1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/oom.h> 14 #include <linux/rcupdate.h> 15 #include <linux/export.h> 16 #include <linux/bug.h> 17 #include <linux/kthread.h> 18 #include <linux/stop_machine.h> 19 #include <linux/mutex.h> 20 #include <linux/gfp.h> 21 #include <linux/suspend.h> 22 #include <linux/lockdep.h> 23 #include <trace/events/power.h> 24 25 #include "smpboot.h" 26 27 #ifdef CONFIG_SMP 28 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 29 static DEFINE_MUTEX(cpu_add_remove_lock); 30 31 /* 32 * The following two APIs (cpu_maps_update_begin/done) must be used when 33 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 34 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU 35 * hotplug callback (un)registration performed using __register_cpu_notifier() 36 * or __unregister_cpu_notifier(). 37 */ 38 void cpu_maps_update_begin(void) 39 { 40 mutex_lock(&cpu_add_remove_lock); 41 } 42 EXPORT_SYMBOL(cpu_notifier_register_begin); 43 44 void cpu_maps_update_done(void) 45 { 46 mutex_unlock(&cpu_add_remove_lock); 47 } 48 EXPORT_SYMBOL(cpu_notifier_register_done); 49 50 static RAW_NOTIFIER_HEAD(cpu_chain); 51 52 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 53 * Should always be manipulated under cpu_add_remove_lock 54 */ 55 static int cpu_hotplug_disabled; 56 57 #ifdef CONFIG_HOTPLUG_CPU 58 59 static struct { 60 struct task_struct *active_writer; 61 /* wait queue to wake up the active_writer */ 62 wait_queue_head_t wq; 63 /* verifies that no writer will get active while readers are active */ 64 struct mutex lock; 65 /* 66 * Also blocks the new readers during 67 * an ongoing cpu hotplug operation. 68 */ 69 atomic_t refcount; 70 71 #ifdef CONFIG_DEBUG_LOCK_ALLOC 72 struct lockdep_map dep_map; 73 #endif 74 } cpu_hotplug = { 75 .active_writer = NULL, 76 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq), 77 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 78 #ifdef CONFIG_DEBUG_LOCK_ALLOC 79 .dep_map = {.name = "cpu_hotplug.lock" }, 80 #endif 81 }; 82 83 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */ 84 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map) 85 #define cpuhp_lock_acquire_tryread() \ 86 lock_map_acquire_tryread(&cpu_hotplug.dep_map) 87 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map) 88 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map) 89 90 91 void get_online_cpus(void) 92 { 93 might_sleep(); 94 if (cpu_hotplug.active_writer == current) 95 return; 96 cpuhp_lock_acquire_read(); 97 mutex_lock(&cpu_hotplug.lock); 98 atomic_inc(&cpu_hotplug.refcount); 99 mutex_unlock(&cpu_hotplug.lock); 100 } 101 EXPORT_SYMBOL_GPL(get_online_cpus); 102 103 bool try_get_online_cpus(void) 104 { 105 if (cpu_hotplug.active_writer == current) 106 return true; 107 if (!mutex_trylock(&cpu_hotplug.lock)) 108 return false; 109 cpuhp_lock_acquire_tryread(); 110 atomic_inc(&cpu_hotplug.refcount); 111 mutex_unlock(&cpu_hotplug.lock); 112 return true; 113 } 114 EXPORT_SYMBOL_GPL(try_get_online_cpus); 115 116 void put_online_cpus(void) 117 { 118 int refcount; 119 120 if (cpu_hotplug.active_writer == current) 121 return; 122 123 refcount = atomic_dec_return(&cpu_hotplug.refcount); 124 if (WARN_ON(refcount < 0)) /* try to fix things up */ 125 atomic_inc(&cpu_hotplug.refcount); 126 127 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq)) 128 wake_up(&cpu_hotplug.wq); 129 130 cpuhp_lock_release(); 131 132 } 133 EXPORT_SYMBOL_GPL(put_online_cpus); 134 135 /* 136 * This ensures that the hotplug operation can begin only when the 137 * refcount goes to zero. 138 * 139 * Note that during a cpu-hotplug operation, the new readers, if any, 140 * will be blocked by the cpu_hotplug.lock 141 * 142 * Since cpu_hotplug_begin() is always called after invoking 143 * cpu_maps_update_begin(), we can be sure that only one writer is active. 144 * 145 * Note that theoretically, there is a possibility of a livelock: 146 * - Refcount goes to zero, last reader wakes up the sleeping 147 * writer. 148 * - Last reader unlocks the cpu_hotplug.lock. 149 * - A new reader arrives at this moment, bumps up the refcount. 150 * - The writer acquires the cpu_hotplug.lock finds the refcount 151 * non zero and goes to sleep again. 152 * 153 * However, this is very difficult to achieve in practice since 154 * get_online_cpus() not an api which is called all that often. 155 * 156 */ 157 void cpu_hotplug_begin(void) 158 { 159 DEFINE_WAIT(wait); 160 161 cpu_hotplug.active_writer = current; 162 cpuhp_lock_acquire(); 163 164 for (;;) { 165 mutex_lock(&cpu_hotplug.lock); 166 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE); 167 if (likely(!atomic_read(&cpu_hotplug.refcount))) 168 break; 169 mutex_unlock(&cpu_hotplug.lock); 170 schedule(); 171 } 172 finish_wait(&cpu_hotplug.wq, &wait); 173 } 174 175 void cpu_hotplug_done(void) 176 { 177 cpu_hotplug.active_writer = NULL; 178 mutex_unlock(&cpu_hotplug.lock); 179 cpuhp_lock_release(); 180 } 181 182 /* 183 * Wait for currently running CPU hotplug operations to complete (if any) and 184 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 185 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 186 * hotplug path before performing hotplug operations. So acquiring that lock 187 * guarantees mutual exclusion from any currently running hotplug operations. 188 */ 189 void cpu_hotplug_disable(void) 190 { 191 cpu_maps_update_begin(); 192 cpu_hotplug_disabled = 1; 193 cpu_maps_update_done(); 194 } 195 196 void cpu_hotplug_enable(void) 197 { 198 cpu_maps_update_begin(); 199 cpu_hotplug_disabled = 0; 200 cpu_maps_update_done(); 201 } 202 203 #endif /* CONFIG_HOTPLUG_CPU */ 204 205 /* Need to know about CPUs going up/down? */ 206 int __ref register_cpu_notifier(struct notifier_block *nb) 207 { 208 int ret; 209 cpu_maps_update_begin(); 210 ret = raw_notifier_chain_register(&cpu_chain, nb); 211 cpu_maps_update_done(); 212 return ret; 213 } 214 215 int __ref __register_cpu_notifier(struct notifier_block *nb) 216 { 217 return raw_notifier_chain_register(&cpu_chain, nb); 218 } 219 220 static int __cpu_notify(unsigned long val, void *v, int nr_to_call, 221 int *nr_calls) 222 { 223 int ret; 224 225 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, 226 nr_calls); 227 228 return notifier_to_errno(ret); 229 } 230 231 static int cpu_notify(unsigned long val, void *v) 232 { 233 return __cpu_notify(val, v, -1, NULL); 234 } 235 236 #ifdef CONFIG_HOTPLUG_CPU 237 238 static void cpu_notify_nofail(unsigned long val, void *v) 239 { 240 BUG_ON(cpu_notify(val, v)); 241 } 242 EXPORT_SYMBOL(register_cpu_notifier); 243 EXPORT_SYMBOL(__register_cpu_notifier); 244 245 void __ref unregister_cpu_notifier(struct notifier_block *nb) 246 { 247 cpu_maps_update_begin(); 248 raw_notifier_chain_unregister(&cpu_chain, nb); 249 cpu_maps_update_done(); 250 } 251 EXPORT_SYMBOL(unregister_cpu_notifier); 252 253 void __ref __unregister_cpu_notifier(struct notifier_block *nb) 254 { 255 raw_notifier_chain_unregister(&cpu_chain, nb); 256 } 257 EXPORT_SYMBOL(__unregister_cpu_notifier); 258 259 /** 260 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 261 * @cpu: a CPU id 262 * 263 * This function walks all processes, finds a valid mm struct for each one and 264 * then clears a corresponding bit in mm's cpumask. While this all sounds 265 * trivial, there are various non-obvious corner cases, which this function 266 * tries to solve in a safe manner. 267 * 268 * Also note that the function uses a somewhat relaxed locking scheme, so it may 269 * be called only for an already offlined CPU. 270 */ 271 void clear_tasks_mm_cpumask(int cpu) 272 { 273 struct task_struct *p; 274 275 /* 276 * This function is called after the cpu is taken down and marked 277 * offline, so its not like new tasks will ever get this cpu set in 278 * their mm mask. -- Peter Zijlstra 279 * Thus, we may use rcu_read_lock() here, instead of grabbing 280 * full-fledged tasklist_lock. 281 */ 282 WARN_ON(cpu_online(cpu)); 283 rcu_read_lock(); 284 for_each_process(p) { 285 struct task_struct *t; 286 287 /* 288 * Main thread might exit, but other threads may still have 289 * a valid mm. Find one. 290 */ 291 t = find_lock_task_mm(p); 292 if (!t) 293 continue; 294 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 295 task_unlock(t); 296 } 297 rcu_read_unlock(); 298 } 299 300 static inline void check_for_tasks(int dead_cpu) 301 { 302 struct task_struct *g, *p; 303 304 read_lock_irq(&tasklist_lock); 305 do_each_thread(g, p) { 306 if (!p->on_rq) 307 continue; 308 /* 309 * We do the check with unlocked task_rq(p)->lock. 310 * Order the reading to do not warn about a task, 311 * which was running on this cpu in the past, and 312 * it's just been woken on another cpu. 313 */ 314 rmb(); 315 if (task_cpu(p) != dead_cpu) 316 continue; 317 318 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n", 319 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags); 320 } while_each_thread(g, p); 321 read_unlock_irq(&tasklist_lock); 322 } 323 324 struct take_cpu_down_param { 325 unsigned long mod; 326 void *hcpu; 327 }; 328 329 /* Take this CPU down. */ 330 static int __ref take_cpu_down(void *_param) 331 { 332 struct take_cpu_down_param *param = _param; 333 int err; 334 335 /* Ensure this CPU doesn't handle any more interrupts. */ 336 err = __cpu_disable(); 337 if (err < 0) 338 return err; 339 340 cpu_notify(CPU_DYING | param->mod, param->hcpu); 341 /* Park the stopper thread */ 342 kthread_park(current); 343 return 0; 344 } 345 346 /* Requires cpu_add_remove_lock to be held */ 347 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 348 { 349 int err, nr_calls = 0; 350 void *hcpu = (void *)(long)cpu; 351 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 352 struct take_cpu_down_param tcd_param = { 353 .mod = mod, 354 .hcpu = hcpu, 355 }; 356 357 if (num_online_cpus() == 1) 358 return -EBUSY; 359 360 if (!cpu_online(cpu)) 361 return -EINVAL; 362 363 cpu_hotplug_begin(); 364 365 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); 366 if (err) { 367 nr_calls--; 368 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); 369 pr_warn("%s: attempt to take down CPU %u failed\n", 370 __func__, cpu); 371 goto out_release; 372 } 373 374 /* 375 * By now we've cleared cpu_active_mask, wait for all preempt-disabled 376 * and RCU users of this state to go away such that all new such users 377 * will observe it. 378 * 379 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 380 * not imply sync_sched(), so explicitly call both. 381 * 382 * Do sync before park smpboot threads to take care the rcu boost case. 383 */ 384 #ifdef CONFIG_PREEMPT 385 synchronize_sched(); 386 #endif 387 synchronize_rcu(); 388 389 smpboot_park_threads(cpu); 390 391 /* 392 * So now all preempt/rcu users must observe !cpu_active(). 393 */ 394 395 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 396 if (err) { 397 /* CPU didn't die: tell everyone. Can't complain. */ 398 smpboot_unpark_threads(cpu); 399 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); 400 goto out_release; 401 } 402 BUG_ON(cpu_online(cpu)); 403 404 /* 405 * The migration_call() CPU_DYING callback will have removed all 406 * runnable tasks from the cpu, there's only the idle task left now 407 * that the migration thread is done doing the stop_machine thing. 408 * 409 * Wait for the stop thread to go away. 410 */ 411 while (!idle_cpu(cpu)) 412 cpu_relax(); 413 414 /* This actually kills the CPU. */ 415 __cpu_die(cpu); 416 417 /* CPU is completely dead: tell everyone. Too late to complain. */ 418 cpu_notify_nofail(CPU_DEAD | mod, hcpu); 419 420 check_for_tasks(cpu); 421 422 out_release: 423 cpu_hotplug_done(); 424 if (!err) 425 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); 426 return err; 427 } 428 429 int __ref cpu_down(unsigned int cpu) 430 { 431 int err; 432 433 cpu_maps_update_begin(); 434 435 if (cpu_hotplug_disabled) { 436 err = -EBUSY; 437 goto out; 438 } 439 440 err = _cpu_down(cpu, 0); 441 442 out: 443 cpu_maps_update_done(); 444 return err; 445 } 446 EXPORT_SYMBOL(cpu_down); 447 #endif /*CONFIG_HOTPLUG_CPU*/ 448 449 /* Requires cpu_add_remove_lock to be held */ 450 static int _cpu_up(unsigned int cpu, int tasks_frozen) 451 { 452 int ret, nr_calls = 0; 453 void *hcpu = (void *)(long)cpu; 454 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 455 struct task_struct *idle; 456 457 cpu_hotplug_begin(); 458 459 if (cpu_online(cpu) || !cpu_present(cpu)) { 460 ret = -EINVAL; 461 goto out; 462 } 463 464 idle = idle_thread_get(cpu); 465 if (IS_ERR(idle)) { 466 ret = PTR_ERR(idle); 467 goto out; 468 } 469 470 ret = smpboot_create_threads(cpu); 471 if (ret) 472 goto out; 473 474 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); 475 if (ret) { 476 nr_calls--; 477 pr_warn("%s: attempt to bring up CPU %u failed\n", 478 __func__, cpu); 479 goto out_notify; 480 } 481 482 /* Arch-specific enabling code. */ 483 ret = __cpu_up(cpu, idle); 484 if (ret != 0) 485 goto out_notify; 486 BUG_ON(!cpu_online(cpu)); 487 488 /* Wake the per cpu threads */ 489 smpboot_unpark_threads(cpu); 490 491 /* Now call notifier in preparation. */ 492 cpu_notify(CPU_ONLINE | mod, hcpu); 493 494 out_notify: 495 if (ret != 0) 496 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 497 out: 498 cpu_hotplug_done(); 499 500 return ret; 501 } 502 503 int cpu_up(unsigned int cpu) 504 { 505 int err = 0; 506 507 if (!cpu_possible(cpu)) { 508 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 509 cpu); 510 #if defined(CONFIG_IA64) 511 pr_err("please check additional_cpus= boot parameter\n"); 512 #endif 513 return -EINVAL; 514 } 515 516 err = try_online_node(cpu_to_node(cpu)); 517 if (err) 518 return err; 519 520 cpu_maps_update_begin(); 521 522 if (cpu_hotplug_disabled) { 523 err = -EBUSY; 524 goto out; 525 } 526 527 err = _cpu_up(cpu, 0); 528 529 out: 530 cpu_maps_update_done(); 531 return err; 532 } 533 EXPORT_SYMBOL_GPL(cpu_up); 534 535 #ifdef CONFIG_PM_SLEEP_SMP 536 static cpumask_var_t frozen_cpus; 537 538 int disable_nonboot_cpus(void) 539 { 540 int cpu, first_cpu, error = 0; 541 542 cpu_maps_update_begin(); 543 first_cpu = cpumask_first(cpu_online_mask); 544 /* 545 * We take down all of the non-boot CPUs in one shot to avoid races 546 * with the userspace trying to use the CPU hotplug at the same time 547 */ 548 cpumask_clear(frozen_cpus); 549 550 pr_info("Disabling non-boot CPUs ...\n"); 551 for_each_online_cpu(cpu) { 552 if (cpu == first_cpu) 553 continue; 554 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 555 error = _cpu_down(cpu, 1); 556 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 557 if (!error) 558 cpumask_set_cpu(cpu, frozen_cpus); 559 else { 560 pr_err("Error taking CPU%d down: %d\n", cpu, error); 561 break; 562 } 563 } 564 565 if (!error) { 566 BUG_ON(num_online_cpus() > 1); 567 /* Make sure the CPUs won't be enabled by someone else */ 568 cpu_hotplug_disabled = 1; 569 } else { 570 pr_err("Non-boot CPUs are not disabled\n"); 571 } 572 cpu_maps_update_done(); 573 return error; 574 } 575 576 void __weak arch_enable_nonboot_cpus_begin(void) 577 { 578 } 579 580 void __weak arch_enable_nonboot_cpus_end(void) 581 { 582 } 583 584 void __ref enable_nonboot_cpus(void) 585 { 586 int cpu, error; 587 588 /* Allow everyone to use the CPU hotplug again */ 589 cpu_maps_update_begin(); 590 cpu_hotplug_disabled = 0; 591 if (cpumask_empty(frozen_cpus)) 592 goto out; 593 594 pr_info("Enabling non-boot CPUs ...\n"); 595 596 arch_enable_nonboot_cpus_begin(); 597 598 for_each_cpu(cpu, frozen_cpus) { 599 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 600 error = _cpu_up(cpu, 1); 601 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 602 if (!error) { 603 pr_info("CPU%d is up\n", cpu); 604 continue; 605 } 606 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 607 } 608 609 arch_enable_nonboot_cpus_end(); 610 611 cpumask_clear(frozen_cpus); 612 out: 613 cpu_maps_update_done(); 614 } 615 616 static int __init alloc_frozen_cpus(void) 617 { 618 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 619 return -ENOMEM; 620 return 0; 621 } 622 core_initcall(alloc_frozen_cpus); 623 624 /* 625 * When callbacks for CPU hotplug notifications are being executed, we must 626 * ensure that the state of the system with respect to the tasks being frozen 627 * or not, as reported by the notification, remains unchanged *throughout the 628 * duration* of the execution of the callbacks. 629 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 630 * 631 * This synchronization is implemented by mutually excluding regular CPU 632 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 633 * Hibernate notifications. 634 */ 635 static int 636 cpu_hotplug_pm_callback(struct notifier_block *nb, 637 unsigned long action, void *ptr) 638 { 639 switch (action) { 640 641 case PM_SUSPEND_PREPARE: 642 case PM_HIBERNATION_PREPARE: 643 cpu_hotplug_disable(); 644 break; 645 646 case PM_POST_SUSPEND: 647 case PM_POST_HIBERNATION: 648 cpu_hotplug_enable(); 649 break; 650 651 default: 652 return NOTIFY_DONE; 653 } 654 655 return NOTIFY_OK; 656 } 657 658 659 static int __init cpu_hotplug_pm_sync_init(void) 660 { 661 /* 662 * cpu_hotplug_pm_callback has higher priority than x86 663 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 664 * to disable cpu hotplug to avoid cpu hotplug race. 665 */ 666 pm_notifier(cpu_hotplug_pm_callback, 0); 667 return 0; 668 } 669 core_initcall(cpu_hotplug_pm_sync_init); 670 671 #endif /* CONFIG_PM_SLEEP_SMP */ 672 673 /** 674 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 675 * @cpu: cpu that just started 676 * 677 * This function calls the cpu_chain notifiers with CPU_STARTING. 678 * It must be called by the arch code on the new cpu, before the new cpu 679 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 680 */ 681 void notify_cpu_starting(unsigned int cpu) 682 { 683 unsigned long val = CPU_STARTING; 684 685 #ifdef CONFIG_PM_SLEEP_SMP 686 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) 687 val = CPU_STARTING_FROZEN; 688 #endif /* CONFIG_PM_SLEEP_SMP */ 689 cpu_notify(val, (void *)(long)cpu); 690 } 691 692 #endif /* CONFIG_SMP */ 693 694 /* 695 * cpu_bit_bitmap[] is a special, "compressed" data structure that 696 * represents all NR_CPUS bits binary values of 1<<nr. 697 * 698 * It is used by cpumask_of() to get a constant address to a CPU 699 * mask value that has a single bit set only. 700 */ 701 702 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 703 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 704 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 705 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 706 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 707 708 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 709 710 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 711 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 712 #if BITS_PER_LONG > 32 713 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 714 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 715 #endif 716 }; 717 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 718 719 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 720 EXPORT_SYMBOL(cpu_all_bits); 721 722 #ifdef CONFIG_INIT_ALL_POSSIBLE 723 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly 724 = CPU_BITS_ALL; 725 #else 726 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; 727 #endif 728 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); 729 EXPORT_SYMBOL(cpu_possible_mask); 730 731 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; 732 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); 733 EXPORT_SYMBOL(cpu_online_mask); 734 735 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; 736 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); 737 EXPORT_SYMBOL(cpu_present_mask); 738 739 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; 740 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); 741 EXPORT_SYMBOL(cpu_active_mask); 742 743 void set_cpu_possible(unsigned int cpu, bool possible) 744 { 745 if (possible) 746 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); 747 else 748 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); 749 } 750 751 void set_cpu_present(unsigned int cpu, bool present) 752 { 753 if (present) 754 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); 755 else 756 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); 757 } 758 759 void set_cpu_online(unsigned int cpu, bool online) 760 { 761 if (online) { 762 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); 763 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 764 } else { 765 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); 766 } 767 } 768 769 void set_cpu_active(unsigned int cpu, bool active) 770 { 771 if (active) 772 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 773 else 774 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); 775 } 776 777 void init_cpu_present(const struct cpumask *src) 778 { 779 cpumask_copy(to_cpumask(cpu_present_bits), src); 780 } 781 782 void init_cpu_possible(const struct cpumask *src) 783 { 784 cpumask_copy(to_cpumask(cpu_possible_bits), src); 785 } 786 787 void init_cpu_online(const struct cpumask *src) 788 { 789 cpumask_copy(to_cpumask(cpu_online_bits), src); 790 } 791