1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/mm.h> 49 #include <linux/sched/task.h> 50 #include <linux/seq_file.h> 51 #include <linux/security.h> 52 #include <linux/slab.h> 53 #include <linux/spinlock.h> 54 #include <linux/stat.h> 55 #include <linux/string.h> 56 #include <linux/time.h> 57 #include <linux/time64.h> 58 #include <linux/backing-dev.h> 59 #include <linux/sort.h> 60 #include <linux/oom.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/uaccess.h> 63 #include <linux/atomic.h> 64 #include <linux/mutex.h> 65 #include <linux/cgroup.h> 66 #include <linux/wait.h> 67 68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 70 71 /* See "Frequency meter" comments, below. */ 72 73 struct fmeter { 74 int cnt; /* unprocessed events count */ 75 int val; /* most recent output value */ 76 time64_t time; /* clock (secs) when val computed */ 77 spinlock_t lock; /* guards read or write of above */ 78 }; 79 80 struct cpuset { 81 struct cgroup_subsys_state css; 82 83 unsigned long flags; /* "unsigned long" so bitops work */ 84 85 /* 86 * On default hierarchy: 87 * 88 * The user-configured masks can only be changed by writing to 89 * cpuset.cpus and cpuset.mems, and won't be limited by the 90 * parent masks. 91 * 92 * The effective masks is the real masks that apply to the tasks 93 * in the cpuset. They may be changed if the configured masks are 94 * changed or hotplug happens. 95 * 96 * effective_mask == configured_mask & parent's effective_mask, 97 * and if it ends up empty, it will inherit the parent's mask. 98 * 99 * 100 * On legacy hierachy: 101 * 102 * The user-configured masks are always the same with effective masks. 103 */ 104 105 /* user-configured CPUs and Memory Nodes allow to tasks */ 106 cpumask_var_t cpus_allowed; 107 nodemask_t mems_allowed; 108 109 /* effective CPUs and Memory Nodes allow to tasks */ 110 cpumask_var_t effective_cpus; 111 nodemask_t effective_mems; 112 113 /* 114 * CPUs allocated to child sub-partitions (default hierarchy only) 115 * - CPUs granted by the parent = effective_cpus U subparts_cpus 116 * - effective_cpus and subparts_cpus are mutually exclusive. 117 * 118 * effective_cpus contains only onlined CPUs, but subparts_cpus 119 * may have offlined ones. 120 */ 121 cpumask_var_t subparts_cpus; 122 123 /* 124 * This is old Memory Nodes tasks took on. 125 * 126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 127 * - A new cpuset's old_mems_allowed is initialized when some 128 * task is moved into it. 129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 130 * cpuset.mems_allowed and have tasks' nodemask updated, and 131 * then old_mems_allowed is updated to mems_allowed. 132 */ 133 nodemask_t old_mems_allowed; 134 135 struct fmeter fmeter; /* memory_pressure filter */ 136 137 /* 138 * Tasks are being attached to this cpuset. Used to prevent 139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 140 */ 141 int attach_in_progress; 142 143 /* partition number for rebuild_sched_domains() */ 144 int pn; 145 146 /* for custom sched domain */ 147 int relax_domain_level; 148 149 /* number of CPUs in subparts_cpus */ 150 int nr_subparts_cpus; 151 152 /* partition root state */ 153 int partition_root_state; 154 155 /* 156 * Default hierarchy only: 157 * use_parent_ecpus - set if using parent's effective_cpus 158 * child_ecpus_count - # of children with use_parent_ecpus set 159 */ 160 int use_parent_ecpus; 161 int child_ecpus_count; 162 }; 163 164 /* 165 * Partition root states: 166 * 167 * 0 - not a partition root 168 * 169 * 1 - partition root 170 * 171 * -1 - invalid partition root 172 * None of the cpus in cpus_allowed can be put into the parent's 173 * subparts_cpus. In this case, the cpuset is not a real partition 174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 175 * and the cpuset can be restored back to a partition root if the 176 * parent cpuset can give more CPUs back to this child cpuset. 177 */ 178 #define PRS_DISABLED 0 179 #define PRS_ENABLED 1 180 #define PRS_ERROR -1 181 182 /* 183 * Temporary cpumasks for working with partitions that are passed among 184 * functions to avoid memory allocation in inner functions. 185 */ 186 struct tmpmasks { 187 cpumask_var_t addmask, delmask; /* For partition root */ 188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 189 }; 190 191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 192 { 193 return css ? container_of(css, struct cpuset, css) : NULL; 194 } 195 196 /* Retrieve the cpuset for a task */ 197 static inline struct cpuset *task_cs(struct task_struct *task) 198 { 199 return css_cs(task_css(task, cpuset_cgrp_id)); 200 } 201 202 static inline struct cpuset *parent_cs(struct cpuset *cs) 203 { 204 return css_cs(cs->css.parent); 205 } 206 207 /* bits in struct cpuset flags field */ 208 typedef enum { 209 CS_ONLINE, 210 CS_CPU_EXCLUSIVE, 211 CS_MEM_EXCLUSIVE, 212 CS_MEM_HARDWALL, 213 CS_MEMORY_MIGRATE, 214 CS_SCHED_LOAD_BALANCE, 215 CS_SPREAD_PAGE, 216 CS_SPREAD_SLAB, 217 } cpuset_flagbits_t; 218 219 /* convenient tests for these bits */ 220 static inline bool is_cpuset_online(struct cpuset *cs) 221 { 222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 223 } 224 225 static inline int is_cpu_exclusive(const struct cpuset *cs) 226 { 227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 228 } 229 230 static inline int is_mem_exclusive(const struct cpuset *cs) 231 { 232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 233 } 234 235 static inline int is_mem_hardwall(const struct cpuset *cs) 236 { 237 return test_bit(CS_MEM_HARDWALL, &cs->flags); 238 } 239 240 static inline int is_sched_load_balance(const struct cpuset *cs) 241 { 242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 243 } 244 245 static inline int is_memory_migrate(const struct cpuset *cs) 246 { 247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 248 } 249 250 static inline int is_spread_page(const struct cpuset *cs) 251 { 252 return test_bit(CS_SPREAD_PAGE, &cs->flags); 253 } 254 255 static inline int is_spread_slab(const struct cpuset *cs) 256 { 257 return test_bit(CS_SPREAD_SLAB, &cs->flags); 258 } 259 260 static inline int is_partition_root(const struct cpuset *cs) 261 { 262 return cs->partition_root_state > 0; 263 } 264 265 static struct cpuset top_cpuset = { 266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 267 (1 << CS_MEM_EXCLUSIVE)), 268 .partition_root_state = PRS_ENABLED, 269 }; 270 271 /** 272 * cpuset_for_each_child - traverse online children of a cpuset 273 * @child_cs: loop cursor pointing to the current child 274 * @pos_css: used for iteration 275 * @parent_cs: target cpuset to walk children of 276 * 277 * Walk @child_cs through the online children of @parent_cs. Must be used 278 * with RCU read locked. 279 */ 280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 281 css_for_each_child((pos_css), &(parent_cs)->css) \ 282 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 283 284 /** 285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 286 * @des_cs: loop cursor pointing to the current descendant 287 * @pos_css: used for iteration 288 * @root_cs: target cpuset to walk ancestor of 289 * 290 * Walk @des_cs through the online descendants of @root_cs. Must be used 291 * with RCU read locked. The caller may modify @pos_css by calling 292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 293 * iteration and the first node to be visited. 294 */ 295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 297 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 298 299 /* 300 * There are two global locks guarding cpuset structures - cpuset_mutex and 301 * callback_lock. We also require taking task_lock() when dereferencing a 302 * task's cpuset pointer. See "The task_lock() exception", at the end of this 303 * comment. 304 * 305 * A task must hold both locks to modify cpusets. If a task holds 306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 307 * is the only task able to also acquire callback_lock and be able to 308 * modify cpusets. It can perform various checks on the cpuset structure 309 * first, knowing nothing will change. It can also allocate memory while 310 * just holding cpuset_mutex. While it is performing these checks, various 311 * callback routines can briefly acquire callback_lock to query cpusets. 312 * Once it is ready to make the changes, it takes callback_lock, blocking 313 * everyone else. 314 * 315 * Calls to the kernel memory allocator can not be made while holding 316 * callback_lock, as that would risk double tripping on callback_lock 317 * from one of the callbacks into the cpuset code from within 318 * __alloc_pages(). 319 * 320 * If a task is only holding callback_lock, then it has read-only 321 * access to cpusets. 322 * 323 * Now, the task_struct fields mems_allowed and mempolicy may be changed 324 * by other task, we use alloc_lock in the task_struct fields to protect 325 * them. 326 * 327 * The cpuset_common_file_read() handlers only hold callback_lock across 328 * small pieces of code, such as when reading out possibly multi-word 329 * cpumasks and nodemasks. 330 * 331 * Accessing a task's cpuset should be done in accordance with the 332 * guidelines for accessing subsystem state in kernel/cgroup.c 333 */ 334 335 static DEFINE_MUTEX(cpuset_mutex); 336 static DEFINE_SPINLOCK(callback_lock); 337 338 static struct workqueue_struct *cpuset_migrate_mm_wq; 339 340 /* 341 * CPU / memory hotplug is handled asynchronously. 342 */ 343 static void cpuset_hotplug_workfn(struct work_struct *work); 344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 345 346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 347 348 /* 349 * Cgroup v2 behavior is used when on default hierarchy or the 350 * cgroup_v2_mode flag is set. 351 */ 352 static inline bool is_in_v2_mode(void) 353 { 354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 356 } 357 358 /* 359 * This is ugly, but preserves the userspace API for existing cpuset 360 * users. If someone tries to mount the "cpuset" filesystem, we 361 * silently switch it to mount "cgroup" instead 362 */ 363 static int cpuset_get_tree(struct fs_context *fc) 364 { 365 struct file_system_type *cgroup_fs; 366 struct fs_context *new_fc; 367 int ret; 368 369 cgroup_fs = get_fs_type("cgroup"); 370 if (!cgroup_fs) 371 return -ENODEV; 372 373 new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags); 374 if (IS_ERR(new_fc)) { 375 ret = PTR_ERR(new_fc); 376 } else { 377 static const char agent_path[] = "/sbin/cpuset_release_agent"; 378 ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0); 379 if (!ret) 380 ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0); 381 if (!ret) 382 ret = vfs_parse_fs_string(new_fc, "release_agent", 383 agent_path, sizeof(agent_path) - 1); 384 if (!ret) 385 ret = vfs_get_tree(new_fc); 386 if (!ret) { /* steal the result */ 387 fc->root = new_fc->root; 388 new_fc->root = NULL; 389 } 390 put_fs_context(new_fc); 391 } 392 put_filesystem(cgroup_fs); 393 return ret; 394 } 395 396 static const struct fs_context_operations cpuset_fs_context_ops = { 397 .get_tree = cpuset_get_tree, 398 }; 399 400 static int cpuset_init_fs_context(struct fs_context *fc) 401 { 402 fc->ops = &cpuset_fs_context_ops; 403 return 0; 404 } 405 406 static struct file_system_type cpuset_fs_type = { 407 .name = "cpuset", 408 .init_fs_context = cpuset_init_fs_context, 409 }; 410 411 /* 412 * Return in pmask the portion of a cpusets's cpus_allowed that 413 * are online. If none are online, walk up the cpuset hierarchy 414 * until we find one that does have some online cpus. 415 * 416 * One way or another, we guarantee to return some non-empty subset 417 * of cpu_online_mask. 418 * 419 * Call with callback_lock or cpuset_mutex held. 420 */ 421 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 422 { 423 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 424 cs = parent_cs(cs); 425 if (unlikely(!cs)) { 426 /* 427 * The top cpuset doesn't have any online cpu as a 428 * consequence of a race between cpuset_hotplug_work 429 * and cpu hotplug notifier. But we know the top 430 * cpuset's effective_cpus is on its way to to be 431 * identical to cpu_online_mask. 432 */ 433 cpumask_copy(pmask, cpu_online_mask); 434 return; 435 } 436 } 437 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 438 } 439 440 /* 441 * Return in *pmask the portion of a cpusets's mems_allowed that 442 * are online, with memory. If none are online with memory, walk 443 * up the cpuset hierarchy until we find one that does have some 444 * online mems. The top cpuset always has some mems online. 445 * 446 * One way or another, we guarantee to return some non-empty subset 447 * of node_states[N_MEMORY]. 448 * 449 * Call with callback_lock or cpuset_mutex held. 450 */ 451 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 452 { 453 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 454 cs = parent_cs(cs); 455 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 456 } 457 458 /* 459 * update task's spread flag if cpuset's page/slab spread flag is set 460 * 461 * Call with callback_lock or cpuset_mutex held. 462 */ 463 static void cpuset_update_task_spread_flag(struct cpuset *cs, 464 struct task_struct *tsk) 465 { 466 if (is_spread_page(cs)) 467 task_set_spread_page(tsk); 468 else 469 task_clear_spread_page(tsk); 470 471 if (is_spread_slab(cs)) 472 task_set_spread_slab(tsk); 473 else 474 task_clear_spread_slab(tsk); 475 } 476 477 /* 478 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 479 * 480 * One cpuset is a subset of another if all its allowed CPUs and 481 * Memory Nodes are a subset of the other, and its exclusive flags 482 * are only set if the other's are set. Call holding cpuset_mutex. 483 */ 484 485 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 486 { 487 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 488 nodes_subset(p->mems_allowed, q->mems_allowed) && 489 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 490 is_mem_exclusive(p) <= is_mem_exclusive(q); 491 } 492 493 /** 494 * alloc_cpumasks - allocate three cpumasks for cpuset 495 * @cs: the cpuset that have cpumasks to be allocated. 496 * @tmp: the tmpmasks structure pointer 497 * Return: 0 if successful, -ENOMEM otherwise. 498 * 499 * Only one of the two input arguments should be non-NULL. 500 */ 501 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 502 { 503 cpumask_var_t *pmask1, *pmask2, *pmask3; 504 505 if (cs) { 506 pmask1 = &cs->cpus_allowed; 507 pmask2 = &cs->effective_cpus; 508 pmask3 = &cs->subparts_cpus; 509 } else { 510 pmask1 = &tmp->new_cpus; 511 pmask2 = &tmp->addmask; 512 pmask3 = &tmp->delmask; 513 } 514 515 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 516 return -ENOMEM; 517 518 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 519 goto free_one; 520 521 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 522 goto free_two; 523 524 return 0; 525 526 free_two: 527 free_cpumask_var(*pmask2); 528 free_one: 529 free_cpumask_var(*pmask1); 530 return -ENOMEM; 531 } 532 533 /** 534 * free_cpumasks - free cpumasks in a tmpmasks structure 535 * @cs: the cpuset that have cpumasks to be free. 536 * @tmp: the tmpmasks structure pointer 537 */ 538 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 539 { 540 if (cs) { 541 free_cpumask_var(cs->cpus_allowed); 542 free_cpumask_var(cs->effective_cpus); 543 free_cpumask_var(cs->subparts_cpus); 544 } 545 if (tmp) { 546 free_cpumask_var(tmp->new_cpus); 547 free_cpumask_var(tmp->addmask); 548 free_cpumask_var(tmp->delmask); 549 } 550 } 551 552 /** 553 * alloc_trial_cpuset - allocate a trial cpuset 554 * @cs: the cpuset that the trial cpuset duplicates 555 */ 556 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 557 { 558 struct cpuset *trial; 559 560 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 561 if (!trial) 562 return NULL; 563 564 if (alloc_cpumasks(trial, NULL)) { 565 kfree(trial); 566 return NULL; 567 } 568 569 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 570 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 571 return trial; 572 } 573 574 /** 575 * free_cpuset - free the cpuset 576 * @cs: the cpuset to be freed 577 */ 578 static inline void free_cpuset(struct cpuset *cs) 579 { 580 free_cpumasks(cs, NULL); 581 kfree(cs); 582 } 583 584 /* 585 * validate_change() - Used to validate that any proposed cpuset change 586 * follows the structural rules for cpusets. 587 * 588 * If we replaced the flag and mask values of the current cpuset 589 * (cur) with those values in the trial cpuset (trial), would 590 * our various subset and exclusive rules still be valid? Presumes 591 * cpuset_mutex held. 592 * 593 * 'cur' is the address of an actual, in-use cpuset. Operations 594 * such as list traversal that depend on the actual address of the 595 * cpuset in the list must use cur below, not trial. 596 * 597 * 'trial' is the address of bulk structure copy of cur, with 598 * perhaps one or more of the fields cpus_allowed, mems_allowed, 599 * or flags changed to new, trial values. 600 * 601 * Return 0 if valid, -errno if not. 602 */ 603 604 static int validate_change(struct cpuset *cur, struct cpuset *trial) 605 { 606 struct cgroup_subsys_state *css; 607 struct cpuset *c, *par; 608 int ret; 609 610 rcu_read_lock(); 611 612 /* Each of our child cpusets must be a subset of us */ 613 ret = -EBUSY; 614 cpuset_for_each_child(c, css, cur) 615 if (!is_cpuset_subset(c, trial)) 616 goto out; 617 618 /* Remaining checks don't apply to root cpuset */ 619 ret = 0; 620 if (cur == &top_cpuset) 621 goto out; 622 623 par = parent_cs(cur); 624 625 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 626 ret = -EACCES; 627 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 628 goto out; 629 630 /* 631 * If either I or some sibling (!= me) is exclusive, we can't 632 * overlap 633 */ 634 ret = -EINVAL; 635 cpuset_for_each_child(c, css, par) { 636 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 637 c != cur && 638 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 639 goto out; 640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 641 c != cur && 642 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 643 goto out; 644 } 645 646 /* 647 * Cpusets with tasks - existing or newly being attached - can't 648 * be changed to have empty cpus_allowed or mems_allowed. 649 */ 650 ret = -ENOSPC; 651 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 652 if (!cpumask_empty(cur->cpus_allowed) && 653 cpumask_empty(trial->cpus_allowed)) 654 goto out; 655 if (!nodes_empty(cur->mems_allowed) && 656 nodes_empty(trial->mems_allowed)) 657 goto out; 658 } 659 660 /* 661 * We can't shrink if we won't have enough room for SCHED_DEADLINE 662 * tasks. 663 */ 664 ret = -EBUSY; 665 if (is_cpu_exclusive(cur) && 666 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 667 trial->cpus_allowed)) 668 goto out; 669 670 ret = 0; 671 out: 672 rcu_read_unlock(); 673 return ret; 674 } 675 676 #ifdef CONFIG_SMP 677 /* 678 * Helper routine for generate_sched_domains(). 679 * Do cpusets a, b have overlapping effective cpus_allowed masks? 680 */ 681 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 682 { 683 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 684 } 685 686 static void 687 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 688 { 689 if (dattr->relax_domain_level < c->relax_domain_level) 690 dattr->relax_domain_level = c->relax_domain_level; 691 return; 692 } 693 694 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 695 struct cpuset *root_cs) 696 { 697 struct cpuset *cp; 698 struct cgroup_subsys_state *pos_css; 699 700 rcu_read_lock(); 701 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 702 /* skip the whole subtree if @cp doesn't have any CPU */ 703 if (cpumask_empty(cp->cpus_allowed)) { 704 pos_css = css_rightmost_descendant(pos_css); 705 continue; 706 } 707 708 if (is_sched_load_balance(cp)) 709 update_domain_attr(dattr, cp); 710 } 711 rcu_read_unlock(); 712 } 713 714 /* Must be called with cpuset_mutex held. */ 715 static inline int nr_cpusets(void) 716 { 717 /* jump label reference count + the top-level cpuset */ 718 return static_key_count(&cpusets_enabled_key.key) + 1; 719 } 720 721 /* 722 * generate_sched_domains() 723 * 724 * This function builds a partial partition of the systems CPUs 725 * A 'partial partition' is a set of non-overlapping subsets whose 726 * union is a subset of that set. 727 * The output of this function needs to be passed to kernel/sched/core.c 728 * partition_sched_domains() routine, which will rebuild the scheduler's 729 * load balancing domains (sched domains) as specified by that partial 730 * partition. 731 * 732 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt 733 * for a background explanation of this. 734 * 735 * Does not return errors, on the theory that the callers of this 736 * routine would rather not worry about failures to rebuild sched 737 * domains when operating in the severe memory shortage situations 738 * that could cause allocation failures below. 739 * 740 * Must be called with cpuset_mutex held. 741 * 742 * The three key local variables below are: 743 * q - a linked-list queue of cpuset pointers, used to implement a 744 * top-down scan of all cpusets. This scan loads a pointer 745 * to each cpuset marked is_sched_load_balance into the 746 * array 'csa'. For our purposes, rebuilding the schedulers 747 * sched domains, we can ignore !is_sched_load_balance cpusets. 748 * csa - (for CpuSet Array) Array of pointers to all the cpusets 749 * that need to be load balanced, for convenient iterative 750 * access by the subsequent code that finds the best partition, 751 * i.e the set of domains (subsets) of CPUs such that the 752 * cpus_allowed of every cpuset marked is_sched_load_balance 753 * is a subset of one of these domains, while there are as 754 * many such domains as possible, each as small as possible. 755 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 756 * the kernel/sched/core.c routine partition_sched_domains() in a 757 * convenient format, that can be easily compared to the prior 758 * value to determine what partition elements (sched domains) 759 * were changed (added or removed.) 760 * 761 * Finding the best partition (set of domains): 762 * The triple nested loops below over i, j, k scan over the 763 * load balanced cpusets (using the array of cpuset pointers in 764 * csa[]) looking for pairs of cpusets that have overlapping 765 * cpus_allowed, but which don't have the same 'pn' partition 766 * number and gives them in the same partition number. It keeps 767 * looping on the 'restart' label until it can no longer find 768 * any such pairs. 769 * 770 * The union of the cpus_allowed masks from the set of 771 * all cpusets having the same 'pn' value then form the one 772 * element of the partition (one sched domain) to be passed to 773 * partition_sched_domains(). 774 */ 775 static int generate_sched_domains(cpumask_var_t **domains, 776 struct sched_domain_attr **attributes) 777 { 778 struct cpuset *cp; /* scans q */ 779 struct cpuset **csa; /* array of all cpuset ptrs */ 780 int csn; /* how many cpuset ptrs in csa so far */ 781 int i, j, k; /* indices for partition finding loops */ 782 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 783 struct sched_domain_attr *dattr; /* attributes for custom domains */ 784 int ndoms = 0; /* number of sched domains in result */ 785 int nslot; /* next empty doms[] struct cpumask slot */ 786 struct cgroup_subsys_state *pos_css; 787 bool root_load_balance = is_sched_load_balance(&top_cpuset); 788 789 doms = NULL; 790 dattr = NULL; 791 csa = NULL; 792 793 /* Special case for the 99% of systems with one, full, sched domain */ 794 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 795 ndoms = 1; 796 doms = alloc_sched_domains(ndoms); 797 if (!doms) 798 goto done; 799 800 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 801 if (dattr) { 802 *dattr = SD_ATTR_INIT; 803 update_domain_attr_tree(dattr, &top_cpuset); 804 } 805 cpumask_and(doms[0], top_cpuset.effective_cpus, 806 housekeeping_cpumask(HK_FLAG_DOMAIN)); 807 808 goto done; 809 } 810 811 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 812 if (!csa) 813 goto done; 814 csn = 0; 815 816 rcu_read_lock(); 817 if (root_load_balance) 818 csa[csn++] = &top_cpuset; 819 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 820 if (cp == &top_cpuset) 821 continue; 822 /* 823 * Continue traversing beyond @cp iff @cp has some CPUs and 824 * isn't load balancing. The former is obvious. The 825 * latter: All child cpusets contain a subset of the 826 * parent's cpus, so just skip them, and then we call 827 * update_domain_attr_tree() to calc relax_domain_level of 828 * the corresponding sched domain. 829 * 830 * If root is load-balancing, we can skip @cp if it 831 * is a subset of the root's effective_cpus. 832 */ 833 if (!cpumask_empty(cp->cpus_allowed) && 834 !(is_sched_load_balance(cp) && 835 cpumask_intersects(cp->cpus_allowed, 836 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 837 continue; 838 839 if (root_load_balance && 840 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 841 continue; 842 843 if (is_sched_load_balance(cp)) 844 csa[csn++] = cp; 845 846 /* skip @cp's subtree if not a partition root */ 847 if (!is_partition_root(cp)) 848 pos_css = css_rightmost_descendant(pos_css); 849 } 850 rcu_read_unlock(); 851 852 for (i = 0; i < csn; i++) 853 csa[i]->pn = i; 854 ndoms = csn; 855 856 restart: 857 /* Find the best partition (set of sched domains) */ 858 for (i = 0; i < csn; i++) { 859 struct cpuset *a = csa[i]; 860 int apn = a->pn; 861 862 for (j = 0; j < csn; j++) { 863 struct cpuset *b = csa[j]; 864 int bpn = b->pn; 865 866 if (apn != bpn && cpusets_overlap(a, b)) { 867 for (k = 0; k < csn; k++) { 868 struct cpuset *c = csa[k]; 869 870 if (c->pn == bpn) 871 c->pn = apn; 872 } 873 ndoms--; /* one less element */ 874 goto restart; 875 } 876 } 877 } 878 879 /* 880 * Now we know how many domains to create. 881 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 882 */ 883 doms = alloc_sched_domains(ndoms); 884 if (!doms) 885 goto done; 886 887 /* 888 * The rest of the code, including the scheduler, can deal with 889 * dattr==NULL case. No need to abort if alloc fails. 890 */ 891 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 892 GFP_KERNEL); 893 894 for (nslot = 0, i = 0; i < csn; i++) { 895 struct cpuset *a = csa[i]; 896 struct cpumask *dp; 897 int apn = a->pn; 898 899 if (apn < 0) { 900 /* Skip completed partitions */ 901 continue; 902 } 903 904 dp = doms[nslot]; 905 906 if (nslot == ndoms) { 907 static int warnings = 10; 908 if (warnings) { 909 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 910 nslot, ndoms, csn, i, apn); 911 warnings--; 912 } 913 continue; 914 } 915 916 cpumask_clear(dp); 917 if (dattr) 918 *(dattr + nslot) = SD_ATTR_INIT; 919 for (j = i; j < csn; j++) { 920 struct cpuset *b = csa[j]; 921 922 if (apn == b->pn) { 923 cpumask_or(dp, dp, b->effective_cpus); 924 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 925 if (dattr) 926 update_domain_attr_tree(dattr + nslot, b); 927 928 /* Done with this partition */ 929 b->pn = -1; 930 } 931 } 932 nslot++; 933 } 934 BUG_ON(nslot != ndoms); 935 936 done: 937 kfree(csa); 938 939 /* 940 * Fallback to the default domain if kmalloc() failed. 941 * See comments in partition_sched_domains(). 942 */ 943 if (doms == NULL) 944 ndoms = 1; 945 946 *domains = doms; 947 *attributes = dattr; 948 return ndoms; 949 } 950 951 /* 952 * Rebuild scheduler domains. 953 * 954 * If the flag 'sched_load_balance' of any cpuset with non-empty 955 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 956 * which has that flag enabled, or if any cpuset with a non-empty 957 * 'cpus' is removed, then call this routine to rebuild the 958 * scheduler's dynamic sched domains. 959 * 960 * Call with cpuset_mutex held. Takes get_online_cpus(). 961 */ 962 static void rebuild_sched_domains_locked(void) 963 { 964 struct sched_domain_attr *attr; 965 cpumask_var_t *doms; 966 int ndoms; 967 968 lockdep_assert_held(&cpuset_mutex); 969 get_online_cpus(); 970 971 /* 972 * We have raced with CPU hotplug. Don't do anything to avoid 973 * passing doms with offlined cpu to partition_sched_domains(). 974 * Anyways, hotplug work item will rebuild sched domains. 975 */ 976 if (!top_cpuset.nr_subparts_cpus && 977 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 978 goto out; 979 980 if (top_cpuset.nr_subparts_cpus && 981 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 982 goto out; 983 984 /* Generate domain masks and attrs */ 985 ndoms = generate_sched_domains(&doms, &attr); 986 987 /* Have scheduler rebuild the domains */ 988 partition_sched_domains(ndoms, doms, attr); 989 out: 990 put_online_cpus(); 991 } 992 #else /* !CONFIG_SMP */ 993 static void rebuild_sched_domains_locked(void) 994 { 995 } 996 #endif /* CONFIG_SMP */ 997 998 void rebuild_sched_domains(void) 999 { 1000 mutex_lock(&cpuset_mutex); 1001 rebuild_sched_domains_locked(); 1002 mutex_unlock(&cpuset_mutex); 1003 } 1004 1005 /** 1006 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1007 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1008 * 1009 * Iterate through each task of @cs updating its cpus_allowed to the 1010 * effective cpuset's. As this function is called with cpuset_mutex held, 1011 * cpuset membership stays stable. 1012 */ 1013 static void update_tasks_cpumask(struct cpuset *cs) 1014 { 1015 struct css_task_iter it; 1016 struct task_struct *task; 1017 1018 css_task_iter_start(&cs->css, 0, &it); 1019 while ((task = css_task_iter_next(&it))) 1020 set_cpus_allowed_ptr(task, cs->effective_cpus); 1021 css_task_iter_end(&it); 1022 } 1023 1024 /** 1025 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1026 * @new_cpus: the temp variable for the new effective_cpus mask 1027 * @cs: the cpuset the need to recompute the new effective_cpus mask 1028 * @parent: the parent cpuset 1029 * 1030 * If the parent has subpartition CPUs, include them in the list of 1031 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1032 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1033 * to mask those out. 1034 */ 1035 static void compute_effective_cpumask(struct cpumask *new_cpus, 1036 struct cpuset *cs, struct cpuset *parent) 1037 { 1038 if (parent->nr_subparts_cpus) { 1039 cpumask_or(new_cpus, parent->effective_cpus, 1040 parent->subparts_cpus); 1041 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1042 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1043 } else { 1044 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1045 } 1046 } 1047 1048 /* 1049 * Commands for update_parent_subparts_cpumask 1050 */ 1051 enum subparts_cmd { 1052 partcmd_enable, /* Enable partition root */ 1053 partcmd_disable, /* Disable partition root */ 1054 partcmd_update, /* Update parent's subparts_cpus */ 1055 }; 1056 1057 /** 1058 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1059 * @cpuset: The cpuset that requests change in partition root state 1060 * @cmd: Partition root state change command 1061 * @newmask: Optional new cpumask for partcmd_update 1062 * @tmp: Temporary addmask and delmask 1063 * Return: 0, 1 or an error code 1064 * 1065 * For partcmd_enable, the cpuset is being transformed from a non-partition 1066 * root to a partition root. The cpus_allowed mask of the given cpuset will 1067 * be put into parent's subparts_cpus and taken away from parent's 1068 * effective_cpus. The function will return 0 if all the CPUs listed in 1069 * cpus_allowed can be granted or an error code will be returned. 1070 * 1071 * For partcmd_disable, the cpuset is being transofrmed from a partition 1072 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1073 * parent's subparts_cpus will be taken away from that cpumask and put back 1074 * into parent's effective_cpus. 0 should always be returned. 1075 * 1076 * For partcmd_update, if the optional newmask is specified, the cpu 1077 * list is to be changed from cpus_allowed to newmask. Otherwise, 1078 * cpus_allowed is assumed to remain the same. The cpuset should either 1079 * be a partition root or an invalid partition root. The partition root 1080 * state may change if newmask is NULL and none of the requested CPUs can 1081 * be granted by the parent. The function will return 1 if changes to 1082 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1083 * Error code should only be returned when newmask is non-NULL. 1084 * 1085 * The partcmd_enable and partcmd_disable commands are used by 1086 * update_prstate(). The partcmd_update command is used by 1087 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1088 * newmask set. 1089 * 1090 * The checking is more strict when enabling partition root than the 1091 * other two commands. 1092 * 1093 * Because of the implicit cpu exclusive nature of a partition root, 1094 * cpumask changes that violates the cpu exclusivity rule will not be 1095 * permitted when checked by validate_change(). The validate_change() 1096 * function will also prevent any changes to the cpu list if it is not 1097 * a superset of children's cpu lists. 1098 */ 1099 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1100 struct cpumask *newmask, 1101 struct tmpmasks *tmp) 1102 { 1103 struct cpuset *parent = parent_cs(cpuset); 1104 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1105 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1106 bool part_error = false; /* Partition error? */ 1107 1108 lockdep_assert_held(&cpuset_mutex); 1109 1110 /* 1111 * The parent must be a partition root. 1112 * The new cpumask, if present, or the current cpus_allowed must 1113 * not be empty. 1114 */ 1115 if (!is_partition_root(parent) || 1116 (newmask && cpumask_empty(newmask)) || 1117 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1118 return -EINVAL; 1119 1120 /* 1121 * Enabling/disabling partition root is not allowed if there are 1122 * online children. 1123 */ 1124 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1125 return -EBUSY; 1126 1127 /* 1128 * Enabling partition root is not allowed if not all the CPUs 1129 * can be granted from parent's effective_cpus or at least one 1130 * CPU will be left after that. 1131 */ 1132 if ((cmd == partcmd_enable) && 1133 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1134 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1135 return -EINVAL; 1136 1137 /* 1138 * A cpumask update cannot make parent's effective_cpus become empty. 1139 */ 1140 adding = deleting = false; 1141 if (cmd == partcmd_enable) { 1142 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1143 adding = true; 1144 } else if (cmd == partcmd_disable) { 1145 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1146 parent->subparts_cpus); 1147 } else if (newmask) { 1148 /* 1149 * partcmd_update with newmask: 1150 * 1151 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1152 * addmask = newmask & parent->effective_cpus 1153 * & ~parent->subparts_cpus 1154 */ 1155 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1156 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1157 parent->subparts_cpus); 1158 1159 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1160 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1161 parent->subparts_cpus); 1162 /* 1163 * Return error if the new effective_cpus could become empty. 1164 */ 1165 if (adding && 1166 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1167 if (!deleting) 1168 return -EINVAL; 1169 /* 1170 * As some of the CPUs in subparts_cpus might have 1171 * been offlined, we need to compute the real delmask 1172 * to confirm that. 1173 */ 1174 if (!cpumask_and(tmp->addmask, tmp->delmask, 1175 cpu_active_mask)) 1176 return -EINVAL; 1177 cpumask_copy(tmp->addmask, parent->effective_cpus); 1178 } 1179 } else { 1180 /* 1181 * partcmd_update w/o newmask: 1182 * 1183 * addmask = cpus_allowed & parent->effectiveb_cpus 1184 * 1185 * Note that parent's subparts_cpus may have been 1186 * pre-shrunk in case there is a change in the cpu list. 1187 * So no deletion is needed. 1188 */ 1189 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1190 parent->effective_cpus); 1191 part_error = cpumask_equal(tmp->addmask, 1192 parent->effective_cpus); 1193 } 1194 1195 if (cmd == partcmd_update) { 1196 int prev_prs = cpuset->partition_root_state; 1197 1198 /* 1199 * Check for possible transition between PRS_ENABLED 1200 * and PRS_ERROR. 1201 */ 1202 switch (cpuset->partition_root_state) { 1203 case PRS_ENABLED: 1204 if (part_error) 1205 cpuset->partition_root_state = PRS_ERROR; 1206 break; 1207 case PRS_ERROR: 1208 if (!part_error) 1209 cpuset->partition_root_state = PRS_ENABLED; 1210 break; 1211 } 1212 /* 1213 * Set part_error if previously in invalid state. 1214 */ 1215 part_error = (prev_prs == PRS_ERROR); 1216 } 1217 1218 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1219 return 0; /* Nothing need to be done */ 1220 1221 if (cpuset->partition_root_state == PRS_ERROR) { 1222 /* 1223 * Remove all its cpus from parent's subparts_cpus. 1224 */ 1225 adding = false; 1226 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1227 parent->subparts_cpus); 1228 } 1229 1230 if (!adding && !deleting) 1231 return 0; 1232 1233 /* 1234 * Change the parent's subparts_cpus. 1235 * Newly added CPUs will be removed from effective_cpus and 1236 * newly deleted ones will be added back to effective_cpus. 1237 */ 1238 spin_lock_irq(&callback_lock); 1239 if (adding) { 1240 cpumask_or(parent->subparts_cpus, 1241 parent->subparts_cpus, tmp->addmask); 1242 cpumask_andnot(parent->effective_cpus, 1243 parent->effective_cpus, tmp->addmask); 1244 } 1245 if (deleting) { 1246 cpumask_andnot(parent->subparts_cpus, 1247 parent->subparts_cpus, tmp->delmask); 1248 /* 1249 * Some of the CPUs in subparts_cpus might have been offlined. 1250 */ 1251 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1252 cpumask_or(parent->effective_cpus, 1253 parent->effective_cpus, tmp->delmask); 1254 } 1255 1256 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1257 spin_unlock_irq(&callback_lock); 1258 1259 return cmd == partcmd_update; 1260 } 1261 1262 /* 1263 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1264 * @cs: the cpuset to consider 1265 * @tmp: temp variables for calculating effective_cpus & partition setup 1266 * 1267 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1268 * and all its descendants need to be updated. 1269 * 1270 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1271 * 1272 * Called with cpuset_mutex held 1273 */ 1274 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1275 { 1276 struct cpuset *cp; 1277 struct cgroup_subsys_state *pos_css; 1278 bool need_rebuild_sched_domains = false; 1279 1280 rcu_read_lock(); 1281 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1282 struct cpuset *parent = parent_cs(cp); 1283 1284 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1285 1286 /* 1287 * If it becomes empty, inherit the effective mask of the 1288 * parent, which is guaranteed to have some CPUs. 1289 */ 1290 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1291 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1292 if (!cp->use_parent_ecpus) { 1293 cp->use_parent_ecpus = true; 1294 parent->child_ecpus_count++; 1295 } 1296 } else if (cp->use_parent_ecpus) { 1297 cp->use_parent_ecpus = false; 1298 WARN_ON_ONCE(!parent->child_ecpus_count); 1299 parent->child_ecpus_count--; 1300 } 1301 1302 /* 1303 * Skip the whole subtree if the cpumask remains the same 1304 * and has no partition root state. 1305 */ 1306 if (!cp->partition_root_state && 1307 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1308 pos_css = css_rightmost_descendant(pos_css); 1309 continue; 1310 } 1311 1312 /* 1313 * update_parent_subparts_cpumask() should have been called 1314 * for cs already in update_cpumask(). We should also call 1315 * update_tasks_cpumask() again for tasks in the parent 1316 * cpuset if the parent's subparts_cpus changes. 1317 */ 1318 if ((cp != cs) && cp->partition_root_state) { 1319 switch (parent->partition_root_state) { 1320 case PRS_DISABLED: 1321 /* 1322 * If parent is not a partition root or an 1323 * invalid partition root, clear the state 1324 * state and the CS_CPU_EXCLUSIVE flag. 1325 */ 1326 WARN_ON_ONCE(cp->partition_root_state 1327 != PRS_ERROR); 1328 cp->partition_root_state = 0; 1329 1330 /* 1331 * clear_bit() is an atomic operation and 1332 * readers aren't interested in the state 1333 * of CS_CPU_EXCLUSIVE anyway. So we can 1334 * just update the flag without holding 1335 * the callback_lock. 1336 */ 1337 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1338 break; 1339 1340 case PRS_ENABLED: 1341 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1342 update_tasks_cpumask(parent); 1343 break; 1344 1345 case PRS_ERROR: 1346 /* 1347 * When parent is invalid, it has to be too. 1348 */ 1349 cp->partition_root_state = PRS_ERROR; 1350 if (cp->nr_subparts_cpus) { 1351 cp->nr_subparts_cpus = 0; 1352 cpumask_clear(cp->subparts_cpus); 1353 } 1354 break; 1355 } 1356 } 1357 1358 if (!css_tryget_online(&cp->css)) 1359 continue; 1360 rcu_read_unlock(); 1361 1362 spin_lock_irq(&callback_lock); 1363 1364 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1365 if (cp->nr_subparts_cpus && 1366 (cp->partition_root_state != PRS_ENABLED)) { 1367 cp->nr_subparts_cpus = 0; 1368 cpumask_clear(cp->subparts_cpus); 1369 } else if (cp->nr_subparts_cpus) { 1370 /* 1371 * Make sure that effective_cpus & subparts_cpus 1372 * are mutually exclusive. 1373 * 1374 * In the unlikely event that effective_cpus 1375 * becomes empty. we clear cp->nr_subparts_cpus and 1376 * let its child partition roots to compete for 1377 * CPUs again. 1378 */ 1379 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1380 cp->subparts_cpus); 1381 if (cpumask_empty(cp->effective_cpus)) { 1382 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1383 cpumask_clear(cp->subparts_cpus); 1384 cp->nr_subparts_cpus = 0; 1385 } else if (!cpumask_subset(cp->subparts_cpus, 1386 tmp->new_cpus)) { 1387 cpumask_andnot(cp->subparts_cpus, 1388 cp->subparts_cpus, tmp->new_cpus); 1389 cp->nr_subparts_cpus 1390 = cpumask_weight(cp->subparts_cpus); 1391 } 1392 } 1393 spin_unlock_irq(&callback_lock); 1394 1395 WARN_ON(!is_in_v2_mode() && 1396 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1397 1398 update_tasks_cpumask(cp); 1399 1400 /* 1401 * On legacy hierarchy, if the effective cpumask of any non- 1402 * empty cpuset is changed, we need to rebuild sched domains. 1403 * On default hierarchy, the cpuset needs to be a partition 1404 * root as well. 1405 */ 1406 if (!cpumask_empty(cp->cpus_allowed) && 1407 is_sched_load_balance(cp) && 1408 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1409 is_partition_root(cp))) 1410 need_rebuild_sched_domains = true; 1411 1412 rcu_read_lock(); 1413 css_put(&cp->css); 1414 } 1415 rcu_read_unlock(); 1416 1417 if (need_rebuild_sched_domains) 1418 rebuild_sched_domains_locked(); 1419 } 1420 1421 /** 1422 * update_sibling_cpumasks - Update siblings cpumasks 1423 * @parent: Parent cpuset 1424 * @cs: Current cpuset 1425 * @tmp: Temp variables 1426 */ 1427 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1428 struct tmpmasks *tmp) 1429 { 1430 struct cpuset *sibling; 1431 struct cgroup_subsys_state *pos_css; 1432 1433 /* 1434 * Check all its siblings and call update_cpumasks_hier() 1435 * if their use_parent_ecpus flag is set in order for them 1436 * to use the right effective_cpus value. 1437 */ 1438 rcu_read_lock(); 1439 cpuset_for_each_child(sibling, pos_css, parent) { 1440 if (sibling == cs) 1441 continue; 1442 if (!sibling->use_parent_ecpus) 1443 continue; 1444 1445 update_cpumasks_hier(sibling, tmp); 1446 } 1447 rcu_read_unlock(); 1448 } 1449 1450 /** 1451 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1452 * @cs: the cpuset to consider 1453 * @trialcs: trial cpuset 1454 * @buf: buffer of cpu numbers written to this cpuset 1455 */ 1456 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1457 const char *buf) 1458 { 1459 int retval; 1460 struct tmpmasks tmp; 1461 1462 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1463 if (cs == &top_cpuset) 1464 return -EACCES; 1465 1466 /* 1467 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1468 * Since cpulist_parse() fails on an empty mask, we special case 1469 * that parsing. The validate_change() call ensures that cpusets 1470 * with tasks have cpus. 1471 */ 1472 if (!*buf) { 1473 cpumask_clear(trialcs->cpus_allowed); 1474 } else { 1475 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1476 if (retval < 0) 1477 return retval; 1478 1479 if (!cpumask_subset(trialcs->cpus_allowed, 1480 top_cpuset.cpus_allowed)) 1481 return -EINVAL; 1482 } 1483 1484 /* Nothing to do if the cpus didn't change */ 1485 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1486 return 0; 1487 1488 retval = validate_change(cs, trialcs); 1489 if (retval < 0) 1490 return retval; 1491 1492 #ifdef CONFIG_CPUMASK_OFFSTACK 1493 /* 1494 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1495 * to allocated cpumasks. 1496 */ 1497 tmp.addmask = trialcs->subparts_cpus; 1498 tmp.delmask = trialcs->effective_cpus; 1499 tmp.new_cpus = trialcs->cpus_allowed; 1500 #endif 1501 1502 if (cs->partition_root_state) { 1503 /* Cpumask of a partition root cannot be empty */ 1504 if (cpumask_empty(trialcs->cpus_allowed)) 1505 return -EINVAL; 1506 if (update_parent_subparts_cpumask(cs, partcmd_update, 1507 trialcs->cpus_allowed, &tmp) < 0) 1508 return -EINVAL; 1509 } 1510 1511 spin_lock_irq(&callback_lock); 1512 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1513 1514 /* 1515 * Make sure that subparts_cpus is a subset of cpus_allowed. 1516 */ 1517 if (cs->nr_subparts_cpus) { 1518 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1519 cs->cpus_allowed); 1520 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1521 } 1522 spin_unlock_irq(&callback_lock); 1523 1524 update_cpumasks_hier(cs, &tmp); 1525 1526 if (cs->partition_root_state) { 1527 struct cpuset *parent = parent_cs(cs); 1528 1529 /* 1530 * For partition root, update the cpumasks of sibling 1531 * cpusets if they use parent's effective_cpus. 1532 */ 1533 if (parent->child_ecpus_count) 1534 update_sibling_cpumasks(parent, cs, &tmp); 1535 } 1536 return 0; 1537 } 1538 1539 /* 1540 * Migrate memory region from one set of nodes to another. This is 1541 * performed asynchronously as it can be called from process migration path 1542 * holding locks involved in process management. All mm migrations are 1543 * performed in the queued order and can be waited for by flushing 1544 * cpuset_migrate_mm_wq. 1545 */ 1546 1547 struct cpuset_migrate_mm_work { 1548 struct work_struct work; 1549 struct mm_struct *mm; 1550 nodemask_t from; 1551 nodemask_t to; 1552 }; 1553 1554 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1555 { 1556 struct cpuset_migrate_mm_work *mwork = 1557 container_of(work, struct cpuset_migrate_mm_work, work); 1558 1559 /* on a wq worker, no need to worry about %current's mems_allowed */ 1560 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1561 mmput(mwork->mm); 1562 kfree(mwork); 1563 } 1564 1565 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1566 const nodemask_t *to) 1567 { 1568 struct cpuset_migrate_mm_work *mwork; 1569 1570 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1571 if (mwork) { 1572 mwork->mm = mm; 1573 mwork->from = *from; 1574 mwork->to = *to; 1575 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1576 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1577 } else { 1578 mmput(mm); 1579 } 1580 } 1581 1582 static void cpuset_post_attach(void) 1583 { 1584 flush_workqueue(cpuset_migrate_mm_wq); 1585 } 1586 1587 /* 1588 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1589 * @tsk: the task to change 1590 * @newmems: new nodes that the task will be set 1591 * 1592 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1593 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1594 * parallel, it might temporarily see an empty intersection, which results in 1595 * a seqlock check and retry before OOM or allocation failure. 1596 */ 1597 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1598 nodemask_t *newmems) 1599 { 1600 task_lock(tsk); 1601 1602 local_irq_disable(); 1603 write_seqcount_begin(&tsk->mems_allowed_seq); 1604 1605 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1606 mpol_rebind_task(tsk, newmems); 1607 tsk->mems_allowed = *newmems; 1608 1609 write_seqcount_end(&tsk->mems_allowed_seq); 1610 local_irq_enable(); 1611 1612 task_unlock(tsk); 1613 } 1614 1615 static void *cpuset_being_rebound; 1616 1617 /** 1618 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1619 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1620 * 1621 * Iterate through each task of @cs updating its mems_allowed to the 1622 * effective cpuset's. As this function is called with cpuset_mutex held, 1623 * cpuset membership stays stable. 1624 */ 1625 static void update_tasks_nodemask(struct cpuset *cs) 1626 { 1627 static nodemask_t newmems; /* protected by cpuset_mutex */ 1628 struct css_task_iter it; 1629 struct task_struct *task; 1630 1631 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1632 1633 guarantee_online_mems(cs, &newmems); 1634 1635 /* 1636 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1637 * take while holding tasklist_lock. Forks can happen - the 1638 * mpol_dup() cpuset_being_rebound check will catch such forks, 1639 * and rebind their vma mempolicies too. Because we still hold 1640 * the global cpuset_mutex, we know that no other rebind effort 1641 * will be contending for the global variable cpuset_being_rebound. 1642 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1643 * is idempotent. Also migrate pages in each mm to new nodes. 1644 */ 1645 css_task_iter_start(&cs->css, 0, &it); 1646 while ((task = css_task_iter_next(&it))) { 1647 struct mm_struct *mm; 1648 bool migrate; 1649 1650 cpuset_change_task_nodemask(task, &newmems); 1651 1652 mm = get_task_mm(task); 1653 if (!mm) 1654 continue; 1655 1656 migrate = is_memory_migrate(cs); 1657 1658 mpol_rebind_mm(mm, &cs->mems_allowed); 1659 if (migrate) 1660 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1661 else 1662 mmput(mm); 1663 } 1664 css_task_iter_end(&it); 1665 1666 /* 1667 * All the tasks' nodemasks have been updated, update 1668 * cs->old_mems_allowed. 1669 */ 1670 cs->old_mems_allowed = newmems; 1671 1672 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1673 cpuset_being_rebound = NULL; 1674 } 1675 1676 /* 1677 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1678 * @cs: the cpuset to consider 1679 * @new_mems: a temp variable for calculating new effective_mems 1680 * 1681 * When configured nodemask is changed, the effective nodemasks of this cpuset 1682 * and all its descendants need to be updated. 1683 * 1684 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1685 * 1686 * Called with cpuset_mutex held 1687 */ 1688 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1689 { 1690 struct cpuset *cp; 1691 struct cgroup_subsys_state *pos_css; 1692 1693 rcu_read_lock(); 1694 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1695 struct cpuset *parent = parent_cs(cp); 1696 1697 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1698 1699 /* 1700 * If it becomes empty, inherit the effective mask of the 1701 * parent, which is guaranteed to have some MEMs. 1702 */ 1703 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1704 *new_mems = parent->effective_mems; 1705 1706 /* Skip the whole subtree if the nodemask remains the same. */ 1707 if (nodes_equal(*new_mems, cp->effective_mems)) { 1708 pos_css = css_rightmost_descendant(pos_css); 1709 continue; 1710 } 1711 1712 if (!css_tryget_online(&cp->css)) 1713 continue; 1714 rcu_read_unlock(); 1715 1716 spin_lock_irq(&callback_lock); 1717 cp->effective_mems = *new_mems; 1718 spin_unlock_irq(&callback_lock); 1719 1720 WARN_ON(!is_in_v2_mode() && 1721 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1722 1723 update_tasks_nodemask(cp); 1724 1725 rcu_read_lock(); 1726 css_put(&cp->css); 1727 } 1728 rcu_read_unlock(); 1729 } 1730 1731 /* 1732 * Handle user request to change the 'mems' memory placement 1733 * of a cpuset. Needs to validate the request, update the 1734 * cpusets mems_allowed, and for each task in the cpuset, 1735 * update mems_allowed and rebind task's mempolicy and any vma 1736 * mempolicies and if the cpuset is marked 'memory_migrate', 1737 * migrate the tasks pages to the new memory. 1738 * 1739 * Call with cpuset_mutex held. May take callback_lock during call. 1740 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1741 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1742 * their mempolicies to the cpusets new mems_allowed. 1743 */ 1744 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1745 const char *buf) 1746 { 1747 int retval; 1748 1749 /* 1750 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1751 * it's read-only 1752 */ 1753 if (cs == &top_cpuset) { 1754 retval = -EACCES; 1755 goto done; 1756 } 1757 1758 /* 1759 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1760 * Since nodelist_parse() fails on an empty mask, we special case 1761 * that parsing. The validate_change() call ensures that cpusets 1762 * with tasks have memory. 1763 */ 1764 if (!*buf) { 1765 nodes_clear(trialcs->mems_allowed); 1766 } else { 1767 retval = nodelist_parse(buf, trialcs->mems_allowed); 1768 if (retval < 0) 1769 goto done; 1770 1771 if (!nodes_subset(trialcs->mems_allowed, 1772 top_cpuset.mems_allowed)) { 1773 retval = -EINVAL; 1774 goto done; 1775 } 1776 } 1777 1778 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1779 retval = 0; /* Too easy - nothing to do */ 1780 goto done; 1781 } 1782 retval = validate_change(cs, trialcs); 1783 if (retval < 0) 1784 goto done; 1785 1786 spin_lock_irq(&callback_lock); 1787 cs->mems_allowed = trialcs->mems_allowed; 1788 spin_unlock_irq(&callback_lock); 1789 1790 /* use trialcs->mems_allowed as a temp variable */ 1791 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1792 done: 1793 return retval; 1794 } 1795 1796 bool current_cpuset_is_being_rebound(void) 1797 { 1798 bool ret; 1799 1800 rcu_read_lock(); 1801 ret = task_cs(current) == cpuset_being_rebound; 1802 rcu_read_unlock(); 1803 1804 return ret; 1805 } 1806 1807 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1808 { 1809 #ifdef CONFIG_SMP 1810 if (val < -1 || val >= sched_domain_level_max) 1811 return -EINVAL; 1812 #endif 1813 1814 if (val != cs->relax_domain_level) { 1815 cs->relax_domain_level = val; 1816 if (!cpumask_empty(cs->cpus_allowed) && 1817 is_sched_load_balance(cs)) 1818 rebuild_sched_domains_locked(); 1819 } 1820 1821 return 0; 1822 } 1823 1824 /** 1825 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1826 * @cs: the cpuset in which each task's spread flags needs to be changed 1827 * 1828 * Iterate through each task of @cs updating its spread flags. As this 1829 * function is called with cpuset_mutex held, cpuset membership stays 1830 * stable. 1831 */ 1832 static void update_tasks_flags(struct cpuset *cs) 1833 { 1834 struct css_task_iter it; 1835 struct task_struct *task; 1836 1837 css_task_iter_start(&cs->css, 0, &it); 1838 while ((task = css_task_iter_next(&it))) 1839 cpuset_update_task_spread_flag(cs, task); 1840 css_task_iter_end(&it); 1841 } 1842 1843 /* 1844 * update_flag - read a 0 or a 1 in a file and update associated flag 1845 * bit: the bit to update (see cpuset_flagbits_t) 1846 * cs: the cpuset to update 1847 * turning_on: whether the flag is being set or cleared 1848 * 1849 * Call with cpuset_mutex held. 1850 */ 1851 1852 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1853 int turning_on) 1854 { 1855 struct cpuset *trialcs; 1856 int balance_flag_changed; 1857 int spread_flag_changed; 1858 int err; 1859 1860 trialcs = alloc_trial_cpuset(cs); 1861 if (!trialcs) 1862 return -ENOMEM; 1863 1864 if (turning_on) 1865 set_bit(bit, &trialcs->flags); 1866 else 1867 clear_bit(bit, &trialcs->flags); 1868 1869 err = validate_change(cs, trialcs); 1870 if (err < 0) 1871 goto out; 1872 1873 balance_flag_changed = (is_sched_load_balance(cs) != 1874 is_sched_load_balance(trialcs)); 1875 1876 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1877 || (is_spread_page(cs) != is_spread_page(trialcs))); 1878 1879 spin_lock_irq(&callback_lock); 1880 cs->flags = trialcs->flags; 1881 spin_unlock_irq(&callback_lock); 1882 1883 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1884 rebuild_sched_domains_locked(); 1885 1886 if (spread_flag_changed) 1887 update_tasks_flags(cs); 1888 out: 1889 free_cpuset(trialcs); 1890 return err; 1891 } 1892 1893 /* 1894 * update_prstate - update partititon_root_state 1895 * cs: the cpuset to update 1896 * val: 0 - disabled, 1 - enabled 1897 * 1898 * Call with cpuset_mutex held. 1899 */ 1900 static int update_prstate(struct cpuset *cs, int val) 1901 { 1902 int err; 1903 struct cpuset *parent = parent_cs(cs); 1904 struct tmpmasks tmp; 1905 1906 if ((val != 0) && (val != 1)) 1907 return -EINVAL; 1908 if (val == cs->partition_root_state) 1909 return 0; 1910 1911 /* 1912 * Cannot force a partial or invalid partition root to a full 1913 * partition root. 1914 */ 1915 if (val && cs->partition_root_state) 1916 return -EINVAL; 1917 1918 if (alloc_cpumasks(NULL, &tmp)) 1919 return -ENOMEM; 1920 1921 err = -EINVAL; 1922 if (!cs->partition_root_state) { 1923 /* 1924 * Turning on partition root requires setting the 1925 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1926 * cannot be NULL. 1927 */ 1928 if (cpumask_empty(cs->cpus_allowed)) 1929 goto out; 1930 1931 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1932 if (err) 1933 goto out; 1934 1935 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1936 NULL, &tmp); 1937 if (err) { 1938 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1939 goto out; 1940 } 1941 cs->partition_root_state = PRS_ENABLED; 1942 } else { 1943 /* 1944 * Turning off partition root will clear the 1945 * CS_CPU_EXCLUSIVE bit. 1946 */ 1947 if (cs->partition_root_state == PRS_ERROR) { 1948 cs->partition_root_state = 0; 1949 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1950 err = 0; 1951 goto out; 1952 } 1953 1954 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1955 NULL, &tmp); 1956 if (err) 1957 goto out; 1958 1959 cs->partition_root_state = 0; 1960 1961 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1962 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1963 } 1964 1965 /* 1966 * Update cpumask of parent's tasks except when it is the top 1967 * cpuset as some system daemons cannot be mapped to other CPUs. 1968 */ 1969 if (parent != &top_cpuset) 1970 update_tasks_cpumask(parent); 1971 1972 if (parent->child_ecpus_count) 1973 update_sibling_cpumasks(parent, cs, &tmp); 1974 1975 rebuild_sched_domains_locked(); 1976 out: 1977 free_cpumasks(NULL, &tmp); 1978 return err; 1979 } 1980 1981 /* 1982 * Frequency meter - How fast is some event occurring? 1983 * 1984 * These routines manage a digitally filtered, constant time based, 1985 * event frequency meter. There are four routines: 1986 * fmeter_init() - initialize a frequency meter. 1987 * fmeter_markevent() - called each time the event happens. 1988 * fmeter_getrate() - returns the recent rate of such events. 1989 * fmeter_update() - internal routine used to update fmeter. 1990 * 1991 * A common data structure is passed to each of these routines, 1992 * which is used to keep track of the state required to manage the 1993 * frequency meter and its digital filter. 1994 * 1995 * The filter works on the number of events marked per unit time. 1996 * The filter is single-pole low-pass recursive (IIR). The time unit 1997 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1998 * simulate 3 decimal digits of precision (multiplied by 1000). 1999 * 2000 * With an FM_COEF of 933, and a time base of 1 second, the filter 2001 * has a half-life of 10 seconds, meaning that if the events quit 2002 * happening, then the rate returned from the fmeter_getrate() 2003 * will be cut in half each 10 seconds, until it converges to zero. 2004 * 2005 * It is not worth doing a real infinitely recursive filter. If more 2006 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2007 * just compute FM_MAXTICKS ticks worth, by which point the level 2008 * will be stable. 2009 * 2010 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2011 * arithmetic overflow in the fmeter_update() routine. 2012 * 2013 * Given the simple 32 bit integer arithmetic used, this meter works 2014 * best for reporting rates between one per millisecond (msec) and 2015 * one per 32 (approx) seconds. At constant rates faster than one 2016 * per msec it maxes out at values just under 1,000,000. At constant 2017 * rates between one per msec, and one per second it will stabilize 2018 * to a value N*1000, where N is the rate of events per second. 2019 * At constant rates between one per second and one per 32 seconds, 2020 * it will be choppy, moving up on the seconds that have an event, 2021 * and then decaying until the next event. At rates slower than 2022 * about one in 32 seconds, it decays all the way back to zero between 2023 * each event. 2024 */ 2025 2026 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2027 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2028 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2029 #define FM_SCALE 1000 /* faux fixed point scale */ 2030 2031 /* Initialize a frequency meter */ 2032 static void fmeter_init(struct fmeter *fmp) 2033 { 2034 fmp->cnt = 0; 2035 fmp->val = 0; 2036 fmp->time = 0; 2037 spin_lock_init(&fmp->lock); 2038 } 2039 2040 /* Internal meter update - process cnt events and update value */ 2041 static void fmeter_update(struct fmeter *fmp) 2042 { 2043 time64_t now; 2044 u32 ticks; 2045 2046 now = ktime_get_seconds(); 2047 ticks = now - fmp->time; 2048 2049 if (ticks == 0) 2050 return; 2051 2052 ticks = min(FM_MAXTICKS, ticks); 2053 while (ticks-- > 0) 2054 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2055 fmp->time = now; 2056 2057 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2058 fmp->cnt = 0; 2059 } 2060 2061 /* Process any previous ticks, then bump cnt by one (times scale). */ 2062 static void fmeter_markevent(struct fmeter *fmp) 2063 { 2064 spin_lock(&fmp->lock); 2065 fmeter_update(fmp); 2066 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2067 spin_unlock(&fmp->lock); 2068 } 2069 2070 /* Process any previous ticks, then return current value. */ 2071 static int fmeter_getrate(struct fmeter *fmp) 2072 { 2073 int val; 2074 2075 spin_lock(&fmp->lock); 2076 fmeter_update(fmp); 2077 val = fmp->val; 2078 spin_unlock(&fmp->lock); 2079 return val; 2080 } 2081 2082 static struct cpuset *cpuset_attach_old_cs; 2083 2084 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2085 static int cpuset_can_attach(struct cgroup_taskset *tset) 2086 { 2087 struct cgroup_subsys_state *css; 2088 struct cpuset *cs; 2089 struct task_struct *task; 2090 int ret; 2091 2092 /* used later by cpuset_attach() */ 2093 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2094 cs = css_cs(css); 2095 2096 mutex_lock(&cpuset_mutex); 2097 2098 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2099 ret = -ENOSPC; 2100 if (!is_in_v2_mode() && 2101 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2102 goto out_unlock; 2103 2104 cgroup_taskset_for_each(task, css, tset) { 2105 ret = task_can_attach(task, cs->cpus_allowed); 2106 if (ret) 2107 goto out_unlock; 2108 ret = security_task_setscheduler(task); 2109 if (ret) 2110 goto out_unlock; 2111 } 2112 2113 /* 2114 * Mark attach is in progress. This makes validate_change() fail 2115 * changes which zero cpus/mems_allowed. 2116 */ 2117 cs->attach_in_progress++; 2118 ret = 0; 2119 out_unlock: 2120 mutex_unlock(&cpuset_mutex); 2121 return ret; 2122 } 2123 2124 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2125 { 2126 struct cgroup_subsys_state *css; 2127 2128 cgroup_taskset_first(tset, &css); 2129 2130 mutex_lock(&cpuset_mutex); 2131 css_cs(css)->attach_in_progress--; 2132 mutex_unlock(&cpuset_mutex); 2133 } 2134 2135 /* 2136 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2137 * but we can't allocate it dynamically there. Define it global and 2138 * allocate from cpuset_init(). 2139 */ 2140 static cpumask_var_t cpus_attach; 2141 2142 static void cpuset_attach(struct cgroup_taskset *tset) 2143 { 2144 /* static buf protected by cpuset_mutex */ 2145 static nodemask_t cpuset_attach_nodemask_to; 2146 struct task_struct *task; 2147 struct task_struct *leader; 2148 struct cgroup_subsys_state *css; 2149 struct cpuset *cs; 2150 struct cpuset *oldcs = cpuset_attach_old_cs; 2151 2152 cgroup_taskset_first(tset, &css); 2153 cs = css_cs(css); 2154 2155 mutex_lock(&cpuset_mutex); 2156 2157 /* prepare for attach */ 2158 if (cs == &top_cpuset) 2159 cpumask_copy(cpus_attach, cpu_possible_mask); 2160 else 2161 guarantee_online_cpus(cs, cpus_attach); 2162 2163 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2164 2165 cgroup_taskset_for_each(task, css, tset) { 2166 /* 2167 * can_attach beforehand should guarantee that this doesn't 2168 * fail. TODO: have a better way to handle failure here 2169 */ 2170 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2171 2172 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2173 cpuset_update_task_spread_flag(cs, task); 2174 } 2175 2176 /* 2177 * Change mm for all threadgroup leaders. This is expensive and may 2178 * sleep and should be moved outside migration path proper. 2179 */ 2180 cpuset_attach_nodemask_to = cs->effective_mems; 2181 cgroup_taskset_for_each_leader(leader, css, tset) { 2182 struct mm_struct *mm = get_task_mm(leader); 2183 2184 if (mm) { 2185 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2186 2187 /* 2188 * old_mems_allowed is the same with mems_allowed 2189 * here, except if this task is being moved 2190 * automatically due to hotplug. In that case 2191 * @mems_allowed has been updated and is empty, so 2192 * @old_mems_allowed is the right nodesets that we 2193 * migrate mm from. 2194 */ 2195 if (is_memory_migrate(cs)) 2196 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2197 &cpuset_attach_nodemask_to); 2198 else 2199 mmput(mm); 2200 } 2201 } 2202 2203 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2204 2205 cs->attach_in_progress--; 2206 if (!cs->attach_in_progress) 2207 wake_up(&cpuset_attach_wq); 2208 2209 mutex_unlock(&cpuset_mutex); 2210 } 2211 2212 /* The various types of files and directories in a cpuset file system */ 2213 2214 typedef enum { 2215 FILE_MEMORY_MIGRATE, 2216 FILE_CPULIST, 2217 FILE_MEMLIST, 2218 FILE_EFFECTIVE_CPULIST, 2219 FILE_EFFECTIVE_MEMLIST, 2220 FILE_SUBPARTS_CPULIST, 2221 FILE_CPU_EXCLUSIVE, 2222 FILE_MEM_EXCLUSIVE, 2223 FILE_MEM_HARDWALL, 2224 FILE_SCHED_LOAD_BALANCE, 2225 FILE_PARTITION_ROOT, 2226 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2227 FILE_MEMORY_PRESSURE_ENABLED, 2228 FILE_MEMORY_PRESSURE, 2229 FILE_SPREAD_PAGE, 2230 FILE_SPREAD_SLAB, 2231 } cpuset_filetype_t; 2232 2233 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2234 u64 val) 2235 { 2236 struct cpuset *cs = css_cs(css); 2237 cpuset_filetype_t type = cft->private; 2238 int retval = 0; 2239 2240 mutex_lock(&cpuset_mutex); 2241 if (!is_cpuset_online(cs)) { 2242 retval = -ENODEV; 2243 goto out_unlock; 2244 } 2245 2246 switch (type) { 2247 case FILE_CPU_EXCLUSIVE: 2248 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2249 break; 2250 case FILE_MEM_EXCLUSIVE: 2251 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2252 break; 2253 case FILE_MEM_HARDWALL: 2254 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2255 break; 2256 case FILE_SCHED_LOAD_BALANCE: 2257 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2258 break; 2259 case FILE_MEMORY_MIGRATE: 2260 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2261 break; 2262 case FILE_MEMORY_PRESSURE_ENABLED: 2263 cpuset_memory_pressure_enabled = !!val; 2264 break; 2265 case FILE_SPREAD_PAGE: 2266 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2267 break; 2268 case FILE_SPREAD_SLAB: 2269 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2270 break; 2271 default: 2272 retval = -EINVAL; 2273 break; 2274 } 2275 out_unlock: 2276 mutex_unlock(&cpuset_mutex); 2277 return retval; 2278 } 2279 2280 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2281 s64 val) 2282 { 2283 struct cpuset *cs = css_cs(css); 2284 cpuset_filetype_t type = cft->private; 2285 int retval = -ENODEV; 2286 2287 mutex_lock(&cpuset_mutex); 2288 if (!is_cpuset_online(cs)) 2289 goto out_unlock; 2290 2291 switch (type) { 2292 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2293 retval = update_relax_domain_level(cs, val); 2294 break; 2295 default: 2296 retval = -EINVAL; 2297 break; 2298 } 2299 out_unlock: 2300 mutex_unlock(&cpuset_mutex); 2301 return retval; 2302 } 2303 2304 /* 2305 * Common handling for a write to a "cpus" or "mems" file. 2306 */ 2307 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2308 char *buf, size_t nbytes, loff_t off) 2309 { 2310 struct cpuset *cs = css_cs(of_css(of)); 2311 struct cpuset *trialcs; 2312 int retval = -ENODEV; 2313 2314 buf = strstrip(buf); 2315 2316 /* 2317 * CPU or memory hotunplug may leave @cs w/o any execution 2318 * resources, in which case the hotplug code asynchronously updates 2319 * configuration and transfers all tasks to the nearest ancestor 2320 * which can execute. 2321 * 2322 * As writes to "cpus" or "mems" may restore @cs's execution 2323 * resources, wait for the previously scheduled operations before 2324 * proceeding, so that we don't end up keep removing tasks added 2325 * after execution capability is restored. 2326 * 2327 * cpuset_hotplug_work calls back into cgroup core via 2328 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2329 * operation like this one can lead to a deadlock through kernfs 2330 * active_ref protection. Let's break the protection. Losing the 2331 * protection is okay as we check whether @cs is online after 2332 * grabbing cpuset_mutex anyway. This only happens on the legacy 2333 * hierarchies. 2334 */ 2335 css_get(&cs->css); 2336 kernfs_break_active_protection(of->kn); 2337 flush_work(&cpuset_hotplug_work); 2338 2339 mutex_lock(&cpuset_mutex); 2340 if (!is_cpuset_online(cs)) 2341 goto out_unlock; 2342 2343 trialcs = alloc_trial_cpuset(cs); 2344 if (!trialcs) { 2345 retval = -ENOMEM; 2346 goto out_unlock; 2347 } 2348 2349 switch (of_cft(of)->private) { 2350 case FILE_CPULIST: 2351 retval = update_cpumask(cs, trialcs, buf); 2352 break; 2353 case FILE_MEMLIST: 2354 retval = update_nodemask(cs, trialcs, buf); 2355 break; 2356 default: 2357 retval = -EINVAL; 2358 break; 2359 } 2360 2361 free_cpuset(trialcs); 2362 out_unlock: 2363 mutex_unlock(&cpuset_mutex); 2364 kernfs_unbreak_active_protection(of->kn); 2365 css_put(&cs->css); 2366 flush_workqueue(cpuset_migrate_mm_wq); 2367 return retval ?: nbytes; 2368 } 2369 2370 /* 2371 * These ascii lists should be read in a single call, by using a user 2372 * buffer large enough to hold the entire map. If read in smaller 2373 * chunks, there is no guarantee of atomicity. Since the display format 2374 * used, list of ranges of sequential numbers, is variable length, 2375 * and since these maps can change value dynamically, one could read 2376 * gibberish by doing partial reads while a list was changing. 2377 */ 2378 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2379 { 2380 struct cpuset *cs = css_cs(seq_css(sf)); 2381 cpuset_filetype_t type = seq_cft(sf)->private; 2382 int ret = 0; 2383 2384 spin_lock_irq(&callback_lock); 2385 2386 switch (type) { 2387 case FILE_CPULIST: 2388 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2389 break; 2390 case FILE_MEMLIST: 2391 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2392 break; 2393 case FILE_EFFECTIVE_CPULIST: 2394 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2395 break; 2396 case FILE_EFFECTIVE_MEMLIST: 2397 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2398 break; 2399 case FILE_SUBPARTS_CPULIST: 2400 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2401 break; 2402 default: 2403 ret = -EINVAL; 2404 } 2405 2406 spin_unlock_irq(&callback_lock); 2407 return ret; 2408 } 2409 2410 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2411 { 2412 struct cpuset *cs = css_cs(css); 2413 cpuset_filetype_t type = cft->private; 2414 switch (type) { 2415 case FILE_CPU_EXCLUSIVE: 2416 return is_cpu_exclusive(cs); 2417 case FILE_MEM_EXCLUSIVE: 2418 return is_mem_exclusive(cs); 2419 case FILE_MEM_HARDWALL: 2420 return is_mem_hardwall(cs); 2421 case FILE_SCHED_LOAD_BALANCE: 2422 return is_sched_load_balance(cs); 2423 case FILE_MEMORY_MIGRATE: 2424 return is_memory_migrate(cs); 2425 case FILE_MEMORY_PRESSURE_ENABLED: 2426 return cpuset_memory_pressure_enabled; 2427 case FILE_MEMORY_PRESSURE: 2428 return fmeter_getrate(&cs->fmeter); 2429 case FILE_SPREAD_PAGE: 2430 return is_spread_page(cs); 2431 case FILE_SPREAD_SLAB: 2432 return is_spread_slab(cs); 2433 default: 2434 BUG(); 2435 } 2436 2437 /* Unreachable but makes gcc happy */ 2438 return 0; 2439 } 2440 2441 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2442 { 2443 struct cpuset *cs = css_cs(css); 2444 cpuset_filetype_t type = cft->private; 2445 switch (type) { 2446 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2447 return cs->relax_domain_level; 2448 default: 2449 BUG(); 2450 } 2451 2452 /* Unrechable but makes gcc happy */ 2453 return 0; 2454 } 2455 2456 static int sched_partition_show(struct seq_file *seq, void *v) 2457 { 2458 struct cpuset *cs = css_cs(seq_css(seq)); 2459 2460 switch (cs->partition_root_state) { 2461 case PRS_ENABLED: 2462 seq_puts(seq, "root\n"); 2463 break; 2464 case PRS_DISABLED: 2465 seq_puts(seq, "member\n"); 2466 break; 2467 case PRS_ERROR: 2468 seq_puts(seq, "root invalid\n"); 2469 break; 2470 } 2471 return 0; 2472 } 2473 2474 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2475 size_t nbytes, loff_t off) 2476 { 2477 struct cpuset *cs = css_cs(of_css(of)); 2478 int val; 2479 int retval = -ENODEV; 2480 2481 buf = strstrip(buf); 2482 2483 /* 2484 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2485 */ 2486 if (!strcmp(buf, "root")) 2487 val = PRS_ENABLED; 2488 else if (!strcmp(buf, "member")) 2489 val = PRS_DISABLED; 2490 else 2491 return -EINVAL; 2492 2493 css_get(&cs->css); 2494 mutex_lock(&cpuset_mutex); 2495 if (!is_cpuset_online(cs)) 2496 goto out_unlock; 2497 2498 retval = update_prstate(cs, val); 2499 out_unlock: 2500 mutex_unlock(&cpuset_mutex); 2501 css_put(&cs->css); 2502 return retval ?: nbytes; 2503 } 2504 2505 /* 2506 * for the common functions, 'private' gives the type of file 2507 */ 2508 2509 static struct cftype legacy_files[] = { 2510 { 2511 .name = "cpus", 2512 .seq_show = cpuset_common_seq_show, 2513 .write = cpuset_write_resmask, 2514 .max_write_len = (100U + 6 * NR_CPUS), 2515 .private = FILE_CPULIST, 2516 }, 2517 2518 { 2519 .name = "mems", 2520 .seq_show = cpuset_common_seq_show, 2521 .write = cpuset_write_resmask, 2522 .max_write_len = (100U + 6 * MAX_NUMNODES), 2523 .private = FILE_MEMLIST, 2524 }, 2525 2526 { 2527 .name = "effective_cpus", 2528 .seq_show = cpuset_common_seq_show, 2529 .private = FILE_EFFECTIVE_CPULIST, 2530 }, 2531 2532 { 2533 .name = "effective_mems", 2534 .seq_show = cpuset_common_seq_show, 2535 .private = FILE_EFFECTIVE_MEMLIST, 2536 }, 2537 2538 { 2539 .name = "cpu_exclusive", 2540 .read_u64 = cpuset_read_u64, 2541 .write_u64 = cpuset_write_u64, 2542 .private = FILE_CPU_EXCLUSIVE, 2543 }, 2544 2545 { 2546 .name = "mem_exclusive", 2547 .read_u64 = cpuset_read_u64, 2548 .write_u64 = cpuset_write_u64, 2549 .private = FILE_MEM_EXCLUSIVE, 2550 }, 2551 2552 { 2553 .name = "mem_hardwall", 2554 .read_u64 = cpuset_read_u64, 2555 .write_u64 = cpuset_write_u64, 2556 .private = FILE_MEM_HARDWALL, 2557 }, 2558 2559 { 2560 .name = "sched_load_balance", 2561 .read_u64 = cpuset_read_u64, 2562 .write_u64 = cpuset_write_u64, 2563 .private = FILE_SCHED_LOAD_BALANCE, 2564 }, 2565 2566 { 2567 .name = "sched_relax_domain_level", 2568 .read_s64 = cpuset_read_s64, 2569 .write_s64 = cpuset_write_s64, 2570 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2571 }, 2572 2573 { 2574 .name = "memory_migrate", 2575 .read_u64 = cpuset_read_u64, 2576 .write_u64 = cpuset_write_u64, 2577 .private = FILE_MEMORY_MIGRATE, 2578 }, 2579 2580 { 2581 .name = "memory_pressure", 2582 .read_u64 = cpuset_read_u64, 2583 .private = FILE_MEMORY_PRESSURE, 2584 }, 2585 2586 { 2587 .name = "memory_spread_page", 2588 .read_u64 = cpuset_read_u64, 2589 .write_u64 = cpuset_write_u64, 2590 .private = FILE_SPREAD_PAGE, 2591 }, 2592 2593 { 2594 .name = "memory_spread_slab", 2595 .read_u64 = cpuset_read_u64, 2596 .write_u64 = cpuset_write_u64, 2597 .private = FILE_SPREAD_SLAB, 2598 }, 2599 2600 { 2601 .name = "memory_pressure_enabled", 2602 .flags = CFTYPE_ONLY_ON_ROOT, 2603 .read_u64 = cpuset_read_u64, 2604 .write_u64 = cpuset_write_u64, 2605 .private = FILE_MEMORY_PRESSURE_ENABLED, 2606 }, 2607 2608 { } /* terminate */ 2609 }; 2610 2611 /* 2612 * This is currently a minimal set for the default hierarchy. It can be 2613 * expanded later on by migrating more features and control files from v1. 2614 */ 2615 static struct cftype dfl_files[] = { 2616 { 2617 .name = "cpus", 2618 .seq_show = cpuset_common_seq_show, 2619 .write = cpuset_write_resmask, 2620 .max_write_len = (100U + 6 * NR_CPUS), 2621 .private = FILE_CPULIST, 2622 .flags = CFTYPE_NOT_ON_ROOT, 2623 }, 2624 2625 { 2626 .name = "mems", 2627 .seq_show = cpuset_common_seq_show, 2628 .write = cpuset_write_resmask, 2629 .max_write_len = (100U + 6 * MAX_NUMNODES), 2630 .private = FILE_MEMLIST, 2631 .flags = CFTYPE_NOT_ON_ROOT, 2632 }, 2633 2634 { 2635 .name = "cpus.effective", 2636 .seq_show = cpuset_common_seq_show, 2637 .private = FILE_EFFECTIVE_CPULIST, 2638 }, 2639 2640 { 2641 .name = "mems.effective", 2642 .seq_show = cpuset_common_seq_show, 2643 .private = FILE_EFFECTIVE_MEMLIST, 2644 }, 2645 2646 { 2647 .name = "cpus.partition", 2648 .seq_show = sched_partition_show, 2649 .write = sched_partition_write, 2650 .private = FILE_PARTITION_ROOT, 2651 .flags = CFTYPE_NOT_ON_ROOT, 2652 }, 2653 2654 { 2655 .name = "cpus.subpartitions", 2656 .seq_show = cpuset_common_seq_show, 2657 .private = FILE_SUBPARTS_CPULIST, 2658 .flags = CFTYPE_DEBUG, 2659 }, 2660 2661 { } /* terminate */ 2662 }; 2663 2664 2665 /* 2666 * cpuset_css_alloc - allocate a cpuset css 2667 * cgrp: control group that the new cpuset will be part of 2668 */ 2669 2670 static struct cgroup_subsys_state * 2671 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2672 { 2673 struct cpuset *cs; 2674 2675 if (!parent_css) 2676 return &top_cpuset.css; 2677 2678 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2679 if (!cs) 2680 return ERR_PTR(-ENOMEM); 2681 2682 if (alloc_cpumasks(cs, NULL)) { 2683 kfree(cs); 2684 return ERR_PTR(-ENOMEM); 2685 } 2686 2687 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2688 nodes_clear(cs->mems_allowed); 2689 nodes_clear(cs->effective_mems); 2690 fmeter_init(&cs->fmeter); 2691 cs->relax_domain_level = -1; 2692 2693 return &cs->css; 2694 } 2695 2696 static int cpuset_css_online(struct cgroup_subsys_state *css) 2697 { 2698 struct cpuset *cs = css_cs(css); 2699 struct cpuset *parent = parent_cs(cs); 2700 struct cpuset *tmp_cs; 2701 struct cgroup_subsys_state *pos_css; 2702 2703 if (!parent) 2704 return 0; 2705 2706 mutex_lock(&cpuset_mutex); 2707 2708 set_bit(CS_ONLINE, &cs->flags); 2709 if (is_spread_page(parent)) 2710 set_bit(CS_SPREAD_PAGE, &cs->flags); 2711 if (is_spread_slab(parent)) 2712 set_bit(CS_SPREAD_SLAB, &cs->flags); 2713 2714 cpuset_inc(); 2715 2716 spin_lock_irq(&callback_lock); 2717 if (is_in_v2_mode()) { 2718 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2719 cs->effective_mems = parent->effective_mems; 2720 cs->use_parent_ecpus = true; 2721 parent->child_ecpus_count++; 2722 } 2723 spin_unlock_irq(&callback_lock); 2724 2725 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2726 goto out_unlock; 2727 2728 /* 2729 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2730 * set. This flag handling is implemented in cgroup core for 2731 * histrical reasons - the flag may be specified during mount. 2732 * 2733 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2734 * refuse to clone the configuration - thereby refusing the task to 2735 * be entered, and as a result refusing the sys_unshare() or 2736 * clone() which initiated it. If this becomes a problem for some 2737 * users who wish to allow that scenario, then this could be 2738 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2739 * (and likewise for mems) to the new cgroup. 2740 */ 2741 rcu_read_lock(); 2742 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2743 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2744 rcu_read_unlock(); 2745 goto out_unlock; 2746 } 2747 } 2748 rcu_read_unlock(); 2749 2750 spin_lock_irq(&callback_lock); 2751 cs->mems_allowed = parent->mems_allowed; 2752 cs->effective_mems = parent->mems_allowed; 2753 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2754 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2755 spin_unlock_irq(&callback_lock); 2756 out_unlock: 2757 mutex_unlock(&cpuset_mutex); 2758 return 0; 2759 } 2760 2761 /* 2762 * If the cpuset being removed has its flag 'sched_load_balance' 2763 * enabled, then simulate turning sched_load_balance off, which 2764 * will call rebuild_sched_domains_locked(). That is not needed 2765 * in the default hierarchy where only changes in partition 2766 * will cause repartitioning. 2767 * 2768 * If the cpuset has the 'sched.partition' flag enabled, simulate 2769 * turning 'sched.partition" off. 2770 */ 2771 2772 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2773 { 2774 struct cpuset *cs = css_cs(css); 2775 2776 mutex_lock(&cpuset_mutex); 2777 2778 if (is_partition_root(cs)) 2779 update_prstate(cs, 0); 2780 2781 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2782 is_sched_load_balance(cs)) 2783 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2784 2785 if (cs->use_parent_ecpus) { 2786 struct cpuset *parent = parent_cs(cs); 2787 2788 cs->use_parent_ecpus = false; 2789 parent->child_ecpus_count--; 2790 } 2791 2792 cpuset_dec(); 2793 clear_bit(CS_ONLINE, &cs->flags); 2794 2795 mutex_unlock(&cpuset_mutex); 2796 } 2797 2798 static void cpuset_css_free(struct cgroup_subsys_state *css) 2799 { 2800 struct cpuset *cs = css_cs(css); 2801 2802 free_cpuset(cs); 2803 } 2804 2805 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2806 { 2807 mutex_lock(&cpuset_mutex); 2808 spin_lock_irq(&callback_lock); 2809 2810 if (is_in_v2_mode()) { 2811 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2812 top_cpuset.mems_allowed = node_possible_map; 2813 } else { 2814 cpumask_copy(top_cpuset.cpus_allowed, 2815 top_cpuset.effective_cpus); 2816 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2817 } 2818 2819 spin_unlock_irq(&callback_lock); 2820 mutex_unlock(&cpuset_mutex); 2821 } 2822 2823 /* 2824 * Make sure the new task conform to the current state of its parent, 2825 * which could have been changed by cpuset just after it inherits the 2826 * state from the parent and before it sits on the cgroup's task list. 2827 */ 2828 static void cpuset_fork(struct task_struct *task) 2829 { 2830 if (task_css_is_root(task, cpuset_cgrp_id)) 2831 return; 2832 2833 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2834 task->mems_allowed = current->mems_allowed; 2835 } 2836 2837 struct cgroup_subsys cpuset_cgrp_subsys = { 2838 .css_alloc = cpuset_css_alloc, 2839 .css_online = cpuset_css_online, 2840 .css_offline = cpuset_css_offline, 2841 .css_free = cpuset_css_free, 2842 .can_attach = cpuset_can_attach, 2843 .cancel_attach = cpuset_cancel_attach, 2844 .attach = cpuset_attach, 2845 .post_attach = cpuset_post_attach, 2846 .bind = cpuset_bind, 2847 .fork = cpuset_fork, 2848 .legacy_cftypes = legacy_files, 2849 .dfl_cftypes = dfl_files, 2850 .early_init = true, 2851 .threaded = true, 2852 }; 2853 2854 /** 2855 * cpuset_init - initialize cpusets at system boot 2856 * 2857 * Description: Initialize top_cpuset and the cpuset internal file system, 2858 **/ 2859 2860 int __init cpuset_init(void) 2861 { 2862 int err = 0; 2863 2864 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2865 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2866 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2867 2868 cpumask_setall(top_cpuset.cpus_allowed); 2869 nodes_setall(top_cpuset.mems_allowed); 2870 cpumask_setall(top_cpuset.effective_cpus); 2871 nodes_setall(top_cpuset.effective_mems); 2872 2873 fmeter_init(&top_cpuset.fmeter); 2874 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2875 top_cpuset.relax_domain_level = -1; 2876 2877 err = register_filesystem(&cpuset_fs_type); 2878 if (err < 0) 2879 return err; 2880 2881 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2888 * or memory nodes, we need to walk over the cpuset hierarchy, 2889 * removing that CPU or node from all cpusets. If this removes the 2890 * last CPU or node from a cpuset, then move the tasks in the empty 2891 * cpuset to its next-highest non-empty parent. 2892 */ 2893 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2894 { 2895 struct cpuset *parent; 2896 2897 /* 2898 * Find its next-highest non-empty parent, (top cpuset 2899 * has online cpus, so can't be empty). 2900 */ 2901 parent = parent_cs(cs); 2902 while (cpumask_empty(parent->cpus_allowed) || 2903 nodes_empty(parent->mems_allowed)) 2904 parent = parent_cs(parent); 2905 2906 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2907 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2908 pr_cont_cgroup_name(cs->css.cgroup); 2909 pr_cont("\n"); 2910 } 2911 } 2912 2913 static void 2914 hotplug_update_tasks_legacy(struct cpuset *cs, 2915 struct cpumask *new_cpus, nodemask_t *new_mems, 2916 bool cpus_updated, bool mems_updated) 2917 { 2918 bool is_empty; 2919 2920 spin_lock_irq(&callback_lock); 2921 cpumask_copy(cs->cpus_allowed, new_cpus); 2922 cpumask_copy(cs->effective_cpus, new_cpus); 2923 cs->mems_allowed = *new_mems; 2924 cs->effective_mems = *new_mems; 2925 spin_unlock_irq(&callback_lock); 2926 2927 /* 2928 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2929 * as the tasks will be migratecd to an ancestor. 2930 */ 2931 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2932 update_tasks_cpumask(cs); 2933 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2934 update_tasks_nodemask(cs); 2935 2936 is_empty = cpumask_empty(cs->cpus_allowed) || 2937 nodes_empty(cs->mems_allowed); 2938 2939 mutex_unlock(&cpuset_mutex); 2940 2941 /* 2942 * Move tasks to the nearest ancestor with execution resources, 2943 * This is full cgroup operation which will also call back into 2944 * cpuset. Should be done outside any lock. 2945 */ 2946 if (is_empty) 2947 remove_tasks_in_empty_cpuset(cs); 2948 2949 mutex_lock(&cpuset_mutex); 2950 } 2951 2952 static void 2953 hotplug_update_tasks(struct cpuset *cs, 2954 struct cpumask *new_cpus, nodemask_t *new_mems, 2955 bool cpus_updated, bool mems_updated) 2956 { 2957 if (cpumask_empty(new_cpus)) 2958 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2959 if (nodes_empty(*new_mems)) 2960 *new_mems = parent_cs(cs)->effective_mems; 2961 2962 spin_lock_irq(&callback_lock); 2963 cpumask_copy(cs->effective_cpus, new_cpus); 2964 cs->effective_mems = *new_mems; 2965 spin_unlock_irq(&callback_lock); 2966 2967 if (cpus_updated) 2968 update_tasks_cpumask(cs); 2969 if (mems_updated) 2970 update_tasks_nodemask(cs); 2971 } 2972 2973 static bool force_rebuild; 2974 2975 void cpuset_force_rebuild(void) 2976 { 2977 force_rebuild = true; 2978 } 2979 2980 /** 2981 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2982 * @cs: cpuset in interest 2983 * @tmp: the tmpmasks structure pointer 2984 * 2985 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2986 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2987 * all its tasks are moved to the nearest ancestor with both resources. 2988 */ 2989 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 2990 { 2991 static cpumask_t new_cpus; 2992 static nodemask_t new_mems; 2993 bool cpus_updated; 2994 bool mems_updated; 2995 struct cpuset *parent; 2996 retry: 2997 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2998 2999 mutex_lock(&cpuset_mutex); 3000 3001 /* 3002 * We have raced with task attaching. We wait until attaching 3003 * is finished, so we won't attach a task to an empty cpuset. 3004 */ 3005 if (cs->attach_in_progress) { 3006 mutex_unlock(&cpuset_mutex); 3007 goto retry; 3008 } 3009 3010 parent = parent_cs(cs); 3011 compute_effective_cpumask(&new_cpus, cs, parent); 3012 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3013 3014 if (cs->nr_subparts_cpus) 3015 /* 3016 * Make sure that CPUs allocated to child partitions 3017 * do not show up in effective_cpus. 3018 */ 3019 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3020 3021 if (!tmp || !cs->partition_root_state) 3022 goto update_tasks; 3023 3024 /* 3025 * In the unlikely event that a partition root has empty 3026 * effective_cpus or its parent becomes erroneous, we have to 3027 * transition it to the erroneous state. 3028 */ 3029 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3030 (parent->partition_root_state == PRS_ERROR))) { 3031 if (cs->nr_subparts_cpus) { 3032 cs->nr_subparts_cpus = 0; 3033 cpumask_clear(cs->subparts_cpus); 3034 compute_effective_cpumask(&new_cpus, cs, parent); 3035 } 3036 3037 /* 3038 * If the effective_cpus is empty because the child 3039 * partitions take away all the CPUs, we can keep 3040 * the current partition and let the child partitions 3041 * fight for available CPUs. 3042 */ 3043 if ((parent->partition_root_state == PRS_ERROR) || 3044 cpumask_empty(&new_cpus)) { 3045 update_parent_subparts_cpumask(cs, partcmd_disable, 3046 NULL, tmp); 3047 cs->partition_root_state = PRS_ERROR; 3048 } 3049 cpuset_force_rebuild(); 3050 } 3051 3052 /* 3053 * On the other hand, an erroneous partition root may be transitioned 3054 * back to a regular one or a partition root with no CPU allocated 3055 * from the parent may change to erroneous. 3056 */ 3057 if (is_partition_root(parent) && 3058 ((cs->partition_root_state == PRS_ERROR) || 3059 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3060 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3061 cpuset_force_rebuild(); 3062 3063 update_tasks: 3064 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3065 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3066 3067 if (is_in_v2_mode()) 3068 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3069 cpus_updated, mems_updated); 3070 else 3071 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3072 cpus_updated, mems_updated); 3073 3074 mutex_unlock(&cpuset_mutex); 3075 } 3076 3077 /** 3078 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3079 * 3080 * This function is called after either CPU or memory configuration has 3081 * changed and updates cpuset accordingly. The top_cpuset is always 3082 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3083 * order to make cpusets transparent (of no affect) on systems that are 3084 * actively using CPU hotplug but making no active use of cpusets. 3085 * 3086 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3087 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3088 * all descendants. 3089 * 3090 * Note that CPU offlining during suspend is ignored. We don't modify 3091 * cpusets across suspend/resume cycles at all. 3092 */ 3093 static void cpuset_hotplug_workfn(struct work_struct *work) 3094 { 3095 static cpumask_t new_cpus; 3096 static nodemask_t new_mems; 3097 bool cpus_updated, mems_updated; 3098 bool on_dfl = is_in_v2_mode(); 3099 struct tmpmasks tmp, *ptmp = NULL; 3100 3101 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3102 ptmp = &tmp; 3103 3104 mutex_lock(&cpuset_mutex); 3105 3106 /* fetch the available cpus/mems and find out which changed how */ 3107 cpumask_copy(&new_cpus, cpu_active_mask); 3108 new_mems = node_states[N_MEMORY]; 3109 3110 /* 3111 * If subparts_cpus is populated, it is likely that the check below 3112 * will produce a false positive on cpus_updated when the cpu list 3113 * isn't changed. It is extra work, but it is better to be safe. 3114 */ 3115 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3116 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3117 3118 /* synchronize cpus_allowed to cpu_active_mask */ 3119 if (cpus_updated) { 3120 spin_lock_irq(&callback_lock); 3121 if (!on_dfl) 3122 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3123 /* 3124 * Make sure that CPUs allocated to child partitions 3125 * do not show up in effective_cpus. If no CPU is left, 3126 * we clear the subparts_cpus & let the child partitions 3127 * fight for the CPUs again. 3128 */ 3129 if (top_cpuset.nr_subparts_cpus) { 3130 if (cpumask_subset(&new_cpus, 3131 top_cpuset.subparts_cpus)) { 3132 top_cpuset.nr_subparts_cpus = 0; 3133 cpumask_clear(top_cpuset.subparts_cpus); 3134 } else { 3135 cpumask_andnot(&new_cpus, &new_cpus, 3136 top_cpuset.subparts_cpus); 3137 } 3138 } 3139 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3140 spin_unlock_irq(&callback_lock); 3141 /* we don't mess with cpumasks of tasks in top_cpuset */ 3142 } 3143 3144 /* synchronize mems_allowed to N_MEMORY */ 3145 if (mems_updated) { 3146 spin_lock_irq(&callback_lock); 3147 if (!on_dfl) 3148 top_cpuset.mems_allowed = new_mems; 3149 top_cpuset.effective_mems = new_mems; 3150 spin_unlock_irq(&callback_lock); 3151 update_tasks_nodemask(&top_cpuset); 3152 } 3153 3154 mutex_unlock(&cpuset_mutex); 3155 3156 /* if cpus or mems changed, we need to propagate to descendants */ 3157 if (cpus_updated || mems_updated) { 3158 struct cpuset *cs; 3159 struct cgroup_subsys_state *pos_css; 3160 3161 rcu_read_lock(); 3162 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3163 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3164 continue; 3165 rcu_read_unlock(); 3166 3167 cpuset_hotplug_update_tasks(cs, ptmp); 3168 3169 rcu_read_lock(); 3170 css_put(&cs->css); 3171 } 3172 rcu_read_unlock(); 3173 } 3174 3175 /* rebuild sched domains if cpus_allowed has changed */ 3176 if (cpus_updated || force_rebuild) { 3177 force_rebuild = false; 3178 rebuild_sched_domains(); 3179 } 3180 3181 free_cpumasks(NULL, ptmp); 3182 } 3183 3184 void cpuset_update_active_cpus(void) 3185 { 3186 /* 3187 * We're inside cpu hotplug critical region which usually nests 3188 * inside cgroup synchronization. Bounce actual hotplug processing 3189 * to a work item to avoid reverse locking order. 3190 */ 3191 schedule_work(&cpuset_hotplug_work); 3192 } 3193 3194 void cpuset_wait_for_hotplug(void) 3195 { 3196 flush_work(&cpuset_hotplug_work); 3197 } 3198 3199 /* 3200 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3201 * Call this routine anytime after node_states[N_MEMORY] changes. 3202 * See cpuset_update_active_cpus() for CPU hotplug handling. 3203 */ 3204 static int cpuset_track_online_nodes(struct notifier_block *self, 3205 unsigned long action, void *arg) 3206 { 3207 schedule_work(&cpuset_hotplug_work); 3208 return NOTIFY_OK; 3209 } 3210 3211 static struct notifier_block cpuset_track_online_nodes_nb = { 3212 .notifier_call = cpuset_track_online_nodes, 3213 .priority = 10, /* ??! */ 3214 }; 3215 3216 /** 3217 * cpuset_init_smp - initialize cpus_allowed 3218 * 3219 * Description: Finish top cpuset after cpu, node maps are initialized 3220 */ 3221 void __init cpuset_init_smp(void) 3222 { 3223 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3224 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3225 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3226 3227 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3228 top_cpuset.effective_mems = node_states[N_MEMORY]; 3229 3230 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3231 3232 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3233 BUG_ON(!cpuset_migrate_mm_wq); 3234 } 3235 3236 /** 3237 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3238 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3239 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3240 * 3241 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3242 * attached to the specified @tsk. Guaranteed to return some non-empty 3243 * subset of cpu_online_mask, even if this means going outside the 3244 * tasks cpuset. 3245 **/ 3246 3247 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3248 { 3249 unsigned long flags; 3250 3251 spin_lock_irqsave(&callback_lock, flags); 3252 rcu_read_lock(); 3253 guarantee_online_cpus(task_cs(tsk), pmask); 3254 rcu_read_unlock(); 3255 spin_unlock_irqrestore(&callback_lock, flags); 3256 } 3257 3258 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3259 { 3260 rcu_read_lock(); 3261 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 3262 rcu_read_unlock(); 3263 3264 /* 3265 * We own tsk->cpus_allowed, nobody can change it under us. 3266 * 3267 * But we used cs && cs->cpus_allowed lockless and thus can 3268 * race with cgroup_attach_task() or update_cpumask() and get 3269 * the wrong tsk->cpus_allowed. However, both cases imply the 3270 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3271 * which takes task_rq_lock(). 3272 * 3273 * If we are called after it dropped the lock we must see all 3274 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3275 * set any mask even if it is not right from task_cs() pov, 3276 * the pending set_cpus_allowed_ptr() will fix things. 3277 * 3278 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3279 * if required. 3280 */ 3281 } 3282 3283 void __init cpuset_init_current_mems_allowed(void) 3284 { 3285 nodes_setall(current->mems_allowed); 3286 } 3287 3288 /** 3289 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3290 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3291 * 3292 * Description: Returns the nodemask_t mems_allowed of the cpuset 3293 * attached to the specified @tsk. Guaranteed to return some non-empty 3294 * subset of node_states[N_MEMORY], even if this means going outside the 3295 * tasks cpuset. 3296 **/ 3297 3298 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3299 { 3300 nodemask_t mask; 3301 unsigned long flags; 3302 3303 spin_lock_irqsave(&callback_lock, flags); 3304 rcu_read_lock(); 3305 guarantee_online_mems(task_cs(tsk), &mask); 3306 rcu_read_unlock(); 3307 spin_unlock_irqrestore(&callback_lock, flags); 3308 3309 return mask; 3310 } 3311 3312 /** 3313 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3314 * @nodemask: the nodemask to be checked 3315 * 3316 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3317 */ 3318 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3319 { 3320 return nodes_intersects(*nodemask, current->mems_allowed); 3321 } 3322 3323 /* 3324 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3325 * mem_hardwall ancestor to the specified cpuset. Call holding 3326 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3327 * (an unusual configuration), then returns the root cpuset. 3328 */ 3329 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3330 { 3331 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3332 cs = parent_cs(cs); 3333 return cs; 3334 } 3335 3336 /** 3337 * cpuset_node_allowed - Can we allocate on a memory node? 3338 * @node: is this an allowed node? 3339 * @gfp_mask: memory allocation flags 3340 * 3341 * If we're in interrupt, yes, we can always allocate. If @node is set in 3342 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3343 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3344 * yes. If current has access to memory reserves as an oom victim, yes. 3345 * Otherwise, no. 3346 * 3347 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3348 * and do not allow allocations outside the current tasks cpuset 3349 * unless the task has been OOM killed. 3350 * GFP_KERNEL allocations are not so marked, so can escape to the 3351 * nearest enclosing hardwalled ancestor cpuset. 3352 * 3353 * Scanning up parent cpusets requires callback_lock. The 3354 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3355 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3356 * current tasks mems_allowed came up empty on the first pass over 3357 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3358 * cpuset are short of memory, might require taking the callback_lock. 3359 * 3360 * The first call here from mm/page_alloc:get_page_from_freelist() 3361 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3362 * so no allocation on a node outside the cpuset is allowed (unless 3363 * in interrupt, of course). 3364 * 3365 * The second pass through get_page_from_freelist() doesn't even call 3366 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3367 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3368 * in alloc_flags. That logic and the checks below have the combined 3369 * affect that: 3370 * in_interrupt - any node ok (current task context irrelevant) 3371 * GFP_ATOMIC - any node ok 3372 * tsk_is_oom_victim - any node ok 3373 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3374 * GFP_USER - only nodes in current tasks mems allowed ok. 3375 */ 3376 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3377 { 3378 struct cpuset *cs; /* current cpuset ancestors */ 3379 int allowed; /* is allocation in zone z allowed? */ 3380 unsigned long flags; 3381 3382 if (in_interrupt()) 3383 return true; 3384 if (node_isset(node, current->mems_allowed)) 3385 return true; 3386 /* 3387 * Allow tasks that have access to memory reserves because they have 3388 * been OOM killed to get memory anywhere. 3389 */ 3390 if (unlikely(tsk_is_oom_victim(current))) 3391 return true; 3392 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3393 return false; 3394 3395 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3396 return true; 3397 3398 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3399 spin_lock_irqsave(&callback_lock, flags); 3400 3401 rcu_read_lock(); 3402 cs = nearest_hardwall_ancestor(task_cs(current)); 3403 allowed = node_isset(node, cs->mems_allowed); 3404 rcu_read_unlock(); 3405 3406 spin_unlock_irqrestore(&callback_lock, flags); 3407 return allowed; 3408 } 3409 3410 /** 3411 * cpuset_mem_spread_node() - On which node to begin search for a file page 3412 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3413 * 3414 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3415 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3416 * and if the memory allocation used cpuset_mem_spread_node() 3417 * to determine on which node to start looking, as it will for 3418 * certain page cache or slab cache pages such as used for file 3419 * system buffers and inode caches, then instead of starting on the 3420 * local node to look for a free page, rather spread the starting 3421 * node around the tasks mems_allowed nodes. 3422 * 3423 * We don't have to worry about the returned node being offline 3424 * because "it can't happen", and even if it did, it would be ok. 3425 * 3426 * The routines calling guarantee_online_mems() are careful to 3427 * only set nodes in task->mems_allowed that are online. So it 3428 * should not be possible for the following code to return an 3429 * offline node. But if it did, that would be ok, as this routine 3430 * is not returning the node where the allocation must be, only 3431 * the node where the search should start. The zonelist passed to 3432 * __alloc_pages() will include all nodes. If the slab allocator 3433 * is passed an offline node, it will fall back to the local node. 3434 * See kmem_cache_alloc_node(). 3435 */ 3436 3437 static int cpuset_spread_node(int *rotor) 3438 { 3439 return *rotor = next_node_in(*rotor, current->mems_allowed); 3440 } 3441 3442 int cpuset_mem_spread_node(void) 3443 { 3444 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3445 current->cpuset_mem_spread_rotor = 3446 node_random(¤t->mems_allowed); 3447 3448 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3449 } 3450 3451 int cpuset_slab_spread_node(void) 3452 { 3453 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3454 current->cpuset_slab_spread_rotor = 3455 node_random(¤t->mems_allowed); 3456 3457 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3458 } 3459 3460 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3461 3462 /** 3463 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3464 * @tsk1: pointer to task_struct of some task. 3465 * @tsk2: pointer to task_struct of some other task. 3466 * 3467 * Description: Return true if @tsk1's mems_allowed intersects the 3468 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3469 * one of the task's memory usage might impact the memory available 3470 * to the other. 3471 **/ 3472 3473 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3474 const struct task_struct *tsk2) 3475 { 3476 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3477 } 3478 3479 /** 3480 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3481 * 3482 * Description: Prints current's name, cpuset name, and cached copy of its 3483 * mems_allowed to the kernel log. 3484 */ 3485 void cpuset_print_current_mems_allowed(void) 3486 { 3487 struct cgroup *cgrp; 3488 3489 rcu_read_lock(); 3490 3491 cgrp = task_cs(current)->css.cgroup; 3492 pr_cont(",cpuset="); 3493 pr_cont_cgroup_name(cgrp); 3494 pr_cont(",mems_allowed=%*pbl", 3495 nodemask_pr_args(¤t->mems_allowed)); 3496 3497 rcu_read_unlock(); 3498 } 3499 3500 /* 3501 * Collection of memory_pressure is suppressed unless 3502 * this flag is enabled by writing "1" to the special 3503 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3504 */ 3505 3506 int cpuset_memory_pressure_enabled __read_mostly; 3507 3508 /** 3509 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3510 * 3511 * Keep a running average of the rate of synchronous (direct) 3512 * page reclaim efforts initiated by tasks in each cpuset. 3513 * 3514 * This represents the rate at which some task in the cpuset 3515 * ran low on memory on all nodes it was allowed to use, and 3516 * had to enter the kernels page reclaim code in an effort to 3517 * create more free memory by tossing clean pages or swapping 3518 * or writing dirty pages. 3519 * 3520 * Display to user space in the per-cpuset read-only file 3521 * "memory_pressure". Value displayed is an integer 3522 * representing the recent rate of entry into the synchronous 3523 * (direct) page reclaim by any task attached to the cpuset. 3524 **/ 3525 3526 void __cpuset_memory_pressure_bump(void) 3527 { 3528 rcu_read_lock(); 3529 fmeter_markevent(&task_cs(current)->fmeter); 3530 rcu_read_unlock(); 3531 } 3532 3533 #ifdef CONFIG_PROC_PID_CPUSET 3534 /* 3535 * proc_cpuset_show() 3536 * - Print tasks cpuset path into seq_file. 3537 * - Used for /proc/<pid>/cpuset. 3538 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3539 * doesn't really matter if tsk->cpuset changes after we read it, 3540 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3541 * anyway. 3542 */ 3543 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3544 struct pid *pid, struct task_struct *tsk) 3545 { 3546 char *buf; 3547 struct cgroup_subsys_state *css; 3548 int retval; 3549 3550 retval = -ENOMEM; 3551 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3552 if (!buf) 3553 goto out; 3554 3555 css = task_get_css(tsk, cpuset_cgrp_id); 3556 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3557 current->nsproxy->cgroup_ns); 3558 css_put(css); 3559 if (retval >= PATH_MAX) 3560 retval = -ENAMETOOLONG; 3561 if (retval < 0) 3562 goto out_free; 3563 seq_puts(m, buf); 3564 seq_putc(m, '\n'); 3565 retval = 0; 3566 out_free: 3567 kfree(buf); 3568 out: 3569 return retval; 3570 } 3571 #endif /* CONFIG_PROC_PID_CPUSET */ 3572 3573 /* Display task mems_allowed in /proc/<pid>/status file. */ 3574 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3575 { 3576 seq_printf(m, "Mems_allowed:\t%*pb\n", 3577 nodemask_pr_args(&task->mems_allowed)); 3578 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3579 nodemask_pr_args(&task->mems_allowed)); 3580 } 3581