xref: /openbmc/linux/kernel/cpu.c (revision 09b35b41)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81 
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87 
88 
89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 
94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99 
100 static inline void cpuhp_lock_acquire(bool bringup) { }
101 static inline void cpuhp_lock_release(bool bringup) { }
102 
103 #endif
104 
105 /**
106  * cpuhp_step - Hotplug state machine step
107  * @name:	Name of the step
108  * @startup:	Startup function of the step
109  * @teardown:	Teardown function of the step
110  * @cant_stop:	Bringup/teardown can't be stopped at this step
111  */
112 struct cpuhp_step {
113 	const char		*name;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} startup;
119 	union {
120 		int		(*single)(unsigned int cpu);
121 		int		(*multi)(unsigned int cpu,
122 					 struct hlist_node *node);
123 	} teardown;
124 	struct hlist_head	list;
125 	bool			cant_stop;
126 	bool			multi_instance;
127 };
128 
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131 
132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 	return cpuhp_hp_states + state;
135 }
136 
137 /**
138  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139  * @cpu:	The cpu for which the callback should be invoked
140  * @state:	The state to do callbacks for
141  * @bringup:	True if the bringup callback should be invoked
142  * @node:	For multi-instance, do a single entry callback for install/remove
143  * @lastp:	For multi-instance rollback, remember how far we got
144  *
145  * Called from cpu hotplug and from the state register machinery.
146  */
147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 				 bool bringup, struct hlist_node *node,
149 				 struct hlist_node **lastp)
150 {
151 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 	struct cpuhp_step *step = cpuhp_get_step(state);
153 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 	int (*cb)(unsigned int cpu);
155 	int ret, cnt;
156 
157 	if (st->fail == state) {
158 		st->fail = CPUHP_INVALID;
159 
160 		if (!(bringup ? step->startup.single : step->teardown.single))
161 			return 0;
162 
163 		return -EAGAIN;
164 	}
165 
166 	if (!step->multi_instance) {
167 		WARN_ON_ONCE(lastp && *lastp);
168 		cb = bringup ? step->startup.single : step->teardown.single;
169 		if (!cb)
170 			return 0;
171 		trace_cpuhp_enter(cpu, st->target, state, cb);
172 		ret = cb(cpu);
173 		trace_cpuhp_exit(cpu, st->state, state, ret);
174 		return ret;
175 	}
176 	cbm = bringup ? step->startup.multi : step->teardown.multi;
177 	if (!cbm)
178 		return 0;
179 
180 	/* Single invocation for instance add/remove */
181 	if (node) {
182 		WARN_ON_ONCE(lastp && *lastp);
183 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 		ret = cbm(cpu, node);
185 		trace_cpuhp_exit(cpu, st->state, state, ret);
186 		return ret;
187 	}
188 
189 	/* State transition. Invoke on all instances */
190 	cnt = 0;
191 	hlist_for_each(node, &step->list) {
192 		if (lastp && node == *lastp)
193 			break;
194 
195 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 		ret = cbm(cpu, node);
197 		trace_cpuhp_exit(cpu, st->state, state, ret);
198 		if (ret) {
199 			if (!lastp)
200 				goto err;
201 
202 			*lastp = node;
203 			return ret;
204 		}
205 		cnt++;
206 	}
207 	if (lastp)
208 		*lastp = NULL;
209 	return 0;
210 err:
211 	/* Rollback the instances if one failed */
212 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 	if (!cbm)
214 		return ret;
215 
216 	hlist_for_each(node, &step->list) {
217 		if (!cnt--)
218 			break;
219 
220 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 		ret = cbm(cpu, node);
222 		trace_cpuhp_exit(cpu, st->state, state, ret);
223 		/*
224 		 * Rollback must not fail,
225 		 */
226 		WARN_ON_ONCE(ret);
227 	}
228 	return ret;
229 }
230 
231 #ifdef CONFIG_SMP
232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 	/*
235 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 	 * purposes as that state is handled explicitly in cpu_down.
237 	 */
238 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240 
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 	struct completion *done = bringup ? &st->done_up : &st->done_down;
244 	wait_for_completion(done);
245 }
246 
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	complete(done);
251 }
252 
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260 
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
270 void cpu_maps_update_begin(void)
271 {
272 	mutex_lock(&cpu_add_remove_lock);
273 }
274 
275 void cpu_maps_update_done(void)
276 {
277 	mutex_unlock(&cpu_add_remove_lock);
278 }
279 
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289 
290 void cpus_read_lock(void)
291 {
292 	percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295 
296 int cpus_read_trylock(void)
297 {
298 	return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301 
302 void cpus_read_unlock(void)
303 {
304 	percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307 
308 void cpus_write_lock(void)
309 {
310 	percpu_down_write(&cpu_hotplug_lock);
311 }
312 
313 void cpus_write_unlock(void)
314 {
315 	percpu_up_write(&cpu_hotplug_lock);
316 }
317 
318 void lockdep_assert_cpus_held(void)
319 {
320 	/*
321 	 * We can't have hotplug operations before userspace starts running,
322 	 * and some init codepaths will knowingly not take the hotplug lock.
323 	 * This is all valid, so mute lockdep until it makes sense to report
324 	 * unheld locks.
325 	 */
326 	if (system_state < SYSTEM_RUNNING)
327 		return;
328 
329 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331 
332 static void lockdep_acquire_cpus_lock(void)
333 {
334 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335 }
336 
337 static void lockdep_release_cpus_lock(void)
338 {
339 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
340 }
341 
342 /*
343  * Wait for currently running CPU hotplug operations to complete (if any) and
344  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346  * hotplug path before performing hotplug operations. So acquiring that lock
347  * guarantees mutual exclusion from any currently running hotplug operations.
348  */
349 void cpu_hotplug_disable(void)
350 {
351 	cpu_maps_update_begin();
352 	cpu_hotplug_disabled++;
353 	cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356 
357 static void __cpu_hotplug_enable(void)
358 {
359 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 		return;
361 	cpu_hotplug_disabled--;
362 }
363 
364 void cpu_hotplug_enable(void)
365 {
366 	cpu_maps_update_begin();
367 	__cpu_hotplug_enable();
368 	cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371 
372 #else
373 
374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377 
378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381 
382 #endif	/* CONFIG_HOTPLUG_CPU */
383 
384 /*
385  * Architectures that need SMT-specific errata handling during SMT hotplug
386  * should override this.
387  */
388 void __weak arch_smt_update(void) { }
389 
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392 
393 void __init cpu_smt_disable(bool force)
394 {
395 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
396 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
397 		return;
398 
399 	if (force) {
400 		pr_info("SMT: Force disabled\n");
401 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 	} else {
403 		pr_info("SMT: disabled\n");
404 		cpu_smt_control = CPU_SMT_DISABLED;
405 	}
406 }
407 
408 /*
409  * The decision whether SMT is supported can only be done after the full
410  * CPU identification. Called from architecture code.
411  */
412 void __init cpu_smt_check_topology(void)
413 {
414 	if (!topology_smt_supported())
415 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416 }
417 
418 static int __init smt_cmdline_disable(char *str)
419 {
420 	cpu_smt_disable(str && !strcmp(str, "force"));
421 	return 0;
422 }
423 early_param("nosmt", smt_cmdline_disable);
424 
425 static inline bool cpu_smt_allowed(unsigned int cpu)
426 {
427 	if (cpu_smt_control == CPU_SMT_ENABLED)
428 		return true;
429 
430 	if (topology_is_primary_thread(cpu))
431 		return true;
432 
433 	/*
434 	 * On x86 it's required to boot all logical CPUs at least once so
435 	 * that the init code can get a chance to set CR4.MCE on each
436 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
437 	 * core will shutdown the machine.
438 	 */
439 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440 }
441 #else
442 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
443 #endif
444 
445 static inline enum cpuhp_state
446 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
447 {
448 	enum cpuhp_state prev_state = st->state;
449 
450 	st->rollback = false;
451 	st->last = NULL;
452 
453 	st->target = target;
454 	st->single = false;
455 	st->bringup = st->state < target;
456 
457 	return prev_state;
458 }
459 
460 static inline void
461 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
462 {
463 	st->rollback = true;
464 
465 	/*
466 	 * If we have st->last we need to undo partial multi_instance of this
467 	 * state first. Otherwise start undo at the previous state.
468 	 */
469 	if (!st->last) {
470 		if (st->bringup)
471 			st->state--;
472 		else
473 			st->state++;
474 	}
475 
476 	st->target = prev_state;
477 	st->bringup = !st->bringup;
478 }
479 
480 /* Regular hotplug invocation of the AP hotplug thread */
481 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
482 {
483 	if (!st->single && st->state == st->target)
484 		return;
485 
486 	st->result = 0;
487 	/*
488 	 * Make sure the above stores are visible before should_run becomes
489 	 * true. Paired with the mb() above in cpuhp_thread_fun()
490 	 */
491 	smp_mb();
492 	st->should_run = true;
493 	wake_up_process(st->thread);
494 	wait_for_ap_thread(st, st->bringup);
495 }
496 
497 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
498 {
499 	enum cpuhp_state prev_state;
500 	int ret;
501 
502 	prev_state = cpuhp_set_state(st, target);
503 	__cpuhp_kick_ap(st);
504 	if ((ret = st->result)) {
505 		cpuhp_reset_state(st, prev_state);
506 		__cpuhp_kick_ap(st);
507 	}
508 
509 	return ret;
510 }
511 
512 static int bringup_wait_for_ap(unsigned int cpu)
513 {
514 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
515 
516 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
517 	wait_for_ap_thread(st, true);
518 	if (WARN_ON_ONCE((!cpu_online(cpu))))
519 		return -ECANCELED;
520 
521 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
522 	stop_machine_unpark(cpu);
523 	kthread_unpark(st->thread);
524 
525 	/*
526 	 * SMT soft disabling on X86 requires to bring the CPU out of the
527 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
528 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
529 	 * cpu_smt_allowed() check will now return false if this is not the
530 	 * primary sibling.
531 	 */
532 	if (!cpu_smt_allowed(cpu))
533 		return -ECANCELED;
534 
535 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
536 		return 0;
537 
538 	return cpuhp_kick_ap(st, st->target);
539 }
540 
541 static int bringup_cpu(unsigned int cpu)
542 {
543 	struct task_struct *idle = idle_thread_get(cpu);
544 	int ret;
545 
546 	/*
547 	 * Some architectures have to walk the irq descriptors to
548 	 * setup the vector space for the cpu which comes online.
549 	 * Prevent irq alloc/free across the bringup.
550 	 */
551 	irq_lock_sparse();
552 
553 	/* Arch-specific enabling code. */
554 	ret = __cpu_up(cpu, idle);
555 	irq_unlock_sparse();
556 	if (ret)
557 		return ret;
558 	return bringup_wait_for_ap(cpu);
559 }
560 
561 /*
562  * Hotplug state machine related functions
563  */
564 
565 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
566 {
567 	for (st->state--; st->state > st->target; st->state--)
568 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
569 }
570 
571 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
572 {
573 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
574 		return true;
575 	/*
576 	 * When CPU hotplug is disabled, then taking the CPU down is not
577 	 * possible because takedown_cpu() and the architecture and
578 	 * subsystem specific mechanisms are not available. So the CPU
579 	 * which would be completely unplugged again needs to stay around
580 	 * in the current state.
581 	 */
582 	return st->state <= CPUHP_BRINGUP_CPU;
583 }
584 
585 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
586 			      enum cpuhp_state target)
587 {
588 	enum cpuhp_state prev_state = st->state;
589 	int ret = 0;
590 
591 	while (st->state < target) {
592 		st->state++;
593 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
594 		if (ret) {
595 			if (can_rollback_cpu(st)) {
596 				st->target = prev_state;
597 				undo_cpu_up(cpu, st);
598 			}
599 			break;
600 		}
601 	}
602 	return ret;
603 }
604 
605 /*
606  * The cpu hotplug threads manage the bringup and teardown of the cpus
607  */
608 static void cpuhp_create(unsigned int cpu)
609 {
610 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
611 
612 	init_completion(&st->done_up);
613 	init_completion(&st->done_down);
614 }
615 
616 static int cpuhp_should_run(unsigned int cpu)
617 {
618 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
619 
620 	return st->should_run;
621 }
622 
623 /*
624  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
625  * callbacks when a state gets [un]installed at runtime.
626  *
627  * Each invocation of this function by the smpboot thread does a single AP
628  * state callback.
629  *
630  * It has 3 modes of operation:
631  *  - single: runs st->cb_state
632  *  - up:     runs ++st->state, while st->state < st->target
633  *  - down:   runs st->state--, while st->state > st->target
634  *
635  * When complete or on error, should_run is cleared and the completion is fired.
636  */
637 static void cpuhp_thread_fun(unsigned int cpu)
638 {
639 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
640 	bool bringup = st->bringup;
641 	enum cpuhp_state state;
642 
643 	if (WARN_ON_ONCE(!st->should_run))
644 		return;
645 
646 	/*
647 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
648 	 * that if we see ->should_run we also see the rest of the state.
649 	 */
650 	smp_mb();
651 
652 	/*
653 	 * The BP holds the hotplug lock, but we're now running on the AP,
654 	 * ensure that anybody asserting the lock is held, will actually find
655 	 * it so.
656 	 */
657 	lockdep_acquire_cpus_lock();
658 	cpuhp_lock_acquire(bringup);
659 
660 	if (st->single) {
661 		state = st->cb_state;
662 		st->should_run = false;
663 	} else {
664 		if (bringup) {
665 			st->state++;
666 			state = st->state;
667 			st->should_run = (st->state < st->target);
668 			WARN_ON_ONCE(st->state > st->target);
669 		} else {
670 			state = st->state;
671 			st->state--;
672 			st->should_run = (st->state > st->target);
673 			WARN_ON_ONCE(st->state < st->target);
674 		}
675 	}
676 
677 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
678 
679 	if (cpuhp_is_atomic_state(state)) {
680 		local_irq_disable();
681 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
682 		local_irq_enable();
683 
684 		/*
685 		 * STARTING/DYING must not fail!
686 		 */
687 		WARN_ON_ONCE(st->result);
688 	} else {
689 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
690 	}
691 
692 	if (st->result) {
693 		/*
694 		 * If we fail on a rollback, we're up a creek without no
695 		 * paddle, no way forward, no way back. We loose, thanks for
696 		 * playing.
697 		 */
698 		WARN_ON_ONCE(st->rollback);
699 		st->should_run = false;
700 	}
701 
702 	cpuhp_lock_release(bringup);
703 	lockdep_release_cpus_lock();
704 
705 	if (!st->should_run)
706 		complete_ap_thread(st, bringup);
707 }
708 
709 /* Invoke a single callback on a remote cpu */
710 static int
711 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
712 			 struct hlist_node *node)
713 {
714 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
715 	int ret;
716 
717 	if (!cpu_online(cpu))
718 		return 0;
719 
720 	cpuhp_lock_acquire(false);
721 	cpuhp_lock_release(false);
722 
723 	cpuhp_lock_acquire(true);
724 	cpuhp_lock_release(true);
725 
726 	/*
727 	 * If we are up and running, use the hotplug thread. For early calls
728 	 * we invoke the thread function directly.
729 	 */
730 	if (!st->thread)
731 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
732 
733 	st->rollback = false;
734 	st->last = NULL;
735 
736 	st->node = node;
737 	st->bringup = bringup;
738 	st->cb_state = state;
739 	st->single = true;
740 
741 	__cpuhp_kick_ap(st);
742 
743 	/*
744 	 * If we failed and did a partial, do a rollback.
745 	 */
746 	if ((ret = st->result) && st->last) {
747 		st->rollback = true;
748 		st->bringup = !bringup;
749 
750 		__cpuhp_kick_ap(st);
751 	}
752 
753 	/*
754 	 * Clean up the leftovers so the next hotplug operation wont use stale
755 	 * data.
756 	 */
757 	st->node = st->last = NULL;
758 	return ret;
759 }
760 
761 static int cpuhp_kick_ap_work(unsigned int cpu)
762 {
763 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
764 	enum cpuhp_state prev_state = st->state;
765 	int ret;
766 
767 	cpuhp_lock_acquire(false);
768 	cpuhp_lock_release(false);
769 
770 	cpuhp_lock_acquire(true);
771 	cpuhp_lock_release(true);
772 
773 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
774 	ret = cpuhp_kick_ap(st, st->target);
775 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
776 
777 	return ret;
778 }
779 
780 static struct smp_hotplug_thread cpuhp_threads = {
781 	.store			= &cpuhp_state.thread,
782 	.create			= &cpuhp_create,
783 	.thread_should_run	= cpuhp_should_run,
784 	.thread_fn		= cpuhp_thread_fun,
785 	.thread_comm		= "cpuhp/%u",
786 	.selfparking		= true,
787 };
788 
789 void __init cpuhp_threads_init(void)
790 {
791 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
792 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
793 }
794 
795 #ifdef CONFIG_HOTPLUG_CPU
796 /**
797  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
798  * @cpu: a CPU id
799  *
800  * This function walks all processes, finds a valid mm struct for each one and
801  * then clears a corresponding bit in mm's cpumask.  While this all sounds
802  * trivial, there are various non-obvious corner cases, which this function
803  * tries to solve in a safe manner.
804  *
805  * Also note that the function uses a somewhat relaxed locking scheme, so it may
806  * be called only for an already offlined CPU.
807  */
808 void clear_tasks_mm_cpumask(int cpu)
809 {
810 	struct task_struct *p;
811 
812 	/*
813 	 * This function is called after the cpu is taken down and marked
814 	 * offline, so its not like new tasks will ever get this cpu set in
815 	 * their mm mask. -- Peter Zijlstra
816 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
817 	 * full-fledged tasklist_lock.
818 	 */
819 	WARN_ON(cpu_online(cpu));
820 	rcu_read_lock();
821 	for_each_process(p) {
822 		struct task_struct *t;
823 
824 		/*
825 		 * Main thread might exit, but other threads may still have
826 		 * a valid mm. Find one.
827 		 */
828 		t = find_lock_task_mm(p);
829 		if (!t)
830 			continue;
831 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
832 		task_unlock(t);
833 	}
834 	rcu_read_unlock();
835 }
836 
837 /* Take this CPU down. */
838 static int take_cpu_down(void *_param)
839 {
840 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
841 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
842 	int err, cpu = smp_processor_id();
843 	int ret;
844 
845 	/* Ensure this CPU doesn't handle any more interrupts. */
846 	err = __cpu_disable();
847 	if (err < 0)
848 		return err;
849 
850 	/*
851 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
852 	 * do this step again.
853 	 */
854 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
855 	st->state--;
856 	/* Invoke the former CPU_DYING callbacks */
857 	for (; st->state > target; st->state--) {
858 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
859 		/*
860 		 * DYING must not fail!
861 		 */
862 		WARN_ON_ONCE(ret);
863 	}
864 
865 	/* Give up timekeeping duties */
866 	tick_handover_do_timer();
867 	/* Remove CPU from timer broadcasting */
868 	tick_offline_cpu(cpu);
869 	/* Park the stopper thread */
870 	stop_machine_park(cpu);
871 	return 0;
872 }
873 
874 static int takedown_cpu(unsigned int cpu)
875 {
876 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
877 	int err;
878 
879 	/* Park the smpboot threads */
880 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
881 
882 	/*
883 	 * Prevent irq alloc/free while the dying cpu reorganizes the
884 	 * interrupt affinities.
885 	 */
886 	irq_lock_sparse();
887 
888 	/*
889 	 * So now all preempt/rcu users must observe !cpu_active().
890 	 */
891 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
892 	if (err) {
893 		/* CPU refused to die */
894 		irq_unlock_sparse();
895 		/* Unpark the hotplug thread so we can rollback there */
896 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
897 		return err;
898 	}
899 	BUG_ON(cpu_online(cpu));
900 
901 	/*
902 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
903 	 * all runnable tasks from the CPU, there's only the idle task left now
904 	 * that the migration thread is done doing the stop_machine thing.
905 	 *
906 	 * Wait for the stop thread to go away.
907 	 */
908 	wait_for_ap_thread(st, false);
909 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
910 
911 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
912 	irq_unlock_sparse();
913 
914 	hotplug_cpu__broadcast_tick_pull(cpu);
915 	/* This actually kills the CPU. */
916 	__cpu_die(cpu);
917 
918 	tick_cleanup_dead_cpu(cpu);
919 	rcutree_migrate_callbacks(cpu);
920 	return 0;
921 }
922 
923 static void cpuhp_complete_idle_dead(void *arg)
924 {
925 	struct cpuhp_cpu_state *st = arg;
926 
927 	complete_ap_thread(st, false);
928 }
929 
930 void cpuhp_report_idle_dead(void)
931 {
932 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
933 
934 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
935 	rcu_report_dead(smp_processor_id());
936 	st->state = CPUHP_AP_IDLE_DEAD;
937 	/*
938 	 * We cannot call complete after rcu_report_dead() so we delegate it
939 	 * to an online cpu.
940 	 */
941 	smp_call_function_single(cpumask_first(cpu_online_mask),
942 				 cpuhp_complete_idle_dead, st, 0);
943 }
944 
945 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
946 {
947 	for (st->state++; st->state < st->target; st->state++)
948 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
949 }
950 
951 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
952 				enum cpuhp_state target)
953 {
954 	enum cpuhp_state prev_state = st->state;
955 	int ret = 0;
956 
957 	for (; st->state > target; st->state--) {
958 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
959 		if (ret) {
960 			st->target = prev_state;
961 			if (st->state < prev_state)
962 				undo_cpu_down(cpu, st);
963 			break;
964 		}
965 	}
966 	return ret;
967 }
968 
969 /* Requires cpu_add_remove_lock to be held */
970 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
971 			   enum cpuhp_state target)
972 {
973 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
974 	int prev_state, ret = 0;
975 
976 	if (num_online_cpus() == 1)
977 		return -EBUSY;
978 
979 	if (!cpu_present(cpu))
980 		return -EINVAL;
981 
982 	cpus_write_lock();
983 
984 	cpuhp_tasks_frozen = tasks_frozen;
985 
986 	prev_state = cpuhp_set_state(st, target);
987 	/*
988 	 * If the current CPU state is in the range of the AP hotplug thread,
989 	 * then we need to kick the thread.
990 	 */
991 	if (st->state > CPUHP_TEARDOWN_CPU) {
992 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
993 		ret = cpuhp_kick_ap_work(cpu);
994 		/*
995 		 * The AP side has done the error rollback already. Just
996 		 * return the error code..
997 		 */
998 		if (ret)
999 			goto out;
1000 
1001 		/*
1002 		 * We might have stopped still in the range of the AP hotplug
1003 		 * thread. Nothing to do anymore.
1004 		 */
1005 		if (st->state > CPUHP_TEARDOWN_CPU)
1006 			goto out;
1007 
1008 		st->target = target;
1009 	}
1010 	/*
1011 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1012 	 * to do the further cleanups.
1013 	 */
1014 	ret = cpuhp_down_callbacks(cpu, st, target);
1015 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1016 		cpuhp_reset_state(st, prev_state);
1017 		__cpuhp_kick_ap(st);
1018 	}
1019 
1020 out:
1021 	cpus_write_unlock();
1022 	/*
1023 	 * Do post unplug cleanup. This is still protected against
1024 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1025 	 */
1026 	lockup_detector_cleanup();
1027 	arch_smt_update();
1028 	return ret;
1029 }
1030 
1031 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1032 {
1033 	if (cpu_hotplug_disabled)
1034 		return -EBUSY;
1035 	return _cpu_down(cpu, 0, target);
1036 }
1037 
1038 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1039 {
1040 	int err;
1041 
1042 	cpu_maps_update_begin();
1043 	err = cpu_down_maps_locked(cpu, target);
1044 	cpu_maps_update_done();
1045 	return err;
1046 }
1047 
1048 int cpu_down(unsigned int cpu)
1049 {
1050 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1051 }
1052 EXPORT_SYMBOL(cpu_down);
1053 
1054 #else
1055 #define takedown_cpu		NULL
1056 #endif /*CONFIG_HOTPLUG_CPU*/
1057 
1058 /**
1059  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1060  * @cpu: cpu that just started
1061  *
1062  * It must be called by the arch code on the new cpu, before the new cpu
1063  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1064  */
1065 void notify_cpu_starting(unsigned int cpu)
1066 {
1067 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1068 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1069 	int ret;
1070 
1071 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1072 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1073 	while (st->state < target) {
1074 		st->state++;
1075 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1076 		/*
1077 		 * STARTING must not fail!
1078 		 */
1079 		WARN_ON_ONCE(ret);
1080 	}
1081 }
1082 
1083 /*
1084  * Called from the idle task. Wake up the controlling task which brings the
1085  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1086  * the rest of the online bringup to the hotplug thread.
1087  */
1088 void cpuhp_online_idle(enum cpuhp_state state)
1089 {
1090 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1091 
1092 	/* Happens for the boot cpu */
1093 	if (state != CPUHP_AP_ONLINE_IDLE)
1094 		return;
1095 
1096 	st->state = CPUHP_AP_ONLINE_IDLE;
1097 	complete_ap_thread(st, true);
1098 }
1099 
1100 /* Requires cpu_add_remove_lock to be held */
1101 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1102 {
1103 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1104 	struct task_struct *idle;
1105 	int ret = 0;
1106 
1107 	cpus_write_lock();
1108 
1109 	if (!cpu_present(cpu)) {
1110 		ret = -EINVAL;
1111 		goto out;
1112 	}
1113 
1114 	/*
1115 	 * The caller of do_cpu_up might have raced with another
1116 	 * caller. Ignore it for now.
1117 	 */
1118 	if (st->state >= target)
1119 		goto out;
1120 
1121 	if (st->state == CPUHP_OFFLINE) {
1122 		/* Let it fail before we try to bring the cpu up */
1123 		idle = idle_thread_get(cpu);
1124 		if (IS_ERR(idle)) {
1125 			ret = PTR_ERR(idle);
1126 			goto out;
1127 		}
1128 	}
1129 
1130 	cpuhp_tasks_frozen = tasks_frozen;
1131 
1132 	cpuhp_set_state(st, target);
1133 	/*
1134 	 * If the current CPU state is in the range of the AP hotplug thread,
1135 	 * then we need to kick the thread once more.
1136 	 */
1137 	if (st->state > CPUHP_BRINGUP_CPU) {
1138 		ret = cpuhp_kick_ap_work(cpu);
1139 		/*
1140 		 * The AP side has done the error rollback already. Just
1141 		 * return the error code..
1142 		 */
1143 		if (ret)
1144 			goto out;
1145 	}
1146 
1147 	/*
1148 	 * Try to reach the target state. We max out on the BP at
1149 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1150 	 * responsible for bringing it up to the target state.
1151 	 */
1152 	target = min((int)target, CPUHP_BRINGUP_CPU);
1153 	ret = cpuhp_up_callbacks(cpu, st, target);
1154 out:
1155 	cpus_write_unlock();
1156 	arch_smt_update();
1157 	return ret;
1158 }
1159 
1160 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1161 {
1162 	int err = 0;
1163 
1164 	if (!cpu_possible(cpu)) {
1165 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1166 		       cpu);
1167 #if defined(CONFIG_IA64)
1168 		pr_err("please check additional_cpus= boot parameter\n");
1169 #endif
1170 		return -EINVAL;
1171 	}
1172 
1173 	err = try_online_node(cpu_to_node(cpu));
1174 	if (err)
1175 		return err;
1176 
1177 	cpu_maps_update_begin();
1178 
1179 	if (cpu_hotplug_disabled) {
1180 		err = -EBUSY;
1181 		goto out;
1182 	}
1183 	if (!cpu_smt_allowed(cpu)) {
1184 		err = -EPERM;
1185 		goto out;
1186 	}
1187 
1188 	err = _cpu_up(cpu, 0, target);
1189 out:
1190 	cpu_maps_update_done();
1191 	return err;
1192 }
1193 
1194 int cpu_up(unsigned int cpu)
1195 {
1196 	return do_cpu_up(cpu, CPUHP_ONLINE);
1197 }
1198 EXPORT_SYMBOL_GPL(cpu_up);
1199 
1200 #ifdef CONFIG_PM_SLEEP_SMP
1201 static cpumask_var_t frozen_cpus;
1202 
1203 int freeze_secondary_cpus(int primary)
1204 {
1205 	int cpu, error = 0;
1206 
1207 	cpu_maps_update_begin();
1208 	if (primary == -1) {
1209 		primary = cpumask_first(cpu_online_mask);
1210 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1211 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1212 	} else {
1213 		if (!cpu_online(primary))
1214 			primary = cpumask_first(cpu_online_mask);
1215 	}
1216 
1217 	/*
1218 	 * We take down all of the non-boot CPUs in one shot to avoid races
1219 	 * with the userspace trying to use the CPU hotplug at the same time
1220 	 */
1221 	cpumask_clear(frozen_cpus);
1222 
1223 	pr_info("Disabling non-boot CPUs ...\n");
1224 	for_each_online_cpu(cpu) {
1225 		if (cpu == primary)
1226 			continue;
1227 
1228 		if (pm_wakeup_pending()) {
1229 			pr_info("Wakeup pending. Abort CPU freeze\n");
1230 			error = -EBUSY;
1231 			break;
1232 		}
1233 
1234 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1235 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1236 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1237 		if (!error)
1238 			cpumask_set_cpu(cpu, frozen_cpus);
1239 		else {
1240 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1241 			break;
1242 		}
1243 	}
1244 
1245 	if (!error)
1246 		BUG_ON(num_online_cpus() > 1);
1247 	else
1248 		pr_err("Non-boot CPUs are not disabled\n");
1249 
1250 	/*
1251 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1252 	 * this even in case of failure as all disable_nonboot_cpus() users are
1253 	 * supposed to do enable_nonboot_cpus() on the failure path.
1254 	 */
1255 	cpu_hotplug_disabled++;
1256 
1257 	cpu_maps_update_done();
1258 	return error;
1259 }
1260 
1261 void __weak arch_enable_nonboot_cpus_begin(void)
1262 {
1263 }
1264 
1265 void __weak arch_enable_nonboot_cpus_end(void)
1266 {
1267 }
1268 
1269 void enable_nonboot_cpus(void)
1270 {
1271 	int cpu, error;
1272 
1273 	/* Allow everyone to use the CPU hotplug again */
1274 	cpu_maps_update_begin();
1275 	__cpu_hotplug_enable();
1276 	if (cpumask_empty(frozen_cpus))
1277 		goto out;
1278 
1279 	pr_info("Enabling non-boot CPUs ...\n");
1280 
1281 	arch_enable_nonboot_cpus_begin();
1282 
1283 	for_each_cpu(cpu, frozen_cpus) {
1284 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1285 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1286 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1287 		if (!error) {
1288 			pr_info("CPU%d is up\n", cpu);
1289 			continue;
1290 		}
1291 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1292 	}
1293 
1294 	arch_enable_nonboot_cpus_end();
1295 
1296 	cpumask_clear(frozen_cpus);
1297 out:
1298 	cpu_maps_update_done();
1299 }
1300 
1301 static int __init alloc_frozen_cpus(void)
1302 {
1303 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1304 		return -ENOMEM;
1305 	return 0;
1306 }
1307 core_initcall(alloc_frozen_cpus);
1308 
1309 /*
1310  * When callbacks for CPU hotplug notifications are being executed, we must
1311  * ensure that the state of the system with respect to the tasks being frozen
1312  * or not, as reported by the notification, remains unchanged *throughout the
1313  * duration* of the execution of the callbacks.
1314  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1315  *
1316  * This synchronization is implemented by mutually excluding regular CPU
1317  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1318  * Hibernate notifications.
1319  */
1320 static int
1321 cpu_hotplug_pm_callback(struct notifier_block *nb,
1322 			unsigned long action, void *ptr)
1323 {
1324 	switch (action) {
1325 
1326 	case PM_SUSPEND_PREPARE:
1327 	case PM_HIBERNATION_PREPARE:
1328 		cpu_hotplug_disable();
1329 		break;
1330 
1331 	case PM_POST_SUSPEND:
1332 	case PM_POST_HIBERNATION:
1333 		cpu_hotplug_enable();
1334 		break;
1335 
1336 	default:
1337 		return NOTIFY_DONE;
1338 	}
1339 
1340 	return NOTIFY_OK;
1341 }
1342 
1343 
1344 static int __init cpu_hotplug_pm_sync_init(void)
1345 {
1346 	/*
1347 	 * cpu_hotplug_pm_callback has higher priority than x86
1348 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1349 	 * to disable cpu hotplug to avoid cpu hotplug race.
1350 	 */
1351 	pm_notifier(cpu_hotplug_pm_callback, 0);
1352 	return 0;
1353 }
1354 core_initcall(cpu_hotplug_pm_sync_init);
1355 
1356 #endif /* CONFIG_PM_SLEEP_SMP */
1357 
1358 int __boot_cpu_id;
1359 
1360 #endif /* CONFIG_SMP */
1361 
1362 /* Boot processor state steps */
1363 static struct cpuhp_step cpuhp_hp_states[] = {
1364 	[CPUHP_OFFLINE] = {
1365 		.name			= "offline",
1366 		.startup.single		= NULL,
1367 		.teardown.single	= NULL,
1368 	},
1369 #ifdef CONFIG_SMP
1370 	[CPUHP_CREATE_THREADS]= {
1371 		.name			= "threads:prepare",
1372 		.startup.single		= smpboot_create_threads,
1373 		.teardown.single	= NULL,
1374 		.cant_stop		= true,
1375 	},
1376 	[CPUHP_PERF_PREPARE] = {
1377 		.name			= "perf:prepare",
1378 		.startup.single		= perf_event_init_cpu,
1379 		.teardown.single	= perf_event_exit_cpu,
1380 	},
1381 	[CPUHP_WORKQUEUE_PREP] = {
1382 		.name			= "workqueue:prepare",
1383 		.startup.single		= workqueue_prepare_cpu,
1384 		.teardown.single	= NULL,
1385 	},
1386 	[CPUHP_HRTIMERS_PREPARE] = {
1387 		.name			= "hrtimers:prepare",
1388 		.startup.single		= hrtimers_prepare_cpu,
1389 		.teardown.single	= hrtimers_dead_cpu,
1390 	},
1391 	[CPUHP_SMPCFD_PREPARE] = {
1392 		.name			= "smpcfd:prepare",
1393 		.startup.single		= smpcfd_prepare_cpu,
1394 		.teardown.single	= smpcfd_dead_cpu,
1395 	},
1396 	[CPUHP_RELAY_PREPARE] = {
1397 		.name			= "relay:prepare",
1398 		.startup.single		= relay_prepare_cpu,
1399 		.teardown.single	= NULL,
1400 	},
1401 	[CPUHP_SLAB_PREPARE] = {
1402 		.name			= "slab:prepare",
1403 		.startup.single		= slab_prepare_cpu,
1404 		.teardown.single	= slab_dead_cpu,
1405 	},
1406 	[CPUHP_RCUTREE_PREP] = {
1407 		.name			= "RCU/tree:prepare",
1408 		.startup.single		= rcutree_prepare_cpu,
1409 		.teardown.single	= rcutree_dead_cpu,
1410 	},
1411 	/*
1412 	 * On the tear-down path, timers_dead_cpu() must be invoked
1413 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1414 	 * otherwise a RCU stall occurs.
1415 	 */
1416 	[CPUHP_TIMERS_PREPARE] = {
1417 		.name			= "timers:prepare",
1418 		.startup.single		= timers_prepare_cpu,
1419 		.teardown.single	= timers_dead_cpu,
1420 	},
1421 	/* Kicks the plugged cpu into life */
1422 	[CPUHP_BRINGUP_CPU] = {
1423 		.name			= "cpu:bringup",
1424 		.startup.single		= bringup_cpu,
1425 		.teardown.single	= NULL,
1426 		.cant_stop		= true,
1427 	},
1428 	/* Final state before CPU kills itself */
1429 	[CPUHP_AP_IDLE_DEAD] = {
1430 		.name			= "idle:dead",
1431 	},
1432 	/*
1433 	 * Last state before CPU enters the idle loop to die. Transient state
1434 	 * for synchronization.
1435 	 */
1436 	[CPUHP_AP_OFFLINE] = {
1437 		.name			= "ap:offline",
1438 		.cant_stop		= true,
1439 	},
1440 	/* First state is scheduler control. Interrupts are disabled */
1441 	[CPUHP_AP_SCHED_STARTING] = {
1442 		.name			= "sched:starting",
1443 		.startup.single		= sched_cpu_starting,
1444 		.teardown.single	= sched_cpu_dying,
1445 	},
1446 	[CPUHP_AP_RCUTREE_DYING] = {
1447 		.name			= "RCU/tree:dying",
1448 		.startup.single		= NULL,
1449 		.teardown.single	= rcutree_dying_cpu,
1450 	},
1451 	[CPUHP_AP_SMPCFD_DYING] = {
1452 		.name			= "smpcfd:dying",
1453 		.startup.single		= NULL,
1454 		.teardown.single	= smpcfd_dying_cpu,
1455 	},
1456 	/* Entry state on starting. Interrupts enabled from here on. Transient
1457 	 * state for synchronsization */
1458 	[CPUHP_AP_ONLINE] = {
1459 		.name			= "ap:online",
1460 	},
1461 	/*
1462 	 * Handled on controll processor until the plugged processor manages
1463 	 * this itself.
1464 	 */
1465 	[CPUHP_TEARDOWN_CPU] = {
1466 		.name			= "cpu:teardown",
1467 		.startup.single		= NULL,
1468 		.teardown.single	= takedown_cpu,
1469 		.cant_stop		= true,
1470 	},
1471 	/* Handle smpboot threads park/unpark */
1472 	[CPUHP_AP_SMPBOOT_THREADS] = {
1473 		.name			= "smpboot/threads:online",
1474 		.startup.single		= smpboot_unpark_threads,
1475 		.teardown.single	= smpboot_park_threads,
1476 	},
1477 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1478 		.name			= "irq/affinity:online",
1479 		.startup.single		= irq_affinity_online_cpu,
1480 		.teardown.single	= NULL,
1481 	},
1482 	[CPUHP_AP_PERF_ONLINE] = {
1483 		.name			= "perf:online",
1484 		.startup.single		= perf_event_init_cpu,
1485 		.teardown.single	= perf_event_exit_cpu,
1486 	},
1487 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1488 		.name			= "lockup_detector:online",
1489 		.startup.single		= lockup_detector_online_cpu,
1490 		.teardown.single	= lockup_detector_offline_cpu,
1491 	},
1492 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1493 		.name			= "workqueue:online",
1494 		.startup.single		= workqueue_online_cpu,
1495 		.teardown.single	= workqueue_offline_cpu,
1496 	},
1497 	[CPUHP_AP_RCUTREE_ONLINE] = {
1498 		.name			= "RCU/tree:online",
1499 		.startup.single		= rcutree_online_cpu,
1500 		.teardown.single	= rcutree_offline_cpu,
1501 	},
1502 #endif
1503 	/*
1504 	 * The dynamically registered state space is here
1505 	 */
1506 
1507 #ifdef CONFIG_SMP
1508 	/* Last state is scheduler control setting the cpu active */
1509 	[CPUHP_AP_ACTIVE] = {
1510 		.name			= "sched:active",
1511 		.startup.single		= sched_cpu_activate,
1512 		.teardown.single	= sched_cpu_deactivate,
1513 	},
1514 #endif
1515 
1516 	/* CPU is fully up and running. */
1517 	[CPUHP_ONLINE] = {
1518 		.name			= "online",
1519 		.startup.single		= NULL,
1520 		.teardown.single	= NULL,
1521 	},
1522 };
1523 
1524 /* Sanity check for callbacks */
1525 static int cpuhp_cb_check(enum cpuhp_state state)
1526 {
1527 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1528 		return -EINVAL;
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Returns a free for dynamic slot assignment of the Online state. The states
1534  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1535  * by having no name assigned.
1536  */
1537 static int cpuhp_reserve_state(enum cpuhp_state state)
1538 {
1539 	enum cpuhp_state i, end;
1540 	struct cpuhp_step *step;
1541 
1542 	switch (state) {
1543 	case CPUHP_AP_ONLINE_DYN:
1544 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1545 		end = CPUHP_AP_ONLINE_DYN_END;
1546 		break;
1547 	case CPUHP_BP_PREPARE_DYN:
1548 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1549 		end = CPUHP_BP_PREPARE_DYN_END;
1550 		break;
1551 	default:
1552 		return -EINVAL;
1553 	}
1554 
1555 	for (i = state; i <= end; i++, step++) {
1556 		if (!step->name)
1557 			return i;
1558 	}
1559 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1560 	return -ENOSPC;
1561 }
1562 
1563 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1564 				 int (*startup)(unsigned int cpu),
1565 				 int (*teardown)(unsigned int cpu),
1566 				 bool multi_instance)
1567 {
1568 	/* (Un)Install the callbacks for further cpu hotplug operations */
1569 	struct cpuhp_step *sp;
1570 	int ret = 0;
1571 
1572 	/*
1573 	 * If name is NULL, then the state gets removed.
1574 	 *
1575 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1576 	 * the first allocation from these dynamic ranges, so the removal
1577 	 * would trigger a new allocation and clear the wrong (already
1578 	 * empty) state, leaving the callbacks of the to be cleared state
1579 	 * dangling, which causes wreckage on the next hotplug operation.
1580 	 */
1581 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1582 		     state == CPUHP_BP_PREPARE_DYN)) {
1583 		ret = cpuhp_reserve_state(state);
1584 		if (ret < 0)
1585 			return ret;
1586 		state = ret;
1587 	}
1588 	sp = cpuhp_get_step(state);
1589 	if (name && sp->name)
1590 		return -EBUSY;
1591 
1592 	sp->startup.single = startup;
1593 	sp->teardown.single = teardown;
1594 	sp->name = name;
1595 	sp->multi_instance = multi_instance;
1596 	INIT_HLIST_HEAD(&sp->list);
1597 	return ret;
1598 }
1599 
1600 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1601 {
1602 	return cpuhp_get_step(state)->teardown.single;
1603 }
1604 
1605 /*
1606  * Call the startup/teardown function for a step either on the AP or
1607  * on the current CPU.
1608  */
1609 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1610 			    struct hlist_node *node)
1611 {
1612 	struct cpuhp_step *sp = cpuhp_get_step(state);
1613 	int ret;
1614 
1615 	/*
1616 	 * If there's nothing to do, we done.
1617 	 * Relies on the union for multi_instance.
1618 	 */
1619 	if ((bringup && !sp->startup.single) ||
1620 	    (!bringup && !sp->teardown.single))
1621 		return 0;
1622 	/*
1623 	 * The non AP bound callbacks can fail on bringup. On teardown
1624 	 * e.g. module removal we crash for now.
1625 	 */
1626 #ifdef CONFIG_SMP
1627 	if (cpuhp_is_ap_state(state))
1628 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1629 	else
1630 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1631 #else
1632 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1633 #endif
1634 	BUG_ON(ret && !bringup);
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Called from __cpuhp_setup_state on a recoverable failure.
1640  *
1641  * Note: The teardown callbacks for rollback are not allowed to fail!
1642  */
1643 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1644 				   struct hlist_node *node)
1645 {
1646 	int cpu;
1647 
1648 	/* Roll back the already executed steps on the other cpus */
1649 	for_each_present_cpu(cpu) {
1650 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1651 		int cpustate = st->state;
1652 
1653 		if (cpu >= failedcpu)
1654 			break;
1655 
1656 		/* Did we invoke the startup call on that cpu ? */
1657 		if (cpustate >= state)
1658 			cpuhp_issue_call(cpu, state, false, node);
1659 	}
1660 }
1661 
1662 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1663 					  struct hlist_node *node,
1664 					  bool invoke)
1665 {
1666 	struct cpuhp_step *sp;
1667 	int cpu;
1668 	int ret;
1669 
1670 	lockdep_assert_cpus_held();
1671 
1672 	sp = cpuhp_get_step(state);
1673 	if (sp->multi_instance == false)
1674 		return -EINVAL;
1675 
1676 	mutex_lock(&cpuhp_state_mutex);
1677 
1678 	if (!invoke || !sp->startup.multi)
1679 		goto add_node;
1680 
1681 	/*
1682 	 * Try to call the startup callback for each present cpu
1683 	 * depending on the hotplug state of the cpu.
1684 	 */
1685 	for_each_present_cpu(cpu) {
1686 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1687 		int cpustate = st->state;
1688 
1689 		if (cpustate < state)
1690 			continue;
1691 
1692 		ret = cpuhp_issue_call(cpu, state, true, node);
1693 		if (ret) {
1694 			if (sp->teardown.multi)
1695 				cpuhp_rollback_install(cpu, state, node);
1696 			goto unlock;
1697 		}
1698 	}
1699 add_node:
1700 	ret = 0;
1701 	hlist_add_head(node, &sp->list);
1702 unlock:
1703 	mutex_unlock(&cpuhp_state_mutex);
1704 	return ret;
1705 }
1706 
1707 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1708 			       bool invoke)
1709 {
1710 	int ret;
1711 
1712 	cpus_read_lock();
1713 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1714 	cpus_read_unlock();
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1718 
1719 /**
1720  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1721  * @state:		The state to setup
1722  * @invoke:		If true, the startup function is invoked for cpus where
1723  *			cpu state >= @state
1724  * @startup:		startup callback function
1725  * @teardown:		teardown callback function
1726  * @multi_instance:	State is set up for multiple instances which get
1727  *			added afterwards.
1728  *
1729  * The caller needs to hold cpus read locked while calling this function.
1730  * Returns:
1731  *   On success:
1732  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1733  *      0 for all other states
1734  *   On failure: proper (negative) error code
1735  */
1736 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1737 				   const char *name, bool invoke,
1738 				   int (*startup)(unsigned int cpu),
1739 				   int (*teardown)(unsigned int cpu),
1740 				   bool multi_instance)
1741 {
1742 	int cpu, ret = 0;
1743 	bool dynstate;
1744 
1745 	lockdep_assert_cpus_held();
1746 
1747 	if (cpuhp_cb_check(state) || !name)
1748 		return -EINVAL;
1749 
1750 	mutex_lock(&cpuhp_state_mutex);
1751 
1752 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1753 				    multi_instance);
1754 
1755 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1756 	if (ret > 0 && dynstate) {
1757 		state = ret;
1758 		ret = 0;
1759 	}
1760 
1761 	if (ret || !invoke || !startup)
1762 		goto out;
1763 
1764 	/*
1765 	 * Try to call the startup callback for each present cpu
1766 	 * depending on the hotplug state of the cpu.
1767 	 */
1768 	for_each_present_cpu(cpu) {
1769 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1770 		int cpustate = st->state;
1771 
1772 		if (cpustate < state)
1773 			continue;
1774 
1775 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1776 		if (ret) {
1777 			if (teardown)
1778 				cpuhp_rollback_install(cpu, state, NULL);
1779 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1780 			goto out;
1781 		}
1782 	}
1783 out:
1784 	mutex_unlock(&cpuhp_state_mutex);
1785 	/*
1786 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1787 	 * dynamically allocated state in case of success.
1788 	 */
1789 	if (!ret && dynstate)
1790 		return state;
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1794 
1795 int __cpuhp_setup_state(enum cpuhp_state state,
1796 			const char *name, bool invoke,
1797 			int (*startup)(unsigned int cpu),
1798 			int (*teardown)(unsigned int cpu),
1799 			bool multi_instance)
1800 {
1801 	int ret;
1802 
1803 	cpus_read_lock();
1804 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1805 					     teardown, multi_instance);
1806 	cpus_read_unlock();
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL(__cpuhp_setup_state);
1810 
1811 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1812 				  struct hlist_node *node, bool invoke)
1813 {
1814 	struct cpuhp_step *sp = cpuhp_get_step(state);
1815 	int cpu;
1816 
1817 	BUG_ON(cpuhp_cb_check(state));
1818 
1819 	if (!sp->multi_instance)
1820 		return -EINVAL;
1821 
1822 	cpus_read_lock();
1823 	mutex_lock(&cpuhp_state_mutex);
1824 
1825 	if (!invoke || !cpuhp_get_teardown_cb(state))
1826 		goto remove;
1827 	/*
1828 	 * Call the teardown callback for each present cpu depending
1829 	 * on the hotplug state of the cpu. This function is not
1830 	 * allowed to fail currently!
1831 	 */
1832 	for_each_present_cpu(cpu) {
1833 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1834 		int cpustate = st->state;
1835 
1836 		if (cpustate >= state)
1837 			cpuhp_issue_call(cpu, state, false, node);
1838 	}
1839 
1840 remove:
1841 	hlist_del(node);
1842 	mutex_unlock(&cpuhp_state_mutex);
1843 	cpus_read_unlock();
1844 
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1848 
1849 /**
1850  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1851  * @state:	The state to remove
1852  * @invoke:	If true, the teardown function is invoked for cpus where
1853  *		cpu state >= @state
1854  *
1855  * The caller needs to hold cpus read locked while calling this function.
1856  * The teardown callback is currently not allowed to fail. Think
1857  * about module removal!
1858  */
1859 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1860 {
1861 	struct cpuhp_step *sp = cpuhp_get_step(state);
1862 	int cpu;
1863 
1864 	BUG_ON(cpuhp_cb_check(state));
1865 
1866 	lockdep_assert_cpus_held();
1867 
1868 	mutex_lock(&cpuhp_state_mutex);
1869 	if (sp->multi_instance) {
1870 		WARN(!hlist_empty(&sp->list),
1871 		     "Error: Removing state %d which has instances left.\n",
1872 		     state);
1873 		goto remove;
1874 	}
1875 
1876 	if (!invoke || !cpuhp_get_teardown_cb(state))
1877 		goto remove;
1878 
1879 	/*
1880 	 * Call the teardown callback for each present cpu depending
1881 	 * on the hotplug state of the cpu. This function is not
1882 	 * allowed to fail currently!
1883 	 */
1884 	for_each_present_cpu(cpu) {
1885 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1886 		int cpustate = st->state;
1887 
1888 		if (cpustate >= state)
1889 			cpuhp_issue_call(cpu, state, false, NULL);
1890 	}
1891 remove:
1892 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1893 	mutex_unlock(&cpuhp_state_mutex);
1894 }
1895 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1896 
1897 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1898 {
1899 	cpus_read_lock();
1900 	__cpuhp_remove_state_cpuslocked(state, invoke);
1901 	cpus_read_unlock();
1902 }
1903 EXPORT_SYMBOL(__cpuhp_remove_state);
1904 
1905 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1906 static ssize_t show_cpuhp_state(struct device *dev,
1907 				struct device_attribute *attr, char *buf)
1908 {
1909 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1910 
1911 	return sprintf(buf, "%d\n", st->state);
1912 }
1913 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1914 
1915 static ssize_t write_cpuhp_target(struct device *dev,
1916 				  struct device_attribute *attr,
1917 				  const char *buf, size_t count)
1918 {
1919 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1920 	struct cpuhp_step *sp;
1921 	int target, ret;
1922 
1923 	ret = kstrtoint(buf, 10, &target);
1924 	if (ret)
1925 		return ret;
1926 
1927 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1928 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1929 		return -EINVAL;
1930 #else
1931 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1932 		return -EINVAL;
1933 #endif
1934 
1935 	ret = lock_device_hotplug_sysfs();
1936 	if (ret)
1937 		return ret;
1938 
1939 	mutex_lock(&cpuhp_state_mutex);
1940 	sp = cpuhp_get_step(target);
1941 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1942 	mutex_unlock(&cpuhp_state_mutex);
1943 	if (ret)
1944 		goto out;
1945 
1946 	if (st->state < target)
1947 		ret = do_cpu_up(dev->id, target);
1948 	else
1949 		ret = do_cpu_down(dev->id, target);
1950 out:
1951 	unlock_device_hotplug();
1952 	return ret ? ret : count;
1953 }
1954 
1955 static ssize_t show_cpuhp_target(struct device *dev,
1956 				 struct device_attribute *attr, char *buf)
1957 {
1958 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1959 
1960 	return sprintf(buf, "%d\n", st->target);
1961 }
1962 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1963 
1964 
1965 static ssize_t write_cpuhp_fail(struct device *dev,
1966 				struct device_attribute *attr,
1967 				const char *buf, size_t count)
1968 {
1969 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1970 	struct cpuhp_step *sp;
1971 	int fail, ret;
1972 
1973 	ret = kstrtoint(buf, 10, &fail);
1974 	if (ret)
1975 		return ret;
1976 
1977 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1978 		return -EINVAL;
1979 
1980 	/*
1981 	 * Cannot fail STARTING/DYING callbacks.
1982 	 */
1983 	if (cpuhp_is_atomic_state(fail))
1984 		return -EINVAL;
1985 
1986 	/*
1987 	 * Cannot fail anything that doesn't have callbacks.
1988 	 */
1989 	mutex_lock(&cpuhp_state_mutex);
1990 	sp = cpuhp_get_step(fail);
1991 	if (!sp->startup.single && !sp->teardown.single)
1992 		ret = -EINVAL;
1993 	mutex_unlock(&cpuhp_state_mutex);
1994 	if (ret)
1995 		return ret;
1996 
1997 	st->fail = fail;
1998 
1999 	return count;
2000 }
2001 
2002 static ssize_t show_cpuhp_fail(struct device *dev,
2003 			       struct device_attribute *attr, char *buf)
2004 {
2005 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2006 
2007 	return sprintf(buf, "%d\n", st->fail);
2008 }
2009 
2010 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2011 
2012 static struct attribute *cpuhp_cpu_attrs[] = {
2013 	&dev_attr_state.attr,
2014 	&dev_attr_target.attr,
2015 	&dev_attr_fail.attr,
2016 	NULL
2017 };
2018 
2019 static const struct attribute_group cpuhp_cpu_attr_group = {
2020 	.attrs = cpuhp_cpu_attrs,
2021 	.name = "hotplug",
2022 	NULL
2023 };
2024 
2025 static ssize_t show_cpuhp_states(struct device *dev,
2026 				 struct device_attribute *attr, char *buf)
2027 {
2028 	ssize_t cur, res = 0;
2029 	int i;
2030 
2031 	mutex_lock(&cpuhp_state_mutex);
2032 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2033 		struct cpuhp_step *sp = cpuhp_get_step(i);
2034 
2035 		if (sp->name) {
2036 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2037 			buf += cur;
2038 			res += cur;
2039 		}
2040 	}
2041 	mutex_unlock(&cpuhp_state_mutex);
2042 	return res;
2043 }
2044 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2045 
2046 static struct attribute *cpuhp_cpu_root_attrs[] = {
2047 	&dev_attr_states.attr,
2048 	NULL
2049 };
2050 
2051 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2052 	.attrs = cpuhp_cpu_root_attrs,
2053 	.name = "hotplug",
2054 	NULL
2055 };
2056 
2057 #ifdef CONFIG_HOTPLUG_SMT
2058 
2059 static void cpuhp_offline_cpu_device(unsigned int cpu)
2060 {
2061 	struct device *dev = get_cpu_device(cpu);
2062 
2063 	dev->offline = true;
2064 	/* Tell user space about the state change */
2065 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2066 }
2067 
2068 static void cpuhp_online_cpu_device(unsigned int cpu)
2069 {
2070 	struct device *dev = get_cpu_device(cpu);
2071 
2072 	dev->offline = false;
2073 	/* Tell user space about the state change */
2074 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2075 }
2076 
2077 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2078 {
2079 	int cpu, ret = 0;
2080 
2081 	cpu_maps_update_begin();
2082 	for_each_online_cpu(cpu) {
2083 		if (topology_is_primary_thread(cpu))
2084 			continue;
2085 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2086 		if (ret)
2087 			break;
2088 		/*
2089 		 * As this needs to hold the cpu maps lock it's impossible
2090 		 * to call device_offline() because that ends up calling
2091 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2092 		 * needs to be held as this might race against in kernel
2093 		 * abusers of the hotplug machinery (thermal management).
2094 		 *
2095 		 * So nothing would update device:offline state. That would
2096 		 * leave the sysfs entry stale and prevent onlining after
2097 		 * smt control has been changed to 'off' again. This is
2098 		 * called under the sysfs hotplug lock, so it is properly
2099 		 * serialized against the regular offline usage.
2100 		 */
2101 		cpuhp_offline_cpu_device(cpu);
2102 	}
2103 	if (!ret)
2104 		cpu_smt_control = ctrlval;
2105 	cpu_maps_update_done();
2106 	return ret;
2107 }
2108 
2109 int cpuhp_smt_enable(void)
2110 {
2111 	int cpu, ret = 0;
2112 
2113 	cpu_maps_update_begin();
2114 	cpu_smt_control = CPU_SMT_ENABLED;
2115 	for_each_present_cpu(cpu) {
2116 		/* Skip online CPUs and CPUs on offline nodes */
2117 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2118 			continue;
2119 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2120 		if (ret)
2121 			break;
2122 		/* See comment in cpuhp_smt_disable() */
2123 		cpuhp_online_cpu_device(cpu);
2124 	}
2125 	cpu_maps_update_done();
2126 	return ret;
2127 }
2128 
2129 
2130 static ssize_t
2131 __store_smt_control(struct device *dev, struct device_attribute *attr,
2132 		    const char *buf, size_t count)
2133 {
2134 	int ctrlval, ret;
2135 
2136 	if (sysfs_streq(buf, "on"))
2137 		ctrlval = CPU_SMT_ENABLED;
2138 	else if (sysfs_streq(buf, "off"))
2139 		ctrlval = CPU_SMT_DISABLED;
2140 	else if (sysfs_streq(buf, "forceoff"))
2141 		ctrlval = CPU_SMT_FORCE_DISABLED;
2142 	else
2143 		return -EINVAL;
2144 
2145 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2146 		return -EPERM;
2147 
2148 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2149 		return -ENODEV;
2150 
2151 	ret = lock_device_hotplug_sysfs();
2152 	if (ret)
2153 		return ret;
2154 
2155 	if (ctrlval != cpu_smt_control) {
2156 		switch (ctrlval) {
2157 		case CPU_SMT_ENABLED:
2158 			ret = cpuhp_smt_enable();
2159 			break;
2160 		case CPU_SMT_DISABLED:
2161 		case CPU_SMT_FORCE_DISABLED:
2162 			ret = cpuhp_smt_disable(ctrlval);
2163 			break;
2164 		}
2165 	}
2166 
2167 	unlock_device_hotplug();
2168 	return ret ? ret : count;
2169 }
2170 
2171 #else /* !CONFIG_HOTPLUG_SMT */
2172 static ssize_t
2173 __store_smt_control(struct device *dev, struct device_attribute *attr,
2174 		    const char *buf, size_t count)
2175 {
2176 	return -ENODEV;
2177 }
2178 #endif /* CONFIG_HOTPLUG_SMT */
2179 
2180 static const char *smt_states[] = {
2181 	[CPU_SMT_ENABLED]		= "on",
2182 	[CPU_SMT_DISABLED]		= "off",
2183 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2184 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2185 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2186 };
2187 
2188 static ssize_t
2189 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2190 {
2191 	const char *state = smt_states[cpu_smt_control];
2192 
2193 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2194 }
2195 
2196 static ssize_t
2197 store_smt_control(struct device *dev, struct device_attribute *attr,
2198 		  const char *buf, size_t count)
2199 {
2200 	return __store_smt_control(dev, attr, buf, count);
2201 }
2202 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2203 
2204 static ssize_t
2205 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2206 {
2207 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2208 }
2209 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2210 
2211 static struct attribute *cpuhp_smt_attrs[] = {
2212 	&dev_attr_control.attr,
2213 	&dev_attr_active.attr,
2214 	NULL
2215 };
2216 
2217 static const struct attribute_group cpuhp_smt_attr_group = {
2218 	.attrs = cpuhp_smt_attrs,
2219 	.name = "smt",
2220 	NULL
2221 };
2222 
2223 static int __init cpu_smt_sysfs_init(void)
2224 {
2225 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2226 				  &cpuhp_smt_attr_group);
2227 }
2228 
2229 static int __init cpuhp_sysfs_init(void)
2230 {
2231 	int cpu, ret;
2232 
2233 	ret = cpu_smt_sysfs_init();
2234 	if (ret)
2235 		return ret;
2236 
2237 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2238 				 &cpuhp_cpu_root_attr_group);
2239 	if (ret)
2240 		return ret;
2241 
2242 	for_each_possible_cpu(cpu) {
2243 		struct device *dev = get_cpu_device(cpu);
2244 
2245 		if (!dev)
2246 			continue;
2247 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2248 		if (ret)
2249 			return ret;
2250 	}
2251 	return 0;
2252 }
2253 device_initcall(cpuhp_sysfs_init);
2254 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2255 
2256 /*
2257  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2258  * represents all NR_CPUS bits binary values of 1<<nr.
2259  *
2260  * It is used by cpumask_of() to get a constant address to a CPU
2261  * mask value that has a single bit set only.
2262  */
2263 
2264 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2265 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2266 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2267 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2268 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2269 
2270 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2271 
2272 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2273 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2274 #if BITS_PER_LONG > 32
2275 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2276 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2277 #endif
2278 };
2279 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2280 
2281 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2282 EXPORT_SYMBOL(cpu_all_bits);
2283 
2284 #ifdef CONFIG_INIT_ALL_POSSIBLE
2285 struct cpumask __cpu_possible_mask __read_mostly
2286 	= {CPU_BITS_ALL};
2287 #else
2288 struct cpumask __cpu_possible_mask __read_mostly;
2289 #endif
2290 EXPORT_SYMBOL(__cpu_possible_mask);
2291 
2292 struct cpumask __cpu_online_mask __read_mostly;
2293 EXPORT_SYMBOL(__cpu_online_mask);
2294 
2295 struct cpumask __cpu_present_mask __read_mostly;
2296 EXPORT_SYMBOL(__cpu_present_mask);
2297 
2298 struct cpumask __cpu_active_mask __read_mostly;
2299 EXPORT_SYMBOL(__cpu_active_mask);
2300 
2301 atomic_t __num_online_cpus __read_mostly;
2302 EXPORT_SYMBOL(__num_online_cpus);
2303 
2304 void init_cpu_present(const struct cpumask *src)
2305 {
2306 	cpumask_copy(&__cpu_present_mask, src);
2307 }
2308 
2309 void init_cpu_possible(const struct cpumask *src)
2310 {
2311 	cpumask_copy(&__cpu_possible_mask, src);
2312 }
2313 
2314 void init_cpu_online(const struct cpumask *src)
2315 {
2316 	cpumask_copy(&__cpu_online_mask, src);
2317 }
2318 
2319 void set_cpu_online(unsigned int cpu, bool online)
2320 {
2321 	/*
2322 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2323 	 * function by the reboot and kexec code which invoke it from
2324 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2325 	 * regular CPU hotplug is properly serialized.
2326 	 *
2327 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2328 	 * does not protect readers which are not serialized against
2329 	 * concurrent hotplug operations.
2330 	 */
2331 	if (online) {
2332 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2333 			atomic_inc(&__num_online_cpus);
2334 	} else {
2335 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2336 			atomic_dec(&__num_online_cpus);
2337 	}
2338 }
2339 
2340 /*
2341  * Activate the first processor.
2342  */
2343 void __init boot_cpu_init(void)
2344 {
2345 	int cpu = smp_processor_id();
2346 
2347 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2348 	set_cpu_online(cpu, true);
2349 	set_cpu_active(cpu, true);
2350 	set_cpu_present(cpu, true);
2351 	set_cpu_possible(cpu, true);
2352 
2353 #ifdef CONFIG_SMP
2354 	__boot_cpu_id = cpu;
2355 #endif
2356 }
2357 
2358 /*
2359  * Must be called _AFTER_ setting up the per_cpu areas
2360  */
2361 void __init boot_cpu_hotplug_init(void)
2362 {
2363 #ifdef CONFIG_SMP
2364 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2365 #endif
2366 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2367 }
2368 
2369 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
2370 
2371 static int __init mitigations_parse_cmdline(char *arg)
2372 {
2373 	if (!strcmp(arg, "off"))
2374 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2375 	else if (!strcmp(arg, "auto"))
2376 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2377 	else if (!strcmp(arg, "auto,nosmt"))
2378 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2379 	else
2380 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2381 			arg);
2382 
2383 	return 0;
2384 }
2385 early_param("mitigations", mitigations_parse_cmdline);
2386