1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 static DEFINE_SPINLOCK(cgroup_rstat_lock); 11 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 12 13 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 14 15 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 16 { 17 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 18 } 19 20 /** 21 * cgroup_rstat_updated - keep track of updated rstat_cpu 22 * @cgrp: target cgroup 23 * @cpu: cpu on which rstat_cpu was updated 24 * 25 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 26 * rstat_cpu->updated_children list. See the comment on top of 27 * cgroup_rstat_cpu definition for details. 28 */ 29 __bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 30 { 31 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 32 unsigned long flags; 33 34 /* 35 * Speculative already-on-list test. This may race leading to 36 * temporary inaccuracies, which is fine. 37 * 38 * Because @parent's updated_children is terminated with @parent 39 * instead of NULL, we can tell whether @cgrp is on the list by 40 * testing the next pointer for NULL. 41 */ 42 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 43 return; 44 45 raw_spin_lock_irqsave(cpu_lock, flags); 46 47 /* put @cgrp and all ancestors on the corresponding updated lists */ 48 while (true) { 49 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 50 struct cgroup *parent = cgroup_parent(cgrp); 51 struct cgroup_rstat_cpu *prstatc; 52 53 /* 54 * Both additions and removals are bottom-up. If a cgroup 55 * is already in the tree, all ancestors are. 56 */ 57 if (rstatc->updated_next) 58 break; 59 60 /* Root has no parent to link it to, but mark it busy */ 61 if (!parent) { 62 rstatc->updated_next = cgrp; 63 break; 64 } 65 66 prstatc = cgroup_rstat_cpu(parent, cpu); 67 rstatc->updated_next = prstatc->updated_children; 68 prstatc->updated_children = cgrp; 69 70 cgrp = parent; 71 } 72 73 raw_spin_unlock_irqrestore(cpu_lock, flags); 74 } 75 76 /** 77 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 78 * @pos: current position 79 * @root: root of the tree to traversal 80 * @cpu: target cpu 81 * 82 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts 83 * the traversal and %NULL return indicates the end. During traversal, 84 * each returned cgroup is unlinked from the tree. Must be called with the 85 * matching cgroup_rstat_cpu_lock held. 86 * 87 * The only ordering guarantee is that, for a parent and a child pair 88 * covered by a given traversal, if a child is visited, its parent is 89 * guaranteed to be visited afterwards. 90 */ 91 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 92 struct cgroup *root, int cpu) 93 { 94 struct cgroup_rstat_cpu *rstatc; 95 struct cgroup *parent; 96 97 if (pos == root) 98 return NULL; 99 100 /* 101 * We're gonna walk down to the first leaf and visit/remove it. We 102 * can pick whatever unvisited node as the starting point. 103 */ 104 if (!pos) { 105 pos = root; 106 /* return NULL if this subtree is not on-list */ 107 if (!cgroup_rstat_cpu(pos, cpu)->updated_next) 108 return NULL; 109 } else { 110 pos = cgroup_parent(pos); 111 } 112 113 /* walk down to the first leaf */ 114 while (true) { 115 rstatc = cgroup_rstat_cpu(pos, cpu); 116 if (rstatc->updated_children == pos) 117 break; 118 pos = rstatc->updated_children; 119 } 120 121 /* 122 * Unlink @pos from the tree. As the updated_children list is 123 * singly linked, we have to walk it to find the removal point. 124 * However, due to the way we traverse, @pos will be the first 125 * child in most cases. The only exception is @root. 126 */ 127 parent = cgroup_parent(pos); 128 if (parent) { 129 struct cgroup_rstat_cpu *prstatc; 130 struct cgroup **nextp; 131 132 prstatc = cgroup_rstat_cpu(parent, cpu); 133 nextp = &prstatc->updated_children; 134 while (*nextp != pos) { 135 struct cgroup_rstat_cpu *nrstatc; 136 137 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 138 WARN_ON_ONCE(*nextp == parent); 139 nextp = &nrstatc->updated_next; 140 } 141 *nextp = rstatc->updated_next; 142 } 143 144 rstatc->updated_next = NULL; 145 return pos; 146 } 147 148 /* 149 * A hook for bpf stat collectors to attach to and flush their stats. 150 * Together with providing bpf kfuncs for cgroup_rstat_updated() and 151 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that 152 * collect cgroup stats can integrate with rstat for efficient flushing. 153 * 154 * A static noinline declaration here could cause the compiler to optimize away 155 * the function. A global noinline declaration will keep the definition, but may 156 * optimize away the callsite. Therefore, __weak is needed to ensure that the 157 * call is still emitted, by telling the compiler that we don't know what the 158 * function might eventually be. 159 * 160 * __diag_* below are needed to dismiss the missing prototype warning. 161 */ 162 __diag_push(); 163 __diag_ignore_all("-Wmissing-prototypes", 164 "kfuncs which will be used in BPF programs"); 165 166 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 167 struct cgroup *parent, int cpu) 168 { 169 } 170 171 __diag_pop(); 172 173 /* see cgroup_rstat_flush() */ 174 static void cgroup_rstat_flush_locked(struct cgroup *cgrp) 175 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 176 { 177 int cpu; 178 179 lockdep_assert_held(&cgroup_rstat_lock); 180 181 for_each_possible_cpu(cpu) { 182 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 183 cpu); 184 struct cgroup *pos = NULL; 185 unsigned long flags; 186 187 /* 188 * The _irqsave() is needed because cgroup_rstat_lock is 189 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring 190 * this lock with the _irq() suffix only disables interrupts on 191 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables 192 * interrupts on both configurations. The _irqsave() ensures 193 * that interrupts are always disabled and later restored. 194 */ 195 raw_spin_lock_irqsave(cpu_lock, flags); 196 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 197 struct cgroup_subsys_state *css; 198 199 cgroup_base_stat_flush(pos, cpu); 200 bpf_rstat_flush(pos, cgroup_parent(pos), cpu); 201 202 rcu_read_lock(); 203 list_for_each_entry_rcu(css, &pos->rstat_css_list, 204 rstat_css_node) 205 css->ss->css_rstat_flush(css, cpu); 206 rcu_read_unlock(); 207 } 208 raw_spin_unlock_irqrestore(cpu_lock, flags); 209 210 /* play nice and yield if necessary */ 211 if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) { 212 spin_unlock_irq(&cgroup_rstat_lock); 213 if (!cond_resched()) 214 cpu_relax(); 215 spin_lock_irq(&cgroup_rstat_lock); 216 } 217 } 218 } 219 220 /** 221 * cgroup_rstat_flush - flush stats in @cgrp's subtree 222 * @cgrp: target cgroup 223 * 224 * Collect all per-cpu stats in @cgrp's subtree into the global counters 225 * and propagate them upwards. After this function returns, all cgroups in 226 * the subtree have up-to-date ->stat. 227 * 228 * This also gets all cgroups in the subtree including @cgrp off the 229 * ->updated_children lists. 230 * 231 * This function may block. 232 */ 233 __bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp) 234 { 235 might_sleep(); 236 237 spin_lock_irq(&cgroup_rstat_lock); 238 cgroup_rstat_flush_locked(cgrp); 239 spin_unlock_irq(&cgroup_rstat_lock); 240 } 241 242 /** 243 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 244 * @cgrp: target cgroup 245 * 246 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 247 * paired with cgroup_rstat_flush_release(). 248 * 249 * This function may block. 250 */ 251 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 252 __acquires(&cgroup_rstat_lock) 253 { 254 might_sleep(); 255 spin_lock_irq(&cgroup_rstat_lock); 256 cgroup_rstat_flush_locked(cgrp); 257 } 258 259 /** 260 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 261 */ 262 void cgroup_rstat_flush_release(void) 263 __releases(&cgroup_rstat_lock) 264 { 265 spin_unlock_irq(&cgroup_rstat_lock); 266 } 267 268 int cgroup_rstat_init(struct cgroup *cgrp) 269 { 270 int cpu; 271 272 /* the root cgrp has rstat_cpu preallocated */ 273 if (!cgrp->rstat_cpu) { 274 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 275 if (!cgrp->rstat_cpu) 276 return -ENOMEM; 277 } 278 279 /* ->updated_children list is self terminated */ 280 for_each_possible_cpu(cpu) { 281 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 282 283 rstatc->updated_children = cgrp; 284 u64_stats_init(&rstatc->bsync); 285 } 286 287 return 0; 288 } 289 290 void cgroup_rstat_exit(struct cgroup *cgrp) 291 { 292 int cpu; 293 294 cgroup_rstat_flush(cgrp); 295 296 /* sanity check */ 297 for_each_possible_cpu(cpu) { 298 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 299 300 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 301 WARN_ON_ONCE(rstatc->updated_next)) 302 return; 303 } 304 305 free_percpu(cgrp->rstat_cpu); 306 cgrp->rstat_cpu = NULL; 307 } 308 309 void __init cgroup_rstat_boot(void) 310 { 311 int cpu; 312 313 for_each_possible_cpu(cpu) 314 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 315 } 316 317 /* 318 * Functions for cgroup basic resource statistics implemented on top of 319 * rstat. 320 */ 321 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 322 struct cgroup_base_stat *src_bstat) 323 { 324 dst_bstat->cputime.utime += src_bstat->cputime.utime; 325 dst_bstat->cputime.stime += src_bstat->cputime.stime; 326 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 327 #ifdef CONFIG_SCHED_CORE 328 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 329 #endif 330 } 331 332 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 333 struct cgroup_base_stat *src_bstat) 334 { 335 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 336 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 337 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 338 #ifdef CONFIG_SCHED_CORE 339 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 340 #endif 341 } 342 343 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 344 { 345 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 346 struct cgroup *parent = cgroup_parent(cgrp); 347 struct cgroup_base_stat delta; 348 unsigned seq; 349 350 /* Root-level stats are sourced from system-wide CPU stats */ 351 if (!parent) 352 return; 353 354 /* fetch the current per-cpu values */ 355 do { 356 seq = __u64_stats_fetch_begin(&rstatc->bsync); 357 delta = rstatc->bstat; 358 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 359 360 /* propagate percpu delta to global */ 361 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 362 cgroup_base_stat_add(&cgrp->bstat, &delta); 363 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 364 365 /* propagate global delta to parent (unless that's root) */ 366 if (cgroup_parent(parent)) { 367 delta = cgrp->bstat; 368 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 369 cgroup_base_stat_add(&parent->bstat, &delta); 370 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 371 } 372 } 373 374 static struct cgroup_rstat_cpu * 375 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 376 { 377 struct cgroup_rstat_cpu *rstatc; 378 379 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 380 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 381 return rstatc; 382 } 383 384 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 385 struct cgroup_rstat_cpu *rstatc, 386 unsigned long flags) 387 { 388 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 389 cgroup_rstat_updated(cgrp, smp_processor_id()); 390 put_cpu_ptr(rstatc); 391 } 392 393 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 394 { 395 struct cgroup_rstat_cpu *rstatc; 396 unsigned long flags; 397 398 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 399 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 400 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 401 } 402 403 void __cgroup_account_cputime_field(struct cgroup *cgrp, 404 enum cpu_usage_stat index, u64 delta_exec) 405 { 406 struct cgroup_rstat_cpu *rstatc; 407 unsigned long flags; 408 409 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 410 411 switch (index) { 412 case CPUTIME_USER: 413 case CPUTIME_NICE: 414 rstatc->bstat.cputime.utime += delta_exec; 415 break; 416 case CPUTIME_SYSTEM: 417 case CPUTIME_IRQ: 418 case CPUTIME_SOFTIRQ: 419 rstatc->bstat.cputime.stime += delta_exec; 420 break; 421 #ifdef CONFIG_SCHED_CORE 422 case CPUTIME_FORCEIDLE: 423 rstatc->bstat.forceidle_sum += delta_exec; 424 break; 425 #endif 426 default: 427 break; 428 } 429 430 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 431 } 432 433 /* 434 * compute the cputime for the root cgroup by getting the per cpu data 435 * at a global level, then categorizing the fields in a manner consistent 436 * with how it is done by __cgroup_account_cputime_field for each bit of 437 * cpu time attributed to a cgroup. 438 */ 439 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 440 { 441 struct task_cputime *cputime = &bstat->cputime; 442 int i; 443 444 memset(bstat, 0, sizeof(*bstat)); 445 for_each_possible_cpu(i) { 446 struct kernel_cpustat kcpustat; 447 u64 *cpustat = kcpustat.cpustat; 448 u64 user = 0; 449 u64 sys = 0; 450 451 kcpustat_cpu_fetch(&kcpustat, i); 452 453 user += cpustat[CPUTIME_USER]; 454 user += cpustat[CPUTIME_NICE]; 455 cputime->utime += user; 456 457 sys += cpustat[CPUTIME_SYSTEM]; 458 sys += cpustat[CPUTIME_IRQ]; 459 sys += cpustat[CPUTIME_SOFTIRQ]; 460 cputime->stime += sys; 461 462 cputime->sum_exec_runtime += user; 463 cputime->sum_exec_runtime += sys; 464 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 465 466 #ifdef CONFIG_SCHED_CORE 467 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 468 #endif 469 } 470 } 471 472 void cgroup_base_stat_cputime_show(struct seq_file *seq) 473 { 474 struct cgroup *cgrp = seq_css(seq)->cgroup; 475 u64 usage, utime, stime; 476 struct cgroup_base_stat bstat; 477 #ifdef CONFIG_SCHED_CORE 478 u64 forceidle_time; 479 #endif 480 481 if (cgroup_parent(cgrp)) { 482 cgroup_rstat_flush_hold(cgrp); 483 usage = cgrp->bstat.cputime.sum_exec_runtime; 484 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 485 &utime, &stime); 486 #ifdef CONFIG_SCHED_CORE 487 forceidle_time = cgrp->bstat.forceidle_sum; 488 #endif 489 cgroup_rstat_flush_release(); 490 } else { 491 root_cgroup_cputime(&bstat); 492 usage = bstat.cputime.sum_exec_runtime; 493 utime = bstat.cputime.utime; 494 stime = bstat.cputime.stime; 495 #ifdef CONFIG_SCHED_CORE 496 forceidle_time = bstat.forceidle_sum; 497 #endif 498 } 499 500 do_div(usage, NSEC_PER_USEC); 501 do_div(utime, NSEC_PER_USEC); 502 do_div(stime, NSEC_PER_USEC); 503 #ifdef CONFIG_SCHED_CORE 504 do_div(forceidle_time, NSEC_PER_USEC); 505 #endif 506 507 seq_printf(seq, "usage_usec %llu\n" 508 "user_usec %llu\n" 509 "system_usec %llu\n", 510 usage, utime, stime); 511 512 #ifdef CONFIG_SCHED_CORE 513 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 514 #endif 515 } 516 517 /* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */ 518 BTF_SET8_START(bpf_rstat_kfunc_ids) 519 BTF_ID_FLAGS(func, cgroup_rstat_updated) 520 BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE) 521 BTF_SET8_END(bpf_rstat_kfunc_ids) 522 523 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 524 .owner = THIS_MODULE, 525 .set = &bpf_rstat_kfunc_ids, 526 }; 527 528 static int __init bpf_rstat_kfunc_init(void) 529 { 530 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 531 &bpf_rstat_kfunc_set); 532 } 533 late_initcall(bpf_rstat_kfunc_init); 534