1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/smpboot.h> 28 #include <linux/relay.h> 29 #include <linux/slab.h> 30 31 #include <trace/events/power.h> 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/cpuhp.h> 34 35 #include "smpboot.h" 36 37 /** 38 * cpuhp_cpu_state - Per cpu hotplug state storage 39 * @state: The current cpu state 40 * @target: The target state 41 * @thread: Pointer to the hotplug thread 42 * @should_run: Thread should execute 43 * @rollback: Perform a rollback 44 * @single: Single callback invocation 45 * @bringup: Single callback bringup or teardown selector 46 * @cb_state: The state for a single callback (install/uninstall) 47 * @result: Result of the operation 48 * @done: Signal completion to the issuer of the task 49 */ 50 struct cpuhp_cpu_state { 51 enum cpuhp_state state; 52 enum cpuhp_state target; 53 #ifdef CONFIG_SMP 54 struct task_struct *thread; 55 bool should_run; 56 bool rollback; 57 bool single; 58 bool bringup; 59 struct hlist_node *node; 60 enum cpuhp_state cb_state; 61 int result; 62 struct completion done; 63 #endif 64 }; 65 66 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state); 67 68 /** 69 * cpuhp_step - Hotplug state machine step 70 * @name: Name of the step 71 * @startup: Startup function of the step 72 * @teardown: Teardown function of the step 73 * @skip_onerr: Do not invoke the functions on error rollback 74 * Will go away once the notifiers are gone 75 * @cant_stop: Bringup/teardown can't be stopped at this step 76 */ 77 struct cpuhp_step { 78 const char *name; 79 union { 80 int (*single)(unsigned int cpu); 81 int (*multi)(unsigned int cpu, 82 struct hlist_node *node); 83 } startup; 84 union { 85 int (*single)(unsigned int cpu); 86 int (*multi)(unsigned int cpu, 87 struct hlist_node *node); 88 } teardown; 89 struct hlist_head list; 90 bool skip_onerr; 91 bool cant_stop; 92 bool multi_instance; 93 }; 94 95 static DEFINE_MUTEX(cpuhp_state_mutex); 96 static struct cpuhp_step cpuhp_bp_states[]; 97 static struct cpuhp_step cpuhp_ap_states[]; 98 99 static bool cpuhp_is_ap_state(enum cpuhp_state state) 100 { 101 /* 102 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 103 * purposes as that state is handled explicitly in cpu_down. 104 */ 105 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 106 } 107 108 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 109 { 110 struct cpuhp_step *sp; 111 112 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; 113 return sp + state; 114 } 115 116 /** 117 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 118 * @cpu: The cpu for which the callback should be invoked 119 * @step: The step in the state machine 120 * @bringup: True if the bringup callback should be invoked 121 * 122 * Called from cpu hotplug and from the state register machinery. 123 */ 124 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 125 bool bringup, struct hlist_node *node) 126 { 127 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 128 struct cpuhp_step *step = cpuhp_get_step(state); 129 int (*cbm)(unsigned int cpu, struct hlist_node *node); 130 int (*cb)(unsigned int cpu); 131 int ret, cnt; 132 133 if (!step->multi_instance) { 134 cb = bringup ? step->startup.single : step->teardown.single; 135 if (!cb) 136 return 0; 137 trace_cpuhp_enter(cpu, st->target, state, cb); 138 ret = cb(cpu); 139 trace_cpuhp_exit(cpu, st->state, state, ret); 140 return ret; 141 } 142 cbm = bringup ? step->startup.multi : step->teardown.multi; 143 if (!cbm) 144 return 0; 145 146 /* Single invocation for instance add/remove */ 147 if (node) { 148 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 149 ret = cbm(cpu, node); 150 trace_cpuhp_exit(cpu, st->state, state, ret); 151 return ret; 152 } 153 154 /* State transition. Invoke on all instances */ 155 cnt = 0; 156 hlist_for_each(node, &step->list) { 157 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 158 ret = cbm(cpu, node); 159 trace_cpuhp_exit(cpu, st->state, state, ret); 160 if (ret) 161 goto err; 162 cnt++; 163 } 164 return 0; 165 err: 166 /* Rollback the instances if one failed */ 167 cbm = !bringup ? step->startup.multi : step->teardown.multi; 168 if (!cbm) 169 return ret; 170 171 hlist_for_each(node, &step->list) { 172 if (!cnt--) 173 break; 174 cbm(cpu, node); 175 } 176 return ret; 177 } 178 179 #ifdef CONFIG_SMP 180 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 181 static DEFINE_MUTEX(cpu_add_remove_lock); 182 bool cpuhp_tasks_frozen; 183 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 184 185 /* 186 * The following two APIs (cpu_maps_update_begin/done) must be used when 187 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 188 */ 189 void cpu_maps_update_begin(void) 190 { 191 mutex_lock(&cpu_add_remove_lock); 192 } 193 194 void cpu_maps_update_done(void) 195 { 196 mutex_unlock(&cpu_add_remove_lock); 197 } 198 199 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 200 * Should always be manipulated under cpu_add_remove_lock 201 */ 202 static int cpu_hotplug_disabled; 203 204 #ifdef CONFIG_HOTPLUG_CPU 205 206 static struct { 207 struct task_struct *active_writer; 208 /* wait queue to wake up the active_writer */ 209 wait_queue_head_t wq; 210 /* verifies that no writer will get active while readers are active */ 211 struct mutex lock; 212 /* 213 * Also blocks the new readers during 214 * an ongoing cpu hotplug operation. 215 */ 216 atomic_t refcount; 217 218 #ifdef CONFIG_DEBUG_LOCK_ALLOC 219 struct lockdep_map dep_map; 220 #endif 221 } cpu_hotplug = { 222 .active_writer = NULL, 223 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq), 224 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map), 227 #endif 228 }; 229 230 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */ 231 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map) 232 #define cpuhp_lock_acquire_tryread() \ 233 lock_map_acquire_tryread(&cpu_hotplug.dep_map) 234 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map) 235 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map) 236 237 238 void get_online_cpus(void) 239 { 240 might_sleep(); 241 if (cpu_hotplug.active_writer == current) 242 return; 243 cpuhp_lock_acquire_read(); 244 mutex_lock(&cpu_hotplug.lock); 245 atomic_inc(&cpu_hotplug.refcount); 246 mutex_unlock(&cpu_hotplug.lock); 247 } 248 EXPORT_SYMBOL_GPL(get_online_cpus); 249 250 void put_online_cpus(void) 251 { 252 int refcount; 253 254 if (cpu_hotplug.active_writer == current) 255 return; 256 257 refcount = atomic_dec_return(&cpu_hotplug.refcount); 258 if (WARN_ON(refcount < 0)) /* try to fix things up */ 259 atomic_inc(&cpu_hotplug.refcount); 260 261 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq)) 262 wake_up(&cpu_hotplug.wq); 263 264 cpuhp_lock_release(); 265 266 } 267 EXPORT_SYMBOL_GPL(put_online_cpus); 268 269 /* 270 * This ensures that the hotplug operation can begin only when the 271 * refcount goes to zero. 272 * 273 * Note that during a cpu-hotplug operation, the new readers, if any, 274 * will be blocked by the cpu_hotplug.lock 275 * 276 * Since cpu_hotplug_begin() is always called after invoking 277 * cpu_maps_update_begin(), we can be sure that only one writer is active. 278 * 279 * Note that theoretically, there is a possibility of a livelock: 280 * - Refcount goes to zero, last reader wakes up the sleeping 281 * writer. 282 * - Last reader unlocks the cpu_hotplug.lock. 283 * - A new reader arrives at this moment, bumps up the refcount. 284 * - The writer acquires the cpu_hotplug.lock finds the refcount 285 * non zero and goes to sleep again. 286 * 287 * However, this is very difficult to achieve in practice since 288 * get_online_cpus() not an api which is called all that often. 289 * 290 */ 291 void cpu_hotplug_begin(void) 292 { 293 DEFINE_WAIT(wait); 294 295 cpu_hotplug.active_writer = current; 296 cpuhp_lock_acquire(); 297 298 for (;;) { 299 mutex_lock(&cpu_hotplug.lock); 300 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE); 301 if (likely(!atomic_read(&cpu_hotplug.refcount))) 302 break; 303 mutex_unlock(&cpu_hotplug.lock); 304 schedule(); 305 } 306 finish_wait(&cpu_hotplug.wq, &wait); 307 } 308 309 void cpu_hotplug_done(void) 310 { 311 cpu_hotplug.active_writer = NULL; 312 mutex_unlock(&cpu_hotplug.lock); 313 cpuhp_lock_release(); 314 } 315 316 /* 317 * Wait for currently running CPU hotplug operations to complete (if any) and 318 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 319 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 320 * hotplug path before performing hotplug operations. So acquiring that lock 321 * guarantees mutual exclusion from any currently running hotplug operations. 322 */ 323 void cpu_hotplug_disable(void) 324 { 325 cpu_maps_update_begin(); 326 cpu_hotplug_disabled++; 327 cpu_maps_update_done(); 328 } 329 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 330 331 static void __cpu_hotplug_enable(void) 332 { 333 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 334 return; 335 cpu_hotplug_disabled--; 336 } 337 338 void cpu_hotplug_enable(void) 339 { 340 cpu_maps_update_begin(); 341 __cpu_hotplug_enable(); 342 cpu_maps_update_done(); 343 } 344 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 345 #endif /* CONFIG_HOTPLUG_CPU */ 346 347 /* Notifier wrappers for transitioning to state machine */ 348 349 static int bringup_wait_for_ap(unsigned int cpu) 350 { 351 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 352 353 wait_for_completion(&st->done); 354 return st->result; 355 } 356 357 static int bringup_cpu(unsigned int cpu) 358 { 359 struct task_struct *idle = idle_thread_get(cpu); 360 int ret; 361 362 /* 363 * Some architectures have to walk the irq descriptors to 364 * setup the vector space for the cpu which comes online. 365 * Prevent irq alloc/free across the bringup. 366 */ 367 irq_lock_sparse(); 368 369 /* Arch-specific enabling code. */ 370 ret = __cpu_up(cpu, idle); 371 irq_unlock_sparse(); 372 if (ret) 373 return ret; 374 ret = bringup_wait_for_ap(cpu); 375 BUG_ON(!cpu_online(cpu)); 376 return ret; 377 } 378 379 /* 380 * Hotplug state machine related functions 381 */ 382 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 383 { 384 for (st->state++; st->state < st->target; st->state++) { 385 struct cpuhp_step *step = cpuhp_get_step(st->state); 386 387 if (!step->skip_onerr) 388 cpuhp_invoke_callback(cpu, st->state, true, NULL); 389 } 390 } 391 392 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 393 enum cpuhp_state target) 394 { 395 enum cpuhp_state prev_state = st->state; 396 int ret = 0; 397 398 for (; st->state > target; st->state--) { 399 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL); 400 if (ret) { 401 st->target = prev_state; 402 undo_cpu_down(cpu, st); 403 break; 404 } 405 } 406 return ret; 407 } 408 409 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 410 { 411 for (st->state--; st->state > st->target; st->state--) { 412 struct cpuhp_step *step = cpuhp_get_step(st->state); 413 414 if (!step->skip_onerr) 415 cpuhp_invoke_callback(cpu, st->state, false, NULL); 416 } 417 } 418 419 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 420 enum cpuhp_state target) 421 { 422 enum cpuhp_state prev_state = st->state; 423 int ret = 0; 424 425 while (st->state < target) { 426 st->state++; 427 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL); 428 if (ret) { 429 st->target = prev_state; 430 undo_cpu_up(cpu, st); 431 break; 432 } 433 } 434 return ret; 435 } 436 437 /* 438 * The cpu hotplug threads manage the bringup and teardown of the cpus 439 */ 440 static void cpuhp_create(unsigned int cpu) 441 { 442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 443 444 init_completion(&st->done); 445 } 446 447 static int cpuhp_should_run(unsigned int cpu) 448 { 449 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 450 451 return st->should_run; 452 } 453 454 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */ 455 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st) 456 { 457 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU); 458 459 return cpuhp_down_callbacks(cpu, st, target); 460 } 461 462 /* Execute the online startup callbacks. Used to be CPU_ONLINE */ 463 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st) 464 { 465 return cpuhp_up_callbacks(cpu, st, st->target); 466 } 467 468 /* 469 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 470 * callbacks when a state gets [un]installed at runtime. 471 */ 472 static void cpuhp_thread_fun(unsigned int cpu) 473 { 474 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 475 int ret = 0; 476 477 /* 478 * Paired with the mb() in cpuhp_kick_ap_work and 479 * cpuhp_invoke_ap_callback, so the work set is consistent visible. 480 */ 481 smp_mb(); 482 if (!st->should_run) 483 return; 484 485 st->should_run = false; 486 487 /* Single callback invocation for [un]install ? */ 488 if (st->single) { 489 if (st->cb_state < CPUHP_AP_ONLINE) { 490 local_irq_disable(); 491 ret = cpuhp_invoke_callback(cpu, st->cb_state, 492 st->bringup, st->node); 493 local_irq_enable(); 494 } else { 495 ret = cpuhp_invoke_callback(cpu, st->cb_state, 496 st->bringup, st->node); 497 } 498 } else if (st->rollback) { 499 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 500 501 undo_cpu_down(cpu, st); 502 st->rollback = false; 503 } else { 504 /* Cannot happen .... */ 505 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); 506 507 /* Regular hotplug work */ 508 if (st->state < st->target) 509 ret = cpuhp_ap_online(cpu, st); 510 else if (st->state > st->target) 511 ret = cpuhp_ap_offline(cpu, st); 512 } 513 st->result = ret; 514 complete(&st->done); 515 } 516 517 /* Invoke a single callback on a remote cpu */ 518 static int 519 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 520 struct hlist_node *node) 521 { 522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 523 524 if (!cpu_online(cpu)) 525 return 0; 526 527 /* 528 * If we are up and running, use the hotplug thread. For early calls 529 * we invoke the thread function directly. 530 */ 531 if (!st->thread) 532 return cpuhp_invoke_callback(cpu, state, bringup, node); 533 534 st->cb_state = state; 535 st->single = true; 536 st->bringup = bringup; 537 st->node = node; 538 539 /* 540 * Make sure the above stores are visible before should_run becomes 541 * true. Paired with the mb() above in cpuhp_thread_fun() 542 */ 543 smp_mb(); 544 st->should_run = true; 545 wake_up_process(st->thread); 546 wait_for_completion(&st->done); 547 return st->result; 548 } 549 550 /* Regular hotplug invocation of the AP hotplug thread */ 551 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st) 552 { 553 st->result = 0; 554 st->single = false; 555 /* 556 * Make sure the above stores are visible before should_run becomes 557 * true. Paired with the mb() above in cpuhp_thread_fun() 558 */ 559 smp_mb(); 560 st->should_run = true; 561 wake_up_process(st->thread); 562 } 563 564 static int cpuhp_kick_ap_work(unsigned int cpu) 565 { 566 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 567 enum cpuhp_state state = st->state; 568 569 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work); 570 __cpuhp_kick_ap_work(st); 571 wait_for_completion(&st->done); 572 trace_cpuhp_exit(cpu, st->state, state, st->result); 573 return st->result; 574 } 575 576 static struct smp_hotplug_thread cpuhp_threads = { 577 .store = &cpuhp_state.thread, 578 .create = &cpuhp_create, 579 .thread_should_run = cpuhp_should_run, 580 .thread_fn = cpuhp_thread_fun, 581 .thread_comm = "cpuhp/%u", 582 .selfparking = true, 583 }; 584 585 void __init cpuhp_threads_init(void) 586 { 587 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 588 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 589 } 590 591 #ifdef CONFIG_HOTPLUG_CPU 592 /** 593 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 594 * @cpu: a CPU id 595 * 596 * This function walks all processes, finds a valid mm struct for each one and 597 * then clears a corresponding bit in mm's cpumask. While this all sounds 598 * trivial, there are various non-obvious corner cases, which this function 599 * tries to solve in a safe manner. 600 * 601 * Also note that the function uses a somewhat relaxed locking scheme, so it may 602 * be called only for an already offlined CPU. 603 */ 604 void clear_tasks_mm_cpumask(int cpu) 605 { 606 struct task_struct *p; 607 608 /* 609 * This function is called after the cpu is taken down and marked 610 * offline, so its not like new tasks will ever get this cpu set in 611 * their mm mask. -- Peter Zijlstra 612 * Thus, we may use rcu_read_lock() here, instead of grabbing 613 * full-fledged tasklist_lock. 614 */ 615 WARN_ON(cpu_online(cpu)); 616 rcu_read_lock(); 617 for_each_process(p) { 618 struct task_struct *t; 619 620 /* 621 * Main thread might exit, but other threads may still have 622 * a valid mm. Find one. 623 */ 624 t = find_lock_task_mm(p); 625 if (!t) 626 continue; 627 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 628 task_unlock(t); 629 } 630 rcu_read_unlock(); 631 } 632 633 static inline void check_for_tasks(int dead_cpu) 634 { 635 struct task_struct *g, *p; 636 637 read_lock(&tasklist_lock); 638 for_each_process_thread(g, p) { 639 if (!p->on_rq) 640 continue; 641 /* 642 * We do the check with unlocked task_rq(p)->lock. 643 * Order the reading to do not warn about a task, 644 * which was running on this cpu in the past, and 645 * it's just been woken on another cpu. 646 */ 647 rmb(); 648 if (task_cpu(p) != dead_cpu) 649 continue; 650 651 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n", 652 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags); 653 } 654 read_unlock(&tasklist_lock); 655 } 656 657 /* Take this CPU down. */ 658 static int take_cpu_down(void *_param) 659 { 660 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 661 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 662 int err, cpu = smp_processor_id(); 663 664 /* Ensure this CPU doesn't handle any more interrupts. */ 665 err = __cpu_disable(); 666 if (err < 0) 667 return err; 668 669 /* 670 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 671 * do this step again. 672 */ 673 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 674 st->state--; 675 /* Invoke the former CPU_DYING callbacks */ 676 for (; st->state > target; st->state--) 677 cpuhp_invoke_callback(cpu, st->state, false, NULL); 678 679 /* Give up timekeeping duties */ 680 tick_handover_do_timer(); 681 /* Park the stopper thread */ 682 stop_machine_park(cpu); 683 return 0; 684 } 685 686 static int takedown_cpu(unsigned int cpu) 687 { 688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 689 int err; 690 691 /* Park the smpboot threads */ 692 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 693 smpboot_park_threads(cpu); 694 695 /* 696 * Prevent irq alloc/free while the dying cpu reorganizes the 697 * interrupt affinities. 698 */ 699 irq_lock_sparse(); 700 701 /* 702 * So now all preempt/rcu users must observe !cpu_active(). 703 */ 704 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu)); 705 if (err) { 706 /* CPU refused to die */ 707 irq_unlock_sparse(); 708 /* Unpark the hotplug thread so we can rollback there */ 709 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 710 return err; 711 } 712 BUG_ON(cpu_online(cpu)); 713 714 /* 715 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all 716 * runnable tasks from the cpu, there's only the idle task left now 717 * that the migration thread is done doing the stop_machine thing. 718 * 719 * Wait for the stop thread to go away. 720 */ 721 wait_for_completion(&st->done); 722 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 723 724 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 725 irq_unlock_sparse(); 726 727 hotplug_cpu__broadcast_tick_pull(cpu); 728 /* This actually kills the CPU. */ 729 __cpu_die(cpu); 730 731 tick_cleanup_dead_cpu(cpu); 732 return 0; 733 } 734 735 static void cpuhp_complete_idle_dead(void *arg) 736 { 737 struct cpuhp_cpu_state *st = arg; 738 739 complete(&st->done); 740 } 741 742 void cpuhp_report_idle_dead(void) 743 { 744 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 745 746 BUG_ON(st->state != CPUHP_AP_OFFLINE); 747 rcu_report_dead(smp_processor_id()); 748 st->state = CPUHP_AP_IDLE_DEAD; 749 /* 750 * We cannot call complete after rcu_report_dead() so we delegate it 751 * to an online cpu. 752 */ 753 smp_call_function_single(cpumask_first(cpu_online_mask), 754 cpuhp_complete_idle_dead, st, 0); 755 } 756 757 #else 758 #define takedown_cpu NULL 759 #endif 760 761 #ifdef CONFIG_HOTPLUG_CPU 762 763 /* Requires cpu_add_remove_lock to be held */ 764 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 765 enum cpuhp_state target) 766 { 767 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 768 int prev_state, ret = 0; 769 770 if (num_online_cpus() == 1) 771 return -EBUSY; 772 773 if (!cpu_present(cpu)) 774 return -EINVAL; 775 776 cpu_hotplug_begin(); 777 778 cpuhp_tasks_frozen = tasks_frozen; 779 780 prev_state = st->state; 781 st->target = target; 782 /* 783 * If the current CPU state is in the range of the AP hotplug thread, 784 * then we need to kick the thread. 785 */ 786 if (st->state > CPUHP_TEARDOWN_CPU) { 787 ret = cpuhp_kick_ap_work(cpu); 788 /* 789 * The AP side has done the error rollback already. Just 790 * return the error code.. 791 */ 792 if (ret) 793 goto out; 794 795 /* 796 * We might have stopped still in the range of the AP hotplug 797 * thread. Nothing to do anymore. 798 */ 799 if (st->state > CPUHP_TEARDOWN_CPU) 800 goto out; 801 } 802 /* 803 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 804 * to do the further cleanups. 805 */ 806 ret = cpuhp_down_callbacks(cpu, st, target); 807 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 808 st->target = prev_state; 809 st->rollback = true; 810 cpuhp_kick_ap_work(cpu); 811 } 812 813 out: 814 cpu_hotplug_done(); 815 return ret; 816 } 817 818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 819 { 820 int err; 821 822 cpu_maps_update_begin(); 823 824 if (cpu_hotplug_disabled) { 825 err = -EBUSY; 826 goto out; 827 } 828 829 err = _cpu_down(cpu, 0, target); 830 831 out: 832 cpu_maps_update_done(); 833 return err; 834 } 835 int cpu_down(unsigned int cpu) 836 { 837 return do_cpu_down(cpu, CPUHP_OFFLINE); 838 } 839 EXPORT_SYMBOL(cpu_down); 840 #endif /*CONFIG_HOTPLUG_CPU*/ 841 842 /** 843 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 844 * @cpu: cpu that just started 845 * 846 * It must be called by the arch code on the new cpu, before the new cpu 847 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 848 */ 849 void notify_cpu_starting(unsigned int cpu) 850 { 851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 852 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 853 854 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 855 while (st->state < target) { 856 st->state++; 857 cpuhp_invoke_callback(cpu, st->state, true, NULL); 858 } 859 } 860 861 /* 862 * Called from the idle task. We need to set active here, so we can kick off 863 * the stopper thread and unpark the smpboot threads. If the target state is 864 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the 865 * cpu further. 866 */ 867 void cpuhp_online_idle(enum cpuhp_state state) 868 { 869 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 870 unsigned int cpu = smp_processor_id(); 871 872 /* Happens for the boot cpu */ 873 if (state != CPUHP_AP_ONLINE_IDLE) 874 return; 875 876 st->state = CPUHP_AP_ONLINE_IDLE; 877 878 /* Unpark the stopper thread and the hotplug thread of this cpu */ 879 stop_machine_unpark(cpu); 880 kthread_unpark(st->thread); 881 882 /* Should we go further up ? */ 883 if (st->target > CPUHP_AP_ONLINE_IDLE) 884 __cpuhp_kick_ap_work(st); 885 else 886 complete(&st->done); 887 } 888 889 /* Requires cpu_add_remove_lock to be held */ 890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 891 { 892 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 893 struct task_struct *idle; 894 int ret = 0; 895 896 cpu_hotplug_begin(); 897 898 if (!cpu_present(cpu)) { 899 ret = -EINVAL; 900 goto out; 901 } 902 903 /* 904 * The caller of do_cpu_up might have raced with another 905 * caller. Ignore it for now. 906 */ 907 if (st->state >= target) 908 goto out; 909 910 if (st->state == CPUHP_OFFLINE) { 911 /* Let it fail before we try to bring the cpu up */ 912 idle = idle_thread_get(cpu); 913 if (IS_ERR(idle)) { 914 ret = PTR_ERR(idle); 915 goto out; 916 } 917 } 918 919 cpuhp_tasks_frozen = tasks_frozen; 920 921 st->target = target; 922 /* 923 * If the current CPU state is in the range of the AP hotplug thread, 924 * then we need to kick the thread once more. 925 */ 926 if (st->state > CPUHP_BRINGUP_CPU) { 927 ret = cpuhp_kick_ap_work(cpu); 928 /* 929 * The AP side has done the error rollback already. Just 930 * return the error code.. 931 */ 932 if (ret) 933 goto out; 934 } 935 936 /* 937 * Try to reach the target state. We max out on the BP at 938 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 939 * responsible for bringing it up to the target state. 940 */ 941 target = min((int)target, CPUHP_BRINGUP_CPU); 942 ret = cpuhp_up_callbacks(cpu, st, target); 943 out: 944 cpu_hotplug_done(); 945 return ret; 946 } 947 948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 949 { 950 int err = 0; 951 952 if (!cpu_possible(cpu)) { 953 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 954 cpu); 955 #if defined(CONFIG_IA64) 956 pr_err("please check additional_cpus= boot parameter\n"); 957 #endif 958 return -EINVAL; 959 } 960 961 err = try_online_node(cpu_to_node(cpu)); 962 if (err) 963 return err; 964 965 cpu_maps_update_begin(); 966 967 if (cpu_hotplug_disabled) { 968 err = -EBUSY; 969 goto out; 970 } 971 972 err = _cpu_up(cpu, 0, target); 973 out: 974 cpu_maps_update_done(); 975 return err; 976 } 977 978 int cpu_up(unsigned int cpu) 979 { 980 return do_cpu_up(cpu, CPUHP_ONLINE); 981 } 982 EXPORT_SYMBOL_GPL(cpu_up); 983 984 #ifdef CONFIG_PM_SLEEP_SMP 985 static cpumask_var_t frozen_cpus; 986 987 int freeze_secondary_cpus(int primary) 988 { 989 int cpu, error = 0; 990 991 cpu_maps_update_begin(); 992 if (!cpu_online(primary)) 993 primary = cpumask_first(cpu_online_mask); 994 /* 995 * We take down all of the non-boot CPUs in one shot to avoid races 996 * with the userspace trying to use the CPU hotplug at the same time 997 */ 998 cpumask_clear(frozen_cpus); 999 1000 pr_info("Disabling non-boot CPUs ...\n"); 1001 for_each_online_cpu(cpu) { 1002 if (cpu == primary) 1003 continue; 1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1005 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1006 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1007 if (!error) 1008 cpumask_set_cpu(cpu, frozen_cpus); 1009 else { 1010 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1011 break; 1012 } 1013 } 1014 1015 if (!error) 1016 BUG_ON(num_online_cpus() > 1); 1017 else 1018 pr_err("Non-boot CPUs are not disabled\n"); 1019 1020 /* 1021 * Make sure the CPUs won't be enabled by someone else. We need to do 1022 * this even in case of failure as all disable_nonboot_cpus() users are 1023 * supposed to do enable_nonboot_cpus() on the failure path. 1024 */ 1025 cpu_hotplug_disabled++; 1026 1027 cpu_maps_update_done(); 1028 return error; 1029 } 1030 1031 void __weak arch_enable_nonboot_cpus_begin(void) 1032 { 1033 } 1034 1035 void __weak arch_enable_nonboot_cpus_end(void) 1036 { 1037 } 1038 1039 void enable_nonboot_cpus(void) 1040 { 1041 int cpu, error; 1042 1043 /* Allow everyone to use the CPU hotplug again */ 1044 cpu_maps_update_begin(); 1045 __cpu_hotplug_enable(); 1046 if (cpumask_empty(frozen_cpus)) 1047 goto out; 1048 1049 pr_info("Enabling non-boot CPUs ...\n"); 1050 1051 arch_enable_nonboot_cpus_begin(); 1052 1053 for_each_cpu(cpu, frozen_cpus) { 1054 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1055 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1056 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1057 if (!error) { 1058 pr_info("CPU%d is up\n", cpu); 1059 continue; 1060 } 1061 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1062 } 1063 1064 arch_enable_nonboot_cpus_end(); 1065 1066 cpumask_clear(frozen_cpus); 1067 out: 1068 cpu_maps_update_done(); 1069 } 1070 1071 static int __init alloc_frozen_cpus(void) 1072 { 1073 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1074 return -ENOMEM; 1075 return 0; 1076 } 1077 core_initcall(alloc_frozen_cpus); 1078 1079 /* 1080 * When callbacks for CPU hotplug notifications are being executed, we must 1081 * ensure that the state of the system with respect to the tasks being frozen 1082 * or not, as reported by the notification, remains unchanged *throughout the 1083 * duration* of the execution of the callbacks. 1084 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1085 * 1086 * This synchronization is implemented by mutually excluding regular CPU 1087 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1088 * Hibernate notifications. 1089 */ 1090 static int 1091 cpu_hotplug_pm_callback(struct notifier_block *nb, 1092 unsigned long action, void *ptr) 1093 { 1094 switch (action) { 1095 1096 case PM_SUSPEND_PREPARE: 1097 case PM_HIBERNATION_PREPARE: 1098 cpu_hotplug_disable(); 1099 break; 1100 1101 case PM_POST_SUSPEND: 1102 case PM_POST_HIBERNATION: 1103 cpu_hotplug_enable(); 1104 break; 1105 1106 default: 1107 return NOTIFY_DONE; 1108 } 1109 1110 return NOTIFY_OK; 1111 } 1112 1113 1114 static int __init cpu_hotplug_pm_sync_init(void) 1115 { 1116 /* 1117 * cpu_hotplug_pm_callback has higher priority than x86 1118 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1119 * to disable cpu hotplug to avoid cpu hotplug race. 1120 */ 1121 pm_notifier(cpu_hotplug_pm_callback, 0); 1122 return 0; 1123 } 1124 core_initcall(cpu_hotplug_pm_sync_init); 1125 1126 #endif /* CONFIG_PM_SLEEP_SMP */ 1127 1128 int __boot_cpu_id; 1129 1130 #endif /* CONFIG_SMP */ 1131 1132 /* Boot processor state steps */ 1133 static struct cpuhp_step cpuhp_bp_states[] = { 1134 [CPUHP_OFFLINE] = { 1135 .name = "offline", 1136 .startup.single = NULL, 1137 .teardown.single = NULL, 1138 }, 1139 #ifdef CONFIG_SMP 1140 [CPUHP_CREATE_THREADS]= { 1141 .name = "threads:prepare", 1142 .startup.single = smpboot_create_threads, 1143 .teardown.single = NULL, 1144 .cant_stop = true, 1145 }, 1146 [CPUHP_PERF_PREPARE] = { 1147 .name = "perf:prepare", 1148 .startup.single = perf_event_init_cpu, 1149 .teardown.single = perf_event_exit_cpu, 1150 }, 1151 [CPUHP_WORKQUEUE_PREP] = { 1152 .name = "workqueue:prepare", 1153 .startup.single = workqueue_prepare_cpu, 1154 .teardown.single = NULL, 1155 }, 1156 [CPUHP_HRTIMERS_PREPARE] = { 1157 .name = "hrtimers:prepare", 1158 .startup.single = hrtimers_prepare_cpu, 1159 .teardown.single = hrtimers_dead_cpu, 1160 }, 1161 [CPUHP_SMPCFD_PREPARE] = { 1162 .name = "smpcfd:prepare", 1163 .startup.single = smpcfd_prepare_cpu, 1164 .teardown.single = smpcfd_dead_cpu, 1165 }, 1166 [CPUHP_RELAY_PREPARE] = { 1167 .name = "relay:prepare", 1168 .startup.single = relay_prepare_cpu, 1169 .teardown.single = NULL, 1170 }, 1171 [CPUHP_SLAB_PREPARE] = { 1172 .name = "slab:prepare", 1173 .startup.single = slab_prepare_cpu, 1174 .teardown.single = slab_dead_cpu, 1175 }, 1176 [CPUHP_RCUTREE_PREP] = { 1177 .name = "RCU/tree:prepare", 1178 .startup.single = rcutree_prepare_cpu, 1179 .teardown.single = rcutree_dead_cpu, 1180 }, 1181 /* 1182 * On the tear-down path, timers_dead_cpu() must be invoked 1183 * before blk_mq_queue_reinit_notify() from notify_dead(), 1184 * otherwise a RCU stall occurs. 1185 */ 1186 [CPUHP_TIMERS_DEAD] = { 1187 .name = "timers:dead", 1188 .startup.single = NULL, 1189 .teardown.single = timers_dead_cpu, 1190 }, 1191 /* Kicks the plugged cpu into life */ 1192 [CPUHP_BRINGUP_CPU] = { 1193 .name = "cpu:bringup", 1194 .startup.single = bringup_cpu, 1195 .teardown.single = NULL, 1196 .cant_stop = true, 1197 }, 1198 [CPUHP_AP_SMPCFD_DYING] = { 1199 .name = "smpcfd:dying", 1200 .startup.single = NULL, 1201 .teardown.single = smpcfd_dying_cpu, 1202 }, 1203 /* 1204 * Handled on controll processor until the plugged processor manages 1205 * this itself. 1206 */ 1207 [CPUHP_TEARDOWN_CPU] = { 1208 .name = "cpu:teardown", 1209 .startup.single = NULL, 1210 .teardown.single = takedown_cpu, 1211 .cant_stop = true, 1212 }, 1213 #else 1214 [CPUHP_BRINGUP_CPU] = { }, 1215 #endif 1216 }; 1217 1218 /* Application processor state steps */ 1219 static struct cpuhp_step cpuhp_ap_states[] = { 1220 #ifdef CONFIG_SMP 1221 /* Final state before CPU kills itself */ 1222 [CPUHP_AP_IDLE_DEAD] = { 1223 .name = "idle:dead", 1224 }, 1225 /* 1226 * Last state before CPU enters the idle loop to die. Transient state 1227 * for synchronization. 1228 */ 1229 [CPUHP_AP_OFFLINE] = { 1230 .name = "ap:offline", 1231 .cant_stop = true, 1232 }, 1233 /* First state is scheduler control. Interrupts are disabled */ 1234 [CPUHP_AP_SCHED_STARTING] = { 1235 .name = "sched:starting", 1236 .startup.single = sched_cpu_starting, 1237 .teardown.single = sched_cpu_dying, 1238 }, 1239 [CPUHP_AP_RCUTREE_DYING] = { 1240 .name = "RCU/tree:dying", 1241 .startup.single = NULL, 1242 .teardown.single = rcutree_dying_cpu, 1243 }, 1244 /* Entry state on starting. Interrupts enabled from here on. Transient 1245 * state for synchronsization */ 1246 [CPUHP_AP_ONLINE] = { 1247 .name = "ap:online", 1248 }, 1249 /* Handle smpboot threads park/unpark */ 1250 [CPUHP_AP_SMPBOOT_THREADS] = { 1251 .name = "smpboot/threads:online", 1252 .startup.single = smpboot_unpark_threads, 1253 .teardown.single = NULL, 1254 }, 1255 [CPUHP_AP_PERF_ONLINE] = { 1256 .name = "perf:online", 1257 .startup.single = perf_event_init_cpu, 1258 .teardown.single = perf_event_exit_cpu, 1259 }, 1260 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1261 .name = "workqueue:online", 1262 .startup.single = workqueue_online_cpu, 1263 .teardown.single = workqueue_offline_cpu, 1264 }, 1265 [CPUHP_AP_RCUTREE_ONLINE] = { 1266 .name = "RCU/tree:online", 1267 .startup.single = rcutree_online_cpu, 1268 .teardown.single = rcutree_offline_cpu, 1269 }, 1270 #endif 1271 /* 1272 * The dynamically registered state space is here 1273 */ 1274 1275 #ifdef CONFIG_SMP 1276 /* Last state is scheduler control setting the cpu active */ 1277 [CPUHP_AP_ACTIVE] = { 1278 .name = "sched:active", 1279 .startup.single = sched_cpu_activate, 1280 .teardown.single = sched_cpu_deactivate, 1281 }, 1282 #endif 1283 1284 /* CPU is fully up and running. */ 1285 [CPUHP_ONLINE] = { 1286 .name = "online", 1287 .startup.single = NULL, 1288 .teardown.single = NULL, 1289 }, 1290 }; 1291 1292 /* Sanity check for callbacks */ 1293 static int cpuhp_cb_check(enum cpuhp_state state) 1294 { 1295 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1296 return -EINVAL; 1297 return 0; 1298 } 1299 1300 /* 1301 * Returns a free for dynamic slot assignment of the Online state. The states 1302 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1303 * by having no name assigned. 1304 */ 1305 static int cpuhp_reserve_state(enum cpuhp_state state) 1306 { 1307 enum cpuhp_state i, end; 1308 struct cpuhp_step *step; 1309 1310 switch (state) { 1311 case CPUHP_AP_ONLINE_DYN: 1312 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 1313 end = CPUHP_AP_ONLINE_DYN_END; 1314 break; 1315 case CPUHP_BP_PREPARE_DYN: 1316 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 1317 end = CPUHP_BP_PREPARE_DYN_END; 1318 break; 1319 default: 1320 return -EINVAL; 1321 } 1322 1323 for (i = state; i <= end; i++, step++) { 1324 if (!step->name) 1325 return i; 1326 } 1327 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1328 return -ENOSPC; 1329 } 1330 1331 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1332 int (*startup)(unsigned int cpu), 1333 int (*teardown)(unsigned int cpu), 1334 bool multi_instance) 1335 { 1336 /* (Un)Install the callbacks for further cpu hotplug operations */ 1337 struct cpuhp_step *sp; 1338 int ret = 0; 1339 1340 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) { 1341 ret = cpuhp_reserve_state(state); 1342 if (ret < 0) 1343 return ret; 1344 state = ret; 1345 } 1346 sp = cpuhp_get_step(state); 1347 if (name && sp->name) 1348 return -EBUSY; 1349 1350 sp->startup.single = startup; 1351 sp->teardown.single = teardown; 1352 sp->name = name; 1353 sp->multi_instance = multi_instance; 1354 INIT_HLIST_HEAD(&sp->list); 1355 return ret; 1356 } 1357 1358 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1359 { 1360 return cpuhp_get_step(state)->teardown.single; 1361 } 1362 1363 /* 1364 * Call the startup/teardown function for a step either on the AP or 1365 * on the current CPU. 1366 */ 1367 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1368 struct hlist_node *node) 1369 { 1370 struct cpuhp_step *sp = cpuhp_get_step(state); 1371 int ret; 1372 1373 if ((bringup && !sp->startup.single) || 1374 (!bringup && !sp->teardown.single)) 1375 return 0; 1376 /* 1377 * The non AP bound callbacks can fail on bringup. On teardown 1378 * e.g. module removal we crash for now. 1379 */ 1380 #ifdef CONFIG_SMP 1381 if (cpuhp_is_ap_state(state)) 1382 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1383 else 1384 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1385 #else 1386 ret = cpuhp_invoke_callback(cpu, state, bringup, node); 1387 #endif 1388 BUG_ON(ret && !bringup); 1389 return ret; 1390 } 1391 1392 /* 1393 * Called from __cpuhp_setup_state on a recoverable failure. 1394 * 1395 * Note: The teardown callbacks for rollback are not allowed to fail! 1396 */ 1397 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1398 struct hlist_node *node) 1399 { 1400 int cpu; 1401 1402 /* Roll back the already executed steps on the other cpus */ 1403 for_each_present_cpu(cpu) { 1404 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1405 int cpustate = st->state; 1406 1407 if (cpu >= failedcpu) 1408 break; 1409 1410 /* Did we invoke the startup call on that cpu ? */ 1411 if (cpustate >= state) 1412 cpuhp_issue_call(cpu, state, false, node); 1413 } 1414 } 1415 1416 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1417 bool invoke) 1418 { 1419 struct cpuhp_step *sp; 1420 int cpu; 1421 int ret; 1422 1423 sp = cpuhp_get_step(state); 1424 if (sp->multi_instance == false) 1425 return -EINVAL; 1426 1427 get_online_cpus(); 1428 mutex_lock(&cpuhp_state_mutex); 1429 1430 if (!invoke || !sp->startup.multi) 1431 goto add_node; 1432 1433 /* 1434 * Try to call the startup callback for each present cpu 1435 * depending on the hotplug state of the cpu. 1436 */ 1437 for_each_present_cpu(cpu) { 1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1439 int cpustate = st->state; 1440 1441 if (cpustate < state) 1442 continue; 1443 1444 ret = cpuhp_issue_call(cpu, state, true, node); 1445 if (ret) { 1446 if (sp->teardown.multi) 1447 cpuhp_rollback_install(cpu, state, node); 1448 goto unlock; 1449 } 1450 } 1451 add_node: 1452 ret = 0; 1453 hlist_add_head(node, &sp->list); 1454 unlock: 1455 mutex_unlock(&cpuhp_state_mutex); 1456 put_online_cpus(); 1457 return ret; 1458 } 1459 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1460 1461 /** 1462 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state 1463 * @state: The state to setup 1464 * @invoke: If true, the startup function is invoked for cpus where 1465 * cpu state >= @state 1466 * @startup: startup callback function 1467 * @teardown: teardown callback function 1468 * @multi_instance: State is set up for multiple instances which get 1469 * added afterwards. 1470 * 1471 * Returns: 1472 * On success: 1473 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1474 * 0 for all other states 1475 * On failure: proper (negative) error code 1476 */ 1477 int __cpuhp_setup_state(enum cpuhp_state state, 1478 const char *name, bool invoke, 1479 int (*startup)(unsigned int cpu), 1480 int (*teardown)(unsigned int cpu), 1481 bool multi_instance) 1482 { 1483 int cpu, ret = 0; 1484 bool dynstate; 1485 1486 if (cpuhp_cb_check(state) || !name) 1487 return -EINVAL; 1488 1489 get_online_cpus(); 1490 mutex_lock(&cpuhp_state_mutex); 1491 1492 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1493 multi_instance); 1494 1495 dynstate = state == CPUHP_AP_ONLINE_DYN; 1496 if (ret > 0 && dynstate) { 1497 state = ret; 1498 ret = 0; 1499 } 1500 1501 if (ret || !invoke || !startup) 1502 goto out; 1503 1504 /* 1505 * Try to call the startup callback for each present cpu 1506 * depending on the hotplug state of the cpu. 1507 */ 1508 for_each_present_cpu(cpu) { 1509 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1510 int cpustate = st->state; 1511 1512 if (cpustate < state) 1513 continue; 1514 1515 ret = cpuhp_issue_call(cpu, state, true, NULL); 1516 if (ret) { 1517 if (teardown) 1518 cpuhp_rollback_install(cpu, state, NULL); 1519 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1520 goto out; 1521 } 1522 } 1523 out: 1524 mutex_unlock(&cpuhp_state_mutex); 1525 put_online_cpus(); 1526 /* 1527 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1528 * dynamically allocated state in case of success. 1529 */ 1530 if (!ret && dynstate) 1531 return state; 1532 return ret; 1533 } 1534 EXPORT_SYMBOL(__cpuhp_setup_state); 1535 1536 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1537 struct hlist_node *node, bool invoke) 1538 { 1539 struct cpuhp_step *sp = cpuhp_get_step(state); 1540 int cpu; 1541 1542 BUG_ON(cpuhp_cb_check(state)); 1543 1544 if (!sp->multi_instance) 1545 return -EINVAL; 1546 1547 get_online_cpus(); 1548 mutex_lock(&cpuhp_state_mutex); 1549 1550 if (!invoke || !cpuhp_get_teardown_cb(state)) 1551 goto remove; 1552 /* 1553 * Call the teardown callback for each present cpu depending 1554 * on the hotplug state of the cpu. This function is not 1555 * allowed to fail currently! 1556 */ 1557 for_each_present_cpu(cpu) { 1558 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1559 int cpustate = st->state; 1560 1561 if (cpustate >= state) 1562 cpuhp_issue_call(cpu, state, false, node); 1563 } 1564 1565 remove: 1566 hlist_del(node); 1567 mutex_unlock(&cpuhp_state_mutex); 1568 put_online_cpus(); 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1573 1574 /** 1575 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state 1576 * @state: The state to remove 1577 * @invoke: If true, the teardown function is invoked for cpus where 1578 * cpu state >= @state 1579 * 1580 * The teardown callback is currently not allowed to fail. Think 1581 * about module removal! 1582 */ 1583 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1584 { 1585 struct cpuhp_step *sp = cpuhp_get_step(state); 1586 int cpu; 1587 1588 BUG_ON(cpuhp_cb_check(state)); 1589 1590 get_online_cpus(); 1591 1592 mutex_lock(&cpuhp_state_mutex); 1593 if (sp->multi_instance) { 1594 WARN(!hlist_empty(&sp->list), 1595 "Error: Removing state %d which has instances left.\n", 1596 state); 1597 goto remove; 1598 } 1599 1600 if (!invoke || !cpuhp_get_teardown_cb(state)) 1601 goto remove; 1602 1603 /* 1604 * Call the teardown callback for each present cpu depending 1605 * on the hotplug state of the cpu. This function is not 1606 * allowed to fail currently! 1607 */ 1608 for_each_present_cpu(cpu) { 1609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1610 int cpustate = st->state; 1611 1612 if (cpustate >= state) 1613 cpuhp_issue_call(cpu, state, false, NULL); 1614 } 1615 remove: 1616 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1617 mutex_unlock(&cpuhp_state_mutex); 1618 put_online_cpus(); 1619 } 1620 EXPORT_SYMBOL(__cpuhp_remove_state); 1621 1622 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1623 static ssize_t show_cpuhp_state(struct device *dev, 1624 struct device_attribute *attr, char *buf) 1625 { 1626 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1627 1628 return sprintf(buf, "%d\n", st->state); 1629 } 1630 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1631 1632 static ssize_t write_cpuhp_target(struct device *dev, 1633 struct device_attribute *attr, 1634 const char *buf, size_t count) 1635 { 1636 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1637 struct cpuhp_step *sp; 1638 int target, ret; 1639 1640 ret = kstrtoint(buf, 10, &target); 1641 if (ret) 1642 return ret; 1643 1644 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1645 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1646 return -EINVAL; 1647 #else 1648 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1649 return -EINVAL; 1650 #endif 1651 1652 ret = lock_device_hotplug_sysfs(); 1653 if (ret) 1654 return ret; 1655 1656 mutex_lock(&cpuhp_state_mutex); 1657 sp = cpuhp_get_step(target); 1658 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1659 mutex_unlock(&cpuhp_state_mutex); 1660 if (ret) 1661 return ret; 1662 1663 if (st->state < target) 1664 ret = do_cpu_up(dev->id, target); 1665 else 1666 ret = do_cpu_down(dev->id, target); 1667 1668 unlock_device_hotplug(); 1669 return ret ? ret : count; 1670 } 1671 1672 static ssize_t show_cpuhp_target(struct device *dev, 1673 struct device_attribute *attr, char *buf) 1674 { 1675 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1676 1677 return sprintf(buf, "%d\n", st->target); 1678 } 1679 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1680 1681 static struct attribute *cpuhp_cpu_attrs[] = { 1682 &dev_attr_state.attr, 1683 &dev_attr_target.attr, 1684 NULL 1685 }; 1686 1687 static struct attribute_group cpuhp_cpu_attr_group = { 1688 .attrs = cpuhp_cpu_attrs, 1689 .name = "hotplug", 1690 NULL 1691 }; 1692 1693 static ssize_t show_cpuhp_states(struct device *dev, 1694 struct device_attribute *attr, char *buf) 1695 { 1696 ssize_t cur, res = 0; 1697 int i; 1698 1699 mutex_lock(&cpuhp_state_mutex); 1700 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1701 struct cpuhp_step *sp = cpuhp_get_step(i); 1702 1703 if (sp->name) { 1704 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1705 buf += cur; 1706 res += cur; 1707 } 1708 } 1709 mutex_unlock(&cpuhp_state_mutex); 1710 return res; 1711 } 1712 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1713 1714 static struct attribute *cpuhp_cpu_root_attrs[] = { 1715 &dev_attr_states.attr, 1716 NULL 1717 }; 1718 1719 static struct attribute_group cpuhp_cpu_root_attr_group = { 1720 .attrs = cpuhp_cpu_root_attrs, 1721 .name = "hotplug", 1722 NULL 1723 }; 1724 1725 static int __init cpuhp_sysfs_init(void) 1726 { 1727 int cpu, ret; 1728 1729 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1730 &cpuhp_cpu_root_attr_group); 1731 if (ret) 1732 return ret; 1733 1734 for_each_possible_cpu(cpu) { 1735 struct device *dev = get_cpu_device(cpu); 1736 1737 if (!dev) 1738 continue; 1739 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1740 if (ret) 1741 return ret; 1742 } 1743 return 0; 1744 } 1745 device_initcall(cpuhp_sysfs_init); 1746 #endif 1747 1748 /* 1749 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1750 * represents all NR_CPUS bits binary values of 1<<nr. 1751 * 1752 * It is used by cpumask_of() to get a constant address to a CPU 1753 * mask value that has a single bit set only. 1754 */ 1755 1756 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1757 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1758 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1759 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1760 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1761 1762 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1763 1764 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1765 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1766 #if BITS_PER_LONG > 32 1767 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1768 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1769 #endif 1770 }; 1771 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1772 1773 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1774 EXPORT_SYMBOL(cpu_all_bits); 1775 1776 #ifdef CONFIG_INIT_ALL_POSSIBLE 1777 struct cpumask __cpu_possible_mask __read_mostly 1778 = {CPU_BITS_ALL}; 1779 #else 1780 struct cpumask __cpu_possible_mask __read_mostly; 1781 #endif 1782 EXPORT_SYMBOL(__cpu_possible_mask); 1783 1784 struct cpumask __cpu_online_mask __read_mostly; 1785 EXPORT_SYMBOL(__cpu_online_mask); 1786 1787 struct cpumask __cpu_present_mask __read_mostly; 1788 EXPORT_SYMBOL(__cpu_present_mask); 1789 1790 struct cpumask __cpu_active_mask __read_mostly; 1791 EXPORT_SYMBOL(__cpu_active_mask); 1792 1793 void init_cpu_present(const struct cpumask *src) 1794 { 1795 cpumask_copy(&__cpu_present_mask, src); 1796 } 1797 1798 void init_cpu_possible(const struct cpumask *src) 1799 { 1800 cpumask_copy(&__cpu_possible_mask, src); 1801 } 1802 1803 void init_cpu_online(const struct cpumask *src) 1804 { 1805 cpumask_copy(&__cpu_online_mask, src); 1806 } 1807 1808 /* 1809 * Activate the first processor. 1810 */ 1811 void __init boot_cpu_init(void) 1812 { 1813 int cpu = smp_processor_id(); 1814 1815 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 1816 set_cpu_online(cpu, true); 1817 set_cpu_active(cpu, true); 1818 set_cpu_present(cpu, true); 1819 set_cpu_possible(cpu, true); 1820 1821 #ifdef CONFIG_SMP 1822 __boot_cpu_id = cpu; 1823 #endif 1824 } 1825 1826 /* 1827 * Must be called _AFTER_ setting up the per_cpu areas 1828 */ 1829 void __init boot_cpu_state_init(void) 1830 { 1831 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 1832 } 1833