xref: /openbmc/linux/kernel/cgroup/rstat.c (revision 52beb1fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/sched/cputime.h>
5 
6 static DEFINE_SPINLOCK(cgroup_rstat_lock);
7 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
8 
9 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
10 
11 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
12 {
13 	return per_cpu_ptr(cgrp->rstat_cpu, cpu);
14 }
15 
16 /**
17  * cgroup_rstat_updated - keep track of updated rstat_cpu
18  * @cgrp: target cgroup
19  * @cpu: cpu on which rstat_cpu was updated
20  *
21  * @cgrp's rstat_cpu on @cpu was updated.  Put it on the parent's matching
22  * rstat_cpu->updated_children list.  See the comment on top of
23  * cgroup_rstat_cpu definition for details.
24  */
25 void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
26 {
27 	raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
28 	unsigned long flags;
29 
30 	/*
31 	 * Speculative already-on-list test. This may race leading to
32 	 * temporary inaccuracies, which is fine.
33 	 *
34 	 * Because @parent's updated_children is terminated with @parent
35 	 * instead of NULL, we can tell whether @cgrp is on the list by
36 	 * testing the next pointer for NULL.
37 	 */
38 	if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
39 		return;
40 
41 	raw_spin_lock_irqsave(cpu_lock, flags);
42 
43 	/* put @cgrp and all ancestors on the corresponding updated lists */
44 	while (true) {
45 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
46 		struct cgroup *parent = cgroup_parent(cgrp);
47 		struct cgroup_rstat_cpu *prstatc;
48 
49 		/*
50 		 * Both additions and removals are bottom-up.  If a cgroup
51 		 * is already in the tree, all ancestors are.
52 		 */
53 		if (rstatc->updated_next)
54 			break;
55 
56 		/* Root has no parent to link it to, but mark it busy */
57 		if (!parent) {
58 			rstatc->updated_next = cgrp;
59 			break;
60 		}
61 
62 		prstatc = cgroup_rstat_cpu(parent, cpu);
63 		rstatc->updated_next = prstatc->updated_children;
64 		prstatc->updated_children = cgrp;
65 
66 		cgrp = parent;
67 	}
68 
69 	raw_spin_unlock_irqrestore(cpu_lock, flags);
70 }
71 
72 /**
73  * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
74  * @pos: current position
75  * @root: root of the tree to traversal
76  * @cpu: target cpu
77  *
78  * Walks the updated rstat_cpu tree on @cpu from @root.  %NULL @pos starts
79  * the traversal and %NULL return indicates the end.  During traversal,
80  * each returned cgroup is unlinked from the tree.  Must be called with the
81  * matching cgroup_rstat_cpu_lock held.
82  *
83  * The only ordering guarantee is that, for a parent and a child pair
84  * covered by a given traversal, if a child is visited, its parent is
85  * guaranteed to be visited afterwards.
86  */
87 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
88 						   struct cgroup *root, int cpu)
89 {
90 	struct cgroup_rstat_cpu *rstatc;
91 	struct cgroup *parent;
92 
93 	if (pos == root)
94 		return NULL;
95 
96 	/*
97 	 * We're gonna walk down to the first leaf and visit/remove it.  We
98 	 * can pick whatever unvisited node as the starting point.
99 	 */
100 	if (!pos) {
101 		pos = root;
102 		/* return NULL if this subtree is not on-list */
103 		if (!cgroup_rstat_cpu(pos, cpu)->updated_next)
104 			return NULL;
105 	} else {
106 		pos = cgroup_parent(pos);
107 	}
108 
109 	/* walk down to the first leaf */
110 	while (true) {
111 		rstatc = cgroup_rstat_cpu(pos, cpu);
112 		if (rstatc->updated_children == pos)
113 			break;
114 		pos = rstatc->updated_children;
115 	}
116 
117 	/*
118 	 * Unlink @pos from the tree.  As the updated_children list is
119 	 * singly linked, we have to walk it to find the removal point.
120 	 * However, due to the way we traverse, @pos will be the first
121 	 * child in most cases. The only exception is @root.
122 	 */
123 	parent = cgroup_parent(pos);
124 	if (parent) {
125 		struct cgroup_rstat_cpu *prstatc;
126 		struct cgroup **nextp;
127 
128 		prstatc = cgroup_rstat_cpu(parent, cpu);
129 		nextp = &prstatc->updated_children;
130 		while (*nextp != pos) {
131 			struct cgroup_rstat_cpu *nrstatc;
132 
133 			nrstatc = cgroup_rstat_cpu(*nextp, cpu);
134 			WARN_ON_ONCE(*nextp == parent);
135 			nextp = &nrstatc->updated_next;
136 		}
137 		*nextp = rstatc->updated_next;
138 	}
139 
140 	rstatc->updated_next = NULL;
141 	return pos;
142 }
143 
144 /* see cgroup_rstat_flush() */
145 static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
146 	__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
147 {
148 	int cpu;
149 
150 	lockdep_assert_held(&cgroup_rstat_lock);
151 
152 	for_each_possible_cpu(cpu) {
153 		raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
154 						       cpu);
155 		struct cgroup *pos = NULL;
156 
157 		raw_spin_lock(cpu_lock);
158 		while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
159 			struct cgroup_subsys_state *css;
160 
161 			cgroup_base_stat_flush(pos, cpu);
162 
163 			rcu_read_lock();
164 			list_for_each_entry_rcu(css, &pos->rstat_css_list,
165 						rstat_css_node)
166 				css->ss->css_rstat_flush(css, cpu);
167 			rcu_read_unlock();
168 		}
169 		raw_spin_unlock(cpu_lock);
170 
171 		/* if @may_sleep, play nice and yield if necessary */
172 		if (may_sleep && (need_resched() ||
173 				  spin_needbreak(&cgroup_rstat_lock))) {
174 			spin_unlock_irq(&cgroup_rstat_lock);
175 			if (!cond_resched())
176 				cpu_relax();
177 			spin_lock_irq(&cgroup_rstat_lock);
178 		}
179 	}
180 }
181 
182 /**
183  * cgroup_rstat_flush - flush stats in @cgrp's subtree
184  * @cgrp: target cgroup
185  *
186  * Collect all per-cpu stats in @cgrp's subtree into the global counters
187  * and propagate them upwards.  After this function returns, all cgroups in
188  * the subtree have up-to-date ->stat.
189  *
190  * This also gets all cgroups in the subtree including @cgrp off the
191  * ->updated_children lists.
192  *
193  * This function may block.
194  */
195 void cgroup_rstat_flush(struct cgroup *cgrp)
196 {
197 	might_sleep();
198 
199 	spin_lock_irq(&cgroup_rstat_lock);
200 	cgroup_rstat_flush_locked(cgrp, true);
201 	spin_unlock_irq(&cgroup_rstat_lock);
202 }
203 
204 /**
205  * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush()
206  * @cgrp: target cgroup
207  *
208  * This function can be called from any context.
209  */
210 void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp)
211 {
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&cgroup_rstat_lock, flags);
215 	cgroup_rstat_flush_locked(cgrp, false);
216 	spin_unlock_irqrestore(&cgroup_rstat_lock, flags);
217 }
218 
219 /**
220  * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
221  * @cgrp: target cgroup
222  *
223  * Flush stats in @cgrp's subtree and prevent further flushes.  Must be
224  * paired with cgroup_rstat_flush_release().
225  *
226  * This function may block.
227  */
228 void cgroup_rstat_flush_hold(struct cgroup *cgrp)
229 	__acquires(&cgroup_rstat_lock)
230 {
231 	might_sleep();
232 	spin_lock_irq(&cgroup_rstat_lock);
233 	cgroup_rstat_flush_locked(cgrp, true);
234 }
235 
236 /**
237  * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
238  */
239 void cgroup_rstat_flush_release(void)
240 	__releases(&cgroup_rstat_lock)
241 {
242 	spin_unlock_irq(&cgroup_rstat_lock);
243 }
244 
245 int cgroup_rstat_init(struct cgroup *cgrp)
246 {
247 	int cpu;
248 
249 	/* the root cgrp has rstat_cpu preallocated */
250 	if (!cgrp->rstat_cpu) {
251 		cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
252 		if (!cgrp->rstat_cpu)
253 			return -ENOMEM;
254 	}
255 
256 	/* ->updated_children list is self terminated */
257 	for_each_possible_cpu(cpu) {
258 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
259 
260 		rstatc->updated_children = cgrp;
261 		u64_stats_init(&rstatc->bsync);
262 	}
263 
264 	return 0;
265 }
266 
267 void cgroup_rstat_exit(struct cgroup *cgrp)
268 {
269 	int cpu;
270 
271 	cgroup_rstat_flush(cgrp);
272 
273 	/* sanity check */
274 	for_each_possible_cpu(cpu) {
275 		struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
276 
277 		if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
278 		    WARN_ON_ONCE(rstatc->updated_next))
279 			return;
280 	}
281 
282 	free_percpu(cgrp->rstat_cpu);
283 	cgrp->rstat_cpu = NULL;
284 }
285 
286 void __init cgroup_rstat_boot(void)
287 {
288 	int cpu;
289 
290 	for_each_possible_cpu(cpu)
291 		raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
292 }
293 
294 /*
295  * Functions for cgroup basic resource statistics implemented on top of
296  * rstat.
297  */
298 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
299 				 struct cgroup_base_stat *src_bstat)
300 {
301 	dst_bstat->cputime.utime += src_bstat->cputime.utime;
302 	dst_bstat->cputime.stime += src_bstat->cputime.stime;
303 	dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
304 }
305 
306 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
307 				 struct cgroup_base_stat *src_bstat)
308 {
309 	dst_bstat->cputime.utime -= src_bstat->cputime.utime;
310 	dst_bstat->cputime.stime -= src_bstat->cputime.stime;
311 	dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
312 }
313 
314 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
315 {
316 	struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
317 	struct cgroup *parent = cgroup_parent(cgrp);
318 	struct cgroup_base_stat cur, delta;
319 	unsigned seq;
320 
321 	/* Root-level stats are sourced from system-wide CPU stats */
322 	if (!parent)
323 		return;
324 
325 	/* fetch the current per-cpu values */
326 	do {
327 		seq = __u64_stats_fetch_begin(&rstatc->bsync);
328 		cur.cputime = rstatc->bstat.cputime;
329 	} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
330 
331 	/* propagate percpu delta to global */
332 	delta = cur;
333 	cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
334 	cgroup_base_stat_add(&cgrp->bstat, &delta);
335 	cgroup_base_stat_add(&rstatc->last_bstat, &delta);
336 
337 	/* propagate global delta to parent (unless that's root) */
338 	if (cgroup_parent(parent)) {
339 		delta = cgrp->bstat;
340 		cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
341 		cgroup_base_stat_add(&parent->bstat, &delta);
342 		cgroup_base_stat_add(&cgrp->last_bstat, &delta);
343 	}
344 }
345 
346 static struct cgroup_rstat_cpu *
347 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
348 {
349 	struct cgroup_rstat_cpu *rstatc;
350 
351 	rstatc = get_cpu_ptr(cgrp->rstat_cpu);
352 	*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
353 	return rstatc;
354 }
355 
356 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
357 						 struct cgroup_rstat_cpu *rstatc,
358 						 unsigned long flags)
359 {
360 	u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
361 	cgroup_rstat_updated(cgrp, smp_processor_id());
362 	put_cpu_ptr(rstatc);
363 }
364 
365 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
366 {
367 	struct cgroup_rstat_cpu *rstatc;
368 	unsigned long flags;
369 
370 	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
371 	rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
372 	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
373 }
374 
375 void __cgroup_account_cputime_field(struct cgroup *cgrp,
376 				    enum cpu_usage_stat index, u64 delta_exec)
377 {
378 	struct cgroup_rstat_cpu *rstatc;
379 	unsigned long flags;
380 
381 	rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
382 
383 	switch (index) {
384 	case CPUTIME_USER:
385 	case CPUTIME_NICE:
386 		rstatc->bstat.cputime.utime += delta_exec;
387 		break;
388 	case CPUTIME_SYSTEM:
389 	case CPUTIME_IRQ:
390 	case CPUTIME_SOFTIRQ:
391 		rstatc->bstat.cputime.stime += delta_exec;
392 		break;
393 	default:
394 		break;
395 	}
396 
397 	cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
398 }
399 
400 /*
401  * compute the cputime for the root cgroup by getting the per cpu data
402  * at a global level, then categorizing the fields in a manner consistent
403  * with how it is done by __cgroup_account_cputime_field for each bit of
404  * cpu time attributed to a cgroup.
405  */
406 static void root_cgroup_cputime(struct task_cputime *cputime)
407 {
408 	int i;
409 
410 	cputime->stime = 0;
411 	cputime->utime = 0;
412 	cputime->sum_exec_runtime = 0;
413 	for_each_possible_cpu(i) {
414 		struct kernel_cpustat kcpustat;
415 		u64 *cpustat = kcpustat.cpustat;
416 		u64 user = 0;
417 		u64 sys = 0;
418 
419 		kcpustat_cpu_fetch(&kcpustat, i);
420 
421 		user += cpustat[CPUTIME_USER];
422 		user += cpustat[CPUTIME_NICE];
423 		cputime->utime += user;
424 
425 		sys += cpustat[CPUTIME_SYSTEM];
426 		sys += cpustat[CPUTIME_IRQ];
427 		sys += cpustat[CPUTIME_SOFTIRQ];
428 		cputime->stime += sys;
429 
430 		cputime->sum_exec_runtime += user;
431 		cputime->sum_exec_runtime += sys;
432 		cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
433 	}
434 }
435 
436 void cgroup_base_stat_cputime_show(struct seq_file *seq)
437 {
438 	struct cgroup *cgrp = seq_css(seq)->cgroup;
439 	u64 usage, utime, stime;
440 	struct task_cputime cputime;
441 
442 	if (cgroup_parent(cgrp)) {
443 		cgroup_rstat_flush_hold(cgrp);
444 		usage = cgrp->bstat.cputime.sum_exec_runtime;
445 		cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
446 			       &utime, &stime);
447 		cgroup_rstat_flush_release();
448 	} else {
449 		root_cgroup_cputime(&cputime);
450 		usage = cputime.sum_exec_runtime;
451 		utime = cputime.utime;
452 		stime = cputime.stime;
453 	}
454 
455 	do_div(usage, NSEC_PER_USEC);
456 	do_div(utime, NSEC_PER_USEC);
457 	do_div(stime, NSEC_PER_USEC);
458 
459 	seq_printf(seq, "usage_usec %llu\n"
460 		   "user_usec %llu\n"
461 		   "system_usec %llu\n",
462 		   usage, utime, stime);
463 }
464