1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 static DEFINE_SPINLOCK(cgroup_rstat_lock); 7 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 8 9 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 10 11 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 12 { 13 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 14 } 15 16 /** 17 * cgroup_rstat_updated - keep track of updated rstat_cpu 18 * @cgrp: target cgroup 19 * @cpu: cpu on which rstat_cpu was updated 20 * 21 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 22 * rstat_cpu->updated_children list. See the comment on top of 23 * cgroup_rstat_cpu definition for details. 24 */ 25 void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 26 { 27 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 28 unsigned long flags; 29 30 /* 31 * Speculative already-on-list test. This may race leading to 32 * temporary inaccuracies, which is fine. 33 * 34 * Because @parent's updated_children is terminated with @parent 35 * instead of NULL, we can tell whether @cgrp is on the list by 36 * testing the next pointer for NULL. 37 */ 38 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 39 return; 40 41 raw_spin_lock_irqsave(cpu_lock, flags); 42 43 /* put @cgrp and all ancestors on the corresponding updated lists */ 44 while (true) { 45 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 46 struct cgroup *parent = cgroup_parent(cgrp); 47 struct cgroup_rstat_cpu *prstatc; 48 49 /* 50 * Both additions and removals are bottom-up. If a cgroup 51 * is already in the tree, all ancestors are. 52 */ 53 if (rstatc->updated_next) 54 break; 55 56 /* Root has no parent to link it to, but mark it busy */ 57 if (!parent) { 58 rstatc->updated_next = cgrp; 59 break; 60 } 61 62 prstatc = cgroup_rstat_cpu(parent, cpu); 63 rstatc->updated_next = prstatc->updated_children; 64 prstatc->updated_children = cgrp; 65 66 cgrp = parent; 67 } 68 69 raw_spin_unlock_irqrestore(cpu_lock, flags); 70 } 71 72 /** 73 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 74 * @pos: current position 75 * @root: root of the tree to traversal 76 * @cpu: target cpu 77 * 78 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts 79 * the traversal and %NULL return indicates the end. During traversal, 80 * each returned cgroup is unlinked from the tree. Must be called with the 81 * matching cgroup_rstat_cpu_lock held. 82 * 83 * The only ordering guarantee is that, for a parent and a child pair 84 * covered by a given traversal, if a child is visited, its parent is 85 * guaranteed to be visited afterwards. 86 */ 87 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 88 struct cgroup *root, int cpu) 89 { 90 struct cgroup_rstat_cpu *rstatc; 91 struct cgroup *parent; 92 93 if (pos == root) 94 return NULL; 95 96 /* 97 * We're gonna walk down to the first leaf and visit/remove it. We 98 * can pick whatever unvisited node as the starting point. 99 */ 100 if (!pos) { 101 pos = root; 102 /* return NULL if this subtree is not on-list */ 103 if (!cgroup_rstat_cpu(pos, cpu)->updated_next) 104 return NULL; 105 } else { 106 pos = cgroup_parent(pos); 107 } 108 109 /* walk down to the first leaf */ 110 while (true) { 111 rstatc = cgroup_rstat_cpu(pos, cpu); 112 if (rstatc->updated_children == pos) 113 break; 114 pos = rstatc->updated_children; 115 } 116 117 /* 118 * Unlink @pos from the tree. As the updated_children list is 119 * singly linked, we have to walk it to find the removal point. 120 * However, due to the way we traverse, @pos will be the first 121 * child in most cases. The only exception is @root. 122 */ 123 parent = cgroup_parent(pos); 124 if (parent) { 125 struct cgroup_rstat_cpu *prstatc; 126 struct cgroup **nextp; 127 128 prstatc = cgroup_rstat_cpu(parent, cpu); 129 nextp = &prstatc->updated_children; 130 while (*nextp != pos) { 131 struct cgroup_rstat_cpu *nrstatc; 132 133 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 134 WARN_ON_ONCE(*nextp == parent); 135 nextp = &nrstatc->updated_next; 136 } 137 *nextp = rstatc->updated_next; 138 } 139 140 rstatc->updated_next = NULL; 141 return pos; 142 } 143 144 /* see cgroup_rstat_flush() */ 145 static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) 146 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 147 { 148 int cpu; 149 150 lockdep_assert_held(&cgroup_rstat_lock); 151 152 for_each_possible_cpu(cpu) { 153 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 154 cpu); 155 struct cgroup *pos = NULL; 156 157 raw_spin_lock(cpu_lock); 158 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 159 struct cgroup_subsys_state *css; 160 161 cgroup_base_stat_flush(pos, cpu); 162 163 rcu_read_lock(); 164 list_for_each_entry_rcu(css, &pos->rstat_css_list, 165 rstat_css_node) 166 css->ss->css_rstat_flush(css, cpu); 167 rcu_read_unlock(); 168 } 169 raw_spin_unlock(cpu_lock); 170 171 /* if @may_sleep, play nice and yield if necessary */ 172 if (may_sleep && (need_resched() || 173 spin_needbreak(&cgroup_rstat_lock))) { 174 spin_unlock_irq(&cgroup_rstat_lock); 175 if (!cond_resched()) 176 cpu_relax(); 177 spin_lock_irq(&cgroup_rstat_lock); 178 } 179 } 180 } 181 182 /** 183 * cgroup_rstat_flush - flush stats in @cgrp's subtree 184 * @cgrp: target cgroup 185 * 186 * Collect all per-cpu stats in @cgrp's subtree into the global counters 187 * and propagate them upwards. After this function returns, all cgroups in 188 * the subtree have up-to-date ->stat. 189 * 190 * This also gets all cgroups in the subtree including @cgrp off the 191 * ->updated_children lists. 192 * 193 * This function may block. 194 */ 195 void cgroup_rstat_flush(struct cgroup *cgrp) 196 { 197 might_sleep(); 198 199 spin_lock_irq(&cgroup_rstat_lock); 200 cgroup_rstat_flush_locked(cgrp, true); 201 spin_unlock_irq(&cgroup_rstat_lock); 202 } 203 204 /** 205 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() 206 * @cgrp: target cgroup 207 * 208 * This function can be called from any context. 209 */ 210 void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) 211 { 212 unsigned long flags; 213 214 spin_lock_irqsave(&cgroup_rstat_lock, flags); 215 cgroup_rstat_flush_locked(cgrp, false); 216 spin_unlock_irqrestore(&cgroup_rstat_lock, flags); 217 } 218 219 /** 220 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 221 * @cgrp: target cgroup 222 * 223 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 224 * paired with cgroup_rstat_flush_release(). 225 * 226 * This function may block. 227 */ 228 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 229 __acquires(&cgroup_rstat_lock) 230 { 231 might_sleep(); 232 spin_lock_irq(&cgroup_rstat_lock); 233 cgroup_rstat_flush_locked(cgrp, true); 234 } 235 236 /** 237 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 238 */ 239 void cgroup_rstat_flush_release(void) 240 __releases(&cgroup_rstat_lock) 241 { 242 spin_unlock_irq(&cgroup_rstat_lock); 243 } 244 245 int cgroup_rstat_init(struct cgroup *cgrp) 246 { 247 int cpu; 248 249 /* the root cgrp has rstat_cpu preallocated */ 250 if (!cgrp->rstat_cpu) { 251 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 252 if (!cgrp->rstat_cpu) 253 return -ENOMEM; 254 } 255 256 /* ->updated_children list is self terminated */ 257 for_each_possible_cpu(cpu) { 258 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 259 260 rstatc->updated_children = cgrp; 261 u64_stats_init(&rstatc->bsync); 262 } 263 264 return 0; 265 } 266 267 void cgroup_rstat_exit(struct cgroup *cgrp) 268 { 269 int cpu; 270 271 cgroup_rstat_flush(cgrp); 272 273 /* sanity check */ 274 for_each_possible_cpu(cpu) { 275 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 276 277 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 278 WARN_ON_ONCE(rstatc->updated_next)) 279 return; 280 } 281 282 free_percpu(cgrp->rstat_cpu); 283 cgrp->rstat_cpu = NULL; 284 } 285 286 void __init cgroup_rstat_boot(void) 287 { 288 int cpu; 289 290 for_each_possible_cpu(cpu) 291 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 292 } 293 294 /* 295 * Functions for cgroup basic resource statistics implemented on top of 296 * rstat. 297 */ 298 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 299 struct cgroup_base_stat *src_bstat) 300 { 301 dst_bstat->cputime.utime += src_bstat->cputime.utime; 302 dst_bstat->cputime.stime += src_bstat->cputime.stime; 303 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 304 } 305 306 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 307 struct cgroup_base_stat *src_bstat) 308 { 309 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 310 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 311 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 312 } 313 314 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 315 { 316 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 317 struct cgroup *parent = cgroup_parent(cgrp); 318 struct cgroup_base_stat cur, delta; 319 unsigned seq; 320 321 /* Root-level stats are sourced from system-wide CPU stats */ 322 if (!parent) 323 return; 324 325 /* fetch the current per-cpu values */ 326 do { 327 seq = __u64_stats_fetch_begin(&rstatc->bsync); 328 cur.cputime = rstatc->bstat.cputime; 329 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 330 331 /* propagate percpu delta to global */ 332 delta = cur; 333 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 334 cgroup_base_stat_add(&cgrp->bstat, &delta); 335 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 336 337 /* propagate global delta to parent (unless that's root) */ 338 if (cgroup_parent(parent)) { 339 delta = cgrp->bstat; 340 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 341 cgroup_base_stat_add(&parent->bstat, &delta); 342 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 343 } 344 } 345 346 static struct cgroup_rstat_cpu * 347 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 348 { 349 struct cgroup_rstat_cpu *rstatc; 350 351 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 352 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 353 return rstatc; 354 } 355 356 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 357 struct cgroup_rstat_cpu *rstatc, 358 unsigned long flags) 359 { 360 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 361 cgroup_rstat_updated(cgrp, smp_processor_id()); 362 put_cpu_ptr(rstatc); 363 } 364 365 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 366 { 367 struct cgroup_rstat_cpu *rstatc; 368 unsigned long flags; 369 370 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 371 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 372 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 373 } 374 375 void __cgroup_account_cputime_field(struct cgroup *cgrp, 376 enum cpu_usage_stat index, u64 delta_exec) 377 { 378 struct cgroup_rstat_cpu *rstatc; 379 unsigned long flags; 380 381 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 382 383 switch (index) { 384 case CPUTIME_USER: 385 case CPUTIME_NICE: 386 rstatc->bstat.cputime.utime += delta_exec; 387 break; 388 case CPUTIME_SYSTEM: 389 case CPUTIME_IRQ: 390 case CPUTIME_SOFTIRQ: 391 rstatc->bstat.cputime.stime += delta_exec; 392 break; 393 default: 394 break; 395 } 396 397 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 398 } 399 400 /* 401 * compute the cputime for the root cgroup by getting the per cpu data 402 * at a global level, then categorizing the fields in a manner consistent 403 * with how it is done by __cgroup_account_cputime_field for each bit of 404 * cpu time attributed to a cgroup. 405 */ 406 static void root_cgroup_cputime(struct task_cputime *cputime) 407 { 408 int i; 409 410 cputime->stime = 0; 411 cputime->utime = 0; 412 cputime->sum_exec_runtime = 0; 413 for_each_possible_cpu(i) { 414 struct kernel_cpustat kcpustat; 415 u64 *cpustat = kcpustat.cpustat; 416 u64 user = 0; 417 u64 sys = 0; 418 419 kcpustat_cpu_fetch(&kcpustat, i); 420 421 user += cpustat[CPUTIME_USER]; 422 user += cpustat[CPUTIME_NICE]; 423 cputime->utime += user; 424 425 sys += cpustat[CPUTIME_SYSTEM]; 426 sys += cpustat[CPUTIME_IRQ]; 427 sys += cpustat[CPUTIME_SOFTIRQ]; 428 cputime->stime += sys; 429 430 cputime->sum_exec_runtime += user; 431 cputime->sum_exec_runtime += sys; 432 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 433 } 434 } 435 436 void cgroup_base_stat_cputime_show(struct seq_file *seq) 437 { 438 struct cgroup *cgrp = seq_css(seq)->cgroup; 439 u64 usage, utime, stime; 440 struct task_cputime cputime; 441 442 if (cgroup_parent(cgrp)) { 443 cgroup_rstat_flush_hold(cgrp); 444 usage = cgrp->bstat.cputime.sum_exec_runtime; 445 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 446 &utime, &stime); 447 cgroup_rstat_flush_release(); 448 } else { 449 root_cgroup_cputime(&cputime); 450 usage = cputime.sum_exec_runtime; 451 utime = cputime.utime; 452 stime = cputime.stime; 453 } 454 455 do_div(usage, NSEC_PER_USEC); 456 do_div(utime, NSEC_PER_USEC); 457 do_div(stime, NSEC_PER_USEC); 458 459 seq_printf(seq, "usage_usec %llu\n" 460 "user_usec %llu\n" 461 "system_usec %llu\n", 462 usage, utime, stime); 463 } 464