xref: /openbmc/linux/kernel/cpu.c (revision 036b9e7c)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33 
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37 
38 #include "smpboot.h"
39 
40 /**
41  * cpuhp_cpu_state - Per cpu hotplug state storage
42  * @state:	The current cpu state
43  * @target:	The target state
44  * @thread:	Pointer to the hotplug thread
45  * @should_run:	Thread should execute
46  * @rollback:	Perform a rollback
47  * @single:	Single callback invocation
48  * @bringup:	Single callback bringup or teardown selector
49  * @cb_state:	The state for a single callback (install/uninstall)
50  * @result:	Result of the operation
51  * @done_up:	Signal completion to the issuer of the task for cpu-up
52  * @done_down:	Signal completion to the issuer of the task for cpu-down
53  */
54 struct cpuhp_cpu_state {
55 	enum cpuhp_state	state;
56 	enum cpuhp_state	target;
57 	enum cpuhp_state	fail;
58 #ifdef CONFIG_SMP
59 	struct task_struct	*thread;
60 	bool			should_run;
61 	bool			rollback;
62 	bool			single;
63 	bool			bringup;
64 	bool			booted_once;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83 
84 
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89 
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95 
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98 
99 #endif
100 
101 /**
102  * cpuhp_step - Hotplug state machine step
103  * @name:	Name of the step
104  * @startup:	Startup function of the step
105  * @teardown:	Teardown function of the step
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			cant_stop;
122 	bool			multi_instance;
123 };
124 
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127 
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 	return cpuhp_hp_states + state;
131 }
132 
133 /**
134  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135  * @cpu:	The cpu for which the callback should be invoked
136  * @state:	The state to do callbacks for
137  * @bringup:	True if the bringup callback should be invoked
138  * @node:	For multi-instance, do a single entry callback for install/remove
139  * @lastp:	For multi-instance rollback, remember how far we got
140  *
141  * Called from cpu hotplug and from the state register machinery.
142  */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 				 bool bringup, struct hlist_node *node,
145 				 struct hlist_node **lastp)
146 {
147 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 	struct cpuhp_step *step = cpuhp_get_step(state);
149 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 	int (*cb)(unsigned int cpu);
151 	int ret, cnt;
152 
153 	if (st->fail == state) {
154 		st->fail = CPUHP_INVALID;
155 
156 		if (!(bringup ? step->startup.single : step->teardown.single))
157 			return 0;
158 
159 		return -EAGAIN;
160 	}
161 
162 	if (!step->multi_instance) {
163 		WARN_ON_ONCE(lastp && *lastp);
164 		cb = bringup ? step->startup.single : step->teardown.single;
165 		if (!cb)
166 			return 0;
167 		trace_cpuhp_enter(cpu, st->target, state, cb);
168 		ret = cb(cpu);
169 		trace_cpuhp_exit(cpu, st->state, state, ret);
170 		return ret;
171 	}
172 	cbm = bringup ? step->startup.multi : step->teardown.multi;
173 	if (!cbm)
174 		return 0;
175 
176 	/* Single invocation for instance add/remove */
177 	if (node) {
178 		WARN_ON_ONCE(lastp && *lastp);
179 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 		ret = cbm(cpu, node);
181 		trace_cpuhp_exit(cpu, st->state, state, ret);
182 		return ret;
183 	}
184 
185 	/* State transition. Invoke on all instances */
186 	cnt = 0;
187 	hlist_for_each(node, &step->list) {
188 		if (lastp && node == *lastp)
189 			break;
190 
191 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 		ret = cbm(cpu, node);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		if (ret) {
195 			if (!lastp)
196 				goto err;
197 
198 			*lastp = node;
199 			return ret;
200 		}
201 		cnt++;
202 	}
203 	if (lastp)
204 		*lastp = NULL;
205 	return 0;
206 err:
207 	/* Rollback the instances if one failed */
208 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 	if (!cbm)
210 		return ret;
211 
212 	hlist_for_each(node, &step->list) {
213 		if (!cnt--)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		/*
220 		 * Rollback must not fail,
221 		 */
222 		WARN_ON_ONCE(ret);
223 	}
224 	return ret;
225 }
226 
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 	/*
231 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 	 * purposes as that state is handled explicitly in cpu_down.
233 	 */
234 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236 
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 	struct completion *done = bringup ? &st->done_up : &st->done_down;
240 	wait_for_completion(done);
241 }
242 
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 	struct completion *done = bringup ? &st->done_up : &st->done_down;
246 	complete(done);
247 }
248 
249 /*
250  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251  */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256 
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261 
262 /*
263  * The following two APIs (cpu_maps_update_begin/done) must be used when
264  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265  */
266 void cpu_maps_update_begin(void)
267 {
268 	mutex_lock(&cpu_add_remove_lock);
269 }
270 
271 void cpu_maps_update_done(void)
272 {
273 	mutex_unlock(&cpu_add_remove_lock);
274 }
275 
276 /*
277  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278  * Should always be manipulated under cpu_add_remove_lock
279  */
280 static int cpu_hotplug_disabled;
281 
282 #ifdef CONFIG_HOTPLUG_CPU
283 
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285 
286 void cpus_read_lock(void)
287 {
288 	percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291 
292 int cpus_read_trylock(void)
293 {
294 	return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297 
298 void cpus_read_unlock(void)
299 {
300 	percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303 
304 void cpus_write_lock(void)
305 {
306 	percpu_down_write(&cpu_hotplug_lock);
307 }
308 
309 void cpus_write_unlock(void)
310 {
311 	percpu_up_write(&cpu_hotplug_lock);
312 }
313 
314 void lockdep_assert_cpus_held(void)
315 {
316 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
317 }
318 
319 static void lockdep_acquire_cpus_lock(void)
320 {
321 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
322 }
323 
324 static void lockdep_release_cpus_lock(void)
325 {
326 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
327 }
328 
329 /*
330  * Wait for currently running CPU hotplug operations to complete (if any) and
331  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333  * hotplug path before performing hotplug operations. So acquiring that lock
334  * guarantees mutual exclusion from any currently running hotplug operations.
335  */
336 void cpu_hotplug_disable(void)
337 {
338 	cpu_maps_update_begin();
339 	cpu_hotplug_disabled++;
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
343 
344 static void __cpu_hotplug_enable(void)
345 {
346 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
347 		return;
348 	cpu_hotplug_disabled--;
349 }
350 
351 void cpu_hotplug_enable(void)
352 {
353 	cpu_maps_update_begin();
354 	__cpu_hotplug_enable();
355 	cpu_maps_update_done();
356 }
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
358 
359 #else
360 
361 static void lockdep_acquire_cpus_lock(void)
362 {
363 }
364 
365 static void lockdep_release_cpus_lock(void)
366 {
367 }
368 
369 #endif	/* CONFIG_HOTPLUG_CPU */
370 
371 /*
372  * Architectures that need SMT-specific errata handling during SMT hotplug
373  * should override this.
374  */
375 void __weak arch_smt_update(void) { }
376 
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
379 EXPORT_SYMBOL_GPL(cpu_smt_control);
380 
381 static bool cpu_smt_available __read_mostly;
382 
383 void __init cpu_smt_disable(bool force)
384 {
385 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
386 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
387 		return;
388 
389 	if (force) {
390 		pr_info("SMT: Force disabled\n");
391 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
392 	} else {
393 		pr_info("SMT: disabled\n");
394 		cpu_smt_control = CPU_SMT_DISABLED;
395 	}
396 }
397 
398 /*
399  * The decision whether SMT is supported can only be done after the full
400  * CPU identification. Called from architecture code before non boot CPUs
401  * are brought up.
402  */
403 void __init cpu_smt_check_topology_early(void)
404 {
405 	if (!topology_smt_supported())
406 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
407 }
408 
409 /*
410  * If SMT was disabled by BIOS, detect it here, after the CPUs have been
411  * brought online. This ensures the smt/l1tf sysfs entries are consistent
412  * with reality. cpu_smt_available is set to true during the bringup of non
413  * boot CPUs when a SMT sibling is detected. Note, this may overwrite
414  * cpu_smt_control's previous setting.
415  */
416 void __init cpu_smt_check_topology(void)
417 {
418 	if (!cpu_smt_available)
419 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
420 }
421 
422 static int __init smt_cmdline_disable(char *str)
423 {
424 	cpu_smt_disable(str && !strcmp(str, "force"));
425 	return 0;
426 }
427 early_param("nosmt", smt_cmdline_disable);
428 
429 static inline bool cpu_smt_allowed(unsigned int cpu)
430 {
431 	if (topology_is_primary_thread(cpu))
432 		return true;
433 
434 	/*
435 	 * If the CPU is not a 'primary' thread and the booted_once bit is
436 	 * set then the processor has SMT support. Store this information
437 	 * for the late check of SMT support in cpu_smt_check_topology().
438 	 */
439 	if (per_cpu(cpuhp_state, cpu).booted_once)
440 		cpu_smt_available = true;
441 
442 	if (cpu_smt_control == CPU_SMT_ENABLED)
443 		return true;
444 
445 	/*
446 	 * On x86 it's required to boot all logical CPUs at least once so
447 	 * that the init code can get a chance to set CR4.MCE on each
448 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
449 	 * core will shutdown the machine.
450 	 */
451 	return !per_cpu(cpuhp_state, cpu).booted_once;
452 }
453 #else
454 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
455 #endif
456 
457 static inline enum cpuhp_state
458 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
459 {
460 	enum cpuhp_state prev_state = st->state;
461 
462 	st->rollback = false;
463 	st->last = NULL;
464 
465 	st->target = target;
466 	st->single = false;
467 	st->bringup = st->state < target;
468 
469 	return prev_state;
470 }
471 
472 static inline void
473 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
474 {
475 	st->rollback = true;
476 
477 	/*
478 	 * If we have st->last we need to undo partial multi_instance of this
479 	 * state first. Otherwise start undo at the previous state.
480 	 */
481 	if (!st->last) {
482 		if (st->bringup)
483 			st->state--;
484 		else
485 			st->state++;
486 	}
487 
488 	st->target = prev_state;
489 	st->bringup = !st->bringup;
490 }
491 
492 /* Regular hotplug invocation of the AP hotplug thread */
493 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
494 {
495 	if (!st->single && st->state == st->target)
496 		return;
497 
498 	st->result = 0;
499 	/*
500 	 * Make sure the above stores are visible before should_run becomes
501 	 * true. Paired with the mb() above in cpuhp_thread_fun()
502 	 */
503 	smp_mb();
504 	st->should_run = true;
505 	wake_up_process(st->thread);
506 	wait_for_ap_thread(st, st->bringup);
507 }
508 
509 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
510 {
511 	enum cpuhp_state prev_state;
512 	int ret;
513 
514 	prev_state = cpuhp_set_state(st, target);
515 	__cpuhp_kick_ap(st);
516 	if ((ret = st->result)) {
517 		cpuhp_reset_state(st, prev_state);
518 		__cpuhp_kick_ap(st);
519 	}
520 
521 	return ret;
522 }
523 
524 static int bringup_wait_for_ap(unsigned int cpu)
525 {
526 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
527 
528 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
529 	wait_for_ap_thread(st, true);
530 	if (WARN_ON_ONCE((!cpu_online(cpu))))
531 		return -ECANCELED;
532 
533 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
534 	stop_machine_unpark(cpu);
535 	kthread_unpark(st->thread);
536 
537 	/*
538 	 * SMT soft disabling on X86 requires to bring the CPU out of the
539 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
540 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
541 	 * cpu_smt_allowed() check will now return false if this is not the
542 	 * primary sibling.
543 	 */
544 	if (!cpu_smt_allowed(cpu))
545 		return -ECANCELED;
546 
547 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
548 		return 0;
549 
550 	return cpuhp_kick_ap(st, st->target);
551 }
552 
553 static int bringup_cpu(unsigned int cpu)
554 {
555 	struct task_struct *idle = idle_thread_get(cpu);
556 	int ret;
557 
558 	/*
559 	 * Some architectures have to walk the irq descriptors to
560 	 * setup the vector space for the cpu which comes online.
561 	 * Prevent irq alloc/free across the bringup.
562 	 */
563 	irq_lock_sparse();
564 
565 	/* Arch-specific enabling code. */
566 	ret = __cpu_up(cpu, idle);
567 	irq_unlock_sparse();
568 	if (ret)
569 		return ret;
570 	return bringup_wait_for_ap(cpu);
571 }
572 
573 /*
574  * Hotplug state machine related functions
575  */
576 
577 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
578 {
579 	for (st->state--; st->state > st->target; st->state--)
580 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
581 }
582 
583 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
584 			      enum cpuhp_state target)
585 {
586 	enum cpuhp_state prev_state = st->state;
587 	int ret = 0;
588 
589 	while (st->state < target) {
590 		st->state++;
591 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
592 		if (ret) {
593 			st->target = prev_state;
594 			undo_cpu_up(cpu, st);
595 			break;
596 		}
597 	}
598 	return ret;
599 }
600 
601 /*
602  * The cpu hotplug threads manage the bringup and teardown of the cpus
603  */
604 static void cpuhp_create(unsigned int cpu)
605 {
606 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
607 
608 	init_completion(&st->done_up);
609 	init_completion(&st->done_down);
610 }
611 
612 static int cpuhp_should_run(unsigned int cpu)
613 {
614 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
615 
616 	return st->should_run;
617 }
618 
619 /*
620  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
621  * callbacks when a state gets [un]installed at runtime.
622  *
623  * Each invocation of this function by the smpboot thread does a single AP
624  * state callback.
625  *
626  * It has 3 modes of operation:
627  *  - single: runs st->cb_state
628  *  - up:     runs ++st->state, while st->state < st->target
629  *  - down:   runs st->state--, while st->state > st->target
630  *
631  * When complete or on error, should_run is cleared and the completion is fired.
632  */
633 static void cpuhp_thread_fun(unsigned int cpu)
634 {
635 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
636 	bool bringup = st->bringup;
637 	enum cpuhp_state state;
638 
639 	if (WARN_ON_ONCE(!st->should_run))
640 		return;
641 
642 	/*
643 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
644 	 * that if we see ->should_run we also see the rest of the state.
645 	 */
646 	smp_mb();
647 
648 	/*
649 	 * The BP holds the hotplug lock, but we're now running on the AP,
650 	 * ensure that anybody asserting the lock is held, will actually find
651 	 * it so.
652 	 */
653 	lockdep_acquire_cpus_lock();
654 	cpuhp_lock_acquire(bringup);
655 
656 	if (st->single) {
657 		state = st->cb_state;
658 		st->should_run = false;
659 	} else {
660 		if (bringup) {
661 			st->state++;
662 			state = st->state;
663 			st->should_run = (st->state < st->target);
664 			WARN_ON_ONCE(st->state > st->target);
665 		} else {
666 			state = st->state;
667 			st->state--;
668 			st->should_run = (st->state > st->target);
669 			WARN_ON_ONCE(st->state < st->target);
670 		}
671 	}
672 
673 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
674 
675 	if (cpuhp_is_atomic_state(state)) {
676 		local_irq_disable();
677 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
678 		local_irq_enable();
679 
680 		/*
681 		 * STARTING/DYING must not fail!
682 		 */
683 		WARN_ON_ONCE(st->result);
684 	} else {
685 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
686 	}
687 
688 	if (st->result) {
689 		/*
690 		 * If we fail on a rollback, we're up a creek without no
691 		 * paddle, no way forward, no way back. We loose, thanks for
692 		 * playing.
693 		 */
694 		WARN_ON_ONCE(st->rollback);
695 		st->should_run = false;
696 	}
697 
698 	cpuhp_lock_release(bringup);
699 	lockdep_release_cpus_lock();
700 
701 	if (!st->should_run)
702 		complete_ap_thread(st, bringup);
703 }
704 
705 /* Invoke a single callback on a remote cpu */
706 static int
707 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
708 			 struct hlist_node *node)
709 {
710 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
711 	int ret;
712 
713 	if (!cpu_online(cpu))
714 		return 0;
715 
716 	cpuhp_lock_acquire(false);
717 	cpuhp_lock_release(false);
718 
719 	cpuhp_lock_acquire(true);
720 	cpuhp_lock_release(true);
721 
722 	/*
723 	 * If we are up and running, use the hotplug thread. For early calls
724 	 * we invoke the thread function directly.
725 	 */
726 	if (!st->thread)
727 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
728 
729 	st->rollback = false;
730 	st->last = NULL;
731 
732 	st->node = node;
733 	st->bringup = bringup;
734 	st->cb_state = state;
735 	st->single = true;
736 
737 	__cpuhp_kick_ap(st);
738 
739 	/*
740 	 * If we failed and did a partial, do a rollback.
741 	 */
742 	if ((ret = st->result) && st->last) {
743 		st->rollback = true;
744 		st->bringup = !bringup;
745 
746 		__cpuhp_kick_ap(st);
747 	}
748 
749 	/*
750 	 * Clean up the leftovers so the next hotplug operation wont use stale
751 	 * data.
752 	 */
753 	st->node = st->last = NULL;
754 	return ret;
755 }
756 
757 static int cpuhp_kick_ap_work(unsigned int cpu)
758 {
759 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760 	enum cpuhp_state prev_state = st->state;
761 	int ret;
762 
763 	cpuhp_lock_acquire(false);
764 	cpuhp_lock_release(false);
765 
766 	cpuhp_lock_acquire(true);
767 	cpuhp_lock_release(true);
768 
769 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
770 	ret = cpuhp_kick_ap(st, st->target);
771 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
772 
773 	return ret;
774 }
775 
776 static struct smp_hotplug_thread cpuhp_threads = {
777 	.store			= &cpuhp_state.thread,
778 	.create			= &cpuhp_create,
779 	.thread_should_run	= cpuhp_should_run,
780 	.thread_fn		= cpuhp_thread_fun,
781 	.thread_comm		= "cpuhp/%u",
782 	.selfparking		= true,
783 };
784 
785 void __init cpuhp_threads_init(void)
786 {
787 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
788 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
789 }
790 
791 #ifdef CONFIG_HOTPLUG_CPU
792 /**
793  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
794  * @cpu: a CPU id
795  *
796  * This function walks all processes, finds a valid mm struct for each one and
797  * then clears a corresponding bit in mm's cpumask.  While this all sounds
798  * trivial, there are various non-obvious corner cases, which this function
799  * tries to solve in a safe manner.
800  *
801  * Also note that the function uses a somewhat relaxed locking scheme, so it may
802  * be called only for an already offlined CPU.
803  */
804 void clear_tasks_mm_cpumask(int cpu)
805 {
806 	struct task_struct *p;
807 
808 	/*
809 	 * This function is called after the cpu is taken down and marked
810 	 * offline, so its not like new tasks will ever get this cpu set in
811 	 * their mm mask. -- Peter Zijlstra
812 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
813 	 * full-fledged tasklist_lock.
814 	 */
815 	WARN_ON(cpu_online(cpu));
816 	rcu_read_lock();
817 	for_each_process(p) {
818 		struct task_struct *t;
819 
820 		/*
821 		 * Main thread might exit, but other threads may still have
822 		 * a valid mm. Find one.
823 		 */
824 		t = find_lock_task_mm(p);
825 		if (!t)
826 			continue;
827 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
828 		task_unlock(t);
829 	}
830 	rcu_read_unlock();
831 }
832 
833 /* Take this CPU down. */
834 static int take_cpu_down(void *_param)
835 {
836 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
837 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
838 	int err, cpu = smp_processor_id();
839 	int ret;
840 
841 	/* Ensure this CPU doesn't handle any more interrupts. */
842 	err = __cpu_disable();
843 	if (err < 0)
844 		return err;
845 
846 	/*
847 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
848 	 * do this step again.
849 	 */
850 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
851 	st->state--;
852 	/* Invoke the former CPU_DYING callbacks */
853 	for (; st->state > target; st->state--) {
854 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
855 		/*
856 		 * DYING must not fail!
857 		 */
858 		WARN_ON_ONCE(ret);
859 	}
860 
861 	/* Give up timekeeping duties */
862 	tick_handover_do_timer();
863 	/* Park the stopper thread */
864 	stop_machine_park(cpu);
865 	return 0;
866 }
867 
868 static int takedown_cpu(unsigned int cpu)
869 {
870 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
871 	int err;
872 
873 	/* Park the smpboot threads */
874 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
875 
876 	/*
877 	 * Prevent irq alloc/free while the dying cpu reorganizes the
878 	 * interrupt affinities.
879 	 */
880 	irq_lock_sparse();
881 
882 	/*
883 	 * So now all preempt/rcu users must observe !cpu_active().
884 	 */
885 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
886 	if (err) {
887 		/* CPU refused to die */
888 		irq_unlock_sparse();
889 		/* Unpark the hotplug thread so we can rollback there */
890 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
891 		return err;
892 	}
893 	BUG_ON(cpu_online(cpu));
894 
895 	/*
896 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
897 	 * all runnable tasks from the CPU, there's only the idle task left now
898 	 * that the migration thread is done doing the stop_machine thing.
899 	 *
900 	 * Wait for the stop thread to go away.
901 	 */
902 	wait_for_ap_thread(st, false);
903 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
904 
905 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
906 	irq_unlock_sparse();
907 
908 	hotplug_cpu__broadcast_tick_pull(cpu);
909 	/* This actually kills the CPU. */
910 	__cpu_die(cpu);
911 
912 	tick_cleanup_dead_cpu(cpu);
913 	rcutree_migrate_callbacks(cpu);
914 	return 0;
915 }
916 
917 static void cpuhp_complete_idle_dead(void *arg)
918 {
919 	struct cpuhp_cpu_state *st = arg;
920 
921 	complete_ap_thread(st, false);
922 }
923 
924 void cpuhp_report_idle_dead(void)
925 {
926 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
927 
928 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
929 	rcu_report_dead(smp_processor_id());
930 	st->state = CPUHP_AP_IDLE_DEAD;
931 	/*
932 	 * We cannot call complete after rcu_report_dead() so we delegate it
933 	 * to an online cpu.
934 	 */
935 	smp_call_function_single(cpumask_first(cpu_online_mask),
936 				 cpuhp_complete_idle_dead, st, 0);
937 }
938 
939 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
940 {
941 	for (st->state++; st->state < st->target; st->state++)
942 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
943 }
944 
945 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
946 				enum cpuhp_state target)
947 {
948 	enum cpuhp_state prev_state = st->state;
949 	int ret = 0;
950 
951 	for (; st->state > target; st->state--) {
952 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
953 		if (ret) {
954 			st->target = prev_state;
955 			if (st->state < prev_state)
956 				undo_cpu_down(cpu, st);
957 			break;
958 		}
959 	}
960 	return ret;
961 }
962 
963 /* Requires cpu_add_remove_lock to be held */
964 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
965 			   enum cpuhp_state target)
966 {
967 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
968 	int prev_state, ret = 0;
969 
970 	if (num_online_cpus() == 1)
971 		return -EBUSY;
972 
973 	if (!cpu_present(cpu))
974 		return -EINVAL;
975 
976 	cpus_write_lock();
977 
978 	cpuhp_tasks_frozen = tasks_frozen;
979 
980 	prev_state = cpuhp_set_state(st, target);
981 	/*
982 	 * If the current CPU state is in the range of the AP hotplug thread,
983 	 * then we need to kick the thread.
984 	 */
985 	if (st->state > CPUHP_TEARDOWN_CPU) {
986 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
987 		ret = cpuhp_kick_ap_work(cpu);
988 		/*
989 		 * The AP side has done the error rollback already. Just
990 		 * return the error code..
991 		 */
992 		if (ret)
993 			goto out;
994 
995 		/*
996 		 * We might have stopped still in the range of the AP hotplug
997 		 * thread. Nothing to do anymore.
998 		 */
999 		if (st->state > CPUHP_TEARDOWN_CPU)
1000 			goto out;
1001 
1002 		st->target = target;
1003 	}
1004 	/*
1005 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1006 	 * to do the further cleanups.
1007 	 */
1008 	ret = cpuhp_down_callbacks(cpu, st, target);
1009 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1010 		cpuhp_reset_state(st, prev_state);
1011 		__cpuhp_kick_ap(st);
1012 	}
1013 
1014 out:
1015 	cpus_write_unlock();
1016 	/*
1017 	 * Do post unplug cleanup. This is still protected against
1018 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1019 	 */
1020 	lockup_detector_cleanup();
1021 	arch_smt_update();
1022 	return ret;
1023 }
1024 
1025 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1026 {
1027 	if (cpu_hotplug_disabled)
1028 		return -EBUSY;
1029 	return _cpu_down(cpu, 0, target);
1030 }
1031 
1032 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1033 {
1034 	int err;
1035 
1036 	cpu_maps_update_begin();
1037 	err = cpu_down_maps_locked(cpu, target);
1038 	cpu_maps_update_done();
1039 	return err;
1040 }
1041 
1042 int cpu_down(unsigned int cpu)
1043 {
1044 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1045 }
1046 EXPORT_SYMBOL(cpu_down);
1047 
1048 #else
1049 #define takedown_cpu		NULL
1050 #endif /*CONFIG_HOTPLUG_CPU*/
1051 
1052 /**
1053  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1054  * @cpu: cpu that just started
1055  *
1056  * It must be called by the arch code on the new cpu, before the new cpu
1057  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1058  */
1059 void notify_cpu_starting(unsigned int cpu)
1060 {
1061 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1062 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1063 	int ret;
1064 
1065 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1066 	st->booted_once = true;
1067 	while (st->state < target) {
1068 		st->state++;
1069 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1070 		/*
1071 		 * STARTING must not fail!
1072 		 */
1073 		WARN_ON_ONCE(ret);
1074 	}
1075 }
1076 
1077 /*
1078  * Called from the idle task. Wake up the controlling task which brings the
1079  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1080  * the rest of the online bringup to the hotplug thread.
1081  */
1082 void cpuhp_online_idle(enum cpuhp_state state)
1083 {
1084 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1085 
1086 	/* Happens for the boot cpu */
1087 	if (state != CPUHP_AP_ONLINE_IDLE)
1088 		return;
1089 
1090 	st->state = CPUHP_AP_ONLINE_IDLE;
1091 	complete_ap_thread(st, true);
1092 }
1093 
1094 /* Requires cpu_add_remove_lock to be held */
1095 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1096 {
1097 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1098 	struct task_struct *idle;
1099 	int ret = 0;
1100 
1101 	cpus_write_lock();
1102 
1103 	if (!cpu_present(cpu)) {
1104 		ret = -EINVAL;
1105 		goto out;
1106 	}
1107 
1108 	/*
1109 	 * The caller of do_cpu_up might have raced with another
1110 	 * caller. Ignore it for now.
1111 	 */
1112 	if (st->state >= target)
1113 		goto out;
1114 
1115 	if (st->state == CPUHP_OFFLINE) {
1116 		/* Let it fail before we try to bring the cpu up */
1117 		idle = idle_thread_get(cpu);
1118 		if (IS_ERR(idle)) {
1119 			ret = PTR_ERR(idle);
1120 			goto out;
1121 		}
1122 	}
1123 
1124 	cpuhp_tasks_frozen = tasks_frozen;
1125 
1126 	cpuhp_set_state(st, target);
1127 	/*
1128 	 * If the current CPU state is in the range of the AP hotplug thread,
1129 	 * then we need to kick the thread once more.
1130 	 */
1131 	if (st->state > CPUHP_BRINGUP_CPU) {
1132 		ret = cpuhp_kick_ap_work(cpu);
1133 		/*
1134 		 * The AP side has done the error rollback already. Just
1135 		 * return the error code..
1136 		 */
1137 		if (ret)
1138 			goto out;
1139 	}
1140 
1141 	/*
1142 	 * Try to reach the target state. We max out on the BP at
1143 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1144 	 * responsible for bringing it up to the target state.
1145 	 */
1146 	target = min((int)target, CPUHP_BRINGUP_CPU);
1147 	ret = cpuhp_up_callbacks(cpu, st, target);
1148 out:
1149 	cpus_write_unlock();
1150 	arch_smt_update();
1151 	return ret;
1152 }
1153 
1154 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1155 {
1156 	int err = 0;
1157 
1158 	if (!cpu_possible(cpu)) {
1159 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1160 		       cpu);
1161 #if defined(CONFIG_IA64)
1162 		pr_err("please check additional_cpus= boot parameter\n");
1163 #endif
1164 		return -EINVAL;
1165 	}
1166 
1167 	err = try_online_node(cpu_to_node(cpu));
1168 	if (err)
1169 		return err;
1170 
1171 	cpu_maps_update_begin();
1172 
1173 	if (cpu_hotplug_disabled) {
1174 		err = -EBUSY;
1175 		goto out;
1176 	}
1177 	if (!cpu_smt_allowed(cpu)) {
1178 		err = -EPERM;
1179 		goto out;
1180 	}
1181 
1182 	err = _cpu_up(cpu, 0, target);
1183 out:
1184 	cpu_maps_update_done();
1185 	return err;
1186 }
1187 
1188 int cpu_up(unsigned int cpu)
1189 {
1190 	return do_cpu_up(cpu, CPUHP_ONLINE);
1191 }
1192 EXPORT_SYMBOL_GPL(cpu_up);
1193 
1194 #ifdef CONFIG_PM_SLEEP_SMP
1195 static cpumask_var_t frozen_cpus;
1196 
1197 int freeze_secondary_cpus(int primary)
1198 {
1199 	int cpu, error = 0;
1200 
1201 	cpu_maps_update_begin();
1202 	if (!cpu_online(primary))
1203 		primary = cpumask_first(cpu_online_mask);
1204 	/*
1205 	 * We take down all of the non-boot CPUs in one shot to avoid races
1206 	 * with the userspace trying to use the CPU hotplug at the same time
1207 	 */
1208 	cpumask_clear(frozen_cpus);
1209 
1210 	pr_info("Disabling non-boot CPUs ...\n");
1211 	for_each_online_cpu(cpu) {
1212 		if (cpu == primary)
1213 			continue;
1214 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1215 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1216 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1217 		if (!error)
1218 			cpumask_set_cpu(cpu, frozen_cpus);
1219 		else {
1220 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1221 			break;
1222 		}
1223 	}
1224 
1225 	if (!error)
1226 		BUG_ON(num_online_cpus() > 1);
1227 	else
1228 		pr_err("Non-boot CPUs are not disabled\n");
1229 
1230 	/*
1231 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1232 	 * this even in case of failure as all disable_nonboot_cpus() users are
1233 	 * supposed to do enable_nonboot_cpus() on the failure path.
1234 	 */
1235 	cpu_hotplug_disabled++;
1236 
1237 	cpu_maps_update_done();
1238 	return error;
1239 }
1240 
1241 void __weak arch_enable_nonboot_cpus_begin(void)
1242 {
1243 }
1244 
1245 void __weak arch_enable_nonboot_cpus_end(void)
1246 {
1247 }
1248 
1249 void enable_nonboot_cpus(void)
1250 {
1251 	int cpu, error;
1252 
1253 	/* Allow everyone to use the CPU hotplug again */
1254 	cpu_maps_update_begin();
1255 	__cpu_hotplug_enable();
1256 	if (cpumask_empty(frozen_cpus))
1257 		goto out;
1258 
1259 	pr_info("Enabling non-boot CPUs ...\n");
1260 
1261 	arch_enable_nonboot_cpus_begin();
1262 
1263 	for_each_cpu(cpu, frozen_cpus) {
1264 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1265 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1266 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1267 		if (!error) {
1268 			pr_info("CPU%d is up\n", cpu);
1269 			continue;
1270 		}
1271 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1272 	}
1273 
1274 	arch_enable_nonboot_cpus_end();
1275 
1276 	cpumask_clear(frozen_cpus);
1277 out:
1278 	cpu_maps_update_done();
1279 }
1280 
1281 static int __init alloc_frozen_cpus(void)
1282 {
1283 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1284 		return -ENOMEM;
1285 	return 0;
1286 }
1287 core_initcall(alloc_frozen_cpus);
1288 
1289 /*
1290  * When callbacks for CPU hotplug notifications are being executed, we must
1291  * ensure that the state of the system with respect to the tasks being frozen
1292  * or not, as reported by the notification, remains unchanged *throughout the
1293  * duration* of the execution of the callbacks.
1294  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1295  *
1296  * This synchronization is implemented by mutually excluding regular CPU
1297  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1298  * Hibernate notifications.
1299  */
1300 static int
1301 cpu_hotplug_pm_callback(struct notifier_block *nb,
1302 			unsigned long action, void *ptr)
1303 {
1304 	switch (action) {
1305 
1306 	case PM_SUSPEND_PREPARE:
1307 	case PM_HIBERNATION_PREPARE:
1308 		cpu_hotplug_disable();
1309 		break;
1310 
1311 	case PM_POST_SUSPEND:
1312 	case PM_POST_HIBERNATION:
1313 		cpu_hotplug_enable();
1314 		break;
1315 
1316 	default:
1317 		return NOTIFY_DONE;
1318 	}
1319 
1320 	return NOTIFY_OK;
1321 }
1322 
1323 
1324 static int __init cpu_hotplug_pm_sync_init(void)
1325 {
1326 	/*
1327 	 * cpu_hotplug_pm_callback has higher priority than x86
1328 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1329 	 * to disable cpu hotplug to avoid cpu hotplug race.
1330 	 */
1331 	pm_notifier(cpu_hotplug_pm_callback, 0);
1332 	return 0;
1333 }
1334 core_initcall(cpu_hotplug_pm_sync_init);
1335 
1336 #endif /* CONFIG_PM_SLEEP_SMP */
1337 
1338 int __boot_cpu_id;
1339 
1340 #endif /* CONFIG_SMP */
1341 
1342 /* Boot processor state steps */
1343 static struct cpuhp_step cpuhp_hp_states[] = {
1344 	[CPUHP_OFFLINE] = {
1345 		.name			= "offline",
1346 		.startup.single		= NULL,
1347 		.teardown.single	= NULL,
1348 	},
1349 #ifdef CONFIG_SMP
1350 	[CPUHP_CREATE_THREADS]= {
1351 		.name			= "threads:prepare",
1352 		.startup.single		= smpboot_create_threads,
1353 		.teardown.single	= NULL,
1354 		.cant_stop		= true,
1355 	},
1356 	[CPUHP_PERF_PREPARE] = {
1357 		.name			= "perf:prepare",
1358 		.startup.single		= perf_event_init_cpu,
1359 		.teardown.single	= perf_event_exit_cpu,
1360 	},
1361 	[CPUHP_WORKQUEUE_PREP] = {
1362 		.name			= "workqueue:prepare",
1363 		.startup.single		= workqueue_prepare_cpu,
1364 		.teardown.single	= NULL,
1365 	},
1366 	[CPUHP_HRTIMERS_PREPARE] = {
1367 		.name			= "hrtimers:prepare",
1368 		.startup.single		= hrtimers_prepare_cpu,
1369 		.teardown.single	= hrtimers_dead_cpu,
1370 	},
1371 	[CPUHP_SMPCFD_PREPARE] = {
1372 		.name			= "smpcfd:prepare",
1373 		.startup.single		= smpcfd_prepare_cpu,
1374 		.teardown.single	= smpcfd_dead_cpu,
1375 	},
1376 	[CPUHP_RELAY_PREPARE] = {
1377 		.name			= "relay:prepare",
1378 		.startup.single		= relay_prepare_cpu,
1379 		.teardown.single	= NULL,
1380 	},
1381 	[CPUHP_SLAB_PREPARE] = {
1382 		.name			= "slab:prepare",
1383 		.startup.single		= slab_prepare_cpu,
1384 		.teardown.single	= slab_dead_cpu,
1385 	},
1386 	[CPUHP_RCUTREE_PREP] = {
1387 		.name			= "RCU/tree:prepare",
1388 		.startup.single		= rcutree_prepare_cpu,
1389 		.teardown.single	= rcutree_dead_cpu,
1390 	},
1391 	/*
1392 	 * On the tear-down path, timers_dead_cpu() must be invoked
1393 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1394 	 * otherwise a RCU stall occurs.
1395 	 */
1396 	[CPUHP_TIMERS_PREPARE] = {
1397 		.name			= "timers:prepare",
1398 		.startup.single		= timers_prepare_cpu,
1399 		.teardown.single	= timers_dead_cpu,
1400 	},
1401 	/* Kicks the plugged cpu into life */
1402 	[CPUHP_BRINGUP_CPU] = {
1403 		.name			= "cpu:bringup",
1404 		.startup.single		= bringup_cpu,
1405 		.teardown.single	= NULL,
1406 		.cant_stop		= true,
1407 	},
1408 	/* Final state before CPU kills itself */
1409 	[CPUHP_AP_IDLE_DEAD] = {
1410 		.name			= "idle:dead",
1411 	},
1412 	/*
1413 	 * Last state before CPU enters the idle loop to die. Transient state
1414 	 * for synchronization.
1415 	 */
1416 	[CPUHP_AP_OFFLINE] = {
1417 		.name			= "ap:offline",
1418 		.cant_stop		= true,
1419 	},
1420 	/* First state is scheduler control. Interrupts are disabled */
1421 	[CPUHP_AP_SCHED_STARTING] = {
1422 		.name			= "sched:starting",
1423 		.startup.single		= sched_cpu_starting,
1424 		.teardown.single	= sched_cpu_dying,
1425 	},
1426 	[CPUHP_AP_RCUTREE_DYING] = {
1427 		.name			= "RCU/tree:dying",
1428 		.startup.single		= NULL,
1429 		.teardown.single	= rcutree_dying_cpu,
1430 	},
1431 	[CPUHP_AP_SMPCFD_DYING] = {
1432 		.name			= "smpcfd:dying",
1433 		.startup.single		= NULL,
1434 		.teardown.single	= smpcfd_dying_cpu,
1435 	},
1436 	/* Entry state on starting. Interrupts enabled from here on. Transient
1437 	 * state for synchronsization */
1438 	[CPUHP_AP_ONLINE] = {
1439 		.name			= "ap:online",
1440 	},
1441 	/*
1442 	 * Handled on controll processor until the plugged processor manages
1443 	 * this itself.
1444 	 */
1445 	[CPUHP_TEARDOWN_CPU] = {
1446 		.name			= "cpu:teardown",
1447 		.startup.single		= NULL,
1448 		.teardown.single	= takedown_cpu,
1449 		.cant_stop		= true,
1450 	},
1451 	/* Handle smpboot threads park/unpark */
1452 	[CPUHP_AP_SMPBOOT_THREADS] = {
1453 		.name			= "smpboot/threads:online",
1454 		.startup.single		= smpboot_unpark_threads,
1455 		.teardown.single	= smpboot_park_threads,
1456 	},
1457 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1458 		.name			= "irq/affinity:online",
1459 		.startup.single		= irq_affinity_online_cpu,
1460 		.teardown.single	= NULL,
1461 	},
1462 	[CPUHP_AP_PERF_ONLINE] = {
1463 		.name			= "perf:online",
1464 		.startup.single		= perf_event_init_cpu,
1465 		.teardown.single	= perf_event_exit_cpu,
1466 	},
1467 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1468 		.name			= "lockup_detector:online",
1469 		.startup.single		= lockup_detector_online_cpu,
1470 		.teardown.single	= lockup_detector_offline_cpu,
1471 	},
1472 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1473 		.name			= "workqueue:online",
1474 		.startup.single		= workqueue_online_cpu,
1475 		.teardown.single	= workqueue_offline_cpu,
1476 	},
1477 	[CPUHP_AP_RCUTREE_ONLINE] = {
1478 		.name			= "RCU/tree:online",
1479 		.startup.single		= rcutree_online_cpu,
1480 		.teardown.single	= rcutree_offline_cpu,
1481 	},
1482 #endif
1483 	/*
1484 	 * The dynamically registered state space is here
1485 	 */
1486 
1487 #ifdef CONFIG_SMP
1488 	/* Last state is scheduler control setting the cpu active */
1489 	[CPUHP_AP_ACTIVE] = {
1490 		.name			= "sched:active",
1491 		.startup.single		= sched_cpu_activate,
1492 		.teardown.single	= sched_cpu_deactivate,
1493 	},
1494 #endif
1495 
1496 	/* CPU is fully up and running. */
1497 	[CPUHP_ONLINE] = {
1498 		.name			= "online",
1499 		.startup.single		= NULL,
1500 		.teardown.single	= NULL,
1501 	},
1502 };
1503 
1504 /* Sanity check for callbacks */
1505 static int cpuhp_cb_check(enum cpuhp_state state)
1506 {
1507 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1508 		return -EINVAL;
1509 	return 0;
1510 }
1511 
1512 /*
1513  * Returns a free for dynamic slot assignment of the Online state. The states
1514  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515  * by having no name assigned.
1516  */
1517 static int cpuhp_reserve_state(enum cpuhp_state state)
1518 {
1519 	enum cpuhp_state i, end;
1520 	struct cpuhp_step *step;
1521 
1522 	switch (state) {
1523 	case CPUHP_AP_ONLINE_DYN:
1524 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1525 		end = CPUHP_AP_ONLINE_DYN_END;
1526 		break;
1527 	case CPUHP_BP_PREPARE_DYN:
1528 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1529 		end = CPUHP_BP_PREPARE_DYN_END;
1530 		break;
1531 	default:
1532 		return -EINVAL;
1533 	}
1534 
1535 	for (i = state; i <= end; i++, step++) {
1536 		if (!step->name)
1537 			return i;
1538 	}
1539 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1540 	return -ENOSPC;
1541 }
1542 
1543 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1544 				 int (*startup)(unsigned int cpu),
1545 				 int (*teardown)(unsigned int cpu),
1546 				 bool multi_instance)
1547 {
1548 	/* (Un)Install the callbacks for further cpu hotplug operations */
1549 	struct cpuhp_step *sp;
1550 	int ret = 0;
1551 
1552 	/*
1553 	 * If name is NULL, then the state gets removed.
1554 	 *
1555 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1556 	 * the first allocation from these dynamic ranges, so the removal
1557 	 * would trigger a new allocation and clear the wrong (already
1558 	 * empty) state, leaving the callbacks of the to be cleared state
1559 	 * dangling, which causes wreckage on the next hotplug operation.
1560 	 */
1561 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1562 		     state == CPUHP_BP_PREPARE_DYN)) {
1563 		ret = cpuhp_reserve_state(state);
1564 		if (ret < 0)
1565 			return ret;
1566 		state = ret;
1567 	}
1568 	sp = cpuhp_get_step(state);
1569 	if (name && sp->name)
1570 		return -EBUSY;
1571 
1572 	sp->startup.single = startup;
1573 	sp->teardown.single = teardown;
1574 	sp->name = name;
1575 	sp->multi_instance = multi_instance;
1576 	INIT_HLIST_HEAD(&sp->list);
1577 	return ret;
1578 }
1579 
1580 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1581 {
1582 	return cpuhp_get_step(state)->teardown.single;
1583 }
1584 
1585 /*
1586  * Call the startup/teardown function for a step either on the AP or
1587  * on the current CPU.
1588  */
1589 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1590 			    struct hlist_node *node)
1591 {
1592 	struct cpuhp_step *sp = cpuhp_get_step(state);
1593 	int ret;
1594 
1595 	/*
1596 	 * If there's nothing to do, we done.
1597 	 * Relies on the union for multi_instance.
1598 	 */
1599 	if ((bringup && !sp->startup.single) ||
1600 	    (!bringup && !sp->teardown.single))
1601 		return 0;
1602 	/*
1603 	 * The non AP bound callbacks can fail on bringup. On teardown
1604 	 * e.g. module removal we crash for now.
1605 	 */
1606 #ifdef CONFIG_SMP
1607 	if (cpuhp_is_ap_state(state))
1608 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1609 	else
1610 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1611 #else
1612 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1613 #endif
1614 	BUG_ON(ret && !bringup);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Called from __cpuhp_setup_state on a recoverable failure.
1620  *
1621  * Note: The teardown callbacks for rollback are not allowed to fail!
1622  */
1623 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1624 				   struct hlist_node *node)
1625 {
1626 	int cpu;
1627 
1628 	/* Roll back the already executed steps on the other cpus */
1629 	for_each_present_cpu(cpu) {
1630 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1631 		int cpustate = st->state;
1632 
1633 		if (cpu >= failedcpu)
1634 			break;
1635 
1636 		/* Did we invoke the startup call on that cpu ? */
1637 		if (cpustate >= state)
1638 			cpuhp_issue_call(cpu, state, false, node);
1639 	}
1640 }
1641 
1642 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1643 					  struct hlist_node *node,
1644 					  bool invoke)
1645 {
1646 	struct cpuhp_step *sp;
1647 	int cpu;
1648 	int ret;
1649 
1650 	lockdep_assert_cpus_held();
1651 
1652 	sp = cpuhp_get_step(state);
1653 	if (sp->multi_instance == false)
1654 		return -EINVAL;
1655 
1656 	mutex_lock(&cpuhp_state_mutex);
1657 
1658 	if (!invoke || !sp->startup.multi)
1659 		goto add_node;
1660 
1661 	/*
1662 	 * Try to call the startup callback for each present cpu
1663 	 * depending on the hotplug state of the cpu.
1664 	 */
1665 	for_each_present_cpu(cpu) {
1666 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667 		int cpustate = st->state;
1668 
1669 		if (cpustate < state)
1670 			continue;
1671 
1672 		ret = cpuhp_issue_call(cpu, state, true, node);
1673 		if (ret) {
1674 			if (sp->teardown.multi)
1675 				cpuhp_rollback_install(cpu, state, node);
1676 			goto unlock;
1677 		}
1678 	}
1679 add_node:
1680 	ret = 0;
1681 	hlist_add_head(node, &sp->list);
1682 unlock:
1683 	mutex_unlock(&cpuhp_state_mutex);
1684 	return ret;
1685 }
1686 
1687 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1688 			       bool invoke)
1689 {
1690 	int ret;
1691 
1692 	cpus_read_lock();
1693 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1694 	cpus_read_unlock();
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1698 
1699 /**
1700  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1701  * @state:		The state to setup
1702  * @invoke:		If true, the startup function is invoked for cpus where
1703  *			cpu state >= @state
1704  * @startup:		startup callback function
1705  * @teardown:		teardown callback function
1706  * @multi_instance:	State is set up for multiple instances which get
1707  *			added afterwards.
1708  *
1709  * The caller needs to hold cpus read locked while calling this function.
1710  * Returns:
1711  *   On success:
1712  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1713  *      0 for all other states
1714  *   On failure: proper (negative) error code
1715  */
1716 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1717 				   const char *name, bool invoke,
1718 				   int (*startup)(unsigned int cpu),
1719 				   int (*teardown)(unsigned int cpu),
1720 				   bool multi_instance)
1721 {
1722 	int cpu, ret = 0;
1723 	bool dynstate;
1724 
1725 	lockdep_assert_cpus_held();
1726 
1727 	if (cpuhp_cb_check(state) || !name)
1728 		return -EINVAL;
1729 
1730 	mutex_lock(&cpuhp_state_mutex);
1731 
1732 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1733 				    multi_instance);
1734 
1735 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1736 	if (ret > 0 && dynstate) {
1737 		state = ret;
1738 		ret = 0;
1739 	}
1740 
1741 	if (ret || !invoke || !startup)
1742 		goto out;
1743 
1744 	/*
1745 	 * Try to call the startup callback for each present cpu
1746 	 * depending on the hotplug state of the cpu.
1747 	 */
1748 	for_each_present_cpu(cpu) {
1749 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1750 		int cpustate = st->state;
1751 
1752 		if (cpustate < state)
1753 			continue;
1754 
1755 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1756 		if (ret) {
1757 			if (teardown)
1758 				cpuhp_rollback_install(cpu, state, NULL);
1759 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1760 			goto out;
1761 		}
1762 	}
1763 out:
1764 	mutex_unlock(&cpuhp_state_mutex);
1765 	/*
1766 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1767 	 * dynamically allocated state in case of success.
1768 	 */
1769 	if (!ret && dynstate)
1770 		return state;
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1774 
1775 int __cpuhp_setup_state(enum cpuhp_state state,
1776 			const char *name, bool invoke,
1777 			int (*startup)(unsigned int cpu),
1778 			int (*teardown)(unsigned int cpu),
1779 			bool multi_instance)
1780 {
1781 	int ret;
1782 
1783 	cpus_read_lock();
1784 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1785 					     teardown, multi_instance);
1786 	cpus_read_unlock();
1787 	return ret;
1788 }
1789 EXPORT_SYMBOL(__cpuhp_setup_state);
1790 
1791 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1792 				  struct hlist_node *node, bool invoke)
1793 {
1794 	struct cpuhp_step *sp = cpuhp_get_step(state);
1795 	int cpu;
1796 
1797 	BUG_ON(cpuhp_cb_check(state));
1798 
1799 	if (!sp->multi_instance)
1800 		return -EINVAL;
1801 
1802 	cpus_read_lock();
1803 	mutex_lock(&cpuhp_state_mutex);
1804 
1805 	if (!invoke || !cpuhp_get_teardown_cb(state))
1806 		goto remove;
1807 	/*
1808 	 * Call the teardown callback for each present cpu depending
1809 	 * on the hotplug state of the cpu. This function is not
1810 	 * allowed to fail currently!
1811 	 */
1812 	for_each_present_cpu(cpu) {
1813 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 		int cpustate = st->state;
1815 
1816 		if (cpustate >= state)
1817 			cpuhp_issue_call(cpu, state, false, node);
1818 	}
1819 
1820 remove:
1821 	hlist_del(node);
1822 	mutex_unlock(&cpuhp_state_mutex);
1823 	cpus_read_unlock();
1824 
1825 	return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1828 
1829 /**
1830  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1831  * @state:	The state to remove
1832  * @invoke:	If true, the teardown function is invoked for cpus where
1833  *		cpu state >= @state
1834  *
1835  * The caller needs to hold cpus read locked while calling this function.
1836  * The teardown callback is currently not allowed to fail. Think
1837  * about module removal!
1838  */
1839 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1840 {
1841 	struct cpuhp_step *sp = cpuhp_get_step(state);
1842 	int cpu;
1843 
1844 	BUG_ON(cpuhp_cb_check(state));
1845 
1846 	lockdep_assert_cpus_held();
1847 
1848 	mutex_lock(&cpuhp_state_mutex);
1849 	if (sp->multi_instance) {
1850 		WARN(!hlist_empty(&sp->list),
1851 		     "Error: Removing state %d which has instances left.\n",
1852 		     state);
1853 		goto remove;
1854 	}
1855 
1856 	if (!invoke || !cpuhp_get_teardown_cb(state))
1857 		goto remove;
1858 
1859 	/*
1860 	 * Call the teardown callback for each present cpu depending
1861 	 * on the hotplug state of the cpu. This function is not
1862 	 * allowed to fail currently!
1863 	 */
1864 	for_each_present_cpu(cpu) {
1865 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1866 		int cpustate = st->state;
1867 
1868 		if (cpustate >= state)
1869 			cpuhp_issue_call(cpu, state, false, NULL);
1870 	}
1871 remove:
1872 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1873 	mutex_unlock(&cpuhp_state_mutex);
1874 }
1875 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1876 
1877 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1878 {
1879 	cpus_read_lock();
1880 	__cpuhp_remove_state_cpuslocked(state, invoke);
1881 	cpus_read_unlock();
1882 }
1883 EXPORT_SYMBOL(__cpuhp_remove_state);
1884 
1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1886 static ssize_t show_cpuhp_state(struct device *dev,
1887 				struct device_attribute *attr, char *buf)
1888 {
1889 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1890 
1891 	return sprintf(buf, "%d\n", st->state);
1892 }
1893 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1894 
1895 static ssize_t write_cpuhp_target(struct device *dev,
1896 				  struct device_attribute *attr,
1897 				  const char *buf, size_t count)
1898 {
1899 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1900 	struct cpuhp_step *sp;
1901 	int target, ret;
1902 
1903 	ret = kstrtoint(buf, 10, &target);
1904 	if (ret)
1905 		return ret;
1906 
1907 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1908 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1909 		return -EINVAL;
1910 #else
1911 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1912 		return -EINVAL;
1913 #endif
1914 
1915 	ret = lock_device_hotplug_sysfs();
1916 	if (ret)
1917 		return ret;
1918 
1919 	mutex_lock(&cpuhp_state_mutex);
1920 	sp = cpuhp_get_step(target);
1921 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1922 	mutex_unlock(&cpuhp_state_mutex);
1923 	if (ret)
1924 		goto out;
1925 
1926 	if (st->state < target)
1927 		ret = do_cpu_up(dev->id, target);
1928 	else
1929 		ret = do_cpu_down(dev->id, target);
1930 out:
1931 	unlock_device_hotplug();
1932 	return ret ? ret : count;
1933 }
1934 
1935 static ssize_t show_cpuhp_target(struct device *dev,
1936 				 struct device_attribute *attr, char *buf)
1937 {
1938 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1939 
1940 	return sprintf(buf, "%d\n", st->target);
1941 }
1942 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1943 
1944 
1945 static ssize_t write_cpuhp_fail(struct device *dev,
1946 				struct device_attribute *attr,
1947 				const char *buf, size_t count)
1948 {
1949 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1950 	struct cpuhp_step *sp;
1951 	int fail, ret;
1952 
1953 	ret = kstrtoint(buf, 10, &fail);
1954 	if (ret)
1955 		return ret;
1956 
1957 	/*
1958 	 * Cannot fail STARTING/DYING callbacks.
1959 	 */
1960 	if (cpuhp_is_atomic_state(fail))
1961 		return -EINVAL;
1962 
1963 	/*
1964 	 * Cannot fail anything that doesn't have callbacks.
1965 	 */
1966 	mutex_lock(&cpuhp_state_mutex);
1967 	sp = cpuhp_get_step(fail);
1968 	if (!sp->startup.single && !sp->teardown.single)
1969 		ret = -EINVAL;
1970 	mutex_unlock(&cpuhp_state_mutex);
1971 	if (ret)
1972 		return ret;
1973 
1974 	st->fail = fail;
1975 
1976 	return count;
1977 }
1978 
1979 static ssize_t show_cpuhp_fail(struct device *dev,
1980 			       struct device_attribute *attr, char *buf)
1981 {
1982 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1983 
1984 	return sprintf(buf, "%d\n", st->fail);
1985 }
1986 
1987 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1988 
1989 static struct attribute *cpuhp_cpu_attrs[] = {
1990 	&dev_attr_state.attr,
1991 	&dev_attr_target.attr,
1992 	&dev_attr_fail.attr,
1993 	NULL
1994 };
1995 
1996 static const struct attribute_group cpuhp_cpu_attr_group = {
1997 	.attrs = cpuhp_cpu_attrs,
1998 	.name = "hotplug",
1999 	NULL
2000 };
2001 
2002 static ssize_t show_cpuhp_states(struct device *dev,
2003 				 struct device_attribute *attr, char *buf)
2004 {
2005 	ssize_t cur, res = 0;
2006 	int i;
2007 
2008 	mutex_lock(&cpuhp_state_mutex);
2009 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2010 		struct cpuhp_step *sp = cpuhp_get_step(i);
2011 
2012 		if (sp->name) {
2013 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2014 			buf += cur;
2015 			res += cur;
2016 		}
2017 	}
2018 	mutex_unlock(&cpuhp_state_mutex);
2019 	return res;
2020 }
2021 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2022 
2023 static struct attribute *cpuhp_cpu_root_attrs[] = {
2024 	&dev_attr_states.attr,
2025 	NULL
2026 };
2027 
2028 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2029 	.attrs = cpuhp_cpu_root_attrs,
2030 	.name = "hotplug",
2031 	NULL
2032 };
2033 
2034 #ifdef CONFIG_HOTPLUG_SMT
2035 
2036 static const char *smt_states[] = {
2037 	[CPU_SMT_ENABLED]		= "on",
2038 	[CPU_SMT_DISABLED]		= "off",
2039 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2040 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2041 };
2042 
2043 static ssize_t
2044 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2045 {
2046 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2047 }
2048 
2049 static void cpuhp_offline_cpu_device(unsigned int cpu)
2050 {
2051 	struct device *dev = get_cpu_device(cpu);
2052 
2053 	dev->offline = true;
2054 	/* Tell user space about the state change */
2055 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056 }
2057 
2058 static void cpuhp_online_cpu_device(unsigned int cpu)
2059 {
2060 	struct device *dev = get_cpu_device(cpu);
2061 
2062 	dev->offline = false;
2063 	/* Tell user space about the state change */
2064 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065 }
2066 
2067 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068 {
2069 	int cpu, ret = 0;
2070 
2071 	cpu_maps_update_begin();
2072 	for_each_online_cpu(cpu) {
2073 		if (topology_is_primary_thread(cpu))
2074 			continue;
2075 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076 		if (ret)
2077 			break;
2078 		/*
2079 		 * As this needs to hold the cpu maps lock it's impossible
2080 		 * to call device_offline() because that ends up calling
2081 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 		 * needs to be held as this might race against in kernel
2083 		 * abusers of the hotplug machinery (thermal management).
2084 		 *
2085 		 * So nothing would update device:offline state. That would
2086 		 * leave the sysfs entry stale and prevent onlining after
2087 		 * smt control has been changed to 'off' again. This is
2088 		 * called under the sysfs hotplug lock, so it is properly
2089 		 * serialized against the regular offline usage.
2090 		 */
2091 		cpuhp_offline_cpu_device(cpu);
2092 	}
2093 	if (!ret) {
2094 		cpu_smt_control = ctrlval;
2095 		arch_smt_update();
2096 	}
2097 	cpu_maps_update_done();
2098 	return ret;
2099 }
2100 
2101 static int cpuhp_smt_enable(void)
2102 {
2103 	int cpu, ret = 0;
2104 
2105 	cpu_maps_update_begin();
2106 	cpu_smt_control = CPU_SMT_ENABLED;
2107 	arch_smt_update();
2108 	for_each_present_cpu(cpu) {
2109 		/* Skip online CPUs and CPUs on offline nodes */
2110 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2111 			continue;
2112 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2113 		if (ret)
2114 			break;
2115 		/* See comment in cpuhp_smt_disable() */
2116 		cpuhp_online_cpu_device(cpu);
2117 	}
2118 	cpu_maps_update_done();
2119 	return ret;
2120 }
2121 
2122 static ssize_t
2123 store_smt_control(struct device *dev, struct device_attribute *attr,
2124 		  const char *buf, size_t count)
2125 {
2126 	int ctrlval, ret;
2127 
2128 	if (sysfs_streq(buf, "on"))
2129 		ctrlval = CPU_SMT_ENABLED;
2130 	else if (sysfs_streq(buf, "off"))
2131 		ctrlval = CPU_SMT_DISABLED;
2132 	else if (sysfs_streq(buf, "forceoff"))
2133 		ctrlval = CPU_SMT_FORCE_DISABLED;
2134 	else
2135 		return -EINVAL;
2136 
2137 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2138 		return -EPERM;
2139 
2140 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2141 		return -ENODEV;
2142 
2143 	ret = lock_device_hotplug_sysfs();
2144 	if (ret)
2145 		return ret;
2146 
2147 	if (ctrlval != cpu_smt_control) {
2148 		switch (ctrlval) {
2149 		case CPU_SMT_ENABLED:
2150 			ret = cpuhp_smt_enable();
2151 			break;
2152 		case CPU_SMT_DISABLED:
2153 		case CPU_SMT_FORCE_DISABLED:
2154 			ret = cpuhp_smt_disable(ctrlval);
2155 			break;
2156 		}
2157 	}
2158 
2159 	unlock_device_hotplug();
2160 	return ret ? ret : count;
2161 }
2162 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2163 
2164 static ssize_t
2165 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2166 {
2167 	bool active = topology_max_smt_threads() > 1;
2168 
2169 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2170 }
2171 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2172 
2173 static struct attribute *cpuhp_smt_attrs[] = {
2174 	&dev_attr_control.attr,
2175 	&dev_attr_active.attr,
2176 	NULL
2177 };
2178 
2179 static const struct attribute_group cpuhp_smt_attr_group = {
2180 	.attrs = cpuhp_smt_attrs,
2181 	.name = "smt",
2182 	NULL
2183 };
2184 
2185 static int __init cpu_smt_state_init(void)
2186 {
2187 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2188 				  &cpuhp_smt_attr_group);
2189 }
2190 
2191 #else
2192 static inline int cpu_smt_state_init(void) { return 0; }
2193 #endif
2194 
2195 static int __init cpuhp_sysfs_init(void)
2196 {
2197 	int cpu, ret;
2198 
2199 	ret = cpu_smt_state_init();
2200 	if (ret)
2201 		return ret;
2202 
2203 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2204 				 &cpuhp_cpu_root_attr_group);
2205 	if (ret)
2206 		return ret;
2207 
2208 	for_each_possible_cpu(cpu) {
2209 		struct device *dev = get_cpu_device(cpu);
2210 
2211 		if (!dev)
2212 			continue;
2213 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2214 		if (ret)
2215 			return ret;
2216 	}
2217 	return 0;
2218 }
2219 device_initcall(cpuhp_sysfs_init);
2220 #endif
2221 
2222 /*
2223  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2224  * represents all NR_CPUS bits binary values of 1<<nr.
2225  *
2226  * It is used by cpumask_of() to get a constant address to a CPU
2227  * mask value that has a single bit set only.
2228  */
2229 
2230 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2231 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2232 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2233 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2234 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2235 
2236 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2237 
2238 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2239 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2240 #if BITS_PER_LONG > 32
2241 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2242 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2243 #endif
2244 };
2245 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2246 
2247 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2248 EXPORT_SYMBOL(cpu_all_bits);
2249 
2250 #ifdef CONFIG_INIT_ALL_POSSIBLE
2251 struct cpumask __cpu_possible_mask __read_mostly
2252 	= {CPU_BITS_ALL};
2253 #else
2254 struct cpumask __cpu_possible_mask __read_mostly;
2255 #endif
2256 EXPORT_SYMBOL(__cpu_possible_mask);
2257 
2258 struct cpumask __cpu_online_mask __read_mostly;
2259 EXPORT_SYMBOL(__cpu_online_mask);
2260 
2261 struct cpumask __cpu_present_mask __read_mostly;
2262 EXPORT_SYMBOL(__cpu_present_mask);
2263 
2264 struct cpumask __cpu_active_mask __read_mostly;
2265 EXPORT_SYMBOL(__cpu_active_mask);
2266 
2267 void init_cpu_present(const struct cpumask *src)
2268 {
2269 	cpumask_copy(&__cpu_present_mask, src);
2270 }
2271 
2272 void init_cpu_possible(const struct cpumask *src)
2273 {
2274 	cpumask_copy(&__cpu_possible_mask, src);
2275 }
2276 
2277 void init_cpu_online(const struct cpumask *src)
2278 {
2279 	cpumask_copy(&__cpu_online_mask, src);
2280 }
2281 
2282 /*
2283  * Activate the first processor.
2284  */
2285 void __init boot_cpu_init(void)
2286 {
2287 	int cpu = smp_processor_id();
2288 
2289 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2290 	set_cpu_online(cpu, true);
2291 	set_cpu_active(cpu, true);
2292 	set_cpu_present(cpu, true);
2293 	set_cpu_possible(cpu, true);
2294 
2295 #ifdef CONFIG_SMP
2296 	__boot_cpu_id = cpu;
2297 #endif
2298 }
2299 
2300 /*
2301  * Must be called _AFTER_ setting up the per_cpu areas
2302  */
2303 void __init boot_cpu_hotplug_init(void)
2304 {
2305 #ifdef CONFIG_SMP
2306 	this_cpu_write(cpuhp_state.booted_once, true);
2307 #endif
2308 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2309 }
2310