xref: /openbmc/linux/kernel/cgroup/pids.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Process number limiting controller for cgroups.
4  *
5  * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
6  * after a certain limit is reached.
7  *
8  * Since it is trivial to hit the task limit without hitting any kmemcg limits
9  * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
10  * preventable in the scope of a cgroup hierarchy by allowing resource limiting
11  * of the number of tasks in a cgroup.
12  *
13  * In order to use the `pids` controller, set the maximum number of tasks in
14  * pids.max (this is not available in the root cgroup for obvious reasons). The
15  * number of processes currently in the cgroup is given by pids.current.
16  * Organisational operations are not blocked by cgroup policies, so it is
17  * possible to have pids.current > pids.max. However, it is not possible to
18  * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
19  * would cause a cgroup policy to be violated.
20  *
21  * To set a cgroup to have no limit, set pids.max to "max". This is the default
22  * for all new cgroups (N.B. that PID limits are hierarchical, so the most
23  * stringent limit in the hierarchy is followed).
24  *
25  * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
26  * a superset of parent/child/pids.current.
27  *
28  * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/threads.h>
33 #include <linux/atomic.h>
34 #include <linux/cgroup.h>
35 #include <linux/slab.h>
36 #include <linux/sched/task.h>
37 
38 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
39 #define PIDS_MAX_STR "max"
40 
41 struct pids_cgroup {
42 	struct cgroup_subsys_state	css;
43 
44 	/*
45 	 * Use 64-bit types so that we can safely represent "max" as
46 	 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
47 	 */
48 	atomic64_t			counter;
49 	atomic64_t			limit;
50 	int64_t				watermark;
51 
52 	/* Handle for "pids.events" */
53 	struct cgroup_file		events_file;
54 
55 	/* Number of times fork failed because limit was hit. */
56 	atomic64_t			events_limit;
57 };
58 
59 static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
60 {
61 	return container_of(css, struct pids_cgroup, css);
62 }
63 
64 static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
65 {
66 	return css_pids(pids->css.parent);
67 }
68 
69 static struct cgroup_subsys_state *
70 pids_css_alloc(struct cgroup_subsys_state *parent)
71 {
72 	struct pids_cgroup *pids;
73 
74 	pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
75 	if (!pids)
76 		return ERR_PTR(-ENOMEM);
77 
78 	atomic64_set(&pids->counter, 0);
79 	atomic64_set(&pids->limit, PIDS_MAX);
80 	atomic64_set(&pids->events_limit, 0);
81 	return &pids->css;
82 }
83 
84 static void pids_css_free(struct cgroup_subsys_state *css)
85 {
86 	kfree(css_pids(css));
87 }
88 
89 static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids)
90 {
91 	/*
92 	 * This is racy, but we don't need perfectly accurate tallying of
93 	 * the watermark, and this lets us avoid extra atomic overhead.
94 	 */
95 	if (nr_pids > READ_ONCE(p->watermark))
96 		WRITE_ONCE(p->watermark, nr_pids);
97 }
98 
99 /**
100  * pids_cancel - uncharge the local pid count
101  * @pids: the pid cgroup state
102  * @num: the number of pids to cancel
103  *
104  * This function will WARN if the pid count goes under 0, because such a case is
105  * a bug in the pids controller proper.
106  */
107 static void pids_cancel(struct pids_cgroup *pids, int num)
108 {
109 	/*
110 	 * A negative count (or overflow for that matter) is invalid,
111 	 * and indicates a bug in the `pids` controller proper.
112 	 */
113 	WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
114 }
115 
116 /**
117  * pids_uncharge - hierarchically uncharge the pid count
118  * @pids: the pid cgroup state
119  * @num: the number of pids to uncharge
120  */
121 static void pids_uncharge(struct pids_cgroup *pids, int num)
122 {
123 	struct pids_cgroup *p;
124 
125 	for (p = pids; parent_pids(p); p = parent_pids(p))
126 		pids_cancel(p, num);
127 }
128 
129 /**
130  * pids_charge - hierarchically charge the pid count
131  * @pids: the pid cgroup state
132  * @num: the number of pids to charge
133  *
134  * This function does *not* follow the pid limit set. It cannot fail and the new
135  * pid count may exceed the limit. This is only used for reverting failed
136  * attaches, where there is no other way out than violating the limit.
137  */
138 static void pids_charge(struct pids_cgroup *pids, int num)
139 {
140 	struct pids_cgroup *p;
141 
142 	for (p = pids; parent_pids(p); p = parent_pids(p)) {
143 		int64_t new = atomic64_add_return(num, &p->counter);
144 
145 		pids_update_watermark(p, new);
146 	}
147 }
148 
149 /**
150  * pids_try_charge - hierarchically try to charge the pid count
151  * @pids: the pid cgroup state
152  * @num: the number of pids to charge
153  *
154  * This function follows the set limit. It will fail if the charge would cause
155  * the new value to exceed the hierarchical limit. Returns 0 if the charge
156  * succeeded, otherwise -EAGAIN.
157  */
158 static int pids_try_charge(struct pids_cgroup *pids, int num)
159 {
160 	struct pids_cgroup *p, *q;
161 
162 	for (p = pids; parent_pids(p); p = parent_pids(p)) {
163 		int64_t new = atomic64_add_return(num, &p->counter);
164 		int64_t limit = atomic64_read(&p->limit);
165 
166 		/*
167 		 * Since new is capped to the maximum number of pid_t, if
168 		 * p->limit is %PIDS_MAX then we know that this test will never
169 		 * fail.
170 		 */
171 		if (new > limit)
172 			goto revert;
173 
174 		/*
175 		 * Not technically accurate if we go over limit somewhere up
176 		 * the hierarchy, but that's tolerable for the watermark.
177 		 */
178 		pids_update_watermark(p, new);
179 	}
180 
181 	return 0;
182 
183 revert:
184 	for (q = pids; q != p; q = parent_pids(q))
185 		pids_cancel(q, num);
186 	pids_cancel(p, num);
187 
188 	return -EAGAIN;
189 }
190 
191 static int pids_can_attach(struct cgroup_taskset *tset)
192 {
193 	struct task_struct *task;
194 	struct cgroup_subsys_state *dst_css;
195 
196 	cgroup_taskset_for_each(task, dst_css, tset) {
197 		struct pids_cgroup *pids = css_pids(dst_css);
198 		struct cgroup_subsys_state *old_css;
199 		struct pids_cgroup *old_pids;
200 
201 		/*
202 		 * No need to pin @old_css between here and cancel_attach()
203 		 * because cgroup core protects it from being freed before
204 		 * the migration completes or fails.
205 		 */
206 		old_css = task_css(task, pids_cgrp_id);
207 		old_pids = css_pids(old_css);
208 
209 		pids_charge(pids, 1);
210 		pids_uncharge(old_pids, 1);
211 	}
212 
213 	return 0;
214 }
215 
216 static void pids_cancel_attach(struct cgroup_taskset *tset)
217 {
218 	struct task_struct *task;
219 	struct cgroup_subsys_state *dst_css;
220 
221 	cgroup_taskset_for_each(task, dst_css, tset) {
222 		struct pids_cgroup *pids = css_pids(dst_css);
223 		struct cgroup_subsys_state *old_css;
224 		struct pids_cgroup *old_pids;
225 
226 		old_css = task_css(task, pids_cgrp_id);
227 		old_pids = css_pids(old_css);
228 
229 		pids_charge(old_pids, 1);
230 		pids_uncharge(pids, 1);
231 	}
232 }
233 
234 /*
235  * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
236  * on cgroup_threadgroup_change_begin() held by the copy_process().
237  */
238 static int pids_can_fork(struct task_struct *task, struct css_set *cset)
239 {
240 	struct cgroup_subsys_state *css;
241 	struct pids_cgroup *pids;
242 	int err;
243 
244 	if (cset)
245 		css = cset->subsys[pids_cgrp_id];
246 	else
247 		css = task_css_check(current, pids_cgrp_id, true);
248 	pids = css_pids(css);
249 	err = pids_try_charge(pids, 1);
250 	if (err) {
251 		/* Only log the first time events_limit is incremented. */
252 		if (atomic64_inc_return(&pids->events_limit) == 1) {
253 			pr_info("cgroup: fork rejected by pids controller in ");
254 			pr_cont_cgroup_path(css->cgroup);
255 			pr_cont("\n");
256 		}
257 		cgroup_file_notify(&pids->events_file);
258 	}
259 	return err;
260 }
261 
262 static void pids_cancel_fork(struct task_struct *task, struct css_set *cset)
263 {
264 	struct cgroup_subsys_state *css;
265 	struct pids_cgroup *pids;
266 
267 	if (cset)
268 		css = cset->subsys[pids_cgrp_id];
269 	else
270 		css = task_css_check(current, pids_cgrp_id, true);
271 	pids = css_pids(css);
272 	pids_uncharge(pids, 1);
273 }
274 
275 static void pids_release(struct task_struct *task)
276 {
277 	struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
278 
279 	pids_uncharge(pids, 1);
280 }
281 
282 static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
283 			      size_t nbytes, loff_t off)
284 {
285 	struct cgroup_subsys_state *css = of_css(of);
286 	struct pids_cgroup *pids = css_pids(css);
287 	int64_t limit;
288 	int err;
289 
290 	buf = strstrip(buf);
291 	if (!strcmp(buf, PIDS_MAX_STR)) {
292 		limit = PIDS_MAX;
293 		goto set_limit;
294 	}
295 
296 	err = kstrtoll(buf, 0, &limit);
297 	if (err)
298 		return err;
299 
300 	if (limit < 0 || limit >= PIDS_MAX)
301 		return -EINVAL;
302 
303 set_limit:
304 	/*
305 	 * Limit updates don't need to be mutex'd, since it isn't
306 	 * critical that any racing fork()s follow the new limit.
307 	 */
308 	atomic64_set(&pids->limit, limit);
309 	return nbytes;
310 }
311 
312 static int pids_max_show(struct seq_file *sf, void *v)
313 {
314 	struct cgroup_subsys_state *css = seq_css(sf);
315 	struct pids_cgroup *pids = css_pids(css);
316 	int64_t limit = atomic64_read(&pids->limit);
317 
318 	if (limit >= PIDS_MAX)
319 		seq_printf(sf, "%s\n", PIDS_MAX_STR);
320 	else
321 		seq_printf(sf, "%lld\n", limit);
322 
323 	return 0;
324 }
325 
326 static s64 pids_current_read(struct cgroup_subsys_state *css,
327 			     struct cftype *cft)
328 {
329 	struct pids_cgroup *pids = css_pids(css);
330 
331 	return atomic64_read(&pids->counter);
332 }
333 
334 static s64 pids_peak_read(struct cgroup_subsys_state *css,
335 			  struct cftype *cft)
336 {
337 	struct pids_cgroup *pids = css_pids(css);
338 
339 	return READ_ONCE(pids->watermark);
340 }
341 
342 static int pids_events_show(struct seq_file *sf, void *v)
343 {
344 	struct pids_cgroup *pids = css_pids(seq_css(sf));
345 
346 	seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit));
347 	return 0;
348 }
349 
350 static struct cftype pids_files[] = {
351 	{
352 		.name = "max",
353 		.write = pids_max_write,
354 		.seq_show = pids_max_show,
355 		.flags = CFTYPE_NOT_ON_ROOT,
356 	},
357 	{
358 		.name = "current",
359 		.read_s64 = pids_current_read,
360 		.flags = CFTYPE_NOT_ON_ROOT,
361 	},
362 	{
363 		.name = "peak",
364 		.flags = CFTYPE_NOT_ON_ROOT,
365 		.read_s64 = pids_peak_read,
366 	},
367 	{
368 		.name = "events",
369 		.seq_show = pids_events_show,
370 		.file_offset = offsetof(struct pids_cgroup, events_file),
371 		.flags = CFTYPE_NOT_ON_ROOT,
372 	},
373 	{ }	/* terminate */
374 };
375 
376 struct cgroup_subsys pids_cgrp_subsys = {
377 	.css_alloc	= pids_css_alloc,
378 	.css_free	= pids_css_free,
379 	.can_attach 	= pids_can_attach,
380 	.cancel_attach 	= pids_cancel_attach,
381 	.can_fork	= pids_can_fork,
382 	.cancel_fork	= pids_cancel_fork,
383 	.release	= pids_release,
384 	.legacy_cftypes	= pids_files,
385 	.dfl_cftypes	= pids_files,
386 	.threaded	= true,
387 };
388