1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/scs.h> 35 #include <linux/percpu-rwsem.h> 36 #include <linux/cpuset.h> 37 #include <linux/random.h> 38 #include <linux/cc_platform.h> 39 40 #include <trace/events/power.h> 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/cpuhp.h> 43 44 #include "smpboot.h" 45 46 /** 47 * struct cpuhp_cpu_state - Per cpu hotplug state storage 48 * @state: The current cpu state 49 * @target: The target state 50 * @fail: Current CPU hotplug callback state 51 * @thread: Pointer to the hotplug thread 52 * @should_run: Thread should execute 53 * @rollback: Perform a rollback 54 * @single: Single callback invocation 55 * @bringup: Single callback bringup or teardown selector 56 * @cpu: CPU number 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @done_up: Signal completion to the issuer of the task for cpu-up 63 * @done_down: Signal completion to the issuer of the task for cpu-down 64 */ 65 struct cpuhp_cpu_state { 66 enum cpuhp_state state; 67 enum cpuhp_state target; 68 enum cpuhp_state fail; 69 #ifdef CONFIG_SMP 70 struct task_struct *thread; 71 bool should_run; 72 bool rollback; 73 bool single; 74 bool bringup; 75 struct hlist_node *node; 76 struct hlist_node *last; 77 enum cpuhp_state cb_state; 78 int result; 79 struct completion done_up; 80 struct completion done_down; 81 #endif 82 }; 83 84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 85 .fail = CPUHP_INVALID, 86 }; 87 88 #ifdef CONFIG_SMP 89 cpumask_t cpus_booted_once_mask; 90 #endif 91 92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 93 static struct lockdep_map cpuhp_state_up_map = 94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 95 static struct lockdep_map cpuhp_state_down_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 97 98 99 static inline void cpuhp_lock_acquire(bool bringup) 100 { 101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 102 } 103 104 static inline void cpuhp_lock_release(bool bringup) 105 { 106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 107 } 108 #else 109 110 static inline void cpuhp_lock_acquire(bool bringup) { } 111 static inline void cpuhp_lock_release(bool bringup) { } 112 113 #endif 114 115 /** 116 * struct cpuhp_step - Hotplug state machine step 117 * @name: Name of the step 118 * @startup: Startup function of the step 119 * @teardown: Teardown function of the step 120 * @cant_stop: Bringup/teardown can't be stopped at this step 121 * @multi_instance: State has multiple instances which get added afterwards 122 */ 123 struct cpuhp_step { 124 const char *name; 125 union { 126 int (*single)(unsigned int cpu); 127 int (*multi)(unsigned int cpu, 128 struct hlist_node *node); 129 } startup; 130 union { 131 int (*single)(unsigned int cpu); 132 int (*multi)(unsigned int cpu, 133 struct hlist_node *node); 134 } teardown; 135 /* private: */ 136 struct hlist_head list; 137 /* public: */ 138 bool cant_stop; 139 bool multi_instance; 140 }; 141 142 static DEFINE_MUTEX(cpuhp_state_mutex); 143 static struct cpuhp_step cpuhp_hp_states[]; 144 145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 146 { 147 return cpuhp_hp_states + state; 148 } 149 150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 151 { 152 return bringup ? !step->startup.single : !step->teardown.single; 153 } 154 155 /** 156 * cpuhp_invoke_callback - Invoke the callbacks for a given state 157 * @cpu: The cpu for which the callback should be invoked 158 * @state: The state to do callbacks for 159 * @bringup: True if the bringup callback should be invoked 160 * @node: For multi-instance, do a single entry callback for install/remove 161 * @lastp: For multi-instance rollback, remember how far we got 162 * 163 * Called from cpu hotplug and from the state register machinery. 164 * 165 * Return: %0 on success or a negative errno code 166 */ 167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 168 bool bringup, struct hlist_node *node, 169 struct hlist_node **lastp) 170 { 171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 172 struct cpuhp_step *step = cpuhp_get_step(state); 173 int (*cbm)(unsigned int cpu, struct hlist_node *node); 174 int (*cb)(unsigned int cpu); 175 int ret, cnt; 176 177 if (st->fail == state) { 178 st->fail = CPUHP_INVALID; 179 return -EAGAIN; 180 } 181 182 if (cpuhp_step_empty(bringup, step)) { 183 WARN_ON_ONCE(1); 184 return 0; 185 } 186 187 if (!step->multi_instance) { 188 WARN_ON_ONCE(lastp && *lastp); 189 cb = bringup ? step->startup.single : step->teardown.single; 190 191 trace_cpuhp_enter(cpu, st->target, state, cb); 192 ret = cb(cpu); 193 trace_cpuhp_exit(cpu, st->state, state, ret); 194 return ret; 195 } 196 cbm = bringup ? step->startup.multi : step->teardown.multi; 197 198 /* Single invocation for instance add/remove */ 199 if (node) { 200 WARN_ON_ONCE(lastp && *lastp); 201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 202 ret = cbm(cpu, node); 203 trace_cpuhp_exit(cpu, st->state, state, ret); 204 return ret; 205 } 206 207 /* State transition. Invoke on all instances */ 208 cnt = 0; 209 hlist_for_each(node, &step->list) { 210 if (lastp && node == *lastp) 211 break; 212 213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 214 ret = cbm(cpu, node); 215 trace_cpuhp_exit(cpu, st->state, state, ret); 216 if (ret) { 217 if (!lastp) 218 goto err; 219 220 *lastp = node; 221 return ret; 222 } 223 cnt++; 224 } 225 if (lastp) 226 *lastp = NULL; 227 return 0; 228 err: 229 /* Rollback the instances if one failed */ 230 cbm = !bringup ? step->startup.multi : step->teardown.multi; 231 if (!cbm) 232 return ret; 233 234 hlist_for_each(node, &step->list) { 235 if (!cnt--) 236 break; 237 238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 239 ret = cbm(cpu, node); 240 trace_cpuhp_exit(cpu, st->state, state, ret); 241 /* 242 * Rollback must not fail, 243 */ 244 WARN_ON_ONCE(ret); 245 } 246 return ret; 247 } 248 249 #ifdef CONFIG_SMP 250 static bool cpuhp_is_ap_state(enum cpuhp_state state) 251 { 252 /* 253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 254 * purposes as that state is handled explicitly in cpu_down. 255 */ 256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 257 } 258 259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 260 { 261 struct completion *done = bringup ? &st->done_up : &st->done_down; 262 wait_for_completion(done); 263 } 264 265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 266 { 267 struct completion *done = bringup ? &st->done_up : &st->done_down; 268 complete(done); 269 } 270 271 /* 272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 273 */ 274 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 275 { 276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 277 } 278 279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 280 static DEFINE_MUTEX(cpu_add_remove_lock); 281 bool cpuhp_tasks_frozen; 282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 283 284 /* 285 * The following two APIs (cpu_maps_update_begin/done) must be used when 286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 287 */ 288 void cpu_maps_update_begin(void) 289 { 290 mutex_lock(&cpu_add_remove_lock); 291 } 292 293 void cpu_maps_update_done(void) 294 { 295 mutex_unlock(&cpu_add_remove_lock); 296 } 297 298 /* 299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 300 * Should always be manipulated under cpu_add_remove_lock 301 */ 302 static int cpu_hotplug_disabled; 303 304 #ifdef CONFIG_HOTPLUG_CPU 305 306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 307 308 void cpus_read_lock(void) 309 { 310 percpu_down_read(&cpu_hotplug_lock); 311 } 312 EXPORT_SYMBOL_GPL(cpus_read_lock); 313 314 int cpus_read_trylock(void) 315 { 316 return percpu_down_read_trylock(&cpu_hotplug_lock); 317 } 318 EXPORT_SYMBOL_GPL(cpus_read_trylock); 319 320 void cpus_read_unlock(void) 321 { 322 percpu_up_read(&cpu_hotplug_lock); 323 } 324 EXPORT_SYMBOL_GPL(cpus_read_unlock); 325 326 void cpus_write_lock(void) 327 { 328 percpu_down_write(&cpu_hotplug_lock); 329 } 330 331 void cpus_write_unlock(void) 332 { 333 percpu_up_write(&cpu_hotplug_lock); 334 } 335 336 void lockdep_assert_cpus_held(void) 337 { 338 /* 339 * We can't have hotplug operations before userspace starts running, 340 * and some init codepaths will knowingly not take the hotplug lock. 341 * This is all valid, so mute lockdep until it makes sense to report 342 * unheld locks. 343 */ 344 if (system_state < SYSTEM_RUNNING) 345 return; 346 347 percpu_rwsem_assert_held(&cpu_hotplug_lock); 348 } 349 350 #ifdef CONFIG_LOCKDEP 351 int lockdep_is_cpus_held(void) 352 { 353 return percpu_rwsem_is_held(&cpu_hotplug_lock); 354 } 355 #endif 356 357 static void lockdep_acquire_cpus_lock(void) 358 { 359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 360 } 361 362 static void lockdep_release_cpus_lock(void) 363 { 364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 365 } 366 367 /* 368 * Wait for currently running CPU hotplug operations to complete (if any) and 369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 371 * hotplug path before performing hotplug operations. So acquiring that lock 372 * guarantees mutual exclusion from any currently running hotplug operations. 373 */ 374 void cpu_hotplug_disable(void) 375 { 376 cpu_maps_update_begin(); 377 cpu_hotplug_disabled++; 378 cpu_maps_update_done(); 379 } 380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 381 382 static void __cpu_hotplug_enable(void) 383 { 384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 385 return; 386 cpu_hotplug_disabled--; 387 } 388 389 void cpu_hotplug_enable(void) 390 { 391 cpu_maps_update_begin(); 392 __cpu_hotplug_enable(); 393 cpu_maps_update_done(); 394 } 395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 396 397 #else 398 399 static void lockdep_acquire_cpus_lock(void) 400 { 401 } 402 403 static void lockdep_release_cpus_lock(void) 404 { 405 } 406 407 #endif /* CONFIG_HOTPLUG_CPU */ 408 409 /* 410 * Architectures that need SMT-specific errata handling during SMT hotplug 411 * should override this. 412 */ 413 void __weak arch_smt_update(void) { } 414 415 #ifdef CONFIG_HOTPLUG_SMT 416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 417 418 void __init cpu_smt_disable(bool force) 419 { 420 if (!cpu_smt_possible()) 421 return; 422 423 if (force) { 424 pr_info("SMT: Force disabled\n"); 425 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 426 } else { 427 pr_info("SMT: disabled\n"); 428 cpu_smt_control = CPU_SMT_DISABLED; 429 } 430 } 431 432 /* 433 * The decision whether SMT is supported can only be done after the full 434 * CPU identification. Called from architecture code. 435 */ 436 void __init cpu_smt_check_topology(void) 437 { 438 if (!topology_smt_supported()) 439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 440 } 441 442 static int __init smt_cmdline_disable(char *str) 443 { 444 cpu_smt_disable(str && !strcmp(str, "force")); 445 return 0; 446 } 447 early_param("nosmt", smt_cmdline_disable); 448 449 static inline bool cpu_smt_allowed(unsigned int cpu) 450 { 451 if (cpu_smt_control == CPU_SMT_ENABLED) 452 return true; 453 454 if (topology_is_primary_thread(cpu)) 455 return true; 456 457 /* 458 * On x86 it's required to boot all logical CPUs at least once so 459 * that the init code can get a chance to set CR4.MCE on each 460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 461 * core will shutdown the machine. 462 */ 463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 464 } 465 466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 467 bool cpu_smt_possible(void) 468 { 469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 471 } 472 EXPORT_SYMBOL_GPL(cpu_smt_possible); 473 #else 474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 475 #endif 476 477 static inline enum cpuhp_state 478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 479 { 480 enum cpuhp_state prev_state = st->state; 481 bool bringup = st->state < target; 482 483 st->rollback = false; 484 st->last = NULL; 485 486 st->target = target; 487 st->single = false; 488 st->bringup = bringup; 489 if (cpu_dying(cpu) != !bringup) 490 set_cpu_dying(cpu, !bringup); 491 492 return prev_state; 493 } 494 495 static inline void 496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 497 enum cpuhp_state prev_state) 498 { 499 bool bringup = !st->bringup; 500 501 st->target = prev_state; 502 503 /* 504 * Already rolling back. No need invert the bringup value or to change 505 * the current state. 506 */ 507 if (st->rollback) 508 return; 509 510 st->rollback = true; 511 512 /* 513 * If we have st->last we need to undo partial multi_instance of this 514 * state first. Otherwise start undo at the previous state. 515 */ 516 if (!st->last) { 517 if (st->bringup) 518 st->state--; 519 else 520 st->state++; 521 } 522 523 st->bringup = bringup; 524 if (cpu_dying(cpu) != !bringup) 525 set_cpu_dying(cpu, !bringup); 526 } 527 528 /* Regular hotplug invocation of the AP hotplug thread */ 529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 530 { 531 if (!st->single && st->state == st->target) 532 return; 533 534 st->result = 0; 535 /* 536 * Make sure the above stores are visible before should_run becomes 537 * true. Paired with the mb() above in cpuhp_thread_fun() 538 */ 539 smp_mb(); 540 st->should_run = true; 541 wake_up_process(st->thread); 542 wait_for_ap_thread(st, st->bringup); 543 } 544 545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 546 enum cpuhp_state target) 547 { 548 enum cpuhp_state prev_state; 549 int ret; 550 551 prev_state = cpuhp_set_state(cpu, st, target); 552 __cpuhp_kick_ap(st); 553 if ((ret = st->result)) { 554 cpuhp_reset_state(cpu, st, prev_state); 555 __cpuhp_kick_ap(st); 556 } 557 558 return ret; 559 } 560 561 static int bringup_wait_for_ap(unsigned int cpu) 562 { 563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 564 565 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 566 wait_for_ap_thread(st, true); 567 if (WARN_ON_ONCE((!cpu_online(cpu)))) 568 return -ECANCELED; 569 570 /* Unpark the hotplug thread of the target cpu */ 571 kthread_unpark(st->thread); 572 573 /* 574 * SMT soft disabling on X86 requires to bring the CPU out of the 575 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 576 * CPU marked itself as booted_once in notify_cpu_starting() so the 577 * cpu_smt_allowed() check will now return false if this is not the 578 * primary sibling. 579 */ 580 if (!cpu_smt_allowed(cpu)) 581 return -ECANCELED; 582 583 if (st->target <= CPUHP_AP_ONLINE_IDLE) 584 return 0; 585 586 return cpuhp_kick_ap(cpu, st, st->target); 587 } 588 589 static int bringup_cpu(unsigned int cpu) 590 { 591 struct task_struct *idle = idle_thread_get(cpu); 592 int ret; 593 594 /* 595 * Reset stale stack state from the last time this CPU was online. 596 */ 597 scs_task_reset(idle); 598 kasan_unpoison_task_stack(idle); 599 600 /* 601 * Some architectures have to walk the irq descriptors to 602 * setup the vector space for the cpu which comes online. 603 * Prevent irq alloc/free across the bringup. 604 */ 605 irq_lock_sparse(); 606 607 /* Arch-specific enabling code. */ 608 ret = __cpu_up(cpu, idle); 609 irq_unlock_sparse(); 610 if (ret) 611 return ret; 612 return bringup_wait_for_ap(cpu); 613 } 614 615 static int finish_cpu(unsigned int cpu) 616 { 617 struct task_struct *idle = idle_thread_get(cpu); 618 struct mm_struct *mm = idle->active_mm; 619 620 /* 621 * idle_task_exit() will have switched to &init_mm, now 622 * clean up any remaining active_mm state. 623 */ 624 if (mm != &init_mm) 625 idle->active_mm = &init_mm; 626 mmdrop_lazy_tlb(mm); 627 return 0; 628 } 629 630 /* 631 * Hotplug state machine related functions 632 */ 633 634 /* 635 * Get the next state to run. Empty ones will be skipped. Returns true if a 636 * state must be run. 637 * 638 * st->state will be modified ahead of time, to match state_to_run, as if it 639 * has already ran. 640 */ 641 static bool cpuhp_next_state(bool bringup, 642 enum cpuhp_state *state_to_run, 643 struct cpuhp_cpu_state *st, 644 enum cpuhp_state target) 645 { 646 do { 647 if (bringup) { 648 if (st->state >= target) 649 return false; 650 651 *state_to_run = ++st->state; 652 } else { 653 if (st->state <= target) 654 return false; 655 656 *state_to_run = st->state--; 657 } 658 659 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 660 break; 661 } while (true); 662 663 return true; 664 } 665 666 static int __cpuhp_invoke_callback_range(bool bringup, 667 unsigned int cpu, 668 struct cpuhp_cpu_state *st, 669 enum cpuhp_state target, 670 bool nofail) 671 { 672 enum cpuhp_state state; 673 int ret = 0; 674 675 while (cpuhp_next_state(bringup, &state, st, target)) { 676 int err; 677 678 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 679 if (!err) 680 continue; 681 682 if (nofail) { 683 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 684 cpu, bringup ? "UP" : "DOWN", 685 cpuhp_get_step(st->state)->name, 686 st->state, err); 687 ret = -1; 688 } else { 689 ret = err; 690 break; 691 } 692 } 693 694 return ret; 695 } 696 697 static inline int cpuhp_invoke_callback_range(bool bringup, 698 unsigned int cpu, 699 struct cpuhp_cpu_state *st, 700 enum cpuhp_state target) 701 { 702 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 703 } 704 705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 706 unsigned int cpu, 707 struct cpuhp_cpu_state *st, 708 enum cpuhp_state target) 709 { 710 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 711 } 712 713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 714 { 715 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 716 return true; 717 /* 718 * When CPU hotplug is disabled, then taking the CPU down is not 719 * possible because takedown_cpu() and the architecture and 720 * subsystem specific mechanisms are not available. So the CPU 721 * which would be completely unplugged again needs to stay around 722 * in the current state. 723 */ 724 return st->state <= CPUHP_BRINGUP_CPU; 725 } 726 727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 728 enum cpuhp_state target) 729 { 730 enum cpuhp_state prev_state = st->state; 731 int ret = 0; 732 733 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 734 if (ret) { 735 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 736 ret, cpu, cpuhp_get_step(st->state)->name, 737 st->state); 738 739 cpuhp_reset_state(cpu, st, prev_state); 740 if (can_rollback_cpu(st)) 741 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 742 prev_state)); 743 } 744 return ret; 745 } 746 747 /* 748 * The cpu hotplug threads manage the bringup and teardown of the cpus 749 */ 750 static int cpuhp_should_run(unsigned int cpu) 751 { 752 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 753 754 return st->should_run; 755 } 756 757 /* 758 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 759 * callbacks when a state gets [un]installed at runtime. 760 * 761 * Each invocation of this function by the smpboot thread does a single AP 762 * state callback. 763 * 764 * It has 3 modes of operation: 765 * - single: runs st->cb_state 766 * - up: runs ++st->state, while st->state < st->target 767 * - down: runs st->state--, while st->state > st->target 768 * 769 * When complete or on error, should_run is cleared and the completion is fired. 770 */ 771 static void cpuhp_thread_fun(unsigned int cpu) 772 { 773 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 774 bool bringup = st->bringup; 775 enum cpuhp_state state; 776 777 if (WARN_ON_ONCE(!st->should_run)) 778 return; 779 780 /* 781 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 782 * that if we see ->should_run we also see the rest of the state. 783 */ 784 smp_mb(); 785 786 /* 787 * The BP holds the hotplug lock, but we're now running on the AP, 788 * ensure that anybody asserting the lock is held, will actually find 789 * it so. 790 */ 791 lockdep_acquire_cpus_lock(); 792 cpuhp_lock_acquire(bringup); 793 794 if (st->single) { 795 state = st->cb_state; 796 st->should_run = false; 797 } else { 798 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 799 if (!st->should_run) 800 goto end; 801 } 802 803 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 804 805 if (cpuhp_is_atomic_state(state)) { 806 local_irq_disable(); 807 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 808 local_irq_enable(); 809 810 /* 811 * STARTING/DYING must not fail! 812 */ 813 WARN_ON_ONCE(st->result); 814 } else { 815 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 816 } 817 818 if (st->result) { 819 /* 820 * If we fail on a rollback, we're up a creek without no 821 * paddle, no way forward, no way back. We loose, thanks for 822 * playing. 823 */ 824 WARN_ON_ONCE(st->rollback); 825 st->should_run = false; 826 } 827 828 end: 829 cpuhp_lock_release(bringup); 830 lockdep_release_cpus_lock(); 831 832 if (!st->should_run) 833 complete_ap_thread(st, bringup); 834 } 835 836 /* Invoke a single callback on a remote cpu */ 837 static int 838 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 839 struct hlist_node *node) 840 { 841 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 842 int ret; 843 844 if (!cpu_online(cpu)) 845 return 0; 846 847 cpuhp_lock_acquire(false); 848 cpuhp_lock_release(false); 849 850 cpuhp_lock_acquire(true); 851 cpuhp_lock_release(true); 852 853 /* 854 * If we are up and running, use the hotplug thread. For early calls 855 * we invoke the thread function directly. 856 */ 857 if (!st->thread) 858 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 859 860 st->rollback = false; 861 st->last = NULL; 862 863 st->node = node; 864 st->bringup = bringup; 865 st->cb_state = state; 866 st->single = true; 867 868 __cpuhp_kick_ap(st); 869 870 /* 871 * If we failed and did a partial, do a rollback. 872 */ 873 if ((ret = st->result) && st->last) { 874 st->rollback = true; 875 st->bringup = !bringup; 876 877 __cpuhp_kick_ap(st); 878 } 879 880 /* 881 * Clean up the leftovers so the next hotplug operation wont use stale 882 * data. 883 */ 884 st->node = st->last = NULL; 885 return ret; 886 } 887 888 static int cpuhp_kick_ap_work(unsigned int cpu) 889 { 890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 891 enum cpuhp_state prev_state = st->state; 892 int ret; 893 894 cpuhp_lock_acquire(false); 895 cpuhp_lock_release(false); 896 897 cpuhp_lock_acquire(true); 898 cpuhp_lock_release(true); 899 900 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 901 ret = cpuhp_kick_ap(cpu, st, st->target); 902 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 903 904 return ret; 905 } 906 907 static struct smp_hotplug_thread cpuhp_threads = { 908 .store = &cpuhp_state.thread, 909 .thread_should_run = cpuhp_should_run, 910 .thread_fn = cpuhp_thread_fun, 911 .thread_comm = "cpuhp/%u", 912 .selfparking = true, 913 }; 914 915 static __init void cpuhp_init_state(void) 916 { 917 struct cpuhp_cpu_state *st; 918 int cpu; 919 920 for_each_possible_cpu(cpu) { 921 st = per_cpu_ptr(&cpuhp_state, cpu); 922 init_completion(&st->done_up); 923 init_completion(&st->done_down); 924 } 925 } 926 927 void __init cpuhp_threads_init(void) 928 { 929 cpuhp_init_state(); 930 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 931 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 932 } 933 934 /* 935 * 936 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 937 * protected region. 938 * 939 * The operation is still serialized against concurrent CPU hotplug via 940 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 941 * serialized against other hotplug related activity like adding or 942 * removing of state callbacks and state instances, which invoke either the 943 * startup or the teardown callback of the affected state. 944 * 945 * This is required for subsystems which are unfixable vs. CPU hotplug and 946 * evade lock inversion problems by scheduling work which has to be 947 * completed _before_ cpu_up()/_cpu_down() returns. 948 * 949 * Don't even think about adding anything to this for any new code or even 950 * drivers. It's only purpose is to keep existing lock order trainwrecks 951 * working. 952 * 953 * For cpu_down() there might be valid reasons to finish cleanups which are 954 * not required to be done under cpu_hotplug_lock, but that's a different 955 * story and would be not invoked via this. 956 */ 957 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 958 { 959 /* 960 * cpusets delegate hotplug operations to a worker to "solve" the 961 * lock order problems. Wait for the worker, but only if tasks are 962 * _not_ frozen (suspend, hibernate) as that would wait forever. 963 * 964 * The wait is required because otherwise the hotplug operation 965 * returns with inconsistent state, which could even be observed in 966 * user space when a new CPU is brought up. The CPU plug uevent 967 * would be delivered and user space reacting on it would fail to 968 * move tasks to the newly plugged CPU up to the point where the 969 * work has finished because up to that point the newly plugged CPU 970 * is not assignable in cpusets/cgroups. On unplug that's not 971 * necessarily a visible issue, but it is still inconsistent state, 972 * which is the real problem which needs to be "fixed". This can't 973 * prevent the transient state between scheduling the work and 974 * returning from waiting for it. 975 */ 976 if (!tasks_frozen) 977 cpuset_wait_for_hotplug(); 978 } 979 980 #ifdef CONFIG_HOTPLUG_CPU 981 #ifndef arch_clear_mm_cpumask_cpu 982 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 983 #endif 984 985 /** 986 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 987 * @cpu: a CPU id 988 * 989 * This function walks all processes, finds a valid mm struct for each one and 990 * then clears a corresponding bit in mm's cpumask. While this all sounds 991 * trivial, there are various non-obvious corner cases, which this function 992 * tries to solve in a safe manner. 993 * 994 * Also note that the function uses a somewhat relaxed locking scheme, so it may 995 * be called only for an already offlined CPU. 996 */ 997 void clear_tasks_mm_cpumask(int cpu) 998 { 999 struct task_struct *p; 1000 1001 /* 1002 * This function is called after the cpu is taken down and marked 1003 * offline, so its not like new tasks will ever get this cpu set in 1004 * their mm mask. -- Peter Zijlstra 1005 * Thus, we may use rcu_read_lock() here, instead of grabbing 1006 * full-fledged tasklist_lock. 1007 */ 1008 WARN_ON(cpu_online(cpu)); 1009 rcu_read_lock(); 1010 for_each_process(p) { 1011 struct task_struct *t; 1012 1013 /* 1014 * Main thread might exit, but other threads may still have 1015 * a valid mm. Find one. 1016 */ 1017 t = find_lock_task_mm(p); 1018 if (!t) 1019 continue; 1020 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1021 task_unlock(t); 1022 } 1023 rcu_read_unlock(); 1024 } 1025 1026 /* Take this CPU down. */ 1027 static int take_cpu_down(void *_param) 1028 { 1029 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1030 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1031 int err, cpu = smp_processor_id(); 1032 1033 /* Ensure this CPU doesn't handle any more interrupts. */ 1034 err = __cpu_disable(); 1035 if (err < 0) 1036 return err; 1037 1038 /* 1039 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1040 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1041 */ 1042 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1043 1044 /* 1045 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1046 */ 1047 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1048 1049 /* Give up timekeeping duties */ 1050 tick_handover_do_timer(); 1051 /* Remove CPU from timer broadcasting */ 1052 tick_offline_cpu(cpu); 1053 /* Park the stopper thread */ 1054 stop_machine_park(cpu); 1055 return 0; 1056 } 1057 1058 static int takedown_cpu(unsigned int cpu) 1059 { 1060 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1061 int err; 1062 1063 /* Park the smpboot threads */ 1064 kthread_park(st->thread); 1065 1066 /* 1067 * Prevent irq alloc/free while the dying cpu reorganizes the 1068 * interrupt affinities. 1069 */ 1070 irq_lock_sparse(); 1071 1072 /* 1073 * So now all preempt/rcu users must observe !cpu_active(). 1074 */ 1075 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1076 if (err) { 1077 /* CPU refused to die */ 1078 irq_unlock_sparse(); 1079 /* Unpark the hotplug thread so we can rollback there */ 1080 kthread_unpark(st->thread); 1081 return err; 1082 } 1083 BUG_ON(cpu_online(cpu)); 1084 1085 /* 1086 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1087 * all runnable tasks from the CPU, there's only the idle task left now 1088 * that the migration thread is done doing the stop_machine thing. 1089 * 1090 * Wait for the stop thread to go away. 1091 */ 1092 wait_for_ap_thread(st, false); 1093 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1094 1095 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1096 irq_unlock_sparse(); 1097 1098 hotplug_cpu__broadcast_tick_pull(cpu); 1099 /* This actually kills the CPU. */ 1100 __cpu_die(cpu); 1101 1102 tick_cleanup_dead_cpu(cpu); 1103 rcutree_migrate_callbacks(cpu); 1104 return 0; 1105 } 1106 1107 static void cpuhp_complete_idle_dead(void *arg) 1108 { 1109 struct cpuhp_cpu_state *st = arg; 1110 1111 complete_ap_thread(st, false); 1112 } 1113 1114 void cpuhp_report_idle_dead(void) 1115 { 1116 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1117 1118 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1119 rcu_report_dead(smp_processor_id()); 1120 st->state = CPUHP_AP_IDLE_DEAD; 1121 /* 1122 * We cannot call complete after rcu_report_dead() so we delegate it 1123 * to an online cpu. 1124 */ 1125 smp_call_function_single(cpumask_first(cpu_online_mask), 1126 cpuhp_complete_idle_dead, st, 0); 1127 } 1128 1129 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1130 enum cpuhp_state target) 1131 { 1132 enum cpuhp_state prev_state = st->state; 1133 int ret = 0; 1134 1135 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1136 if (ret) { 1137 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1138 ret, cpu, cpuhp_get_step(st->state)->name, 1139 st->state); 1140 1141 cpuhp_reset_state(cpu, st, prev_state); 1142 1143 if (st->state < prev_state) 1144 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1145 prev_state)); 1146 } 1147 1148 return ret; 1149 } 1150 1151 /* Requires cpu_add_remove_lock to be held */ 1152 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1153 enum cpuhp_state target) 1154 { 1155 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1156 int prev_state, ret = 0; 1157 1158 if (num_online_cpus() == 1) 1159 return -EBUSY; 1160 1161 if (!cpu_present(cpu)) 1162 return -EINVAL; 1163 1164 cpus_write_lock(); 1165 1166 cpuhp_tasks_frozen = tasks_frozen; 1167 1168 prev_state = cpuhp_set_state(cpu, st, target); 1169 /* 1170 * If the current CPU state is in the range of the AP hotplug thread, 1171 * then we need to kick the thread. 1172 */ 1173 if (st->state > CPUHP_TEARDOWN_CPU) { 1174 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1175 ret = cpuhp_kick_ap_work(cpu); 1176 /* 1177 * The AP side has done the error rollback already. Just 1178 * return the error code.. 1179 */ 1180 if (ret) 1181 goto out; 1182 1183 /* 1184 * We might have stopped still in the range of the AP hotplug 1185 * thread. Nothing to do anymore. 1186 */ 1187 if (st->state > CPUHP_TEARDOWN_CPU) 1188 goto out; 1189 1190 st->target = target; 1191 } 1192 /* 1193 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1194 * to do the further cleanups. 1195 */ 1196 ret = cpuhp_down_callbacks(cpu, st, target); 1197 if (ret && st->state < prev_state) { 1198 if (st->state == CPUHP_TEARDOWN_CPU) { 1199 cpuhp_reset_state(cpu, st, prev_state); 1200 __cpuhp_kick_ap(st); 1201 } else { 1202 WARN(1, "DEAD callback error for CPU%d", cpu); 1203 } 1204 } 1205 1206 out: 1207 cpus_write_unlock(); 1208 /* 1209 * Do post unplug cleanup. This is still protected against 1210 * concurrent CPU hotplug via cpu_add_remove_lock. 1211 */ 1212 lockup_detector_cleanup(); 1213 arch_smt_update(); 1214 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1215 return ret; 1216 } 1217 1218 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1219 { 1220 /* 1221 * If the platform does not support hotplug, report it explicitly to 1222 * differentiate it from a transient offlining failure. 1223 */ 1224 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1225 return -EOPNOTSUPP; 1226 if (cpu_hotplug_disabled) 1227 return -EBUSY; 1228 return _cpu_down(cpu, 0, target); 1229 } 1230 1231 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1232 { 1233 int err; 1234 1235 cpu_maps_update_begin(); 1236 err = cpu_down_maps_locked(cpu, target); 1237 cpu_maps_update_done(); 1238 return err; 1239 } 1240 1241 /** 1242 * cpu_device_down - Bring down a cpu device 1243 * @dev: Pointer to the cpu device to offline 1244 * 1245 * This function is meant to be used by device core cpu subsystem only. 1246 * 1247 * Other subsystems should use remove_cpu() instead. 1248 * 1249 * Return: %0 on success or a negative errno code 1250 */ 1251 int cpu_device_down(struct device *dev) 1252 { 1253 return cpu_down(dev->id, CPUHP_OFFLINE); 1254 } 1255 1256 int remove_cpu(unsigned int cpu) 1257 { 1258 int ret; 1259 1260 lock_device_hotplug(); 1261 ret = device_offline(get_cpu_device(cpu)); 1262 unlock_device_hotplug(); 1263 1264 return ret; 1265 } 1266 EXPORT_SYMBOL_GPL(remove_cpu); 1267 1268 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1269 { 1270 unsigned int cpu; 1271 int error; 1272 1273 cpu_maps_update_begin(); 1274 1275 /* 1276 * Make certain the cpu I'm about to reboot on is online. 1277 * 1278 * This is inline to what migrate_to_reboot_cpu() already do. 1279 */ 1280 if (!cpu_online(primary_cpu)) 1281 primary_cpu = cpumask_first(cpu_online_mask); 1282 1283 for_each_online_cpu(cpu) { 1284 if (cpu == primary_cpu) 1285 continue; 1286 1287 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1288 if (error) { 1289 pr_err("Failed to offline CPU%d - error=%d", 1290 cpu, error); 1291 break; 1292 } 1293 } 1294 1295 /* 1296 * Ensure all but the reboot CPU are offline. 1297 */ 1298 BUG_ON(num_online_cpus() > 1); 1299 1300 /* 1301 * Make sure the CPUs won't be enabled by someone else after this 1302 * point. Kexec will reboot to a new kernel shortly resetting 1303 * everything along the way. 1304 */ 1305 cpu_hotplug_disabled++; 1306 1307 cpu_maps_update_done(); 1308 } 1309 1310 #else 1311 #define takedown_cpu NULL 1312 #endif /*CONFIG_HOTPLUG_CPU*/ 1313 1314 /** 1315 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1316 * @cpu: cpu that just started 1317 * 1318 * It must be called by the arch code on the new cpu, before the new cpu 1319 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1320 */ 1321 void notify_cpu_starting(unsigned int cpu) 1322 { 1323 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1324 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1325 1326 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1327 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1328 1329 /* 1330 * STARTING must not fail! 1331 */ 1332 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1333 } 1334 1335 /* 1336 * Called from the idle task. Wake up the controlling task which brings the 1337 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1338 * online bringup to the hotplug thread. 1339 */ 1340 void cpuhp_online_idle(enum cpuhp_state state) 1341 { 1342 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1343 1344 /* Happens for the boot cpu */ 1345 if (state != CPUHP_AP_ONLINE_IDLE) 1346 return; 1347 1348 /* 1349 * Unpart the stopper thread before we start the idle loop (and start 1350 * scheduling); this ensures the stopper task is always available. 1351 */ 1352 stop_machine_unpark(smp_processor_id()); 1353 1354 st->state = CPUHP_AP_ONLINE_IDLE; 1355 complete_ap_thread(st, true); 1356 } 1357 1358 /* Requires cpu_add_remove_lock to be held */ 1359 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1360 { 1361 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1362 struct task_struct *idle; 1363 int ret = 0; 1364 1365 cpus_write_lock(); 1366 1367 if (!cpu_present(cpu)) { 1368 ret = -EINVAL; 1369 goto out; 1370 } 1371 1372 /* 1373 * The caller of cpu_up() might have raced with another 1374 * caller. Nothing to do. 1375 */ 1376 if (st->state >= target) 1377 goto out; 1378 1379 if (st->state == CPUHP_OFFLINE) { 1380 /* Let it fail before we try to bring the cpu up */ 1381 idle = idle_thread_get(cpu); 1382 if (IS_ERR(idle)) { 1383 ret = PTR_ERR(idle); 1384 goto out; 1385 } 1386 } 1387 1388 cpuhp_tasks_frozen = tasks_frozen; 1389 1390 cpuhp_set_state(cpu, st, target); 1391 /* 1392 * If the current CPU state is in the range of the AP hotplug thread, 1393 * then we need to kick the thread once more. 1394 */ 1395 if (st->state > CPUHP_BRINGUP_CPU) { 1396 ret = cpuhp_kick_ap_work(cpu); 1397 /* 1398 * The AP side has done the error rollback already. Just 1399 * return the error code.. 1400 */ 1401 if (ret) 1402 goto out; 1403 } 1404 1405 /* 1406 * Try to reach the target state. We max out on the BP at 1407 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1408 * responsible for bringing it up to the target state. 1409 */ 1410 target = min((int)target, CPUHP_BRINGUP_CPU); 1411 ret = cpuhp_up_callbacks(cpu, st, target); 1412 out: 1413 cpus_write_unlock(); 1414 arch_smt_update(); 1415 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1416 return ret; 1417 } 1418 1419 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1420 { 1421 int err = 0; 1422 1423 if (!cpu_possible(cpu)) { 1424 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1425 cpu); 1426 #if defined(CONFIG_IA64) 1427 pr_err("please check additional_cpus= boot parameter\n"); 1428 #endif 1429 return -EINVAL; 1430 } 1431 1432 err = try_online_node(cpu_to_node(cpu)); 1433 if (err) 1434 return err; 1435 1436 cpu_maps_update_begin(); 1437 1438 if (cpu_hotplug_disabled) { 1439 err = -EBUSY; 1440 goto out; 1441 } 1442 if (!cpu_smt_allowed(cpu)) { 1443 err = -EPERM; 1444 goto out; 1445 } 1446 1447 err = _cpu_up(cpu, 0, target); 1448 out: 1449 cpu_maps_update_done(); 1450 return err; 1451 } 1452 1453 /** 1454 * cpu_device_up - Bring up a cpu device 1455 * @dev: Pointer to the cpu device to online 1456 * 1457 * This function is meant to be used by device core cpu subsystem only. 1458 * 1459 * Other subsystems should use add_cpu() instead. 1460 * 1461 * Return: %0 on success or a negative errno code 1462 */ 1463 int cpu_device_up(struct device *dev) 1464 { 1465 return cpu_up(dev->id, CPUHP_ONLINE); 1466 } 1467 1468 int add_cpu(unsigned int cpu) 1469 { 1470 int ret; 1471 1472 lock_device_hotplug(); 1473 ret = device_online(get_cpu_device(cpu)); 1474 unlock_device_hotplug(); 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL_GPL(add_cpu); 1479 1480 /** 1481 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1482 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1483 * 1484 * On some architectures like arm64, we can hibernate on any CPU, but on 1485 * wake up the CPU we hibernated on might be offline as a side effect of 1486 * using maxcpus= for example. 1487 * 1488 * Return: %0 on success or a negative errno code 1489 */ 1490 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1491 { 1492 int ret; 1493 1494 if (!cpu_online(sleep_cpu)) { 1495 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1496 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1497 if (ret) { 1498 pr_err("Failed to bring hibernate-CPU up!\n"); 1499 return ret; 1500 } 1501 } 1502 return 0; 1503 } 1504 1505 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1506 { 1507 unsigned int cpu; 1508 1509 for_each_present_cpu(cpu) { 1510 if (num_online_cpus() >= setup_max_cpus) 1511 break; 1512 if (!cpu_online(cpu)) 1513 cpu_up(cpu, CPUHP_ONLINE); 1514 } 1515 } 1516 1517 #ifdef CONFIG_PM_SLEEP_SMP 1518 static cpumask_var_t frozen_cpus; 1519 1520 int freeze_secondary_cpus(int primary) 1521 { 1522 int cpu, error = 0; 1523 1524 cpu_maps_update_begin(); 1525 if (primary == -1) { 1526 primary = cpumask_first(cpu_online_mask); 1527 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1528 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1529 } else { 1530 if (!cpu_online(primary)) 1531 primary = cpumask_first(cpu_online_mask); 1532 } 1533 1534 /* 1535 * We take down all of the non-boot CPUs in one shot to avoid races 1536 * with the userspace trying to use the CPU hotplug at the same time 1537 */ 1538 cpumask_clear(frozen_cpus); 1539 1540 pr_info("Disabling non-boot CPUs ...\n"); 1541 for_each_online_cpu(cpu) { 1542 if (cpu == primary) 1543 continue; 1544 1545 if (pm_wakeup_pending()) { 1546 pr_info("Wakeup pending. Abort CPU freeze\n"); 1547 error = -EBUSY; 1548 break; 1549 } 1550 1551 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1552 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1553 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1554 if (!error) 1555 cpumask_set_cpu(cpu, frozen_cpus); 1556 else { 1557 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1558 break; 1559 } 1560 } 1561 1562 if (!error) 1563 BUG_ON(num_online_cpus() > 1); 1564 else 1565 pr_err("Non-boot CPUs are not disabled\n"); 1566 1567 /* 1568 * Make sure the CPUs won't be enabled by someone else. We need to do 1569 * this even in case of failure as all freeze_secondary_cpus() users are 1570 * supposed to do thaw_secondary_cpus() on the failure path. 1571 */ 1572 cpu_hotplug_disabled++; 1573 1574 cpu_maps_update_done(); 1575 return error; 1576 } 1577 1578 void __weak arch_thaw_secondary_cpus_begin(void) 1579 { 1580 } 1581 1582 void __weak arch_thaw_secondary_cpus_end(void) 1583 { 1584 } 1585 1586 void thaw_secondary_cpus(void) 1587 { 1588 int cpu, error; 1589 1590 /* Allow everyone to use the CPU hotplug again */ 1591 cpu_maps_update_begin(); 1592 __cpu_hotplug_enable(); 1593 if (cpumask_empty(frozen_cpus)) 1594 goto out; 1595 1596 pr_info("Enabling non-boot CPUs ...\n"); 1597 1598 arch_thaw_secondary_cpus_begin(); 1599 1600 for_each_cpu(cpu, frozen_cpus) { 1601 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1602 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1603 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1604 if (!error) { 1605 pr_info("CPU%d is up\n", cpu); 1606 continue; 1607 } 1608 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1609 } 1610 1611 arch_thaw_secondary_cpus_end(); 1612 1613 cpumask_clear(frozen_cpus); 1614 out: 1615 cpu_maps_update_done(); 1616 } 1617 1618 static int __init alloc_frozen_cpus(void) 1619 { 1620 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1621 return -ENOMEM; 1622 return 0; 1623 } 1624 core_initcall(alloc_frozen_cpus); 1625 1626 /* 1627 * When callbacks for CPU hotplug notifications are being executed, we must 1628 * ensure that the state of the system with respect to the tasks being frozen 1629 * or not, as reported by the notification, remains unchanged *throughout the 1630 * duration* of the execution of the callbacks. 1631 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1632 * 1633 * This synchronization is implemented by mutually excluding regular CPU 1634 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1635 * Hibernate notifications. 1636 */ 1637 static int 1638 cpu_hotplug_pm_callback(struct notifier_block *nb, 1639 unsigned long action, void *ptr) 1640 { 1641 switch (action) { 1642 1643 case PM_SUSPEND_PREPARE: 1644 case PM_HIBERNATION_PREPARE: 1645 cpu_hotplug_disable(); 1646 break; 1647 1648 case PM_POST_SUSPEND: 1649 case PM_POST_HIBERNATION: 1650 cpu_hotplug_enable(); 1651 break; 1652 1653 default: 1654 return NOTIFY_DONE; 1655 } 1656 1657 return NOTIFY_OK; 1658 } 1659 1660 1661 static int __init cpu_hotplug_pm_sync_init(void) 1662 { 1663 /* 1664 * cpu_hotplug_pm_callback has higher priority than x86 1665 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1666 * to disable cpu hotplug to avoid cpu hotplug race. 1667 */ 1668 pm_notifier(cpu_hotplug_pm_callback, 0); 1669 return 0; 1670 } 1671 core_initcall(cpu_hotplug_pm_sync_init); 1672 1673 #endif /* CONFIG_PM_SLEEP_SMP */ 1674 1675 int __boot_cpu_id; 1676 1677 #endif /* CONFIG_SMP */ 1678 1679 /* Boot processor state steps */ 1680 static struct cpuhp_step cpuhp_hp_states[] = { 1681 [CPUHP_OFFLINE] = { 1682 .name = "offline", 1683 .startup.single = NULL, 1684 .teardown.single = NULL, 1685 }, 1686 #ifdef CONFIG_SMP 1687 [CPUHP_CREATE_THREADS]= { 1688 .name = "threads:prepare", 1689 .startup.single = smpboot_create_threads, 1690 .teardown.single = NULL, 1691 .cant_stop = true, 1692 }, 1693 [CPUHP_PERF_PREPARE] = { 1694 .name = "perf:prepare", 1695 .startup.single = perf_event_init_cpu, 1696 .teardown.single = perf_event_exit_cpu, 1697 }, 1698 [CPUHP_RANDOM_PREPARE] = { 1699 .name = "random:prepare", 1700 .startup.single = random_prepare_cpu, 1701 .teardown.single = NULL, 1702 }, 1703 [CPUHP_WORKQUEUE_PREP] = { 1704 .name = "workqueue:prepare", 1705 .startup.single = workqueue_prepare_cpu, 1706 .teardown.single = NULL, 1707 }, 1708 [CPUHP_HRTIMERS_PREPARE] = { 1709 .name = "hrtimers:prepare", 1710 .startup.single = hrtimers_prepare_cpu, 1711 .teardown.single = hrtimers_dead_cpu, 1712 }, 1713 [CPUHP_SMPCFD_PREPARE] = { 1714 .name = "smpcfd:prepare", 1715 .startup.single = smpcfd_prepare_cpu, 1716 .teardown.single = smpcfd_dead_cpu, 1717 }, 1718 [CPUHP_RELAY_PREPARE] = { 1719 .name = "relay:prepare", 1720 .startup.single = relay_prepare_cpu, 1721 .teardown.single = NULL, 1722 }, 1723 [CPUHP_SLAB_PREPARE] = { 1724 .name = "slab:prepare", 1725 .startup.single = slab_prepare_cpu, 1726 .teardown.single = slab_dead_cpu, 1727 }, 1728 [CPUHP_RCUTREE_PREP] = { 1729 .name = "RCU/tree:prepare", 1730 .startup.single = rcutree_prepare_cpu, 1731 .teardown.single = rcutree_dead_cpu, 1732 }, 1733 /* 1734 * On the tear-down path, timers_dead_cpu() must be invoked 1735 * before blk_mq_queue_reinit_notify() from notify_dead(), 1736 * otherwise a RCU stall occurs. 1737 */ 1738 [CPUHP_TIMERS_PREPARE] = { 1739 .name = "timers:prepare", 1740 .startup.single = timers_prepare_cpu, 1741 .teardown.single = timers_dead_cpu, 1742 }, 1743 /* Kicks the plugged cpu into life */ 1744 [CPUHP_BRINGUP_CPU] = { 1745 .name = "cpu:bringup", 1746 .startup.single = bringup_cpu, 1747 .teardown.single = finish_cpu, 1748 .cant_stop = true, 1749 }, 1750 /* Final state before CPU kills itself */ 1751 [CPUHP_AP_IDLE_DEAD] = { 1752 .name = "idle:dead", 1753 }, 1754 /* 1755 * Last state before CPU enters the idle loop to die. Transient state 1756 * for synchronization. 1757 */ 1758 [CPUHP_AP_OFFLINE] = { 1759 .name = "ap:offline", 1760 .cant_stop = true, 1761 }, 1762 /* First state is scheduler control. Interrupts are disabled */ 1763 [CPUHP_AP_SCHED_STARTING] = { 1764 .name = "sched:starting", 1765 .startup.single = sched_cpu_starting, 1766 .teardown.single = sched_cpu_dying, 1767 }, 1768 [CPUHP_AP_RCUTREE_DYING] = { 1769 .name = "RCU/tree:dying", 1770 .startup.single = NULL, 1771 .teardown.single = rcutree_dying_cpu, 1772 }, 1773 [CPUHP_AP_SMPCFD_DYING] = { 1774 .name = "smpcfd:dying", 1775 .startup.single = NULL, 1776 .teardown.single = smpcfd_dying_cpu, 1777 }, 1778 /* Entry state on starting. Interrupts enabled from here on. Transient 1779 * state for synchronsization */ 1780 [CPUHP_AP_ONLINE] = { 1781 .name = "ap:online", 1782 }, 1783 /* 1784 * Handled on control processor until the plugged processor manages 1785 * this itself. 1786 */ 1787 [CPUHP_TEARDOWN_CPU] = { 1788 .name = "cpu:teardown", 1789 .startup.single = NULL, 1790 .teardown.single = takedown_cpu, 1791 .cant_stop = true, 1792 }, 1793 1794 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1795 .name = "sched:waitempty", 1796 .startup.single = NULL, 1797 .teardown.single = sched_cpu_wait_empty, 1798 }, 1799 1800 /* Handle smpboot threads park/unpark */ 1801 [CPUHP_AP_SMPBOOT_THREADS] = { 1802 .name = "smpboot/threads:online", 1803 .startup.single = smpboot_unpark_threads, 1804 .teardown.single = smpboot_park_threads, 1805 }, 1806 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1807 .name = "irq/affinity:online", 1808 .startup.single = irq_affinity_online_cpu, 1809 .teardown.single = NULL, 1810 }, 1811 [CPUHP_AP_PERF_ONLINE] = { 1812 .name = "perf:online", 1813 .startup.single = perf_event_init_cpu, 1814 .teardown.single = perf_event_exit_cpu, 1815 }, 1816 [CPUHP_AP_WATCHDOG_ONLINE] = { 1817 .name = "lockup_detector:online", 1818 .startup.single = lockup_detector_online_cpu, 1819 .teardown.single = lockup_detector_offline_cpu, 1820 }, 1821 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1822 .name = "workqueue:online", 1823 .startup.single = workqueue_online_cpu, 1824 .teardown.single = workqueue_offline_cpu, 1825 }, 1826 [CPUHP_AP_RANDOM_ONLINE] = { 1827 .name = "random:online", 1828 .startup.single = random_online_cpu, 1829 .teardown.single = NULL, 1830 }, 1831 [CPUHP_AP_RCUTREE_ONLINE] = { 1832 .name = "RCU/tree:online", 1833 .startup.single = rcutree_online_cpu, 1834 .teardown.single = rcutree_offline_cpu, 1835 }, 1836 #endif 1837 /* 1838 * The dynamically registered state space is here 1839 */ 1840 1841 #ifdef CONFIG_SMP 1842 /* Last state is scheduler control setting the cpu active */ 1843 [CPUHP_AP_ACTIVE] = { 1844 .name = "sched:active", 1845 .startup.single = sched_cpu_activate, 1846 .teardown.single = sched_cpu_deactivate, 1847 }, 1848 #endif 1849 1850 /* CPU is fully up and running. */ 1851 [CPUHP_ONLINE] = { 1852 .name = "online", 1853 .startup.single = NULL, 1854 .teardown.single = NULL, 1855 }, 1856 }; 1857 1858 /* Sanity check for callbacks */ 1859 static int cpuhp_cb_check(enum cpuhp_state state) 1860 { 1861 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1862 return -EINVAL; 1863 return 0; 1864 } 1865 1866 /* 1867 * Returns a free for dynamic slot assignment of the Online state. The states 1868 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1869 * by having no name assigned. 1870 */ 1871 static int cpuhp_reserve_state(enum cpuhp_state state) 1872 { 1873 enum cpuhp_state i, end; 1874 struct cpuhp_step *step; 1875 1876 switch (state) { 1877 case CPUHP_AP_ONLINE_DYN: 1878 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1879 end = CPUHP_AP_ONLINE_DYN_END; 1880 break; 1881 case CPUHP_BP_PREPARE_DYN: 1882 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1883 end = CPUHP_BP_PREPARE_DYN_END; 1884 break; 1885 default: 1886 return -EINVAL; 1887 } 1888 1889 for (i = state; i <= end; i++, step++) { 1890 if (!step->name) 1891 return i; 1892 } 1893 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1894 return -ENOSPC; 1895 } 1896 1897 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1898 int (*startup)(unsigned int cpu), 1899 int (*teardown)(unsigned int cpu), 1900 bool multi_instance) 1901 { 1902 /* (Un)Install the callbacks for further cpu hotplug operations */ 1903 struct cpuhp_step *sp; 1904 int ret = 0; 1905 1906 /* 1907 * If name is NULL, then the state gets removed. 1908 * 1909 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1910 * the first allocation from these dynamic ranges, so the removal 1911 * would trigger a new allocation and clear the wrong (already 1912 * empty) state, leaving the callbacks of the to be cleared state 1913 * dangling, which causes wreckage on the next hotplug operation. 1914 */ 1915 if (name && (state == CPUHP_AP_ONLINE_DYN || 1916 state == CPUHP_BP_PREPARE_DYN)) { 1917 ret = cpuhp_reserve_state(state); 1918 if (ret < 0) 1919 return ret; 1920 state = ret; 1921 } 1922 sp = cpuhp_get_step(state); 1923 if (name && sp->name) 1924 return -EBUSY; 1925 1926 sp->startup.single = startup; 1927 sp->teardown.single = teardown; 1928 sp->name = name; 1929 sp->multi_instance = multi_instance; 1930 INIT_HLIST_HEAD(&sp->list); 1931 return ret; 1932 } 1933 1934 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1935 { 1936 return cpuhp_get_step(state)->teardown.single; 1937 } 1938 1939 /* 1940 * Call the startup/teardown function for a step either on the AP or 1941 * on the current CPU. 1942 */ 1943 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1944 struct hlist_node *node) 1945 { 1946 struct cpuhp_step *sp = cpuhp_get_step(state); 1947 int ret; 1948 1949 /* 1950 * If there's nothing to do, we done. 1951 * Relies on the union for multi_instance. 1952 */ 1953 if (cpuhp_step_empty(bringup, sp)) 1954 return 0; 1955 /* 1956 * The non AP bound callbacks can fail on bringup. On teardown 1957 * e.g. module removal we crash for now. 1958 */ 1959 #ifdef CONFIG_SMP 1960 if (cpuhp_is_ap_state(state)) 1961 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1962 else 1963 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1964 #else 1965 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1966 #endif 1967 BUG_ON(ret && !bringup); 1968 return ret; 1969 } 1970 1971 /* 1972 * Called from __cpuhp_setup_state on a recoverable failure. 1973 * 1974 * Note: The teardown callbacks for rollback are not allowed to fail! 1975 */ 1976 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1977 struct hlist_node *node) 1978 { 1979 int cpu; 1980 1981 /* Roll back the already executed steps on the other cpus */ 1982 for_each_present_cpu(cpu) { 1983 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1984 int cpustate = st->state; 1985 1986 if (cpu >= failedcpu) 1987 break; 1988 1989 /* Did we invoke the startup call on that cpu ? */ 1990 if (cpustate >= state) 1991 cpuhp_issue_call(cpu, state, false, node); 1992 } 1993 } 1994 1995 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1996 struct hlist_node *node, 1997 bool invoke) 1998 { 1999 struct cpuhp_step *sp; 2000 int cpu; 2001 int ret; 2002 2003 lockdep_assert_cpus_held(); 2004 2005 sp = cpuhp_get_step(state); 2006 if (sp->multi_instance == false) 2007 return -EINVAL; 2008 2009 mutex_lock(&cpuhp_state_mutex); 2010 2011 if (!invoke || !sp->startup.multi) 2012 goto add_node; 2013 2014 /* 2015 * Try to call the startup callback for each present cpu 2016 * depending on the hotplug state of the cpu. 2017 */ 2018 for_each_present_cpu(cpu) { 2019 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2020 int cpustate = st->state; 2021 2022 if (cpustate < state) 2023 continue; 2024 2025 ret = cpuhp_issue_call(cpu, state, true, node); 2026 if (ret) { 2027 if (sp->teardown.multi) 2028 cpuhp_rollback_install(cpu, state, node); 2029 goto unlock; 2030 } 2031 } 2032 add_node: 2033 ret = 0; 2034 hlist_add_head(node, &sp->list); 2035 unlock: 2036 mutex_unlock(&cpuhp_state_mutex); 2037 return ret; 2038 } 2039 2040 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2041 bool invoke) 2042 { 2043 int ret; 2044 2045 cpus_read_lock(); 2046 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2047 cpus_read_unlock(); 2048 return ret; 2049 } 2050 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2051 2052 /** 2053 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2054 * @state: The state to setup 2055 * @name: Name of the step 2056 * @invoke: If true, the startup function is invoked for cpus where 2057 * cpu state >= @state 2058 * @startup: startup callback function 2059 * @teardown: teardown callback function 2060 * @multi_instance: State is set up for multiple instances which get 2061 * added afterwards. 2062 * 2063 * The caller needs to hold cpus read locked while calling this function. 2064 * Return: 2065 * On success: 2066 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2067 * 0 for all other states 2068 * On failure: proper (negative) error code 2069 */ 2070 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2071 const char *name, bool invoke, 2072 int (*startup)(unsigned int cpu), 2073 int (*teardown)(unsigned int cpu), 2074 bool multi_instance) 2075 { 2076 int cpu, ret = 0; 2077 bool dynstate; 2078 2079 lockdep_assert_cpus_held(); 2080 2081 if (cpuhp_cb_check(state) || !name) 2082 return -EINVAL; 2083 2084 mutex_lock(&cpuhp_state_mutex); 2085 2086 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2087 multi_instance); 2088 2089 dynstate = state == CPUHP_AP_ONLINE_DYN; 2090 if (ret > 0 && dynstate) { 2091 state = ret; 2092 ret = 0; 2093 } 2094 2095 if (ret || !invoke || !startup) 2096 goto out; 2097 2098 /* 2099 * Try to call the startup callback for each present cpu 2100 * depending on the hotplug state of the cpu. 2101 */ 2102 for_each_present_cpu(cpu) { 2103 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2104 int cpustate = st->state; 2105 2106 if (cpustate < state) 2107 continue; 2108 2109 ret = cpuhp_issue_call(cpu, state, true, NULL); 2110 if (ret) { 2111 if (teardown) 2112 cpuhp_rollback_install(cpu, state, NULL); 2113 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2114 goto out; 2115 } 2116 } 2117 out: 2118 mutex_unlock(&cpuhp_state_mutex); 2119 /* 2120 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2121 * dynamically allocated state in case of success. 2122 */ 2123 if (!ret && dynstate) 2124 return state; 2125 return ret; 2126 } 2127 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2128 2129 int __cpuhp_setup_state(enum cpuhp_state state, 2130 const char *name, bool invoke, 2131 int (*startup)(unsigned int cpu), 2132 int (*teardown)(unsigned int cpu), 2133 bool multi_instance) 2134 { 2135 int ret; 2136 2137 cpus_read_lock(); 2138 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2139 teardown, multi_instance); 2140 cpus_read_unlock(); 2141 return ret; 2142 } 2143 EXPORT_SYMBOL(__cpuhp_setup_state); 2144 2145 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2146 struct hlist_node *node, bool invoke) 2147 { 2148 struct cpuhp_step *sp = cpuhp_get_step(state); 2149 int cpu; 2150 2151 BUG_ON(cpuhp_cb_check(state)); 2152 2153 if (!sp->multi_instance) 2154 return -EINVAL; 2155 2156 cpus_read_lock(); 2157 mutex_lock(&cpuhp_state_mutex); 2158 2159 if (!invoke || !cpuhp_get_teardown_cb(state)) 2160 goto remove; 2161 /* 2162 * Call the teardown callback for each present cpu depending 2163 * on the hotplug state of the cpu. This function is not 2164 * allowed to fail currently! 2165 */ 2166 for_each_present_cpu(cpu) { 2167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2168 int cpustate = st->state; 2169 2170 if (cpustate >= state) 2171 cpuhp_issue_call(cpu, state, false, node); 2172 } 2173 2174 remove: 2175 hlist_del(node); 2176 mutex_unlock(&cpuhp_state_mutex); 2177 cpus_read_unlock(); 2178 2179 return 0; 2180 } 2181 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2182 2183 /** 2184 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2185 * @state: The state to remove 2186 * @invoke: If true, the teardown function is invoked for cpus where 2187 * cpu state >= @state 2188 * 2189 * The caller needs to hold cpus read locked while calling this function. 2190 * The teardown callback is currently not allowed to fail. Think 2191 * about module removal! 2192 */ 2193 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2194 { 2195 struct cpuhp_step *sp = cpuhp_get_step(state); 2196 int cpu; 2197 2198 BUG_ON(cpuhp_cb_check(state)); 2199 2200 lockdep_assert_cpus_held(); 2201 2202 mutex_lock(&cpuhp_state_mutex); 2203 if (sp->multi_instance) { 2204 WARN(!hlist_empty(&sp->list), 2205 "Error: Removing state %d which has instances left.\n", 2206 state); 2207 goto remove; 2208 } 2209 2210 if (!invoke || !cpuhp_get_teardown_cb(state)) 2211 goto remove; 2212 2213 /* 2214 * Call the teardown callback for each present cpu depending 2215 * on the hotplug state of the cpu. This function is not 2216 * allowed to fail currently! 2217 */ 2218 for_each_present_cpu(cpu) { 2219 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2220 int cpustate = st->state; 2221 2222 if (cpustate >= state) 2223 cpuhp_issue_call(cpu, state, false, NULL); 2224 } 2225 remove: 2226 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2227 mutex_unlock(&cpuhp_state_mutex); 2228 } 2229 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2230 2231 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2232 { 2233 cpus_read_lock(); 2234 __cpuhp_remove_state_cpuslocked(state, invoke); 2235 cpus_read_unlock(); 2236 } 2237 EXPORT_SYMBOL(__cpuhp_remove_state); 2238 2239 #ifdef CONFIG_HOTPLUG_SMT 2240 static void cpuhp_offline_cpu_device(unsigned int cpu) 2241 { 2242 struct device *dev = get_cpu_device(cpu); 2243 2244 dev->offline = true; 2245 /* Tell user space about the state change */ 2246 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2247 } 2248 2249 static void cpuhp_online_cpu_device(unsigned int cpu) 2250 { 2251 struct device *dev = get_cpu_device(cpu); 2252 2253 dev->offline = false; 2254 /* Tell user space about the state change */ 2255 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2256 } 2257 2258 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2259 { 2260 int cpu, ret = 0; 2261 2262 cpu_maps_update_begin(); 2263 for_each_online_cpu(cpu) { 2264 if (topology_is_primary_thread(cpu)) 2265 continue; 2266 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2267 if (ret) 2268 break; 2269 /* 2270 * As this needs to hold the cpu maps lock it's impossible 2271 * to call device_offline() because that ends up calling 2272 * cpu_down() which takes cpu maps lock. cpu maps lock 2273 * needs to be held as this might race against in kernel 2274 * abusers of the hotplug machinery (thermal management). 2275 * 2276 * So nothing would update device:offline state. That would 2277 * leave the sysfs entry stale and prevent onlining after 2278 * smt control has been changed to 'off' again. This is 2279 * called under the sysfs hotplug lock, so it is properly 2280 * serialized against the regular offline usage. 2281 */ 2282 cpuhp_offline_cpu_device(cpu); 2283 } 2284 if (!ret) 2285 cpu_smt_control = ctrlval; 2286 cpu_maps_update_done(); 2287 return ret; 2288 } 2289 2290 int cpuhp_smt_enable(void) 2291 { 2292 int cpu, ret = 0; 2293 2294 cpu_maps_update_begin(); 2295 cpu_smt_control = CPU_SMT_ENABLED; 2296 for_each_present_cpu(cpu) { 2297 /* Skip online CPUs and CPUs on offline nodes */ 2298 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2299 continue; 2300 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2301 if (ret) 2302 break; 2303 /* See comment in cpuhp_smt_disable() */ 2304 cpuhp_online_cpu_device(cpu); 2305 } 2306 cpu_maps_update_done(); 2307 return ret; 2308 } 2309 #endif 2310 2311 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2312 static ssize_t state_show(struct device *dev, 2313 struct device_attribute *attr, char *buf) 2314 { 2315 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2316 2317 return sprintf(buf, "%d\n", st->state); 2318 } 2319 static DEVICE_ATTR_RO(state); 2320 2321 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2322 const char *buf, size_t count) 2323 { 2324 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2325 struct cpuhp_step *sp; 2326 int target, ret; 2327 2328 ret = kstrtoint(buf, 10, &target); 2329 if (ret) 2330 return ret; 2331 2332 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2333 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2334 return -EINVAL; 2335 #else 2336 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2337 return -EINVAL; 2338 #endif 2339 2340 ret = lock_device_hotplug_sysfs(); 2341 if (ret) 2342 return ret; 2343 2344 mutex_lock(&cpuhp_state_mutex); 2345 sp = cpuhp_get_step(target); 2346 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2347 mutex_unlock(&cpuhp_state_mutex); 2348 if (ret) 2349 goto out; 2350 2351 if (st->state < target) 2352 ret = cpu_up(dev->id, target); 2353 else if (st->state > target) 2354 ret = cpu_down(dev->id, target); 2355 else if (WARN_ON(st->target != target)) 2356 st->target = target; 2357 out: 2358 unlock_device_hotplug(); 2359 return ret ? ret : count; 2360 } 2361 2362 static ssize_t target_show(struct device *dev, 2363 struct device_attribute *attr, char *buf) 2364 { 2365 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2366 2367 return sprintf(buf, "%d\n", st->target); 2368 } 2369 static DEVICE_ATTR_RW(target); 2370 2371 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2372 const char *buf, size_t count) 2373 { 2374 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2375 struct cpuhp_step *sp; 2376 int fail, ret; 2377 2378 ret = kstrtoint(buf, 10, &fail); 2379 if (ret) 2380 return ret; 2381 2382 if (fail == CPUHP_INVALID) { 2383 st->fail = fail; 2384 return count; 2385 } 2386 2387 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2388 return -EINVAL; 2389 2390 /* 2391 * Cannot fail STARTING/DYING callbacks. 2392 */ 2393 if (cpuhp_is_atomic_state(fail)) 2394 return -EINVAL; 2395 2396 /* 2397 * DEAD callbacks cannot fail... 2398 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2399 * triggering STARTING callbacks, a failure in this state would 2400 * hinder rollback. 2401 */ 2402 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2403 return -EINVAL; 2404 2405 /* 2406 * Cannot fail anything that doesn't have callbacks. 2407 */ 2408 mutex_lock(&cpuhp_state_mutex); 2409 sp = cpuhp_get_step(fail); 2410 if (!sp->startup.single && !sp->teardown.single) 2411 ret = -EINVAL; 2412 mutex_unlock(&cpuhp_state_mutex); 2413 if (ret) 2414 return ret; 2415 2416 st->fail = fail; 2417 2418 return count; 2419 } 2420 2421 static ssize_t fail_show(struct device *dev, 2422 struct device_attribute *attr, char *buf) 2423 { 2424 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2425 2426 return sprintf(buf, "%d\n", st->fail); 2427 } 2428 2429 static DEVICE_ATTR_RW(fail); 2430 2431 static struct attribute *cpuhp_cpu_attrs[] = { 2432 &dev_attr_state.attr, 2433 &dev_attr_target.attr, 2434 &dev_attr_fail.attr, 2435 NULL 2436 }; 2437 2438 static const struct attribute_group cpuhp_cpu_attr_group = { 2439 .attrs = cpuhp_cpu_attrs, 2440 .name = "hotplug", 2441 NULL 2442 }; 2443 2444 static ssize_t states_show(struct device *dev, 2445 struct device_attribute *attr, char *buf) 2446 { 2447 ssize_t cur, res = 0; 2448 int i; 2449 2450 mutex_lock(&cpuhp_state_mutex); 2451 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2452 struct cpuhp_step *sp = cpuhp_get_step(i); 2453 2454 if (sp->name) { 2455 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2456 buf += cur; 2457 res += cur; 2458 } 2459 } 2460 mutex_unlock(&cpuhp_state_mutex); 2461 return res; 2462 } 2463 static DEVICE_ATTR_RO(states); 2464 2465 static struct attribute *cpuhp_cpu_root_attrs[] = { 2466 &dev_attr_states.attr, 2467 NULL 2468 }; 2469 2470 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2471 .attrs = cpuhp_cpu_root_attrs, 2472 .name = "hotplug", 2473 NULL 2474 }; 2475 2476 #ifdef CONFIG_HOTPLUG_SMT 2477 2478 static ssize_t 2479 __store_smt_control(struct device *dev, struct device_attribute *attr, 2480 const char *buf, size_t count) 2481 { 2482 int ctrlval, ret; 2483 2484 if (sysfs_streq(buf, "on")) 2485 ctrlval = CPU_SMT_ENABLED; 2486 else if (sysfs_streq(buf, "off")) 2487 ctrlval = CPU_SMT_DISABLED; 2488 else if (sysfs_streq(buf, "forceoff")) 2489 ctrlval = CPU_SMT_FORCE_DISABLED; 2490 else 2491 return -EINVAL; 2492 2493 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2494 return -EPERM; 2495 2496 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2497 return -ENODEV; 2498 2499 ret = lock_device_hotplug_sysfs(); 2500 if (ret) 2501 return ret; 2502 2503 if (ctrlval != cpu_smt_control) { 2504 switch (ctrlval) { 2505 case CPU_SMT_ENABLED: 2506 ret = cpuhp_smt_enable(); 2507 break; 2508 case CPU_SMT_DISABLED: 2509 case CPU_SMT_FORCE_DISABLED: 2510 ret = cpuhp_smt_disable(ctrlval); 2511 break; 2512 } 2513 } 2514 2515 unlock_device_hotplug(); 2516 return ret ? ret : count; 2517 } 2518 2519 #else /* !CONFIG_HOTPLUG_SMT */ 2520 static ssize_t 2521 __store_smt_control(struct device *dev, struct device_attribute *attr, 2522 const char *buf, size_t count) 2523 { 2524 return -ENODEV; 2525 } 2526 #endif /* CONFIG_HOTPLUG_SMT */ 2527 2528 static const char *smt_states[] = { 2529 [CPU_SMT_ENABLED] = "on", 2530 [CPU_SMT_DISABLED] = "off", 2531 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2532 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2533 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2534 }; 2535 2536 static ssize_t control_show(struct device *dev, 2537 struct device_attribute *attr, char *buf) 2538 { 2539 const char *state = smt_states[cpu_smt_control]; 2540 2541 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2542 } 2543 2544 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2545 const char *buf, size_t count) 2546 { 2547 return __store_smt_control(dev, attr, buf, count); 2548 } 2549 static DEVICE_ATTR_RW(control); 2550 2551 static ssize_t active_show(struct device *dev, 2552 struct device_attribute *attr, char *buf) 2553 { 2554 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2555 } 2556 static DEVICE_ATTR_RO(active); 2557 2558 static struct attribute *cpuhp_smt_attrs[] = { 2559 &dev_attr_control.attr, 2560 &dev_attr_active.attr, 2561 NULL 2562 }; 2563 2564 static const struct attribute_group cpuhp_smt_attr_group = { 2565 .attrs = cpuhp_smt_attrs, 2566 .name = "smt", 2567 NULL 2568 }; 2569 2570 static int __init cpu_smt_sysfs_init(void) 2571 { 2572 struct device *dev_root; 2573 int ret = -ENODEV; 2574 2575 dev_root = bus_get_dev_root(&cpu_subsys); 2576 if (dev_root) { 2577 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 2578 put_device(dev_root); 2579 } 2580 return ret; 2581 } 2582 2583 static int __init cpuhp_sysfs_init(void) 2584 { 2585 struct device *dev_root; 2586 int cpu, ret; 2587 2588 ret = cpu_smt_sysfs_init(); 2589 if (ret) 2590 return ret; 2591 2592 dev_root = bus_get_dev_root(&cpu_subsys); 2593 if (dev_root) { 2594 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 2595 put_device(dev_root); 2596 if (ret) 2597 return ret; 2598 } 2599 2600 for_each_possible_cpu(cpu) { 2601 struct device *dev = get_cpu_device(cpu); 2602 2603 if (!dev) 2604 continue; 2605 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2606 if (ret) 2607 return ret; 2608 } 2609 return 0; 2610 } 2611 device_initcall(cpuhp_sysfs_init); 2612 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2613 2614 /* 2615 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2616 * represents all NR_CPUS bits binary values of 1<<nr. 2617 * 2618 * It is used by cpumask_of() to get a constant address to a CPU 2619 * mask value that has a single bit set only. 2620 */ 2621 2622 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2623 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2624 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2625 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2626 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2627 2628 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2629 2630 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2631 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2632 #if BITS_PER_LONG > 32 2633 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2634 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2635 #endif 2636 }; 2637 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2638 2639 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2640 EXPORT_SYMBOL(cpu_all_bits); 2641 2642 #ifdef CONFIG_INIT_ALL_POSSIBLE 2643 struct cpumask __cpu_possible_mask __read_mostly 2644 = {CPU_BITS_ALL}; 2645 #else 2646 struct cpumask __cpu_possible_mask __read_mostly; 2647 #endif 2648 EXPORT_SYMBOL(__cpu_possible_mask); 2649 2650 struct cpumask __cpu_online_mask __read_mostly; 2651 EXPORT_SYMBOL(__cpu_online_mask); 2652 2653 struct cpumask __cpu_present_mask __read_mostly; 2654 EXPORT_SYMBOL(__cpu_present_mask); 2655 2656 struct cpumask __cpu_active_mask __read_mostly; 2657 EXPORT_SYMBOL(__cpu_active_mask); 2658 2659 struct cpumask __cpu_dying_mask __read_mostly; 2660 EXPORT_SYMBOL(__cpu_dying_mask); 2661 2662 atomic_t __num_online_cpus __read_mostly; 2663 EXPORT_SYMBOL(__num_online_cpus); 2664 2665 void init_cpu_present(const struct cpumask *src) 2666 { 2667 cpumask_copy(&__cpu_present_mask, src); 2668 } 2669 2670 void init_cpu_possible(const struct cpumask *src) 2671 { 2672 cpumask_copy(&__cpu_possible_mask, src); 2673 } 2674 2675 void init_cpu_online(const struct cpumask *src) 2676 { 2677 cpumask_copy(&__cpu_online_mask, src); 2678 } 2679 2680 void set_cpu_online(unsigned int cpu, bool online) 2681 { 2682 /* 2683 * atomic_inc/dec() is required to handle the horrid abuse of this 2684 * function by the reboot and kexec code which invoke it from 2685 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2686 * regular CPU hotplug is properly serialized. 2687 * 2688 * Note, that the fact that __num_online_cpus is of type atomic_t 2689 * does not protect readers which are not serialized against 2690 * concurrent hotplug operations. 2691 */ 2692 if (online) { 2693 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2694 atomic_inc(&__num_online_cpus); 2695 } else { 2696 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2697 atomic_dec(&__num_online_cpus); 2698 } 2699 } 2700 2701 /* 2702 * Activate the first processor. 2703 */ 2704 void __init boot_cpu_init(void) 2705 { 2706 int cpu = smp_processor_id(); 2707 2708 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2709 set_cpu_online(cpu, true); 2710 set_cpu_active(cpu, true); 2711 set_cpu_present(cpu, true); 2712 set_cpu_possible(cpu, true); 2713 2714 #ifdef CONFIG_SMP 2715 __boot_cpu_id = cpu; 2716 #endif 2717 } 2718 2719 /* 2720 * Must be called _AFTER_ setting up the per_cpu areas 2721 */ 2722 void __init boot_cpu_hotplug_init(void) 2723 { 2724 #ifdef CONFIG_SMP 2725 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2726 #endif 2727 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2728 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 2729 } 2730 2731 /* 2732 * These are used for a global "mitigations=" cmdline option for toggling 2733 * optional CPU mitigations. 2734 */ 2735 enum cpu_mitigations { 2736 CPU_MITIGATIONS_OFF, 2737 CPU_MITIGATIONS_AUTO, 2738 CPU_MITIGATIONS_AUTO_NOSMT, 2739 }; 2740 2741 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2742 CPU_MITIGATIONS_AUTO; 2743 2744 static int __init mitigations_parse_cmdline(char *arg) 2745 { 2746 if (!strcmp(arg, "off")) 2747 cpu_mitigations = CPU_MITIGATIONS_OFF; 2748 else if (!strcmp(arg, "auto")) 2749 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2750 else if (!strcmp(arg, "auto,nosmt")) 2751 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2752 else 2753 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2754 arg); 2755 2756 return 0; 2757 } 2758 early_param("mitigations", mitigations_parse_cmdline); 2759 2760 /* mitigations=off */ 2761 bool cpu_mitigations_off(void) 2762 { 2763 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2764 } 2765 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2766 2767 /* mitigations=auto,nosmt */ 2768 bool cpu_mitigations_auto_nosmt(void) 2769 { 2770 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2771 } 2772 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2773