_cpu_up(dev->id, target); 1948 else 1949 ret = do_cpu_down(dev->id, target); 1950 out: 1951 unlock_device_hotplug(); 1952 return ret ? ret : count; 1953 } 1954 1955 static ssize_t show_cpuhp_target(struct device *dev, 1956 struct device_attribute *attr, char *buf) 1957 { 1958 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1959 1960 return sprintf(buf, "%d\n", st->target); 1961 } 1962 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1963 1964 1965 static ssize_t write_cpuhp_fail(struct device *dev, 1966 struct device_attribute *attr, 1967 const char *buf, size_t count) 1968 { 1969 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1970 struct cpuhp_step *sp; 1971 int fail, ret; 1972 1973 ret = kstrtoint(buf, 10, &fail); 1974 if (ret) 1975 return ret; 1976 1977 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 1978 return -EINVAL; 1979 1980 /* 1981 * Cannot fail STARTING/DYING callbacks. 1982 */ 1983 if (cpuhp_is_atomic_state(fail)) 1984 return -EINVAL; 1985 1986 /* 1987 * Cannot fail anything that doesn't have callbacks. 1988 */ 1989 mutex_lock(&cpuhp_state_mutex); 1990 sp = cpuhp_get_step(fail); 1991 if (!sp->startup.single && !sp->teardown.single) 1992 ret = -EINVAL; 1993 mutex_unlock(&cpuhp_state_mutex); 1994 if (ret) 1995 return ret; 1996 1997 st->fail = fail; 1998 1999 return count; 2000 } 2001 2002 static ssize_t show_cpuhp_fail(struct device *dev, 2003 struct device_attribute *attr, char *buf) 2004 { 2005 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2006 2007 return sprintf(buf, "%d\n", st->fail); 2008 } 2009 2010 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2011 2012 static struct attribute *cpuhp_cpu_attrs[] = { 2013 &dev_attr_state.attr, 2014 &dev_attr_target.attr, 2015 &dev_attr_fail.attr, 2016 NULL 2017 }; 2018 2019 static const struct attribute_group cpuhp_cpu_attr_group = { 2020 .attrs = cpuhp_cpu_attrs, 2021 .name = "hotplug", 2022 NULL 2023 }; 2024 2025 static ssize_t show_cpuhp_states(struct device *dev, 2026 struct device_attribute *attr, char *buf) 2027 { 2028 ssize_t cur, res = 0; 2029 int i; 2030 2031 mutex_lock(&cpuhp_state_mutex); 2032 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2033 struct cpuhp_step *sp = cpuhp_get_step(i); 2034 2035 if (sp->name) { 2036 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2037 buf += cur; 2038 res += cur; 2039 } 2040 } 2041 mutex_unlock(&cpuhp_state_mutex); 2042 return res; 2043 } 2044 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2045 2046 static struct attribute *cpuhp_cpu_root_attrs[] = { 2047 &dev_attr_states.attr, 2048 NULL 2049 }; 2050 2051 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2052 .attrs = cpuhp_cpu_root_attrs, 2053 .name = "hotplug", 2054 NULL 2055 }; 2056 2057 #ifdef CONFIG_HOTPLUG_SMT 2058 2059 static void cpuhp_offline_cpu_device(unsigned int cpu) 2060 { 2061 struct device *dev = get_cpu_device(cpu); 2062 2063 dev->offline = true; 2064 /* Tell user space about the state change */ 2065 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2066 } 2067 2068 static void cpuhp_online_cpu_device(unsigned int cpu) 2069 { 2070 struct device *dev = get_cpu_device(cpu); 2071 2072 dev->offline = false; 2073 /* Tell user space about the state change */ 2074 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2075 } 2076 2077 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2078 { 2079 int cpu, ret = 0; 2080 2081 cpu_maps_update_begin(); 2082 for_each_online_cpu(cpu) { 2083 if (topology_is_primary_thread(cpu)) 2084 continue; 2085 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2086 if (ret) 2087 break; 2088 /* 2089 * As this needs to hold the cpu maps lock it's impossible 2090 * to call device_offline() because that ends up calling 2091 * cpu_down() which takes cpu maps lock. cpu maps lock 2092 * needs to be held as this might race against in kernel 2093 * abusers of the hotplug machinery (thermal management). 2094 * 2095 * So nothing would update device:offline state. That would 2096 * leave the sysfs entry stale and prevent onlining after 2097 * smt control has been changed to 'off' again. This is 2098 * called under the sysfs hotplug lock, so it is properly 2099 * serialized against the regular offline usage. 2100 */ 2101 cpuhp_offline_cpu_device(cpu); 2102 } 2103 if (!ret) 2104 cpu_smt_control = ctrlval; 2105 cpu_maps_update_done(); 2106 return ret; 2107 } 2108 2109 int cpuhp_smt_enable(void) 2110 { 2111 int cpu, ret = 0; 2112 2113 cpu_maps_update_begin(); 2114 cpu_smt_control = CPU_SMT_ENABLED; 2115 for_each_present_cpu(cpu) { 2116 /* Skip online CPUs and CPUs on offline nodes */ 2117 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2118 continue; 2119 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2120 if (ret) 2121 break; 2122 /* See comment in cpuhp_smt_disable() */ 2123 cpuhp_online_cpu_device(cpu); 2124 } 2125 cpu_maps_update_done(); 2126 return ret; 2127 } 2128 2129 2130 static ssize_t 2131 __store_smt_control(struct device *dev, struct device_attribute *attr, 2132 const char *buf, size_t count) 2133 { 2134 int ctrlval, ret; 2135 2136 if (sysfs_streq(buf, "on")) 2137 ctrlval = CPU_SMT_ENABLED; 2138 else if (sysfs_streq(buf, "off")) 2139 ctrlval = CPU_SMT_DISABLED; 2140 else if (sysfs_streq(buf, "forceoff")) 2141 ctrlval = CPU_SMT_FORCE_DISABLED; 2142 else 2143 return -EINVAL; 2144 2145 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2146 return -EPERM; 2147 2148 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2149 return -ENODEV; 2150 2151 ret = lock_device_hotplug_sysfs(); 2152 if (ret) 2153 return ret; 2154 2155 if (ctrlval != cpu_smt_control) { 2156 switch (ctrlval) { 2157 case CPU_SMT_ENABLED: 2158 ret = cpuhp_smt_enable(); 2159 break; 2160 case CPU_SMT_DISABLED: 2161 case CPU_SMT_FORCE_DISABLED: 2162 ret = cpuhp_smt_disable(ctrlval); 2163 break; 2164 } 2165 } 2166 2167 unlock_device_hotplug(); 2168 return ret ? ret : count; 2169 } 2170 2171 #else /* !CONFIG_HOTPLUG_SMT */ 2172 static ssize_t 2173 __store_smt_control(struct device *dev, struct device_attribute *attr, 2174 const char *buf, size_t count) 2175 { 2176 return -ENODEV; 2177 } 2178 #endif /* CONFIG_HOTPLUG_SMT */ 2179 2180 static const char *smt_states[] = { 2181 [CPU_SMT_ENABLED] = "on", 2182 [CPU_SMT_DISABLED] = "off", 2183 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2184 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2185 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2186 }; 2187 2188 static ssize_t 2189 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2190 { 2191 const char *state = smt_states[cpu_smt_control]; 2192 2193 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2194 } 2195 2196 static ssize_t 2197 store_smt_control(struct device *dev, struct device_attribute *attr, 2198 const char *buf, size_t count) 2199 { 2200 return __store_smt_control(dev, attr, buf, count); 2201 } 2202 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2203 2204 static ssize_t 2205 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2206 { 2207 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2208 } 2209 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2210 2211 static struct attribute *cpuhp_smt_attrs[] = { 2212 &dev_attr_control.attr, 2213 &dev_attr_active.attr, 2214 NULL 2215 }; 2216 2217 static const struct attribute_group cpuhp_smt_attr_group = { 2218 .attrs = cpuhp_smt_attrs, 2219 .name = "smt", 2220 NULL 2221 }; 2222 2223 static int __init cpu_smt_sysfs_init(void) 2224 { 2225 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2226 &cpuhp_smt_attr_group); 2227 } 2228 2229 static int __init cpuhp_sysfs_init(void) 2230 { 2231 int cpu, ret; 2232 2233 ret = cpu_smt_sysfs_init(); 2234 if (ret) 2235 return ret; 2236 2237 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2238 &cpuhp_cpu_root_attr_group); 2239 if (ret) 2240 return ret; 2241 2242 for_each_possible_cpu(cpu) { 2243 struct device *dev = get_cpu_device(cpu); 2244 2245 if (!dev) 2246 continue; 2247 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2248 if (ret) 2249 return ret; 2250 } 2251 return 0; 2252 } 2253 device_initcall(cpuhp_sysfs_init); 2254 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2255 2256 /* 2257 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2258 * represents all NR_CPUS bits binary values of 1<<nr. 2259 * 2260 * It is used by cpumask_of() to get a constant address to a CPU 2261 * mask value that has a single bit set only. 2262 */ 2263 2264 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2265 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2266 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2267 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2268 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2269 2270 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2271 2272 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2273 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2274 #if BITS_PER_LONG > 32 2275 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2276 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2277 #endif 2278 }; 2279 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2280 2281 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2282 EXPORT_SYMBOL(cpu_all_bits); 2283 2284 #ifdef CONFIG_INIT_ALL_POSSIBLE 2285 struct cpumask __cpu_possible_mask __read_mostly 2286 = {CPU_BITS_ALL}; 2287 #else 2288 struct cpumask __cpu_possible_mask __read_mostly; 2289 #endif 2290 EXPORT_SYMBOL(__cpu_possible_mask); 2291 2292 struct cpumask __cpu_online_mask __read_mostly; 2293 EXPORT_SYMBOL(__cpu_online_mask); 2294 2295 struct cpumask __cpu_present_mask __read_mostly; 2296 EXPORT_SYMBOL(__cpu_present_mask); 2297 2298 struct cpumask __cpu_active_mask __read_mostly; 2299 EXPORT_SYMBOL(__cpu_active_mask); 2300 2301 atomic_t __num_online_cpus __read_mostly; 2302 EXPORT_SYMBOL(__num_online_cpus); 2303 2304 void init_cpu_present(const struct cpumask *src) 2305 { 2306 cpumask_copy(&__cpu_present_mask, src); 2307 } 2308 2309 void init_cpu_possible(const struct cpumask *src) 2310 { 2311 cpumask_copy(&__cpu_possible_mask, src); 2312 } 2313 2314 void init_cpu_online(const struct cpumask *src) 2315 { 2316 cpumask_copy(&__cpu_online_mask, src); 2317 } 2318 2319 void set_cpu_online(unsigned int cpu, bool online) 2320 { 2321 /* 2322 * atomic_inc/dec() is required to handle the horrid abuse of this 2323 * function by the reboot and kexec code which invoke it from 2324 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2325 * regular CPU hotplug is properly serialized. 2326 * 2327 * Note, that the fact that __num_online_cpus is of type atomic_t 2328 * does not protect readers which are not serialized against 2329 * concurrent hotplug operations. 2330 */ 2331 if (online) { 2332 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2333 atomic_inc(&__num_online_cpus); 2334 } else { 2335 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2336 atomic_dec(&__num_online_cpus); 2337 } 2338 } 2339 2340 /* 2341 * Activate the first processor. 2342 */ 2343 void __init boot_cpu_init(void) 2344 { 2345 int cpu = smp_processor_id(); 2346 2347 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2348 set_cpu_online(cpu, true); 2349 set_cpu_active(cpu, true); 2350 set_cpu_present(cpu, true); 2351 set_cpu_possible(cpu, true); 2352 2353 #ifdef CONFIG_SMP 2354 __boot_cpu_id = cpu; 2355 #endif 2356 } 2357 2358 /* 2359 * Must be called _AFTER_ setting up the per_cpu areas 2360 */ 2361 void __init boot_cpu_hotplug_init(void) 2362 { 2363 #ifdef CONFIG_SMP 2364 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2365 #endif 2366 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2367 } 2368 2369 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 2370 2371 static int __init mitigations_parse_cmdline(char *arg) 2372 { 2373 if (!strcmp(arg, "off")) 2374 cpu_mitigations = CPU_MITIGATIONS_OFF; 2375 else if (!strcmp(arg, "auto")) 2376 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2377 else if (!strcmp(arg, "auto,nosmt")) 2378 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2379 else 2380 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2381 arg); 2382 2383 return 0; 2384 } 2385 early_param("mitigations", mitigations_parse_cmdline); 2386