xref: /openbmc/linux/kernel/cgroup/rstat.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/sched/cputime.h>
5 
6 static DEFINE_SPINLOCK(cgroup_rstat_lock);
7 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
8 
9 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
10 
11 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
12 {
13 	return per_cpu_ptr(cgrp->rstat_cpu, cpu);
14 }
15 
16 /**
17  * cgroup_rstat_updated - keep track of updated rstat_cpu
18  * @cgrp: target cgroup
19  * @cpu: cpu on which rstat_cpu was updated
20  *
21  * @cgrp's rstat_cpu on @cpu was updated.  Put it on the parent's matching
22  * rstat_cpu->updated_children list.  See the comment on top of
23  * cgroup_rstat_cpu definition for details.
24  */
25 void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
26 {
27 	raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
28 	unsigned long flags;
29 
30 	/*
31 	 * Speculative already-on-list test. This may race leading to
32 	 * temporary inaccuracies, which is fine.
33 	 *
34 	 * Because @parent's updated_children is terminated with @parent
35 	 * instead of NULL, we can tell whether @cgrp is on the list by
36 	 * testing the next pointer for NULL.
37 	 */
38 	if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
39 		return;
40 
41 	raw_spin_lock_irqsave(cpu_lock, flags);
42 
43 	/* put @cgrp and all ancestors on the corresponding updated lists */
44 	while (true) {
45 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
46 		struct cgroup *parent = cgroup_parent(cgrp);
47 		struct cgroup_rstat_cpu *prstatc;
48 
49 		/*
50 		 * Both additions and removals are bottom-up.  If a cgroup
51 		 * is already in the tree, all ancestors are.
52 		 */
53 		if (rstatc->updated_next)
54 			break;
55 
56 		/* Root has no parent to link it to, but mark it busy */
57 		if (!parent) {
58 			rstatc->updated_next = cgrp;
59 			break;
60 		}
61 
62 		prstatc = cgroup_rstat_cpu(parent, cpu);
63 		rstatc->updated_next = prstatc->updated_children;
64 		prstatc->updated_children = cgrp;
65 
66 		cgrp = parent;
67 	}
68 
69 	raw_spin_unlock_irqrestore(cpu_lock, flags);
70 }
71 
72 /**
73  * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
74  * @pos: current position
75  * @root: root of the tree to traversal
76  * @cpu: target cpu
77  *
78  * Walks the updated rstat_cpu tree on @cpu from @root.  %NULL @pos starts
79  * the traversal and %NULL return indicates the end.  During traversal,
80  * each returned cgroup is unlinked from the tree.  Must be called with the
81  * matching cgroup_rstat_cpu_lock held.
82  *
83  * The only ordering guarantee is that, for a parent and a child pair
84  * covered by a given traversal, if a child is visited, its parent is
85  * guaranteed to be visited afterwards.
86  */
87 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
88 						   struct cgroup *root, int cpu)
89 {
90 	struct cgroup_rstat_cpu *rstatc;
91 	struct cgroup *parent;
92 
93 	if (pos == root)
94 		return NULL;
95 
96 	/*
97 	 * We're gonna walk down to the first leaf and visit/remove it.  We
98 	 * can pick whatever unvisited node as the starting point.
99 	 */
100 	if (!pos) {
101 		pos = root;
102 		/* return NULL if this subtree is not on-list */
103 		if (!cgroup_rstat_cpu(pos, cpu)->updated_next)
104 			return NULL;
105 	} else {
106 		pos = cgroup_parent(pos);
107 	}
108 
109 	/* walk down to the first leaf */
110 	while (true) {
111 		rstatc = cgroup_rstat_cpu(pos, cpu);
112 		if (rstatc->updated_children == pos)
113 			break;
114 		pos = rstatc->updated_children;
115 	}
116 
117 	/*
118 	 * Unlink @pos from the tree.  As the updated_children list is
119 	 * singly linked, we have to walk it to find the removal point.
120 	 * However, due to the way we traverse, @pos will be the first
121 	 * child in most cases. The only exception is @root.
122 	 */
123 	parent = cgroup_parent(pos);
124 	if (parent) {
125 		struct cgroup_rstat_cpu *prstatc;
126 		struct cgroup **nextp;
127 
128 		prstatc = cgroup_rstat_cpu(parent, cpu);
129 		nextp = &prstatc->updated_children;
130 		while (*nextp != pos) {
131 			struct cgroup_rstat_cpu *nrstatc;
132 
133 			nrstatc = cgroup_rstat_cpu(*nextp, cpu);
134 			WARN_ON_ONCE(*nextp == parent);
135 			nextp = &nrstatc->updated_next;
136 		}
137 		*nextp = rstatc->updated_next;
138 	}
139 
140 	rstatc->updated_next = NULL;
141 	return pos;
142 }
143 
144 /* see cgroup_rstat_flush() */
145 static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
146 	__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
147 {
148 	int cpu;
149 
150 	lockdep_assert_held(&cgroup_rstat_lock);
151 
152 	for_each_possible_cpu(cpu) {
153 		raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
154 						       cpu);
155 		struct cgroup *pos = NULL;
156 		unsigned long flags;
157 
158 		/*
159 		 * The _irqsave() is needed because cgroup_rstat_lock is
160 		 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
161 		 * this lock with the _irq() suffix only disables interrupts on
162 		 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
163 		 * interrupts on both configurations. The _irqsave() ensures
164 		 * that interrupts are always disabled and later restored.
165 		 */
166 		raw_spin_lock_irqsave(cpu_lock, flags);
167 		while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
168 			struct cgroup_subsys_state *css;
169 
170 			cgroup_base_stat_flush(pos, cpu);
171 
172 			rcu_read_lock();
173 			list_for_each_entry_rcu(css, &pos->rstat_css_list,
174 						rstat_css_node)
175 				css->ss->css_rstat_flush(css, cpu);
176 			rcu_read_unlock();
177 		}
178 		raw_spin_unlock_irqrestore(cpu_lock, flags);
179 
180 		/* if @may_sleep, play nice and yield if necessary */
181 		if (may_sleep && (need_resched() ||
182 				  spin_needbreak(&cgroup_rstat_lock))) {
183 			spin_unlock_irq(&cgroup_rstat_lock);
184 			if (!cond_resched())
185 				cpu_relax();
186 			spin_lock_irq(&cgroup_rstat_lock);
187 		}
188 	}
189 }
190 
191 /**
192  * cgroup_rstat_flush - flush stats in @cgrp's subtree
193  * @cgrp: target cgroup
194  *
195  * Collect all per-cpu stats in @cgrp's subtree into the global counters
196  * and propagate them upwards.  After this function returns, all cgroups in
197  * the subtree have up-to-date ->stat.
198  *
199  * This also gets all cgroups in the subtree including @cgrp off the
200  * ->updated_children lists.
201  *
202  * This function may block.
203  */
204 void cgroup_rstat_flush(struct cgroup *cgrp)
205 {
206 	might_sleep();
207 
208 	spin_lock_irq(&cgroup_rstat_lock);
209 	cgroup_rstat_flush_locked(cgrp, true);
210 	spin_unlock_irq(&cgroup_rstat_lock);
211 }
212 
213 /**
214  * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush()
215  * @cgrp: target cgroup
216  *
217  * This function can be called from any context.
218  */
219 void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp)
220 {
221 	unsigned long flags;
222 
223 	spin_lock_irqsave(&cgroup_rstat_lock, flags);
224 	cgroup_rstat_flush_locked(cgrp, false);
225 	spin_unlock_irqrestore(&cgroup_rstat_lock, flags);
226 }
227 
228 /**
229  * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
230  * @cgrp: target cgroup
231  *
232  * Flush stats in @cgrp's subtree and prevent further flushes.  Must be
233  * paired with cgroup_rstat_flush_release().
234  *
235  * This function may block.
236  */
237 void cgroup_rstat_flush_hold(struct cgroup *cgrp)
238 	__acquires(&cgroup_rstat_lock)
239 {
240 	might_sleep();
241 	spin_lock_irq(&cgroup_rstat_lock);
242 	cgroup_rstat_flush_locked(cgrp, true);
243 }
244 
245 /**
246  * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
247  */
248 void cgroup_rstat_flush_release(void)
249 	__releases(&cgroup_rstat_lock)
250 {
251 	spin_unlock_irq(&cgroup_rstat_lock);
252 }
253 
254 int cgroup_rstat_init(struct cgroup *cgrp)
255 {
256 	int cpu;
257 
258 	/* the root cgrp has rstat_cpu preallocated */
259 	if (!cgrp->rstat_cpu) {
260 		cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
261 		if (!cgrp->rstat_cpu)
262 			return -ENOMEM;
263 	}
264 
265 	/* ->updated_children list is self terminated */
266 	for_each_possible_cpu(cpu) {
267 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
268 
269 		rstatc->updated_children = cgrp;
270 		u64_stats_init(&rstatc->bsync);
271 	}
272 
273 	return 0;
274 }
275 
276 void cgroup_rstat_exit(struct cgroup *cgrp)
277 {
278 	int cpu;
279 
280 	cgroup_rstat_flush(cgrp);
281 
282 	/* sanity check */
283 	for_each_possible_cpu(cpu) {
284 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
285 
286 		if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
287 		    WARN_ON_ONCE(rstatc->updated_next))
288 			return;
289 	}
290 
291 	free_percpu(cgrp->rstat_cpu);
292 	cgrp->rstat_cpu = NULL;
293 }
294 
295 void __init cgroup_rstat_boot(void)
296 {
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu)
300 		raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
301 }
302 
303 /*
304  * Functions for cgroup basic resource statistics implemented on top of
305  * rstat.
306  */
307 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
308 				 struct cgroup_base_stat *src_bstat)
309 {
310 	dst_bstat->cputime.utime += src_bstat->cputime.utime;
311 	dst_bstat->cputime.stime += src_bstat->cputime.stime;
312 	dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
313 #ifdef CONFIG_SCHED_CORE
314 	dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
315 #endif
316 }
317 
318 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
319 				 struct cgroup_base_stat *src_bstat)
320 {
321 	dst_bstat->cputime.utime -= src_bstat->cputime.utime;
322 	dst_bstat->cputime.stime -= src_bstat->cputime.stime;
323 	dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
324 #ifdef CONFIG_SCHED_CORE
325 	dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
326 #endif
327 }
328 
329 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
330 {
331 	struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
332 	struct cgroup *parent = cgroup_parent(cgrp);
333 	struct cgroup_base_stat delta;
334 	unsigned seq;
335 
336 	/* Root-level stats are sourced from system-wide CPU stats */
337 	if (!parent)
338 		return;
339 
340 	/* fetch the current per-cpu values */
341 	do {
342 		seq = __u64_stats_fetch_begin(&rstatc->bsync);
343 		delta = rstatc->bstat;
344 	} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
345 
346 	/* propagate percpu delta to global */
347 	cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
348 	cgroup_base_stat_add(&cgrp->bstat, &delta);
349 	cgroup_base_stat_add(&rstatc->last_bstat, &delta);
350 
351 	/* propagate global delta to parent (unless that's root) */
352 	if (cgroup_parent(parent)) {
353 		delta = cgrp->bstat;
354 		cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
355 		cgroup_base_stat_add(&parent->bstat, &delta);
356 		cgroup_base_stat_add(&cgrp->last_bstat, &delta);
357 	}
358 }
359 
360 static struct cgroup_rstat_cpu *
361 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
362 {
363 	struct cgroup_rstat_cpu *rstatc;
364 
365 	rstatc = get_cpu_ptr(cgrp->rstat_cpu);
366 	*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
367 	return rstatc;
368 }
369 
370 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
371 						 struct cgroup_rstat_cpu *rstatc,
372 						 unsigned long flags)
373 {
374 	u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
375 	cgroup_rstat_updated(cgrp, smp_processor_id());
376 	put_cpu_ptr(rstatc);
377 }
378 
379 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
380 {
381 	struct cgroup_rstat_cpu *rstatc;
382 	unsigned long flags;
383 
384 	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
385 	rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
386 	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
387 }
388 
389 void __cgroup_account_cputime_field(struct cgroup *cgrp,
390 				    enum cpu_usage_stat index, u64 delta_exec)
391 {
392 	struct cgroup_rstat_cpu *rstatc;
393 	unsigned long flags;
394 
395 	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
396 
397 	switch (index) {
398 	case CPUTIME_USER:
399 	case CPUTIME_NICE:
400 		rstatc->bstat.cputime.utime += delta_exec;
401 		break;
402 	case CPUTIME_SYSTEM:
403 	case CPUTIME_IRQ:
404 	case CPUTIME_SOFTIRQ:
405 		rstatc->bstat.cputime.stime += delta_exec;
406 		break;
407 #ifdef CONFIG_SCHED_CORE
408 	case CPUTIME_FORCEIDLE:
409 		rstatc->bstat.forceidle_sum += delta_exec;
410 		break;
411 #endif
412 	default:
413 		break;
414 	}
415 
416 	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
417 }
418 
419 /*
420  * compute the cputime for the root cgroup by getting the per cpu data
421  * at a global level, then categorizing the fields in a manner consistent
422  * with how it is done by __cgroup_account_cputime_field for each bit of
423  * cpu time attributed to a cgroup.
424  */
425 static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
426 {
427 	struct task_cputime *cputime = &bstat->cputime;
428 	int i;
429 
430 	cputime->stime = 0;
431 	cputime->utime = 0;
432 	cputime->sum_exec_runtime = 0;
433 	for_each_possible_cpu(i) {
434 		struct kernel_cpustat kcpustat;
435 		u64 *cpustat = kcpustat.cpustat;
436 		u64 user = 0;
437 		u64 sys = 0;
438 
439 		kcpustat_cpu_fetch(&kcpustat, i);
440 
441 		user += cpustat[CPUTIME_USER];
442 		user += cpustat[CPUTIME_NICE];
443 		cputime->utime += user;
444 
445 		sys += cpustat[CPUTIME_SYSTEM];
446 		sys += cpustat[CPUTIME_IRQ];
447 		sys += cpustat[CPUTIME_SOFTIRQ];
448 		cputime->stime += sys;
449 
450 		cputime->sum_exec_runtime += user;
451 		cputime->sum_exec_runtime += sys;
452 		cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
453 
454 #ifdef CONFIG_SCHED_CORE
455 		bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
456 #endif
457 	}
458 }
459 
460 void cgroup_base_stat_cputime_show(struct seq_file *seq)
461 {
462 	struct cgroup *cgrp = seq_css(seq)->cgroup;
463 	u64 usage, utime, stime;
464 	struct cgroup_base_stat bstat;
465 #ifdef CONFIG_SCHED_CORE
466 	u64 forceidle_time;
467 #endif
468 
469 	if (cgroup_parent(cgrp)) {
470 		cgroup_rstat_flush_hold(cgrp);
471 		usage = cgrp->bstat.cputime.sum_exec_runtime;
472 		cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
473 			       &utime, &stime);
474 #ifdef CONFIG_SCHED_CORE
475 		forceidle_time = cgrp->bstat.forceidle_sum;
476 #endif
477 		cgroup_rstat_flush_release();
478 	} else {
479 		root_cgroup_cputime(&bstat);
480 		usage = bstat.cputime.sum_exec_runtime;
481 		utime = bstat.cputime.utime;
482 		stime = bstat.cputime.stime;
483 #ifdef CONFIG_SCHED_CORE
484 		forceidle_time = bstat.forceidle_sum;
485 #endif
486 	}
487 
488 	do_div(usage, NSEC_PER_USEC);
489 	do_div(utime, NSEC_PER_USEC);
490 	do_div(stime, NSEC_PER_USEC);
491 #ifdef CONFIG_SCHED_CORE
492 	do_div(forceidle_time, NSEC_PER_USEC);
493 #endif
494 
495 	seq_printf(seq, "usage_usec %llu\n"
496 		   "user_usec %llu\n"
497 		   "system_usec %llu\n",
498 		   usage, utime, stime);
499 
500 #ifdef CONFIG_SCHED_CORE
501 	seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
502 #endif
503 }
504