xref: /openbmc/linux/kernel/context_tracking.c (revision 36bccb11)
1 /*
2  * Context tracking: Probe on high level context boundaries such as kernel
3  * and userspace. This includes syscalls and exceptions entry/exit.
4  *
5  * This is used by RCU to remove its dependency on the timer tick while a CPU
6  * runs in userspace.
7  *
8  *  Started by Frederic Weisbecker:
9  *
10  * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker <fweisbec@redhat.com>
11  *
12  * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
13  * Steven Rostedt, Peter Zijlstra for suggestions and improvements.
14  *
15  */
16 
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate.h>
19 #include <linux/sched.h>
20 #include <linux/hardirq.h>
21 #include <linux/export.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/context_tracking.h>
25 
26 struct static_key context_tracking_enabled = STATIC_KEY_INIT_FALSE;
27 EXPORT_SYMBOL_GPL(context_tracking_enabled);
28 
29 DEFINE_PER_CPU(struct context_tracking, context_tracking);
30 EXPORT_SYMBOL_GPL(context_tracking);
31 
32 void context_tracking_cpu_set(int cpu)
33 {
34 	if (!per_cpu(context_tracking.active, cpu)) {
35 		per_cpu(context_tracking.active, cpu) = true;
36 		static_key_slow_inc(&context_tracking_enabled);
37 	}
38 }
39 
40 /**
41  * context_tracking_user_enter - Inform the context tracking that the CPU is going to
42  *                               enter userspace mode.
43  *
44  * This function must be called right before we switch from the kernel
45  * to userspace, when it's guaranteed the remaining kernel instructions
46  * to execute won't use any RCU read side critical section because this
47  * function sets RCU in extended quiescent state.
48  */
49 void context_tracking_user_enter(void)
50 {
51 	unsigned long flags;
52 
53 	/*
54 	 * Repeat the user_enter() check here because some archs may be calling
55 	 * this from asm and if no CPU needs context tracking, they shouldn't
56 	 * go further. Repeat the check here until they support the inline static
57 	 * key check.
58 	 */
59 	if (!context_tracking_is_enabled())
60 		return;
61 
62 	/*
63 	 * Some contexts may involve an exception occuring in an irq,
64 	 * leading to that nesting:
65 	 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
66 	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
67 	 * helpers are enough to protect RCU uses inside the exception. So
68 	 * just return immediately if we detect we are in an IRQ.
69 	 */
70 	if (in_interrupt())
71 		return;
72 
73 	/* Kernel threads aren't supposed to go to userspace */
74 	WARN_ON_ONCE(!current->mm);
75 
76 	local_irq_save(flags);
77 	if ( __this_cpu_read(context_tracking.state) != IN_USER) {
78 		if (__this_cpu_read(context_tracking.active)) {
79 			trace_user_enter(0);
80 			/*
81 			 * At this stage, only low level arch entry code remains and
82 			 * then we'll run in userspace. We can assume there won't be
83 			 * any RCU read-side critical section until the next call to
84 			 * user_exit() or rcu_irq_enter(). Let's remove RCU's dependency
85 			 * on the tick.
86 			 */
87 			vtime_user_enter(current);
88 			rcu_user_enter();
89 		}
90 		/*
91 		 * Even if context tracking is disabled on this CPU, because it's outside
92 		 * the full dynticks mask for example, we still have to keep track of the
93 		 * context transitions and states to prevent inconsistency on those of
94 		 * other CPUs.
95 		 * If a task triggers an exception in userspace, sleep on the exception
96 		 * handler and then migrate to another CPU, that new CPU must know where
97 		 * the exception returns by the time we call exception_exit().
98 		 * This information can only be provided by the previous CPU when it called
99 		 * exception_enter().
100 		 * OTOH we can spare the calls to vtime and RCU when context_tracking.active
101 		 * is false because we know that CPU is not tickless.
102 		 */
103 		__this_cpu_write(context_tracking.state, IN_USER);
104 	}
105 	local_irq_restore(flags);
106 }
107 
108 #ifdef CONFIG_PREEMPT
109 /**
110  * preempt_schedule_context - preempt_schedule called by tracing
111  *
112  * The tracing infrastructure uses preempt_enable_notrace to prevent
113  * recursion and tracing preempt enabling caused by the tracing
114  * infrastructure itself. But as tracing can happen in areas coming
115  * from userspace or just about to enter userspace, a preempt enable
116  * can occur before user_exit() is called. This will cause the scheduler
117  * to be called when the system is still in usermode.
118  *
119  * To prevent this, the preempt_enable_notrace will use this function
120  * instead of preempt_schedule() to exit user context if needed before
121  * calling the scheduler.
122  */
123 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
124 {
125 	enum ctx_state prev_ctx;
126 
127 	if (likely(!preemptible()))
128 		return;
129 
130 	/*
131 	 * Need to disable preemption in case user_exit() is traced
132 	 * and the tracer calls preempt_enable_notrace() causing
133 	 * an infinite recursion.
134 	 */
135 	preempt_disable_notrace();
136 	prev_ctx = exception_enter();
137 	preempt_enable_no_resched_notrace();
138 
139 	preempt_schedule();
140 
141 	preempt_disable_notrace();
142 	exception_exit(prev_ctx);
143 	preempt_enable_notrace();
144 }
145 EXPORT_SYMBOL_GPL(preempt_schedule_context);
146 #endif /* CONFIG_PREEMPT */
147 
148 /**
149  * context_tracking_user_exit - Inform the context tracking that the CPU is
150  *                              exiting userspace mode and entering the kernel.
151  *
152  * This function must be called after we entered the kernel from userspace
153  * before any use of RCU read side critical section. This potentially include
154  * any high level kernel code like syscalls, exceptions, signal handling, etc...
155  *
156  * This call supports re-entrancy. This way it can be called from any exception
157  * handler without needing to know if we came from userspace or not.
158  */
159 void context_tracking_user_exit(void)
160 {
161 	unsigned long flags;
162 
163 	if (!context_tracking_is_enabled())
164 		return;
165 
166 	if (in_interrupt())
167 		return;
168 
169 	local_irq_save(flags);
170 	if (__this_cpu_read(context_tracking.state) == IN_USER) {
171 		if (__this_cpu_read(context_tracking.active)) {
172 			/*
173 			 * We are going to run code that may use RCU. Inform
174 			 * RCU core about that (ie: we may need the tick again).
175 			 */
176 			rcu_user_exit();
177 			vtime_user_exit(current);
178 			trace_user_exit(0);
179 		}
180 		__this_cpu_write(context_tracking.state, IN_KERNEL);
181 	}
182 	local_irq_restore(flags);
183 }
184 
185 /**
186  * __context_tracking_task_switch - context switch the syscall callbacks
187  * @prev: the task that is being switched out
188  * @next: the task that is being switched in
189  *
190  * The context tracking uses the syscall slow path to implement its user-kernel
191  * boundaries probes on syscalls. This way it doesn't impact the syscall fast
192  * path on CPUs that don't do context tracking.
193  *
194  * But we need to clear the flag on the previous task because it may later
195  * migrate to some CPU that doesn't do the context tracking. As such the TIF
196  * flag may not be desired there.
197  */
198 void __context_tracking_task_switch(struct task_struct *prev,
199 				    struct task_struct *next)
200 {
201 	clear_tsk_thread_flag(prev, TIF_NOHZ);
202 	set_tsk_thread_flag(next, TIF_NOHZ);
203 }
204 
205 #ifdef CONFIG_CONTEXT_TRACKING_FORCE
206 void __init context_tracking_init(void)
207 {
208 	int cpu;
209 
210 	for_each_possible_cpu(cpu)
211 		context_tracking_cpu_set(cpu);
212 }
213 #endif
214