1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 static DEFINE_SPINLOCK(cgroup_rstat_lock); 7 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 8 9 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 10 11 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 12 { 13 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 14 } 15 16 /** 17 * cgroup_rstat_updated - keep track of updated rstat_cpu 18 * @cgrp: target cgroup 19 * @cpu: cpu on which rstat_cpu was updated 20 * 21 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 22 * rstat_cpu->updated_children list. See the comment on top of 23 * cgroup_rstat_cpu definition for details. 24 */ 25 void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 26 { 27 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 28 struct cgroup *parent; 29 unsigned long flags; 30 31 /* nothing to do for root */ 32 if (!cgroup_parent(cgrp)) 33 return; 34 35 /* 36 * Speculative already-on-list test. This may race leading to 37 * temporary inaccuracies, which is fine. 38 * 39 * Because @parent's updated_children is terminated with @parent 40 * instead of NULL, we can tell whether @cgrp is on the list by 41 * testing the next pointer for NULL. 42 */ 43 if (cgroup_rstat_cpu(cgrp, cpu)->updated_next) 44 return; 45 46 raw_spin_lock_irqsave(cpu_lock, flags); 47 48 /* put @cgrp and all ancestors on the corresponding updated lists */ 49 for (parent = cgroup_parent(cgrp); parent; 50 cgrp = parent, parent = cgroup_parent(cgrp)) { 51 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 52 struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); 53 54 /* 55 * Both additions and removals are bottom-up. If a cgroup 56 * is already in the tree, all ancestors are. 57 */ 58 if (rstatc->updated_next) 59 break; 60 61 rstatc->updated_next = prstatc->updated_children; 62 prstatc->updated_children = cgrp; 63 } 64 65 raw_spin_unlock_irqrestore(cpu_lock, flags); 66 } 67 EXPORT_SYMBOL_GPL(cgroup_rstat_updated); 68 69 /** 70 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 71 * @pos: current position 72 * @root: root of the tree to traversal 73 * @cpu: target cpu 74 * 75 * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts 76 * the traversal and %NULL return indicates the end. During traversal, 77 * each returned cgroup is unlinked from the tree. Must be called with the 78 * matching cgroup_rstat_cpu_lock held. 79 * 80 * The only ordering guarantee is that, for a parent and a child pair 81 * covered by a given traversal, if a child is visited, its parent is 82 * guaranteed to be visited afterwards. 83 */ 84 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 85 struct cgroup *root, int cpu) 86 { 87 struct cgroup_rstat_cpu *rstatc; 88 89 if (pos == root) 90 return NULL; 91 92 /* 93 * We're gonna walk down to the first leaf and visit/remove it. We 94 * can pick whatever unvisited node as the starting point. 95 */ 96 if (!pos) 97 pos = root; 98 else 99 pos = cgroup_parent(pos); 100 101 /* walk down to the first leaf */ 102 while (true) { 103 rstatc = cgroup_rstat_cpu(pos, cpu); 104 if (rstatc->updated_children == pos) 105 break; 106 pos = rstatc->updated_children; 107 } 108 109 /* 110 * Unlink @pos from the tree. As the updated_children list is 111 * singly linked, we have to walk it to find the removal point. 112 * However, due to the way we traverse, @pos will be the first 113 * child in most cases. The only exception is @root. 114 */ 115 if (rstatc->updated_next) { 116 struct cgroup *parent = cgroup_parent(pos); 117 struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); 118 struct cgroup_rstat_cpu *nrstatc; 119 struct cgroup **nextp; 120 121 nextp = &prstatc->updated_children; 122 while (true) { 123 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 124 if (*nextp == pos) 125 break; 126 127 WARN_ON_ONCE(*nextp == parent); 128 nextp = &nrstatc->updated_next; 129 } 130 131 *nextp = rstatc->updated_next; 132 rstatc->updated_next = NULL; 133 134 return pos; 135 } 136 137 /* only happens for @root */ 138 return NULL; 139 } 140 141 /* see cgroup_rstat_flush() */ 142 static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) 143 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 144 { 145 int cpu; 146 147 lockdep_assert_held(&cgroup_rstat_lock); 148 149 for_each_possible_cpu(cpu) { 150 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 151 cpu); 152 struct cgroup *pos = NULL; 153 154 raw_spin_lock(cpu_lock); 155 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 156 struct cgroup_subsys_state *css; 157 158 cgroup_base_stat_flush(pos, cpu); 159 160 rcu_read_lock(); 161 list_for_each_entry_rcu(css, &pos->rstat_css_list, 162 rstat_css_node) 163 css->ss->css_rstat_flush(css, cpu); 164 rcu_read_unlock(); 165 } 166 raw_spin_unlock(cpu_lock); 167 168 /* if @may_sleep, play nice and yield if necessary */ 169 if (may_sleep && (need_resched() || 170 spin_needbreak(&cgroup_rstat_lock))) { 171 spin_unlock_irq(&cgroup_rstat_lock); 172 if (!cond_resched()) 173 cpu_relax(); 174 spin_lock_irq(&cgroup_rstat_lock); 175 } 176 } 177 } 178 179 /** 180 * cgroup_rstat_flush - flush stats in @cgrp's subtree 181 * @cgrp: target cgroup 182 * 183 * Collect all per-cpu stats in @cgrp's subtree into the global counters 184 * and propagate them upwards. After this function returns, all cgroups in 185 * the subtree have up-to-date ->stat. 186 * 187 * This also gets all cgroups in the subtree including @cgrp off the 188 * ->updated_children lists. 189 * 190 * This function may block. 191 */ 192 void cgroup_rstat_flush(struct cgroup *cgrp) 193 { 194 might_sleep(); 195 196 spin_lock_irq(&cgroup_rstat_lock); 197 cgroup_rstat_flush_locked(cgrp, true); 198 spin_unlock_irq(&cgroup_rstat_lock); 199 } 200 201 /** 202 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() 203 * @cgrp: target cgroup 204 * 205 * This function can be called from any context. 206 */ 207 void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) 208 { 209 unsigned long flags; 210 211 spin_lock_irqsave(&cgroup_rstat_lock, flags); 212 cgroup_rstat_flush_locked(cgrp, false); 213 spin_unlock_irqrestore(&cgroup_rstat_lock, flags); 214 } 215 216 /** 217 * cgroup_rstat_flush_begin - flush stats in @cgrp's subtree and hold 218 * @cgrp: target cgroup 219 * 220 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 221 * paired with cgroup_rstat_flush_release(). 222 * 223 * This function may block. 224 */ 225 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 226 __acquires(&cgroup_rstat_lock) 227 { 228 might_sleep(); 229 spin_lock_irq(&cgroup_rstat_lock); 230 cgroup_rstat_flush_locked(cgrp, true); 231 } 232 233 /** 234 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 235 */ 236 void cgroup_rstat_flush_release(void) 237 __releases(&cgroup_rstat_lock) 238 { 239 spin_unlock_irq(&cgroup_rstat_lock); 240 } 241 242 int cgroup_rstat_init(struct cgroup *cgrp) 243 { 244 int cpu; 245 246 /* the root cgrp has rstat_cpu preallocated */ 247 if (!cgrp->rstat_cpu) { 248 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 249 if (!cgrp->rstat_cpu) 250 return -ENOMEM; 251 } 252 253 /* ->updated_children list is self terminated */ 254 for_each_possible_cpu(cpu) { 255 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 256 257 rstatc->updated_children = cgrp; 258 u64_stats_init(&rstatc->bsync); 259 } 260 261 return 0; 262 } 263 264 void cgroup_rstat_exit(struct cgroup *cgrp) 265 { 266 int cpu; 267 268 cgroup_rstat_flush(cgrp); 269 270 /* sanity check */ 271 for_each_possible_cpu(cpu) { 272 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 273 274 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 275 WARN_ON_ONCE(rstatc->updated_next)) 276 return; 277 } 278 279 free_percpu(cgrp->rstat_cpu); 280 cgrp->rstat_cpu = NULL; 281 } 282 283 void __init cgroup_rstat_boot(void) 284 { 285 int cpu; 286 287 for_each_possible_cpu(cpu) 288 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 289 290 BUG_ON(cgroup_rstat_init(&cgrp_dfl_root.cgrp)); 291 } 292 293 /* 294 * Functions for cgroup basic resource statistics implemented on top of 295 * rstat. 296 */ 297 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 298 struct cgroup_base_stat *src_bstat) 299 { 300 dst_bstat->cputime.utime += src_bstat->cputime.utime; 301 dst_bstat->cputime.stime += src_bstat->cputime.stime; 302 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 303 } 304 305 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 306 struct cgroup_base_stat *src_bstat) 307 { 308 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 309 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 310 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 311 } 312 313 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 314 { 315 struct cgroup *parent = cgroup_parent(cgrp); 316 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 317 struct cgroup_base_stat cur, delta; 318 unsigned seq; 319 320 /* fetch the current per-cpu values */ 321 do { 322 seq = __u64_stats_fetch_begin(&rstatc->bsync); 323 cur.cputime = rstatc->bstat.cputime; 324 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 325 326 /* propagate percpu delta to global */ 327 delta = cur; 328 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 329 cgroup_base_stat_add(&cgrp->bstat, &delta); 330 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 331 332 /* propagate global delta to parent */ 333 if (parent) { 334 delta = cgrp->bstat; 335 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 336 cgroup_base_stat_add(&parent->bstat, &delta); 337 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 338 } 339 } 340 341 static struct cgroup_rstat_cpu * 342 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp) 343 { 344 struct cgroup_rstat_cpu *rstatc; 345 346 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 347 u64_stats_update_begin(&rstatc->bsync); 348 return rstatc; 349 } 350 351 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 352 struct cgroup_rstat_cpu *rstatc) 353 { 354 u64_stats_update_end(&rstatc->bsync); 355 cgroup_rstat_updated(cgrp, smp_processor_id()); 356 put_cpu_ptr(rstatc); 357 } 358 359 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 360 { 361 struct cgroup_rstat_cpu *rstatc; 362 363 rstatc = cgroup_base_stat_cputime_account_begin(cgrp); 364 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 365 cgroup_base_stat_cputime_account_end(cgrp, rstatc); 366 } 367 368 void __cgroup_account_cputime_field(struct cgroup *cgrp, 369 enum cpu_usage_stat index, u64 delta_exec) 370 { 371 struct cgroup_rstat_cpu *rstatc; 372 373 rstatc = cgroup_base_stat_cputime_account_begin(cgrp); 374 375 switch (index) { 376 case CPUTIME_USER: 377 case CPUTIME_NICE: 378 rstatc->bstat.cputime.utime += delta_exec; 379 break; 380 case CPUTIME_SYSTEM: 381 case CPUTIME_IRQ: 382 case CPUTIME_SOFTIRQ: 383 rstatc->bstat.cputime.stime += delta_exec; 384 break; 385 default: 386 break; 387 } 388 389 cgroup_base_stat_cputime_account_end(cgrp, rstatc); 390 } 391 392 /* 393 * compute the cputime for the root cgroup by getting the per cpu data 394 * at a global level, then categorizing the fields in a manner consistent 395 * with how it is done by __cgroup_account_cputime_field for each bit of 396 * cpu time attributed to a cgroup. 397 */ 398 static void root_cgroup_cputime(struct task_cputime *cputime) 399 { 400 int i; 401 402 cputime->stime = 0; 403 cputime->utime = 0; 404 cputime->sum_exec_runtime = 0; 405 for_each_possible_cpu(i) { 406 struct kernel_cpustat kcpustat; 407 u64 *cpustat = kcpustat.cpustat; 408 u64 user = 0; 409 u64 sys = 0; 410 411 kcpustat_cpu_fetch(&kcpustat, i); 412 413 user += cpustat[CPUTIME_USER]; 414 user += cpustat[CPUTIME_NICE]; 415 cputime->utime += user; 416 417 sys += cpustat[CPUTIME_SYSTEM]; 418 sys += cpustat[CPUTIME_IRQ]; 419 sys += cpustat[CPUTIME_SOFTIRQ]; 420 cputime->stime += sys; 421 422 cputime->sum_exec_runtime += user; 423 cputime->sum_exec_runtime += sys; 424 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 425 cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST]; 426 cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST_NICE]; 427 } 428 } 429 430 void cgroup_base_stat_cputime_show(struct seq_file *seq) 431 { 432 struct cgroup *cgrp = seq_css(seq)->cgroup; 433 u64 usage, utime, stime; 434 struct task_cputime cputime; 435 436 if (cgroup_parent(cgrp)) { 437 cgroup_rstat_flush_hold(cgrp); 438 usage = cgrp->bstat.cputime.sum_exec_runtime; 439 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 440 &utime, &stime); 441 cgroup_rstat_flush_release(); 442 } else { 443 root_cgroup_cputime(&cputime); 444 usage = cputime.sum_exec_runtime; 445 utime = cputime.utime; 446 stime = cputime.stime; 447 } 448 449 do_div(usage, NSEC_PER_USEC); 450 do_div(utime, NSEC_PER_USEC); 451 do_div(stime, NSEC_PER_USEC); 452 453 seq_printf(seq, "usage_usec %llu\n" 454 "user_usec %llu\n" 455 "system_usec %llu\n", 456 usage, utime, stime); 457 } 458