xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cgroup-internal.h"
25 
26 #include <linux/cpu.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuset.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/mempolicy.h>
33 #include <linux/mm.h>
34 #include <linux/memory.h>
35 #include <linux/export.h>
36 #include <linux/rcupdate.h>
37 #include <linux/sched.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/mm.h>
40 #include <linux/sched/task.h>
41 #include <linux/security.h>
42 #include <linux/spinlock.h>
43 #include <linux/oom.h>
44 #include <linux/sched/isolation.h>
45 #include <linux/cgroup.h>
46 #include <linux/wait.h>
47 
48 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
49 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
50 
51 /*
52  * There could be abnormal cpuset configurations for cpu or memory
53  * node binding, add this key to provide a quick low-cost judgment
54  * of the situation.
55  */
56 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
57 
58 /* See "Frequency meter" comments, below. */
59 
60 struct fmeter {
61 	int cnt;		/* unprocessed events count */
62 	int val;		/* most recent output value */
63 	time64_t time;		/* clock (secs) when val computed */
64 	spinlock_t lock;	/* guards read or write of above */
65 };
66 
67 /*
68  * Invalid partition error code
69  */
70 enum prs_errcode {
71 	PERR_NONE = 0,
72 	PERR_INVCPUS,
73 	PERR_INVPARENT,
74 	PERR_NOTPART,
75 	PERR_NOTEXCL,
76 	PERR_NOCPUS,
77 	PERR_HOTPLUG,
78 	PERR_CPUSEMPTY,
79 };
80 
81 static const char * const perr_strings[] = {
82 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
83 	[PERR_INVPARENT] = "Parent is an invalid partition root",
84 	[PERR_NOTPART]   = "Parent is not a partition root",
85 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
86 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
87 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
88 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
89 };
90 
91 struct cpuset {
92 	struct cgroup_subsys_state css;
93 
94 	unsigned long flags;		/* "unsigned long" so bitops work */
95 
96 	/*
97 	 * On default hierarchy:
98 	 *
99 	 * The user-configured masks can only be changed by writing to
100 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
101 	 * parent masks.
102 	 *
103 	 * The effective masks is the real masks that apply to the tasks
104 	 * in the cpuset. They may be changed if the configured masks are
105 	 * changed or hotplug happens.
106 	 *
107 	 * effective_mask == configured_mask & parent's effective_mask,
108 	 * and if it ends up empty, it will inherit the parent's mask.
109 	 *
110 	 *
111 	 * On legacy hierarchy:
112 	 *
113 	 * The user-configured masks are always the same with effective masks.
114 	 */
115 
116 	/* user-configured CPUs and Memory Nodes allow to tasks */
117 	cpumask_var_t cpus_allowed;
118 	nodemask_t mems_allowed;
119 
120 	/* effective CPUs and Memory Nodes allow to tasks */
121 	cpumask_var_t effective_cpus;
122 	nodemask_t effective_mems;
123 
124 	/*
125 	 * CPUs allocated to child sub-partitions (default hierarchy only)
126 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
127 	 * - effective_cpus and subparts_cpus are mutually exclusive.
128 	 *
129 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
130 	 * may have offlined ones.
131 	 */
132 	cpumask_var_t subparts_cpus;
133 
134 	/*
135 	 * This is old Memory Nodes tasks took on.
136 	 *
137 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
138 	 * - A new cpuset's old_mems_allowed is initialized when some
139 	 *   task is moved into it.
140 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
141 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
142 	 *   then old_mems_allowed is updated to mems_allowed.
143 	 */
144 	nodemask_t old_mems_allowed;
145 
146 	struct fmeter fmeter;		/* memory_pressure filter */
147 
148 	/*
149 	 * Tasks are being attached to this cpuset.  Used to prevent
150 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
151 	 */
152 	int attach_in_progress;
153 
154 	/* partition number for rebuild_sched_domains() */
155 	int pn;
156 
157 	/* for custom sched domain */
158 	int relax_domain_level;
159 
160 	/* number of CPUs in subparts_cpus */
161 	int nr_subparts_cpus;
162 
163 	/* partition root state */
164 	int partition_root_state;
165 
166 	/*
167 	 * Default hierarchy only:
168 	 * use_parent_ecpus - set if using parent's effective_cpus
169 	 * child_ecpus_count - # of children with use_parent_ecpus set
170 	 */
171 	int use_parent_ecpus;
172 	int child_ecpus_count;
173 
174 	/*
175 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
176 	 * know when to rebuild associated root domain bandwidth information.
177 	 */
178 	int nr_deadline_tasks;
179 	int nr_migrate_dl_tasks;
180 	u64 sum_migrate_dl_bw;
181 
182 	/* Invalid partition error code, not lock protected */
183 	enum prs_errcode prs_err;
184 
185 	/* Handle for cpuset.cpus.partition */
186 	struct cgroup_file partition_file;
187 };
188 
189 /*
190  * Partition root states:
191  *
192  *   0 - member (not a partition root)
193  *   1 - partition root
194  *   2 - partition root without load balancing (isolated)
195  *  -1 - invalid partition root
196  *  -2 - invalid isolated partition root
197  */
198 #define PRS_MEMBER		0
199 #define PRS_ROOT		1
200 #define PRS_ISOLATED		2
201 #define PRS_INVALID_ROOT	-1
202 #define PRS_INVALID_ISOLATED	-2
203 
204 static inline bool is_prs_invalid(int prs_state)
205 {
206 	return prs_state < 0;
207 }
208 
209 /*
210  * Temporary cpumasks for working with partitions that are passed among
211  * functions to avoid memory allocation in inner functions.
212  */
213 struct tmpmasks {
214 	cpumask_var_t addmask, delmask;	/* For partition root */
215 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
216 };
217 
218 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
219 {
220 	return css ? container_of(css, struct cpuset, css) : NULL;
221 }
222 
223 /* Retrieve the cpuset for a task */
224 static inline struct cpuset *task_cs(struct task_struct *task)
225 {
226 	return css_cs(task_css(task, cpuset_cgrp_id));
227 }
228 
229 static inline struct cpuset *parent_cs(struct cpuset *cs)
230 {
231 	return css_cs(cs->css.parent);
232 }
233 
234 void inc_dl_tasks_cs(struct task_struct *p)
235 {
236 	struct cpuset *cs = task_cs(p);
237 
238 	cs->nr_deadline_tasks++;
239 }
240 
241 void dec_dl_tasks_cs(struct task_struct *p)
242 {
243 	struct cpuset *cs = task_cs(p);
244 
245 	cs->nr_deadline_tasks--;
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_mutex and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
373  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
374  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
375  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
376  * correctness.
377  *
378  * A task must hold both locks to modify cpusets.  If a task holds
379  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
380  * also acquire callback_lock and be able to modify cpusets.  It can perform
381  * various checks on the cpuset structure first, knowing nothing will change.
382  * It can also allocate memory while just holding cpuset_mutex.  While it is
383  * performing these checks, various callback routines can briefly acquire
384  * callback_lock to query cpusets.  Once it is ready to make the changes, it
385  * takes callback_lock, blocking everyone else.
386  *
387  * Calls to the kernel memory allocator can not be made while holding
388  * callback_lock, as that would risk double tripping on callback_lock
389  * from one of the callbacks into the cpuset code from within
390  * __alloc_pages().
391  *
392  * If a task is only holding callback_lock, then it has read-only
393  * access to cpusets.
394  *
395  * Now, the task_struct fields mems_allowed and mempolicy may be changed
396  * by other task, we use alloc_lock in the task_struct fields to protect
397  * them.
398  *
399  * The cpuset_common_file_read() handlers only hold callback_lock across
400  * small pieces of code, such as when reading out possibly multi-word
401  * cpumasks and nodemasks.
402  *
403  * Accessing a task's cpuset should be done in accordance with the
404  * guidelines for accessing subsystem state in kernel/cgroup.c
405  */
406 
407 static DEFINE_MUTEX(cpuset_mutex);
408 
409 void cpuset_lock(void)
410 {
411 	mutex_lock(&cpuset_mutex);
412 }
413 
414 void cpuset_unlock(void)
415 {
416 	mutex_unlock(&cpuset_mutex);
417 }
418 
419 static DEFINE_SPINLOCK(callback_lock);
420 
421 static struct workqueue_struct *cpuset_migrate_mm_wq;
422 
423 /*
424  * CPU / memory hotplug is handled asynchronously.
425  */
426 static void cpuset_hotplug_workfn(struct work_struct *work);
427 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
428 
429 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
430 
431 static inline void check_insane_mems_config(nodemask_t *nodes)
432 {
433 	if (!cpusets_insane_config() &&
434 		movable_only_nodes(nodes)) {
435 		static_branch_enable(&cpusets_insane_config_key);
436 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
437 			"Cpuset allocations might fail even with a lot of memory available.\n",
438 			nodemask_pr_args(nodes));
439 	}
440 }
441 
442 /*
443  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
444  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
445  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
446  * With v2 behavior, "cpus" and "mems" are always what the users have
447  * requested and won't be changed by hotplug events. Only the effective
448  * cpus or mems will be affected.
449  */
450 static inline bool is_in_v2_mode(void)
451 {
452 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
453 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
454 }
455 
456 /**
457  * partition_is_populated - check if partition has tasks
458  * @cs: partition root to be checked
459  * @excluded_child: a child cpuset to be excluded in task checking
460  * Return: true if there are tasks, false otherwise
461  *
462  * It is assumed that @cs is a valid partition root. @excluded_child should
463  * be non-NULL when this cpuset is going to become a partition itself.
464  */
465 static inline bool partition_is_populated(struct cpuset *cs,
466 					  struct cpuset *excluded_child)
467 {
468 	struct cgroup_subsys_state *css;
469 	struct cpuset *child;
470 
471 	if (cs->css.cgroup->nr_populated_csets)
472 		return true;
473 	if (!excluded_child && !cs->nr_subparts_cpus)
474 		return cgroup_is_populated(cs->css.cgroup);
475 
476 	rcu_read_lock();
477 	cpuset_for_each_child(child, css, cs) {
478 		if (child == excluded_child)
479 			continue;
480 		if (is_partition_valid(child))
481 			continue;
482 		if (cgroup_is_populated(child->css.cgroup)) {
483 			rcu_read_unlock();
484 			return true;
485 		}
486 	}
487 	rcu_read_unlock();
488 	return false;
489 }
490 
491 /*
492  * Return in pmask the portion of a task's cpusets's cpus_allowed that
493  * are online and are capable of running the task.  If none are found,
494  * walk up the cpuset hierarchy until we find one that does have some
495  * appropriate cpus.
496  *
497  * One way or another, we guarantee to return some non-empty subset
498  * of cpu_online_mask.
499  *
500  * Call with callback_lock or cpuset_mutex held.
501  */
502 static void guarantee_online_cpus(struct task_struct *tsk,
503 				  struct cpumask *pmask)
504 {
505 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
506 	struct cpuset *cs;
507 
508 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
509 		cpumask_copy(pmask, cpu_online_mask);
510 
511 	rcu_read_lock();
512 	cs = task_cs(tsk);
513 
514 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
515 		cs = parent_cs(cs);
516 		if (unlikely(!cs)) {
517 			/*
518 			 * The top cpuset doesn't have any online cpu as a
519 			 * consequence of a race between cpuset_hotplug_work
520 			 * and cpu hotplug notifier.  But we know the top
521 			 * cpuset's effective_cpus is on its way to be
522 			 * identical to cpu_online_mask.
523 			 */
524 			goto out_unlock;
525 		}
526 	}
527 	cpumask_and(pmask, pmask, cs->effective_cpus);
528 
529 out_unlock:
530 	rcu_read_unlock();
531 }
532 
533 /*
534  * Return in *pmask the portion of a cpusets's mems_allowed that
535  * are online, with memory.  If none are online with memory, walk
536  * up the cpuset hierarchy until we find one that does have some
537  * online mems.  The top cpuset always has some mems online.
538  *
539  * One way or another, we guarantee to return some non-empty subset
540  * of node_states[N_MEMORY].
541  *
542  * Call with callback_lock or cpuset_mutex held.
543  */
544 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
545 {
546 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
547 		cs = parent_cs(cs);
548 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
549 }
550 
551 /*
552  * update task's spread flag if cpuset's page/slab spread flag is set
553  *
554  * Call with callback_lock or cpuset_mutex held. The check can be skipped
555  * if on default hierarchy.
556  */
557 static void cpuset_update_task_spread_flags(struct cpuset *cs,
558 					struct task_struct *tsk)
559 {
560 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
561 		return;
562 
563 	if (is_spread_page(cs))
564 		task_set_spread_page(tsk);
565 	else
566 		task_clear_spread_page(tsk);
567 
568 	if (is_spread_slab(cs))
569 		task_set_spread_slab(tsk);
570 	else
571 		task_clear_spread_slab(tsk);
572 }
573 
574 /*
575  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
576  *
577  * One cpuset is a subset of another if all its allowed CPUs and
578  * Memory Nodes are a subset of the other, and its exclusive flags
579  * are only set if the other's are set.  Call holding cpuset_mutex.
580  */
581 
582 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
583 {
584 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
585 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
586 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
587 		is_mem_exclusive(p) <= is_mem_exclusive(q);
588 }
589 
590 /**
591  * alloc_cpumasks - allocate three cpumasks for cpuset
592  * @cs:  the cpuset that have cpumasks to be allocated.
593  * @tmp: the tmpmasks structure pointer
594  * Return: 0 if successful, -ENOMEM otherwise.
595  *
596  * Only one of the two input arguments should be non-NULL.
597  */
598 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
599 {
600 	cpumask_var_t *pmask1, *pmask2, *pmask3;
601 
602 	if (cs) {
603 		pmask1 = &cs->cpus_allowed;
604 		pmask2 = &cs->effective_cpus;
605 		pmask3 = &cs->subparts_cpus;
606 	} else {
607 		pmask1 = &tmp->new_cpus;
608 		pmask2 = &tmp->addmask;
609 		pmask3 = &tmp->delmask;
610 	}
611 
612 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
613 		return -ENOMEM;
614 
615 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
616 		goto free_one;
617 
618 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
619 		goto free_two;
620 
621 	return 0;
622 
623 free_two:
624 	free_cpumask_var(*pmask2);
625 free_one:
626 	free_cpumask_var(*pmask1);
627 	return -ENOMEM;
628 }
629 
630 /**
631  * free_cpumasks - free cpumasks in a tmpmasks structure
632  * @cs:  the cpuset that have cpumasks to be free.
633  * @tmp: the tmpmasks structure pointer
634  */
635 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
636 {
637 	if (cs) {
638 		free_cpumask_var(cs->cpus_allowed);
639 		free_cpumask_var(cs->effective_cpus);
640 		free_cpumask_var(cs->subparts_cpus);
641 	}
642 	if (tmp) {
643 		free_cpumask_var(tmp->new_cpus);
644 		free_cpumask_var(tmp->addmask);
645 		free_cpumask_var(tmp->delmask);
646 	}
647 }
648 
649 /**
650  * alloc_trial_cpuset - allocate a trial cpuset
651  * @cs: the cpuset that the trial cpuset duplicates
652  */
653 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
654 {
655 	struct cpuset *trial;
656 
657 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
658 	if (!trial)
659 		return NULL;
660 
661 	if (alloc_cpumasks(trial, NULL)) {
662 		kfree(trial);
663 		return NULL;
664 	}
665 
666 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
667 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
668 	return trial;
669 }
670 
671 /**
672  * free_cpuset - free the cpuset
673  * @cs: the cpuset to be freed
674  */
675 static inline void free_cpuset(struct cpuset *cs)
676 {
677 	free_cpumasks(cs, NULL);
678 	kfree(cs);
679 }
680 
681 /*
682  * validate_change_legacy() - Validate conditions specific to legacy (v1)
683  *                            behavior.
684  */
685 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
686 {
687 	struct cgroup_subsys_state *css;
688 	struct cpuset *c, *par;
689 	int ret;
690 
691 	WARN_ON_ONCE(!rcu_read_lock_held());
692 
693 	/* Each of our child cpusets must be a subset of us */
694 	ret = -EBUSY;
695 	cpuset_for_each_child(c, css, cur)
696 		if (!is_cpuset_subset(c, trial))
697 			goto out;
698 
699 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
700 	ret = -EACCES;
701 	par = parent_cs(cur);
702 	if (par && !is_cpuset_subset(trial, par))
703 		goto out;
704 
705 	ret = 0;
706 out:
707 	return ret;
708 }
709 
710 /*
711  * validate_change() - Used to validate that any proposed cpuset change
712  *		       follows the structural rules for cpusets.
713  *
714  * If we replaced the flag and mask values of the current cpuset
715  * (cur) with those values in the trial cpuset (trial), would
716  * our various subset and exclusive rules still be valid?  Presumes
717  * cpuset_mutex held.
718  *
719  * 'cur' is the address of an actual, in-use cpuset.  Operations
720  * such as list traversal that depend on the actual address of the
721  * cpuset in the list must use cur below, not trial.
722  *
723  * 'trial' is the address of bulk structure copy of cur, with
724  * perhaps one or more of the fields cpus_allowed, mems_allowed,
725  * or flags changed to new, trial values.
726  *
727  * Return 0 if valid, -errno if not.
728  */
729 
730 static int validate_change(struct cpuset *cur, struct cpuset *trial)
731 {
732 	struct cgroup_subsys_state *css;
733 	struct cpuset *c, *par;
734 	int ret = 0;
735 
736 	rcu_read_lock();
737 
738 	if (!is_in_v2_mode())
739 		ret = validate_change_legacy(cur, trial);
740 	if (ret)
741 		goto out;
742 
743 	/* Remaining checks don't apply to root cpuset */
744 	if (cur == &top_cpuset)
745 		goto out;
746 
747 	par = parent_cs(cur);
748 
749 	/*
750 	 * Cpusets with tasks - existing or newly being attached - can't
751 	 * be changed to have empty cpus_allowed or mems_allowed.
752 	 */
753 	ret = -ENOSPC;
754 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
755 		if (!cpumask_empty(cur->cpus_allowed) &&
756 		    cpumask_empty(trial->cpus_allowed))
757 			goto out;
758 		if (!nodes_empty(cur->mems_allowed) &&
759 		    nodes_empty(trial->mems_allowed))
760 			goto out;
761 	}
762 
763 	/*
764 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
765 	 * tasks.
766 	 */
767 	ret = -EBUSY;
768 	if (is_cpu_exclusive(cur) &&
769 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
770 				       trial->cpus_allowed))
771 		goto out;
772 
773 	/*
774 	 * If either I or some sibling (!= me) is exclusive, we can't
775 	 * overlap
776 	 */
777 	ret = -EINVAL;
778 	cpuset_for_each_child(c, css, par) {
779 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
780 		    c != cur &&
781 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
782 			goto out;
783 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
784 		    c != cur &&
785 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
786 			goto out;
787 	}
788 
789 	ret = 0;
790 out:
791 	rcu_read_unlock();
792 	return ret;
793 }
794 
795 #ifdef CONFIG_SMP
796 /*
797  * Helper routine for generate_sched_domains().
798  * Do cpusets a, b have overlapping effective cpus_allowed masks?
799  */
800 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
801 {
802 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
803 }
804 
805 static void
806 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
807 {
808 	if (dattr->relax_domain_level < c->relax_domain_level)
809 		dattr->relax_domain_level = c->relax_domain_level;
810 	return;
811 }
812 
813 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
814 				    struct cpuset *root_cs)
815 {
816 	struct cpuset *cp;
817 	struct cgroup_subsys_state *pos_css;
818 
819 	rcu_read_lock();
820 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
821 		/* skip the whole subtree if @cp doesn't have any CPU */
822 		if (cpumask_empty(cp->cpus_allowed)) {
823 			pos_css = css_rightmost_descendant(pos_css);
824 			continue;
825 		}
826 
827 		if (is_sched_load_balance(cp))
828 			update_domain_attr(dattr, cp);
829 	}
830 	rcu_read_unlock();
831 }
832 
833 /* Must be called with cpuset_mutex held.  */
834 static inline int nr_cpusets(void)
835 {
836 	/* jump label reference count + the top-level cpuset */
837 	return static_key_count(&cpusets_enabled_key.key) + 1;
838 }
839 
840 /*
841  * generate_sched_domains()
842  *
843  * This function builds a partial partition of the systems CPUs
844  * A 'partial partition' is a set of non-overlapping subsets whose
845  * union is a subset of that set.
846  * The output of this function needs to be passed to kernel/sched/core.c
847  * partition_sched_domains() routine, which will rebuild the scheduler's
848  * load balancing domains (sched domains) as specified by that partial
849  * partition.
850  *
851  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
852  * for a background explanation of this.
853  *
854  * Does not return errors, on the theory that the callers of this
855  * routine would rather not worry about failures to rebuild sched
856  * domains when operating in the severe memory shortage situations
857  * that could cause allocation failures below.
858  *
859  * Must be called with cpuset_mutex held.
860  *
861  * The three key local variables below are:
862  *    cp - cpuset pointer, used (together with pos_css) to perform a
863  *	   top-down scan of all cpusets. For our purposes, rebuilding
864  *	   the schedulers sched domains, we can ignore !is_sched_load_
865  *	   balance cpusets.
866  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
867  *	   that need to be load balanced, for convenient iterative
868  *	   access by the subsequent code that finds the best partition,
869  *	   i.e the set of domains (subsets) of CPUs such that the
870  *	   cpus_allowed of every cpuset marked is_sched_load_balance
871  *	   is a subset of one of these domains, while there are as
872  *	   many such domains as possible, each as small as possible.
873  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
874  *	   the kernel/sched/core.c routine partition_sched_domains() in a
875  *	   convenient format, that can be easily compared to the prior
876  *	   value to determine what partition elements (sched domains)
877  *	   were changed (added or removed.)
878  *
879  * Finding the best partition (set of domains):
880  *	The triple nested loops below over i, j, k scan over the
881  *	load balanced cpusets (using the array of cpuset pointers in
882  *	csa[]) looking for pairs of cpusets that have overlapping
883  *	cpus_allowed, but which don't have the same 'pn' partition
884  *	number and gives them in the same partition number.  It keeps
885  *	looping on the 'restart' label until it can no longer find
886  *	any such pairs.
887  *
888  *	The union of the cpus_allowed masks from the set of
889  *	all cpusets having the same 'pn' value then form the one
890  *	element of the partition (one sched domain) to be passed to
891  *	partition_sched_domains().
892  */
893 static int generate_sched_domains(cpumask_var_t **domains,
894 			struct sched_domain_attr **attributes)
895 {
896 	struct cpuset *cp;	/* top-down scan of cpusets */
897 	struct cpuset **csa;	/* array of all cpuset ptrs */
898 	int csn;		/* how many cpuset ptrs in csa so far */
899 	int i, j, k;		/* indices for partition finding loops */
900 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
901 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
902 	int ndoms = 0;		/* number of sched domains in result */
903 	int nslot;		/* next empty doms[] struct cpumask slot */
904 	struct cgroup_subsys_state *pos_css;
905 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
906 
907 	doms = NULL;
908 	dattr = NULL;
909 	csa = NULL;
910 
911 	/* Special case for the 99% of systems with one, full, sched domain */
912 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
913 		ndoms = 1;
914 		doms = alloc_sched_domains(ndoms);
915 		if (!doms)
916 			goto done;
917 
918 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
919 		if (dattr) {
920 			*dattr = SD_ATTR_INIT;
921 			update_domain_attr_tree(dattr, &top_cpuset);
922 		}
923 		cpumask_and(doms[0], top_cpuset.effective_cpus,
924 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
925 
926 		goto done;
927 	}
928 
929 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
930 	if (!csa)
931 		goto done;
932 	csn = 0;
933 
934 	rcu_read_lock();
935 	if (root_load_balance)
936 		csa[csn++] = &top_cpuset;
937 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
938 		if (cp == &top_cpuset)
939 			continue;
940 		/*
941 		 * Continue traversing beyond @cp iff @cp has some CPUs and
942 		 * isn't load balancing.  The former is obvious.  The
943 		 * latter: All child cpusets contain a subset of the
944 		 * parent's cpus, so just skip them, and then we call
945 		 * update_domain_attr_tree() to calc relax_domain_level of
946 		 * the corresponding sched domain.
947 		 *
948 		 * If root is load-balancing, we can skip @cp if it
949 		 * is a subset of the root's effective_cpus.
950 		 */
951 		if (!cpumask_empty(cp->cpus_allowed) &&
952 		    !(is_sched_load_balance(cp) &&
953 		      cpumask_intersects(cp->cpus_allowed,
954 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
955 			continue;
956 
957 		if (root_load_balance &&
958 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
959 			continue;
960 
961 		if (is_sched_load_balance(cp) &&
962 		    !cpumask_empty(cp->effective_cpus))
963 			csa[csn++] = cp;
964 
965 		/* skip @cp's subtree if not a partition root */
966 		if (!is_partition_valid(cp))
967 			pos_css = css_rightmost_descendant(pos_css);
968 	}
969 	rcu_read_unlock();
970 
971 	for (i = 0; i < csn; i++)
972 		csa[i]->pn = i;
973 	ndoms = csn;
974 
975 restart:
976 	/* Find the best partition (set of sched domains) */
977 	for (i = 0; i < csn; i++) {
978 		struct cpuset *a = csa[i];
979 		int apn = a->pn;
980 
981 		for (j = 0; j < csn; j++) {
982 			struct cpuset *b = csa[j];
983 			int bpn = b->pn;
984 
985 			if (apn != bpn && cpusets_overlap(a, b)) {
986 				for (k = 0; k < csn; k++) {
987 					struct cpuset *c = csa[k];
988 
989 					if (c->pn == bpn)
990 						c->pn = apn;
991 				}
992 				ndoms--;	/* one less element */
993 				goto restart;
994 			}
995 		}
996 	}
997 
998 	/*
999 	 * Now we know how many domains to create.
1000 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1001 	 */
1002 	doms = alloc_sched_domains(ndoms);
1003 	if (!doms)
1004 		goto done;
1005 
1006 	/*
1007 	 * The rest of the code, including the scheduler, can deal with
1008 	 * dattr==NULL case. No need to abort if alloc fails.
1009 	 */
1010 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1011 			      GFP_KERNEL);
1012 
1013 	for (nslot = 0, i = 0; i < csn; i++) {
1014 		struct cpuset *a = csa[i];
1015 		struct cpumask *dp;
1016 		int apn = a->pn;
1017 
1018 		if (apn < 0) {
1019 			/* Skip completed partitions */
1020 			continue;
1021 		}
1022 
1023 		dp = doms[nslot];
1024 
1025 		if (nslot == ndoms) {
1026 			static int warnings = 10;
1027 			if (warnings) {
1028 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1029 					nslot, ndoms, csn, i, apn);
1030 				warnings--;
1031 			}
1032 			continue;
1033 		}
1034 
1035 		cpumask_clear(dp);
1036 		if (dattr)
1037 			*(dattr + nslot) = SD_ATTR_INIT;
1038 		for (j = i; j < csn; j++) {
1039 			struct cpuset *b = csa[j];
1040 
1041 			if (apn == b->pn) {
1042 				cpumask_or(dp, dp, b->effective_cpus);
1043 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1044 				if (dattr)
1045 					update_domain_attr_tree(dattr + nslot, b);
1046 
1047 				/* Done with this partition */
1048 				b->pn = -1;
1049 			}
1050 		}
1051 		nslot++;
1052 	}
1053 	BUG_ON(nslot != ndoms);
1054 
1055 done:
1056 	kfree(csa);
1057 
1058 	/*
1059 	 * Fallback to the default domain if kmalloc() failed.
1060 	 * See comments in partition_sched_domains().
1061 	 */
1062 	if (doms == NULL)
1063 		ndoms = 1;
1064 
1065 	*domains    = doms;
1066 	*attributes = dattr;
1067 	return ndoms;
1068 }
1069 
1070 static void dl_update_tasks_root_domain(struct cpuset *cs)
1071 {
1072 	struct css_task_iter it;
1073 	struct task_struct *task;
1074 
1075 	if (cs->nr_deadline_tasks == 0)
1076 		return;
1077 
1078 	css_task_iter_start(&cs->css, 0, &it);
1079 
1080 	while ((task = css_task_iter_next(&it)))
1081 		dl_add_task_root_domain(task);
1082 
1083 	css_task_iter_end(&it);
1084 }
1085 
1086 static void dl_rebuild_rd_accounting(void)
1087 {
1088 	struct cpuset *cs = NULL;
1089 	struct cgroup_subsys_state *pos_css;
1090 
1091 	lockdep_assert_held(&cpuset_mutex);
1092 	lockdep_assert_cpus_held();
1093 	lockdep_assert_held(&sched_domains_mutex);
1094 
1095 	rcu_read_lock();
1096 
1097 	/*
1098 	 * Clear default root domain DL accounting, it will be computed again
1099 	 * if a task belongs to it.
1100 	 */
1101 	dl_clear_root_domain(&def_root_domain);
1102 
1103 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1104 
1105 		if (cpumask_empty(cs->effective_cpus)) {
1106 			pos_css = css_rightmost_descendant(pos_css);
1107 			continue;
1108 		}
1109 
1110 		css_get(&cs->css);
1111 
1112 		rcu_read_unlock();
1113 
1114 		dl_update_tasks_root_domain(cs);
1115 
1116 		rcu_read_lock();
1117 		css_put(&cs->css);
1118 	}
1119 	rcu_read_unlock();
1120 }
1121 
1122 static void
1123 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1124 				    struct sched_domain_attr *dattr_new)
1125 {
1126 	mutex_lock(&sched_domains_mutex);
1127 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1128 	dl_rebuild_rd_accounting();
1129 	mutex_unlock(&sched_domains_mutex);
1130 }
1131 
1132 /*
1133  * Rebuild scheduler domains.
1134  *
1135  * If the flag 'sched_load_balance' of any cpuset with non-empty
1136  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1137  * which has that flag enabled, or if any cpuset with a non-empty
1138  * 'cpus' is removed, then call this routine to rebuild the
1139  * scheduler's dynamic sched domains.
1140  *
1141  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1142  */
1143 static void rebuild_sched_domains_locked(void)
1144 {
1145 	struct cgroup_subsys_state *pos_css;
1146 	struct sched_domain_attr *attr;
1147 	cpumask_var_t *doms;
1148 	struct cpuset *cs;
1149 	int ndoms;
1150 
1151 	lockdep_assert_cpus_held();
1152 	lockdep_assert_held(&cpuset_mutex);
1153 
1154 	/*
1155 	 * If we have raced with CPU hotplug, return early to avoid
1156 	 * passing doms with offlined cpu to partition_sched_domains().
1157 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1158 	 *
1159 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1160 	 * should be the same as the active CPUs, so checking only top_cpuset
1161 	 * is enough to detect racing CPU offlines.
1162 	 */
1163 	if (!top_cpuset.nr_subparts_cpus &&
1164 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1165 		return;
1166 
1167 	/*
1168 	 * With subpartition CPUs, however, the effective CPUs of a partition
1169 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1170 	 * partition root could be offlined, all must be checked.
1171 	 */
1172 	if (top_cpuset.nr_subparts_cpus) {
1173 		rcu_read_lock();
1174 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1175 			if (!is_partition_valid(cs)) {
1176 				pos_css = css_rightmost_descendant(pos_css);
1177 				continue;
1178 			}
1179 			if (!cpumask_subset(cs->effective_cpus,
1180 					    cpu_active_mask)) {
1181 				rcu_read_unlock();
1182 				return;
1183 			}
1184 		}
1185 		rcu_read_unlock();
1186 	}
1187 
1188 	/* Generate domain masks and attrs */
1189 	ndoms = generate_sched_domains(&doms, &attr);
1190 
1191 	/* Have scheduler rebuild the domains */
1192 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1193 }
1194 #else /* !CONFIG_SMP */
1195 static void rebuild_sched_domains_locked(void)
1196 {
1197 }
1198 #endif /* CONFIG_SMP */
1199 
1200 void rebuild_sched_domains(void)
1201 {
1202 	cpus_read_lock();
1203 	mutex_lock(&cpuset_mutex);
1204 	rebuild_sched_domains_locked();
1205 	mutex_unlock(&cpuset_mutex);
1206 	cpus_read_unlock();
1207 }
1208 
1209 /**
1210  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1211  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1212  * @new_cpus: the temp variable for the new effective_cpus mask
1213  *
1214  * Iterate through each task of @cs updating its cpus_allowed to the
1215  * effective cpuset's.  As this function is called with cpuset_mutex held,
1216  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1217  * is used instead of effective_cpus to make sure all offline CPUs are also
1218  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1219  */
1220 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1221 {
1222 	struct css_task_iter it;
1223 	struct task_struct *task;
1224 	bool top_cs = cs == &top_cpuset;
1225 
1226 	css_task_iter_start(&cs->css, 0, &it);
1227 	while ((task = css_task_iter_next(&it))) {
1228 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1229 
1230 		if (top_cs) {
1231 			/*
1232 			 * Percpu kthreads in top_cpuset are ignored
1233 			 */
1234 			if (kthread_is_per_cpu(task))
1235 				continue;
1236 			cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
1237 		} else {
1238 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1239 		}
1240 		set_cpus_allowed_ptr(task, new_cpus);
1241 	}
1242 	css_task_iter_end(&it);
1243 }
1244 
1245 /**
1246  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1247  * @new_cpus: the temp variable for the new effective_cpus mask
1248  * @cs: the cpuset the need to recompute the new effective_cpus mask
1249  * @parent: the parent cpuset
1250  *
1251  * If the parent has subpartition CPUs, include them in the list of
1252  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1253  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1254  * to mask those out.
1255  */
1256 static void compute_effective_cpumask(struct cpumask *new_cpus,
1257 				      struct cpuset *cs, struct cpuset *parent)
1258 {
1259 	if (parent->nr_subparts_cpus && is_partition_valid(cs)) {
1260 		cpumask_or(new_cpus, parent->effective_cpus,
1261 			   parent->subparts_cpus);
1262 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1263 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1264 	} else {
1265 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1266 	}
1267 }
1268 
1269 /*
1270  * Commands for update_parent_subparts_cpumask
1271  */
1272 enum subparts_cmd {
1273 	partcmd_enable,		/* Enable partition root	 */
1274 	partcmd_disable,	/* Disable partition root	 */
1275 	partcmd_update,		/* Update parent's subparts_cpus */
1276 	partcmd_invalidate,	/* Make partition invalid	 */
1277 };
1278 
1279 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1280 		       int turning_on);
1281 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1282 				    struct tmpmasks *tmp);
1283 
1284 /*
1285  * Update partition exclusive flag
1286  *
1287  * Return: 0 if successful, an error code otherwise
1288  */
1289 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1290 {
1291 	bool exclusive = (new_prs > 0);
1292 
1293 	if (exclusive && !is_cpu_exclusive(cs)) {
1294 		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1295 			return PERR_NOTEXCL;
1296 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1297 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1298 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1299 	}
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Update partition load balance flag and/or rebuild sched domain
1305  *
1306  * Changing load balance flag will automatically call
1307  * rebuild_sched_domains_locked().
1308  * This function is for cgroup v2 only.
1309  */
1310 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1311 {
1312 	int new_prs = cs->partition_root_state;
1313 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1314 	bool new_lb;
1315 
1316 	/*
1317 	 * If cs is not a valid partition root, the load balance state
1318 	 * will follow its parent.
1319 	 */
1320 	if (new_prs > 0) {
1321 		new_lb = (new_prs != PRS_ISOLATED);
1322 	} else {
1323 		new_lb = is_sched_load_balance(parent_cs(cs));
1324 	}
1325 	if (new_lb != !!is_sched_load_balance(cs)) {
1326 		rebuild_domains = true;
1327 		if (new_lb)
1328 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1329 		else
1330 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1331 	}
1332 
1333 	if (rebuild_domains)
1334 		rebuild_sched_domains_locked();
1335 }
1336 
1337 /**
1338  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1339  * @cs:      The cpuset that requests change in partition root state
1340  * @cmd:     Partition root state change command
1341  * @newmask: Optional new cpumask for partcmd_update
1342  * @tmp:     Temporary addmask and delmask
1343  * Return:   0 or a partition root state error code
1344  *
1345  * For partcmd_enable, the cpuset is being transformed from a non-partition
1346  * root to a partition root. The cpus_allowed mask of the given cpuset will
1347  * be put into parent's subparts_cpus and taken away from parent's
1348  * effective_cpus. The function will return 0 if all the CPUs listed in
1349  * cpus_allowed can be granted or an error code will be returned.
1350  *
1351  * For partcmd_disable, the cpuset is being transformed from a partition
1352  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1353  * parent's subparts_cpus will be taken away from that cpumask and put back
1354  * into parent's effective_cpus. 0 will always be returned.
1355  *
1356  * For partcmd_update, if the optional newmask is specified, the cpu list is
1357  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1358  * assumed to remain the same. The cpuset should either be a valid or invalid
1359  * partition root. The partition root state may change from valid to invalid
1360  * or vice versa. An error code will only be returned if transitioning from
1361  * invalid to valid violates the exclusivity rule.
1362  *
1363  * For partcmd_invalidate, the current partition will be made invalid.
1364  *
1365  * The partcmd_enable and partcmd_disable commands are used by
1366  * update_prstate(). An error code may be returned and the caller will check
1367  * for error.
1368  *
1369  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1370  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1371  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1372  * check for error and so partition_root_state and prs_error will be updated
1373  * directly.
1374  */
1375 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1376 					  struct cpumask *newmask,
1377 					  struct tmpmasks *tmp)
1378 {
1379 	struct cpuset *parent = parent_cs(cs);
1380 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1381 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1382 	int old_prs, new_prs;
1383 	int part_error = PERR_NONE;	/* Partition error? */
1384 
1385 	lockdep_assert_held(&cpuset_mutex);
1386 
1387 	/*
1388 	 * The parent must be a partition root.
1389 	 * The new cpumask, if present, or the current cpus_allowed must
1390 	 * not be empty.
1391 	 */
1392 	if (!is_partition_valid(parent)) {
1393 		return is_partition_invalid(parent)
1394 		       ? PERR_INVPARENT : PERR_NOTPART;
1395 	}
1396 	if (!newmask && cpumask_empty(cs->cpus_allowed))
1397 		return PERR_CPUSEMPTY;
1398 
1399 	/*
1400 	 * new_prs will only be changed for the partcmd_update and
1401 	 * partcmd_invalidate commands.
1402 	 */
1403 	adding = deleting = false;
1404 	old_prs = new_prs = cs->partition_root_state;
1405 	if (cmd == partcmd_enable) {
1406 		/*
1407 		 * Enabling partition root is not allowed if cpus_allowed
1408 		 * doesn't overlap parent's cpus_allowed.
1409 		 */
1410 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1411 			return PERR_INVCPUS;
1412 
1413 		/*
1414 		 * A parent can be left with no CPU as long as there is no
1415 		 * task directly associated with the parent partition.
1416 		 */
1417 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1418 		    partition_is_populated(parent, cs))
1419 			return PERR_NOCPUS;
1420 
1421 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1422 		adding = true;
1423 	} else if (cmd == partcmd_disable) {
1424 		/*
1425 		 * Need to remove cpus from parent's subparts_cpus for valid
1426 		 * partition root.
1427 		 */
1428 		deleting = !is_prs_invalid(old_prs) &&
1429 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1430 				       parent->subparts_cpus);
1431 	} else if (cmd == partcmd_invalidate) {
1432 		if (is_prs_invalid(old_prs))
1433 			return 0;
1434 
1435 		/*
1436 		 * Make the current partition invalid. It is assumed that
1437 		 * invalidation is caused by violating cpu exclusivity rule.
1438 		 */
1439 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1440 				       parent->subparts_cpus);
1441 		if (old_prs > 0) {
1442 			new_prs = -old_prs;
1443 			part_error = PERR_NOTEXCL;
1444 		}
1445 	} else if (newmask) {
1446 		/*
1447 		 * partcmd_update with newmask:
1448 		 *
1449 		 * Compute add/delete mask to/from subparts_cpus
1450 		 *
1451 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1452 		 * addmask = newmask & parent->cpus_allowed
1453 		 *		     & ~parent->subparts_cpus
1454 		 */
1455 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1456 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1457 				       parent->subparts_cpus);
1458 
1459 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1460 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1461 					parent->subparts_cpus);
1462 		/*
1463 		 * Empty cpumask is not allowed
1464 		 */
1465 		if (cpumask_empty(newmask)) {
1466 			part_error = PERR_CPUSEMPTY;
1467 		/*
1468 		 * Make partition invalid if parent's effective_cpus could
1469 		 * become empty and there are tasks in the parent.
1470 		 */
1471 		} else if (adding &&
1472 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1473 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1474 		    partition_is_populated(parent, cs)) {
1475 			part_error = PERR_NOCPUS;
1476 			adding = false;
1477 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1478 					       parent->subparts_cpus);
1479 		}
1480 	} else {
1481 		/*
1482 		 * partcmd_update w/o newmask:
1483 		 *
1484 		 * delmask = cpus_allowed & parent->subparts_cpus
1485 		 * addmask = cpus_allowed & parent->cpus_allowed
1486 		 *			  & ~parent->subparts_cpus
1487 		 *
1488 		 * This gets invoked either due to a hotplug event or from
1489 		 * update_cpumasks_hier(). This can cause the state of a
1490 		 * partition root to transition from valid to invalid or vice
1491 		 * versa. So we still need to compute the addmask and delmask.
1492 
1493 		 * A partition error happens when:
1494 		 * 1) Cpuset is valid partition, but parent does not distribute
1495 		 *    out any CPUs.
1496 		 * 2) Parent has tasks and all its effective CPUs will have
1497 		 *    to be distributed out.
1498 		 */
1499 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1500 					  parent->cpus_allowed);
1501 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1502 					parent->subparts_cpus);
1503 
1504 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1505 		    (adding &&
1506 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1507 		     partition_is_populated(parent, cs))) {
1508 			part_error = PERR_NOCPUS;
1509 			adding = false;
1510 		}
1511 
1512 		if (part_error && is_partition_valid(cs) &&
1513 		    parent->nr_subparts_cpus)
1514 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1515 					       parent->subparts_cpus);
1516 	}
1517 	if (part_error)
1518 		WRITE_ONCE(cs->prs_err, part_error);
1519 
1520 	if (cmd == partcmd_update) {
1521 		/*
1522 		 * Check for possible transition between valid and invalid
1523 		 * partition root.
1524 		 */
1525 		switch (cs->partition_root_state) {
1526 		case PRS_ROOT:
1527 		case PRS_ISOLATED:
1528 			if (part_error)
1529 				new_prs = -old_prs;
1530 			break;
1531 		case PRS_INVALID_ROOT:
1532 		case PRS_INVALID_ISOLATED:
1533 			if (!part_error)
1534 				new_prs = -old_prs;
1535 			break;
1536 		}
1537 	}
1538 
1539 	if (!adding && !deleting && (new_prs == old_prs))
1540 		return 0;
1541 
1542 	/*
1543 	 * Transitioning between invalid to valid or vice versa may require
1544 	 * changing CS_CPU_EXCLUSIVE.
1545 	 */
1546 	if (old_prs != new_prs) {
1547 		int err = update_partition_exclusive(cs, new_prs);
1548 
1549 		if (err)
1550 			return err;
1551 	}
1552 
1553 	/*
1554 	 * Change the parent's subparts_cpus.
1555 	 * Newly added CPUs will be removed from effective_cpus and
1556 	 * newly deleted ones will be added back to effective_cpus.
1557 	 */
1558 	spin_lock_irq(&callback_lock);
1559 	if (adding) {
1560 		cpumask_or(parent->subparts_cpus,
1561 			   parent->subparts_cpus, tmp->addmask);
1562 		cpumask_andnot(parent->effective_cpus,
1563 			       parent->effective_cpus, tmp->addmask);
1564 	}
1565 	if (deleting) {
1566 		cpumask_andnot(parent->subparts_cpus,
1567 			       parent->subparts_cpus, tmp->delmask);
1568 		/*
1569 		 * Some of the CPUs in subparts_cpus might have been offlined.
1570 		 */
1571 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1572 		cpumask_or(parent->effective_cpus,
1573 			   parent->effective_cpus, tmp->delmask);
1574 	}
1575 
1576 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1577 
1578 	if (old_prs != new_prs)
1579 		cs->partition_root_state = new_prs;
1580 
1581 	spin_unlock_irq(&callback_lock);
1582 
1583 	if (adding || deleting) {
1584 		update_tasks_cpumask(parent, tmp->addmask);
1585 		if (parent->child_ecpus_count)
1586 			update_sibling_cpumasks(parent, cs, tmp);
1587 	}
1588 
1589 	/*
1590 	 * For partcmd_update without newmask, it is being called from
1591 	 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
1592 	 * Update the load balance flag and scheduling domain if
1593 	 * cpus_read_trylock() is successful.
1594 	 */
1595 	if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
1596 		update_partition_sd_lb(cs, old_prs);
1597 		cpus_read_unlock();
1598 	}
1599 
1600 	notify_partition_change(cs, old_prs);
1601 	return 0;
1602 }
1603 
1604 /*
1605  * update_cpumasks_hier() flags
1606  */
1607 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
1608 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
1609 
1610 /*
1611  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1612  * @cs:  the cpuset to consider
1613  * @tmp: temp variables for calculating effective_cpus & partition setup
1614  * @force: don't skip any descendant cpusets if set
1615  *
1616  * When configured cpumask is changed, the effective cpumasks of this cpuset
1617  * and all its descendants need to be updated.
1618  *
1619  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1620  *
1621  * Called with cpuset_mutex held
1622  */
1623 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1624 				 int flags)
1625 {
1626 	struct cpuset *cp;
1627 	struct cgroup_subsys_state *pos_css;
1628 	bool need_rebuild_sched_domains = false;
1629 	int old_prs, new_prs;
1630 
1631 	rcu_read_lock();
1632 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1633 		struct cpuset *parent = parent_cs(cp);
1634 		bool update_parent = false;
1635 
1636 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1637 
1638 		/*
1639 		 * If it becomes empty, inherit the effective mask of the
1640 		 * parent, which is guaranteed to have some CPUs unless
1641 		 * it is a partition root that has explicitly distributed
1642 		 * out all its CPUs.
1643 		 */
1644 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1645 			if (is_partition_valid(cp) &&
1646 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1647 				goto update_parent_subparts;
1648 
1649 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1650 			if (!cp->use_parent_ecpus) {
1651 				cp->use_parent_ecpus = true;
1652 				parent->child_ecpus_count++;
1653 			}
1654 		} else if (cp->use_parent_ecpus) {
1655 			cp->use_parent_ecpus = false;
1656 			WARN_ON_ONCE(!parent->child_ecpus_count);
1657 			parent->child_ecpus_count--;
1658 		}
1659 
1660 		/*
1661 		 * Skip the whole subtree if
1662 		 * 1) the cpumask remains the same,
1663 		 * 2) has no partition root state,
1664 		 * 3) HIER_CHECKALL flag not set, and
1665 		 * 4) for v2 load balance state same as its parent.
1666 		 */
1667 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
1668 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
1669 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1670 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
1671 			pos_css = css_rightmost_descendant(pos_css);
1672 			continue;
1673 		}
1674 
1675 update_parent_subparts:
1676 		/*
1677 		 * update_parent_subparts_cpumask() should have been called
1678 		 * for cs already in update_cpumask(). We should also call
1679 		 * update_tasks_cpumask() again for tasks in the parent
1680 		 * cpuset if the parent's subparts_cpus changes.
1681 		 */
1682 		old_prs = new_prs = cp->partition_root_state;
1683 		if ((cp != cs) && old_prs) {
1684 			switch (parent->partition_root_state) {
1685 			case PRS_ROOT:
1686 			case PRS_ISOLATED:
1687 				update_parent = true;
1688 				break;
1689 
1690 			default:
1691 				/*
1692 				 * When parent is not a partition root or is
1693 				 * invalid, child partition roots become
1694 				 * invalid too.
1695 				 */
1696 				if (is_partition_valid(cp))
1697 					new_prs = -cp->partition_root_state;
1698 				WRITE_ONCE(cp->prs_err,
1699 					   is_partition_invalid(parent)
1700 					   ? PERR_INVPARENT : PERR_NOTPART);
1701 				break;
1702 			}
1703 		}
1704 
1705 		if (!css_tryget_online(&cp->css))
1706 			continue;
1707 		rcu_read_unlock();
1708 
1709 		if (update_parent) {
1710 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1711 						       tmp);
1712 			/*
1713 			 * The cpuset partition_root_state may become
1714 			 * invalid. Capture it.
1715 			 */
1716 			new_prs = cp->partition_root_state;
1717 		}
1718 
1719 		spin_lock_irq(&callback_lock);
1720 
1721 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1722 			/*
1723 			 * Put all active subparts_cpus back to effective_cpus.
1724 			 */
1725 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1726 				   cp->subparts_cpus);
1727 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1728 				   cpu_active_mask);
1729 			cp->nr_subparts_cpus = 0;
1730 			cpumask_clear(cp->subparts_cpus);
1731 		}
1732 
1733 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1734 		if (cp->nr_subparts_cpus) {
1735 			/*
1736 			 * Make sure that effective_cpus & subparts_cpus
1737 			 * are mutually exclusive.
1738 			 */
1739 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1740 				       cp->subparts_cpus);
1741 		}
1742 
1743 		cp->partition_root_state = new_prs;
1744 		spin_unlock_irq(&callback_lock);
1745 
1746 		notify_partition_change(cp, old_prs);
1747 
1748 		WARN_ON(!is_in_v2_mode() &&
1749 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1750 
1751 		update_tasks_cpumask(cp, tmp->new_cpus);
1752 
1753 		/*
1754 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
1755 		 * from parent if current cpuset isn't a valid partition root
1756 		 * and their load balance states differ.
1757 		 */
1758 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1759 		    !is_partition_valid(cp) &&
1760 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
1761 			if (is_sched_load_balance(parent))
1762 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1763 			else
1764 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1765 		}
1766 
1767 		/*
1768 		 * On legacy hierarchy, if the effective cpumask of any non-
1769 		 * empty cpuset is changed, we need to rebuild sched domains.
1770 		 * On default hierarchy, the cpuset needs to be a partition
1771 		 * root as well.
1772 		 */
1773 		if (!cpumask_empty(cp->cpus_allowed) &&
1774 		    is_sched_load_balance(cp) &&
1775 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1776 		    is_partition_valid(cp)))
1777 			need_rebuild_sched_domains = true;
1778 
1779 		rcu_read_lock();
1780 		css_put(&cp->css);
1781 	}
1782 	rcu_read_unlock();
1783 
1784 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
1785 		rebuild_sched_domains_locked();
1786 }
1787 
1788 /**
1789  * update_sibling_cpumasks - Update siblings cpumasks
1790  * @parent:  Parent cpuset
1791  * @cs:      Current cpuset
1792  * @tmp:     Temp variables
1793  */
1794 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1795 				    struct tmpmasks *tmp)
1796 {
1797 	struct cpuset *sibling;
1798 	struct cgroup_subsys_state *pos_css;
1799 
1800 	lockdep_assert_held(&cpuset_mutex);
1801 
1802 	/*
1803 	 * Check all its siblings and call update_cpumasks_hier()
1804 	 * if their use_parent_ecpus flag is set in order for them
1805 	 * to use the right effective_cpus value.
1806 	 *
1807 	 * The update_cpumasks_hier() function may sleep. So we have to
1808 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
1809 	 * flag is used to suppress rebuild of sched domains as the callers
1810 	 * will take care of that.
1811 	 */
1812 	rcu_read_lock();
1813 	cpuset_for_each_child(sibling, pos_css, parent) {
1814 		if (sibling == cs)
1815 			continue;
1816 		if (!sibling->use_parent_ecpus)
1817 			continue;
1818 		if (!css_tryget_online(&sibling->css))
1819 			continue;
1820 
1821 		rcu_read_unlock();
1822 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
1823 		rcu_read_lock();
1824 		css_put(&sibling->css);
1825 	}
1826 	rcu_read_unlock();
1827 }
1828 
1829 /**
1830  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1831  * @cs: the cpuset to consider
1832  * @trialcs: trial cpuset
1833  * @buf: buffer of cpu numbers written to this cpuset
1834  */
1835 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1836 			  const char *buf)
1837 {
1838 	int retval;
1839 	struct tmpmasks tmp;
1840 	bool invalidate = false;
1841 	int old_prs = cs->partition_root_state;
1842 
1843 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1844 	if (cs == &top_cpuset)
1845 		return -EACCES;
1846 
1847 	/*
1848 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1849 	 * Since cpulist_parse() fails on an empty mask, we special case
1850 	 * that parsing.  The validate_change() call ensures that cpusets
1851 	 * with tasks have cpus.
1852 	 */
1853 	if (!*buf) {
1854 		cpumask_clear(trialcs->cpus_allowed);
1855 	} else {
1856 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1857 		if (retval < 0)
1858 			return retval;
1859 
1860 		if (!cpumask_subset(trialcs->cpus_allowed,
1861 				    top_cpuset.cpus_allowed))
1862 			return -EINVAL;
1863 	}
1864 
1865 	/* Nothing to do if the cpus didn't change */
1866 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1867 		return 0;
1868 
1869 	if (alloc_cpumasks(NULL, &tmp))
1870 		return -ENOMEM;
1871 
1872 	retval = validate_change(cs, trialcs);
1873 
1874 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1875 		struct cpuset *cp, *parent;
1876 		struct cgroup_subsys_state *css;
1877 
1878 		/*
1879 		 * The -EINVAL error code indicates that partition sibling
1880 		 * CPU exclusivity rule has been violated. We still allow
1881 		 * the cpumask change to proceed while invalidating the
1882 		 * partition. However, any conflicting sibling partitions
1883 		 * have to be marked as invalid too.
1884 		 */
1885 		invalidate = true;
1886 		rcu_read_lock();
1887 		parent = parent_cs(cs);
1888 		cpuset_for_each_child(cp, css, parent)
1889 			if (is_partition_valid(cp) &&
1890 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1891 				rcu_read_unlock();
1892 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1893 				rcu_read_lock();
1894 			}
1895 		rcu_read_unlock();
1896 		retval = 0;
1897 	}
1898 	if (retval < 0)
1899 		goto out_free;
1900 
1901 	if (cs->partition_root_state) {
1902 		if (invalidate)
1903 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1904 						       NULL, &tmp);
1905 		else
1906 			update_parent_subparts_cpumask(cs, partcmd_update,
1907 						trialcs->cpus_allowed, &tmp);
1908 	}
1909 
1910 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1911 				  parent_cs(cs));
1912 	spin_lock_irq(&callback_lock);
1913 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1914 
1915 	/*
1916 	 * Make sure that subparts_cpus, if not empty, is a subset of
1917 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1918 	 * empty effective cpus with tasks.
1919 	 */
1920 	if (cs->nr_subparts_cpus) {
1921 		if (!is_partition_valid(cs) ||
1922 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1923 		    partition_is_populated(cs, NULL))) {
1924 			cs->nr_subparts_cpus = 0;
1925 			cpumask_clear(cs->subparts_cpus);
1926 		} else {
1927 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1928 				    cs->cpus_allowed);
1929 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1930 		}
1931 	}
1932 	spin_unlock_irq(&callback_lock);
1933 
1934 	/* effective_cpus will be updated here */
1935 	update_cpumasks_hier(cs, &tmp, 0);
1936 
1937 	if (cs->partition_root_state) {
1938 		struct cpuset *parent = parent_cs(cs);
1939 
1940 		/*
1941 		 * For partition root, update the cpumasks of sibling
1942 		 * cpusets if they use parent's effective_cpus.
1943 		 */
1944 		if (parent->child_ecpus_count)
1945 			update_sibling_cpumasks(parent, cs, &tmp);
1946 
1947 		/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */
1948 		update_partition_sd_lb(cs, old_prs);
1949 	}
1950 out_free:
1951 	free_cpumasks(NULL, &tmp);
1952 	return retval;
1953 }
1954 
1955 /*
1956  * Migrate memory region from one set of nodes to another.  This is
1957  * performed asynchronously as it can be called from process migration path
1958  * holding locks involved in process management.  All mm migrations are
1959  * performed in the queued order and can be waited for by flushing
1960  * cpuset_migrate_mm_wq.
1961  */
1962 
1963 struct cpuset_migrate_mm_work {
1964 	struct work_struct	work;
1965 	struct mm_struct	*mm;
1966 	nodemask_t		from;
1967 	nodemask_t		to;
1968 };
1969 
1970 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1971 {
1972 	struct cpuset_migrate_mm_work *mwork =
1973 		container_of(work, struct cpuset_migrate_mm_work, work);
1974 
1975 	/* on a wq worker, no need to worry about %current's mems_allowed */
1976 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1977 	mmput(mwork->mm);
1978 	kfree(mwork);
1979 }
1980 
1981 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1982 							const nodemask_t *to)
1983 {
1984 	struct cpuset_migrate_mm_work *mwork;
1985 
1986 	if (nodes_equal(*from, *to)) {
1987 		mmput(mm);
1988 		return;
1989 	}
1990 
1991 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1992 	if (mwork) {
1993 		mwork->mm = mm;
1994 		mwork->from = *from;
1995 		mwork->to = *to;
1996 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1997 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1998 	} else {
1999 		mmput(mm);
2000 	}
2001 }
2002 
2003 static void cpuset_post_attach(void)
2004 {
2005 	flush_workqueue(cpuset_migrate_mm_wq);
2006 }
2007 
2008 /*
2009  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2010  * @tsk: the task to change
2011  * @newmems: new nodes that the task will be set
2012  *
2013  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2014  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2015  * parallel, it might temporarily see an empty intersection, which results in
2016  * a seqlock check and retry before OOM or allocation failure.
2017  */
2018 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2019 					nodemask_t *newmems)
2020 {
2021 	task_lock(tsk);
2022 
2023 	local_irq_disable();
2024 	write_seqcount_begin(&tsk->mems_allowed_seq);
2025 
2026 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2027 	mpol_rebind_task(tsk, newmems);
2028 	tsk->mems_allowed = *newmems;
2029 
2030 	write_seqcount_end(&tsk->mems_allowed_seq);
2031 	local_irq_enable();
2032 
2033 	task_unlock(tsk);
2034 }
2035 
2036 static void *cpuset_being_rebound;
2037 
2038 /**
2039  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2040  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2041  *
2042  * Iterate through each task of @cs updating its mems_allowed to the
2043  * effective cpuset's.  As this function is called with cpuset_mutex held,
2044  * cpuset membership stays stable.
2045  */
2046 static void update_tasks_nodemask(struct cpuset *cs)
2047 {
2048 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2049 	struct css_task_iter it;
2050 	struct task_struct *task;
2051 
2052 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2053 
2054 	guarantee_online_mems(cs, &newmems);
2055 
2056 	/*
2057 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2058 	 * take while holding tasklist_lock.  Forks can happen - the
2059 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2060 	 * and rebind their vma mempolicies too.  Because we still hold
2061 	 * the global cpuset_mutex, we know that no other rebind effort
2062 	 * will be contending for the global variable cpuset_being_rebound.
2063 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2064 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2065 	 */
2066 	css_task_iter_start(&cs->css, 0, &it);
2067 	while ((task = css_task_iter_next(&it))) {
2068 		struct mm_struct *mm;
2069 		bool migrate;
2070 
2071 		cpuset_change_task_nodemask(task, &newmems);
2072 
2073 		mm = get_task_mm(task);
2074 		if (!mm)
2075 			continue;
2076 
2077 		migrate = is_memory_migrate(cs);
2078 
2079 		mpol_rebind_mm(mm, &cs->mems_allowed);
2080 		if (migrate)
2081 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2082 		else
2083 			mmput(mm);
2084 	}
2085 	css_task_iter_end(&it);
2086 
2087 	/*
2088 	 * All the tasks' nodemasks have been updated, update
2089 	 * cs->old_mems_allowed.
2090 	 */
2091 	cs->old_mems_allowed = newmems;
2092 
2093 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2094 	cpuset_being_rebound = NULL;
2095 }
2096 
2097 /*
2098  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2099  * @cs: the cpuset to consider
2100  * @new_mems: a temp variable for calculating new effective_mems
2101  *
2102  * When configured nodemask is changed, the effective nodemasks of this cpuset
2103  * and all its descendants need to be updated.
2104  *
2105  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2106  *
2107  * Called with cpuset_mutex held
2108  */
2109 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2110 {
2111 	struct cpuset *cp;
2112 	struct cgroup_subsys_state *pos_css;
2113 
2114 	rcu_read_lock();
2115 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2116 		struct cpuset *parent = parent_cs(cp);
2117 
2118 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2119 
2120 		/*
2121 		 * If it becomes empty, inherit the effective mask of the
2122 		 * parent, which is guaranteed to have some MEMs.
2123 		 */
2124 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2125 			*new_mems = parent->effective_mems;
2126 
2127 		/* Skip the whole subtree if the nodemask remains the same. */
2128 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2129 			pos_css = css_rightmost_descendant(pos_css);
2130 			continue;
2131 		}
2132 
2133 		if (!css_tryget_online(&cp->css))
2134 			continue;
2135 		rcu_read_unlock();
2136 
2137 		spin_lock_irq(&callback_lock);
2138 		cp->effective_mems = *new_mems;
2139 		spin_unlock_irq(&callback_lock);
2140 
2141 		WARN_ON(!is_in_v2_mode() &&
2142 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2143 
2144 		update_tasks_nodemask(cp);
2145 
2146 		rcu_read_lock();
2147 		css_put(&cp->css);
2148 	}
2149 	rcu_read_unlock();
2150 }
2151 
2152 /*
2153  * Handle user request to change the 'mems' memory placement
2154  * of a cpuset.  Needs to validate the request, update the
2155  * cpusets mems_allowed, and for each task in the cpuset,
2156  * update mems_allowed and rebind task's mempolicy and any vma
2157  * mempolicies and if the cpuset is marked 'memory_migrate',
2158  * migrate the tasks pages to the new memory.
2159  *
2160  * Call with cpuset_mutex held. May take callback_lock during call.
2161  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2162  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2163  * their mempolicies to the cpusets new mems_allowed.
2164  */
2165 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2166 			   const char *buf)
2167 {
2168 	int retval;
2169 
2170 	/*
2171 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2172 	 * it's read-only
2173 	 */
2174 	if (cs == &top_cpuset) {
2175 		retval = -EACCES;
2176 		goto done;
2177 	}
2178 
2179 	/*
2180 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2181 	 * Since nodelist_parse() fails on an empty mask, we special case
2182 	 * that parsing.  The validate_change() call ensures that cpusets
2183 	 * with tasks have memory.
2184 	 */
2185 	if (!*buf) {
2186 		nodes_clear(trialcs->mems_allowed);
2187 	} else {
2188 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2189 		if (retval < 0)
2190 			goto done;
2191 
2192 		if (!nodes_subset(trialcs->mems_allowed,
2193 				  top_cpuset.mems_allowed)) {
2194 			retval = -EINVAL;
2195 			goto done;
2196 		}
2197 	}
2198 
2199 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2200 		retval = 0;		/* Too easy - nothing to do */
2201 		goto done;
2202 	}
2203 	retval = validate_change(cs, trialcs);
2204 	if (retval < 0)
2205 		goto done;
2206 
2207 	check_insane_mems_config(&trialcs->mems_allowed);
2208 
2209 	spin_lock_irq(&callback_lock);
2210 	cs->mems_allowed = trialcs->mems_allowed;
2211 	spin_unlock_irq(&callback_lock);
2212 
2213 	/* use trialcs->mems_allowed as a temp variable */
2214 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2215 done:
2216 	return retval;
2217 }
2218 
2219 bool current_cpuset_is_being_rebound(void)
2220 {
2221 	bool ret;
2222 
2223 	rcu_read_lock();
2224 	ret = task_cs(current) == cpuset_being_rebound;
2225 	rcu_read_unlock();
2226 
2227 	return ret;
2228 }
2229 
2230 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2231 {
2232 #ifdef CONFIG_SMP
2233 	if (val < -1 || val > sched_domain_level_max + 1)
2234 		return -EINVAL;
2235 #endif
2236 
2237 	if (val != cs->relax_domain_level) {
2238 		cs->relax_domain_level = val;
2239 		if (!cpumask_empty(cs->cpus_allowed) &&
2240 		    is_sched_load_balance(cs))
2241 			rebuild_sched_domains_locked();
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /**
2248  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2249  * @cs: the cpuset in which each task's spread flags needs to be changed
2250  *
2251  * Iterate through each task of @cs updating its spread flags.  As this
2252  * function is called with cpuset_mutex held, cpuset membership stays
2253  * stable.
2254  */
2255 static void update_tasks_flags(struct cpuset *cs)
2256 {
2257 	struct css_task_iter it;
2258 	struct task_struct *task;
2259 
2260 	css_task_iter_start(&cs->css, 0, &it);
2261 	while ((task = css_task_iter_next(&it)))
2262 		cpuset_update_task_spread_flags(cs, task);
2263 	css_task_iter_end(&it);
2264 }
2265 
2266 /*
2267  * update_flag - read a 0 or a 1 in a file and update associated flag
2268  * bit:		the bit to update (see cpuset_flagbits_t)
2269  * cs:		the cpuset to update
2270  * turning_on: 	whether the flag is being set or cleared
2271  *
2272  * Call with cpuset_mutex held.
2273  */
2274 
2275 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2276 		       int turning_on)
2277 {
2278 	struct cpuset *trialcs;
2279 	int balance_flag_changed;
2280 	int spread_flag_changed;
2281 	int err;
2282 
2283 	trialcs = alloc_trial_cpuset(cs);
2284 	if (!trialcs)
2285 		return -ENOMEM;
2286 
2287 	if (turning_on)
2288 		set_bit(bit, &trialcs->flags);
2289 	else
2290 		clear_bit(bit, &trialcs->flags);
2291 
2292 	err = validate_change(cs, trialcs);
2293 	if (err < 0)
2294 		goto out;
2295 
2296 	balance_flag_changed = (is_sched_load_balance(cs) !=
2297 				is_sched_load_balance(trialcs));
2298 
2299 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2300 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2301 
2302 	spin_lock_irq(&callback_lock);
2303 	cs->flags = trialcs->flags;
2304 	spin_unlock_irq(&callback_lock);
2305 
2306 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2307 		rebuild_sched_domains_locked();
2308 
2309 	if (spread_flag_changed)
2310 		update_tasks_flags(cs);
2311 out:
2312 	free_cpuset(trialcs);
2313 	return err;
2314 }
2315 
2316 /**
2317  * update_prstate - update partition_root_state
2318  * @cs: the cpuset to update
2319  * @new_prs: new partition root state
2320  * Return: 0 if successful, != 0 if error
2321  *
2322  * Call with cpuset_mutex held.
2323  */
2324 static int update_prstate(struct cpuset *cs, int new_prs)
2325 {
2326 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2327 	struct cpuset *parent = parent_cs(cs);
2328 	struct tmpmasks tmpmask;
2329 
2330 	if (old_prs == new_prs)
2331 		return 0;
2332 
2333 	/*
2334 	 * For a previously invalid partition root, leave it at being
2335 	 * invalid if new_prs is not "member".
2336 	 */
2337 	if (new_prs && is_prs_invalid(old_prs)) {
2338 		cs->partition_root_state = -new_prs;
2339 		return 0;
2340 	}
2341 
2342 	if (alloc_cpumasks(NULL, &tmpmask))
2343 		return -ENOMEM;
2344 
2345 	err = update_partition_exclusive(cs, new_prs);
2346 	if (err)
2347 		goto out;
2348 
2349 	if (!old_prs) {
2350 		/*
2351 		 * cpus_allowed cannot be empty.
2352 		 */
2353 		if (cpumask_empty(cs->cpus_allowed)) {
2354 			err = PERR_CPUSEMPTY;
2355 			goto out;
2356 		}
2357 
2358 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2359 						     NULL, &tmpmask);
2360 	} else if (old_prs && new_prs) {
2361 		/*
2362 		 * A change in load balance state only, no change in cpumasks.
2363 		 */
2364 		;
2365 	} else {
2366 		/*
2367 		 * Switching back to member is always allowed even if it
2368 		 * disables child partitions.
2369 		 */
2370 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2371 					       &tmpmask);
2372 
2373 		/*
2374 		 * If there are child partitions, they will all become invalid.
2375 		 */
2376 		if (unlikely(cs->nr_subparts_cpus)) {
2377 			spin_lock_irq(&callback_lock);
2378 			cs->nr_subparts_cpus = 0;
2379 			cpumask_clear(cs->subparts_cpus);
2380 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2381 			spin_unlock_irq(&callback_lock);
2382 		}
2383 	}
2384 out:
2385 	/*
2386 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2387 	 * happens.
2388 	 */
2389 	if (err) {
2390 		new_prs = -new_prs;
2391 		update_partition_exclusive(cs, new_prs);
2392 	}
2393 
2394 	spin_lock_irq(&callback_lock);
2395 	cs->partition_root_state = new_prs;
2396 	WRITE_ONCE(cs->prs_err, err);
2397 	spin_unlock_irq(&callback_lock);
2398 
2399 	/*
2400 	 * Update child cpusets, if present.
2401 	 * Force update if switching back to member.
2402 	 */
2403 	if (!list_empty(&cs->css.children))
2404 		update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
2405 
2406 	/* Update sched domains and load balance flag */
2407 	update_partition_sd_lb(cs, old_prs);
2408 
2409 	notify_partition_change(cs, old_prs);
2410 	free_cpumasks(NULL, &tmpmask);
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Frequency meter - How fast is some event occurring?
2416  *
2417  * These routines manage a digitally filtered, constant time based,
2418  * event frequency meter.  There are four routines:
2419  *   fmeter_init() - initialize a frequency meter.
2420  *   fmeter_markevent() - called each time the event happens.
2421  *   fmeter_getrate() - returns the recent rate of such events.
2422  *   fmeter_update() - internal routine used to update fmeter.
2423  *
2424  * A common data structure is passed to each of these routines,
2425  * which is used to keep track of the state required to manage the
2426  * frequency meter and its digital filter.
2427  *
2428  * The filter works on the number of events marked per unit time.
2429  * The filter is single-pole low-pass recursive (IIR).  The time unit
2430  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2431  * simulate 3 decimal digits of precision (multiplied by 1000).
2432  *
2433  * With an FM_COEF of 933, and a time base of 1 second, the filter
2434  * has a half-life of 10 seconds, meaning that if the events quit
2435  * happening, then the rate returned from the fmeter_getrate()
2436  * will be cut in half each 10 seconds, until it converges to zero.
2437  *
2438  * It is not worth doing a real infinitely recursive filter.  If more
2439  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2440  * just compute FM_MAXTICKS ticks worth, by which point the level
2441  * will be stable.
2442  *
2443  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2444  * arithmetic overflow in the fmeter_update() routine.
2445  *
2446  * Given the simple 32 bit integer arithmetic used, this meter works
2447  * best for reporting rates between one per millisecond (msec) and
2448  * one per 32 (approx) seconds.  At constant rates faster than one
2449  * per msec it maxes out at values just under 1,000,000.  At constant
2450  * rates between one per msec, and one per second it will stabilize
2451  * to a value N*1000, where N is the rate of events per second.
2452  * At constant rates between one per second and one per 32 seconds,
2453  * it will be choppy, moving up on the seconds that have an event,
2454  * and then decaying until the next event.  At rates slower than
2455  * about one in 32 seconds, it decays all the way back to zero between
2456  * each event.
2457  */
2458 
2459 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2460 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2461 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2462 #define FM_SCALE 1000		/* faux fixed point scale */
2463 
2464 /* Initialize a frequency meter */
2465 static void fmeter_init(struct fmeter *fmp)
2466 {
2467 	fmp->cnt = 0;
2468 	fmp->val = 0;
2469 	fmp->time = 0;
2470 	spin_lock_init(&fmp->lock);
2471 }
2472 
2473 /* Internal meter update - process cnt events and update value */
2474 static void fmeter_update(struct fmeter *fmp)
2475 {
2476 	time64_t now;
2477 	u32 ticks;
2478 
2479 	now = ktime_get_seconds();
2480 	ticks = now - fmp->time;
2481 
2482 	if (ticks == 0)
2483 		return;
2484 
2485 	ticks = min(FM_MAXTICKS, ticks);
2486 	while (ticks-- > 0)
2487 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2488 	fmp->time = now;
2489 
2490 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2491 	fmp->cnt = 0;
2492 }
2493 
2494 /* Process any previous ticks, then bump cnt by one (times scale). */
2495 static void fmeter_markevent(struct fmeter *fmp)
2496 {
2497 	spin_lock(&fmp->lock);
2498 	fmeter_update(fmp);
2499 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2500 	spin_unlock(&fmp->lock);
2501 }
2502 
2503 /* Process any previous ticks, then return current value. */
2504 static int fmeter_getrate(struct fmeter *fmp)
2505 {
2506 	int val;
2507 
2508 	spin_lock(&fmp->lock);
2509 	fmeter_update(fmp);
2510 	val = fmp->val;
2511 	spin_unlock(&fmp->lock);
2512 	return val;
2513 }
2514 
2515 static struct cpuset *cpuset_attach_old_cs;
2516 
2517 /*
2518  * Check to see if a cpuset can accept a new task
2519  * For v1, cpus_allowed and mems_allowed can't be empty.
2520  * For v2, effective_cpus can't be empty.
2521  * Note that in v1, effective_cpus = cpus_allowed.
2522  */
2523 static int cpuset_can_attach_check(struct cpuset *cs)
2524 {
2525 	if (cpumask_empty(cs->effective_cpus) ||
2526 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2527 		return -ENOSPC;
2528 	return 0;
2529 }
2530 
2531 static void reset_migrate_dl_data(struct cpuset *cs)
2532 {
2533 	cs->nr_migrate_dl_tasks = 0;
2534 	cs->sum_migrate_dl_bw = 0;
2535 }
2536 
2537 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2538 static int cpuset_can_attach(struct cgroup_taskset *tset)
2539 {
2540 	struct cgroup_subsys_state *css;
2541 	struct cpuset *cs, *oldcs;
2542 	struct task_struct *task;
2543 	bool cpus_updated, mems_updated;
2544 	int ret;
2545 
2546 	/* used later by cpuset_attach() */
2547 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2548 	oldcs = cpuset_attach_old_cs;
2549 	cs = css_cs(css);
2550 
2551 	mutex_lock(&cpuset_mutex);
2552 
2553 	/* Check to see if task is allowed in the cpuset */
2554 	ret = cpuset_can_attach_check(cs);
2555 	if (ret)
2556 		goto out_unlock;
2557 
2558 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2559 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2560 
2561 	cgroup_taskset_for_each(task, css, tset) {
2562 		ret = task_can_attach(task);
2563 		if (ret)
2564 			goto out_unlock;
2565 
2566 		/*
2567 		 * Skip rights over task check in v2 when nothing changes,
2568 		 * migration permission derives from hierarchy ownership in
2569 		 * cgroup_procs_write_permission()).
2570 		 */
2571 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2572 		    (cpus_updated || mems_updated)) {
2573 			ret = security_task_setscheduler(task);
2574 			if (ret)
2575 				goto out_unlock;
2576 		}
2577 
2578 		if (dl_task(task)) {
2579 			cs->nr_migrate_dl_tasks++;
2580 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2581 		}
2582 	}
2583 
2584 	if (!cs->nr_migrate_dl_tasks)
2585 		goto out_success;
2586 
2587 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2588 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2589 
2590 		if (unlikely(cpu >= nr_cpu_ids)) {
2591 			reset_migrate_dl_data(cs);
2592 			ret = -EINVAL;
2593 			goto out_unlock;
2594 		}
2595 
2596 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2597 		if (ret) {
2598 			reset_migrate_dl_data(cs);
2599 			goto out_unlock;
2600 		}
2601 	}
2602 
2603 out_success:
2604 	/*
2605 	 * Mark attach is in progress.  This makes validate_change() fail
2606 	 * changes which zero cpus/mems_allowed.
2607 	 */
2608 	cs->attach_in_progress++;
2609 out_unlock:
2610 	mutex_unlock(&cpuset_mutex);
2611 	return ret;
2612 }
2613 
2614 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2615 {
2616 	struct cgroup_subsys_state *css;
2617 	struct cpuset *cs;
2618 
2619 	cgroup_taskset_first(tset, &css);
2620 	cs = css_cs(css);
2621 
2622 	mutex_lock(&cpuset_mutex);
2623 	cs->attach_in_progress--;
2624 	if (!cs->attach_in_progress)
2625 		wake_up(&cpuset_attach_wq);
2626 
2627 	if (cs->nr_migrate_dl_tasks) {
2628 		int cpu = cpumask_any(cs->effective_cpus);
2629 
2630 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2631 		reset_migrate_dl_data(cs);
2632 	}
2633 
2634 	mutex_unlock(&cpuset_mutex);
2635 }
2636 
2637 /*
2638  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
2639  * but we can't allocate it dynamically there.  Define it global and
2640  * allocate from cpuset_init().
2641  */
2642 static cpumask_var_t cpus_attach;
2643 static nodemask_t cpuset_attach_nodemask_to;
2644 
2645 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2646 {
2647 	lockdep_assert_held(&cpuset_mutex);
2648 
2649 	if (cs != &top_cpuset)
2650 		guarantee_online_cpus(task, cpus_attach);
2651 	else
2652 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2653 			       cs->subparts_cpus);
2654 	/*
2655 	 * can_attach beforehand should guarantee that this doesn't
2656 	 * fail.  TODO: have a better way to handle failure here
2657 	 */
2658 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2659 
2660 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2661 	cpuset_update_task_spread_flags(cs, task);
2662 }
2663 
2664 static void cpuset_attach(struct cgroup_taskset *tset)
2665 {
2666 	struct task_struct *task;
2667 	struct task_struct *leader;
2668 	struct cgroup_subsys_state *css;
2669 	struct cpuset *cs;
2670 	struct cpuset *oldcs = cpuset_attach_old_cs;
2671 	bool cpus_updated, mems_updated;
2672 
2673 	cgroup_taskset_first(tset, &css);
2674 	cs = css_cs(css);
2675 
2676 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2677 	mutex_lock(&cpuset_mutex);
2678 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2679 				      oldcs->effective_cpus);
2680 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2681 
2682 	/*
2683 	 * In the default hierarchy, enabling cpuset in the child cgroups
2684 	 * will trigger a number of cpuset_attach() calls with no change
2685 	 * in effective cpus and mems. In that case, we can optimize out
2686 	 * by skipping the task iteration and update.
2687 	 */
2688 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2689 	    !cpus_updated && !mems_updated) {
2690 		cpuset_attach_nodemask_to = cs->effective_mems;
2691 		goto out;
2692 	}
2693 
2694 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2695 
2696 	cgroup_taskset_for_each(task, css, tset)
2697 		cpuset_attach_task(cs, task);
2698 
2699 	/*
2700 	 * Change mm for all threadgroup leaders. This is expensive and may
2701 	 * sleep and should be moved outside migration path proper. Skip it
2702 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2703 	 * not set.
2704 	 */
2705 	cpuset_attach_nodemask_to = cs->effective_mems;
2706 	if (!is_memory_migrate(cs) && !mems_updated)
2707 		goto out;
2708 
2709 	cgroup_taskset_for_each_leader(leader, css, tset) {
2710 		struct mm_struct *mm = get_task_mm(leader);
2711 
2712 		if (mm) {
2713 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2714 
2715 			/*
2716 			 * old_mems_allowed is the same with mems_allowed
2717 			 * here, except if this task is being moved
2718 			 * automatically due to hotplug.  In that case
2719 			 * @mems_allowed has been updated and is empty, so
2720 			 * @old_mems_allowed is the right nodesets that we
2721 			 * migrate mm from.
2722 			 */
2723 			if (is_memory_migrate(cs))
2724 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2725 						  &cpuset_attach_nodemask_to);
2726 			else
2727 				mmput(mm);
2728 		}
2729 	}
2730 
2731 out:
2732 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2733 
2734 	if (cs->nr_migrate_dl_tasks) {
2735 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2736 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2737 		reset_migrate_dl_data(cs);
2738 	}
2739 
2740 	cs->attach_in_progress--;
2741 	if (!cs->attach_in_progress)
2742 		wake_up(&cpuset_attach_wq);
2743 
2744 	mutex_unlock(&cpuset_mutex);
2745 }
2746 
2747 /* The various types of files and directories in a cpuset file system */
2748 
2749 typedef enum {
2750 	FILE_MEMORY_MIGRATE,
2751 	FILE_CPULIST,
2752 	FILE_MEMLIST,
2753 	FILE_EFFECTIVE_CPULIST,
2754 	FILE_EFFECTIVE_MEMLIST,
2755 	FILE_SUBPARTS_CPULIST,
2756 	FILE_CPU_EXCLUSIVE,
2757 	FILE_MEM_EXCLUSIVE,
2758 	FILE_MEM_HARDWALL,
2759 	FILE_SCHED_LOAD_BALANCE,
2760 	FILE_PARTITION_ROOT,
2761 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2762 	FILE_MEMORY_PRESSURE_ENABLED,
2763 	FILE_MEMORY_PRESSURE,
2764 	FILE_SPREAD_PAGE,
2765 	FILE_SPREAD_SLAB,
2766 } cpuset_filetype_t;
2767 
2768 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2769 			    u64 val)
2770 {
2771 	struct cpuset *cs = css_cs(css);
2772 	cpuset_filetype_t type = cft->private;
2773 	int retval = 0;
2774 
2775 	cpus_read_lock();
2776 	mutex_lock(&cpuset_mutex);
2777 	if (!is_cpuset_online(cs)) {
2778 		retval = -ENODEV;
2779 		goto out_unlock;
2780 	}
2781 
2782 	switch (type) {
2783 	case FILE_CPU_EXCLUSIVE:
2784 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2785 		break;
2786 	case FILE_MEM_EXCLUSIVE:
2787 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2788 		break;
2789 	case FILE_MEM_HARDWALL:
2790 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2791 		break;
2792 	case FILE_SCHED_LOAD_BALANCE:
2793 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2794 		break;
2795 	case FILE_MEMORY_MIGRATE:
2796 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2797 		break;
2798 	case FILE_MEMORY_PRESSURE_ENABLED:
2799 		cpuset_memory_pressure_enabled = !!val;
2800 		break;
2801 	case FILE_SPREAD_PAGE:
2802 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2803 		break;
2804 	case FILE_SPREAD_SLAB:
2805 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2806 		break;
2807 	default:
2808 		retval = -EINVAL;
2809 		break;
2810 	}
2811 out_unlock:
2812 	mutex_unlock(&cpuset_mutex);
2813 	cpus_read_unlock();
2814 	return retval;
2815 }
2816 
2817 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2818 			    s64 val)
2819 {
2820 	struct cpuset *cs = css_cs(css);
2821 	cpuset_filetype_t type = cft->private;
2822 	int retval = -ENODEV;
2823 
2824 	cpus_read_lock();
2825 	mutex_lock(&cpuset_mutex);
2826 	if (!is_cpuset_online(cs))
2827 		goto out_unlock;
2828 
2829 	switch (type) {
2830 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2831 		retval = update_relax_domain_level(cs, val);
2832 		break;
2833 	default:
2834 		retval = -EINVAL;
2835 		break;
2836 	}
2837 out_unlock:
2838 	mutex_unlock(&cpuset_mutex);
2839 	cpus_read_unlock();
2840 	return retval;
2841 }
2842 
2843 /*
2844  * Common handling for a write to a "cpus" or "mems" file.
2845  */
2846 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2847 				    char *buf, size_t nbytes, loff_t off)
2848 {
2849 	struct cpuset *cs = css_cs(of_css(of));
2850 	struct cpuset *trialcs;
2851 	int retval = -ENODEV;
2852 
2853 	buf = strstrip(buf);
2854 
2855 	/*
2856 	 * CPU or memory hotunplug may leave @cs w/o any execution
2857 	 * resources, in which case the hotplug code asynchronously updates
2858 	 * configuration and transfers all tasks to the nearest ancestor
2859 	 * which can execute.
2860 	 *
2861 	 * As writes to "cpus" or "mems" may restore @cs's execution
2862 	 * resources, wait for the previously scheduled operations before
2863 	 * proceeding, so that we don't end up keep removing tasks added
2864 	 * after execution capability is restored.
2865 	 *
2866 	 * cpuset_hotplug_work calls back into cgroup core via
2867 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2868 	 * operation like this one can lead to a deadlock through kernfs
2869 	 * active_ref protection.  Let's break the protection.  Losing the
2870 	 * protection is okay as we check whether @cs is online after
2871 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2872 	 * hierarchies.
2873 	 */
2874 	css_get(&cs->css);
2875 	kernfs_break_active_protection(of->kn);
2876 	flush_work(&cpuset_hotplug_work);
2877 
2878 	cpus_read_lock();
2879 	mutex_lock(&cpuset_mutex);
2880 	if (!is_cpuset_online(cs))
2881 		goto out_unlock;
2882 
2883 	trialcs = alloc_trial_cpuset(cs);
2884 	if (!trialcs) {
2885 		retval = -ENOMEM;
2886 		goto out_unlock;
2887 	}
2888 
2889 	switch (of_cft(of)->private) {
2890 	case FILE_CPULIST:
2891 		retval = update_cpumask(cs, trialcs, buf);
2892 		break;
2893 	case FILE_MEMLIST:
2894 		retval = update_nodemask(cs, trialcs, buf);
2895 		break;
2896 	default:
2897 		retval = -EINVAL;
2898 		break;
2899 	}
2900 
2901 	free_cpuset(trialcs);
2902 out_unlock:
2903 	mutex_unlock(&cpuset_mutex);
2904 	cpus_read_unlock();
2905 	kernfs_unbreak_active_protection(of->kn);
2906 	css_put(&cs->css);
2907 	flush_workqueue(cpuset_migrate_mm_wq);
2908 	return retval ?: nbytes;
2909 }
2910 
2911 /*
2912  * These ascii lists should be read in a single call, by using a user
2913  * buffer large enough to hold the entire map.  If read in smaller
2914  * chunks, there is no guarantee of atomicity.  Since the display format
2915  * used, list of ranges of sequential numbers, is variable length,
2916  * and since these maps can change value dynamically, one could read
2917  * gibberish by doing partial reads while a list was changing.
2918  */
2919 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2920 {
2921 	struct cpuset *cs = css_cs(seq_css(sf));
2922 	cpuset_filetype_t type = seq_cft(sf)->private;
2923 	int ret = 0;
2924 
2925 	spin_lock_irq(&callback_lock);
2926 
2927 	switch (type) {
2928 	case FILE_CPULIST:
2929 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2930 		break;
2931 	case FILE_MEMLIST:
2932 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2933 		break;
2934 	case FILE_EFFECTIVE_CPULIST:
2935 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2936 		break;
2937 	case FILE_EFFECTIVE_MEMLIST:
2938 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2939 		break;
2940 	case FILE_SUBPARTS_CPULIST:
2941 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2942 		break;
2943 	default:
2944 		ret = -EINVAL;
2945 	}
2946 
2947 	spin_unlock_irq(&callback_lock);
2948 	return ret;
2949 }
2950 
2951 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2952 {
2953 	struct cpuset *cs = css_cs(css);
2954 	cpuset_filetype_t type = cft->private;
2955 	switch (type) {
2956 	case FILE_CPU_EXCLUSIVE:
2957 		return is_cpu_exclusive(cs);
2958 	case FILE_MEM_EXCLUSIVE:
2959 		return is_mem_exclusive(cs);
2960 	case FILE_MEM_HARDWALL:
2961 		return is_mem_hardwall(cs);
2962 	case FILE_SCHED_LOAD_BALANCE:
2963 		return is_sched_load_balance(cs);
2964 	case FILE_MEMORY_MIGRATE:
2965 		return is_memory_migrate(cs);
2966 	case FILE_MEMORY_PRESSURE_ENABLED:
2967 		return cpuset_memory_pressure_enabled;
2968 	case FILE_MEMORY_PRESSURE:
2969 		return fmeter_getrate(&cs->fmeter);
2970 	case FILE_SPREAD_PAGE:
2971 		return is_spread_page(cs);
2972 	case FILE_SPREAD_SLAB:
2973 		return is_spread_slab(cs);
2974 	default:
2975 		BUG();
2976 	}
2977 
2978 	/* Unreachable but makes gcc happy */
2979 	return 0;
2980 }
2981 
2982 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2983 {
2984 	struct cpuset *cs = css_cs(css);
2985 	cpuset_filetype_t type = cft->private;
2986 	switch (type) {
2987 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2988 		return cs->relax_domain_level;
2989 	default:
2990 		BUG();
2991 	}
2992 
2993 	/* Unreachable but makes gcc happy */
2994 	return 0;
2995 }
2996 
2997 static int sched_partition_show(struct seq_file *seq, void *v)
2998 {
2999 	struct cpuset *cs = css_cs(seq_css(seq));
3000 	const char *err, *type = NULL;
3001 
3002 	switch (cs->partition_root_state) {
3003 	case PRS_ROOT:
3004 		seq_puts(seq, "root\n");
3005 		break;
3006 	case PRS_ISOLATED:
3007 		seq_puts(seq, "isolated\n");
3008 		break;
3009 	case PRS_MEMBER:
3010 		seq_puts(seq, "member\n");
3011 		break;
3012 	case PRS_INVALID_ROOT:
3013 		type = "root";
3014 		fallthrough;
3015 	case PRS_INVALID_ISOLATED:
3016 		if (!type)
3017 			type = "isolated";
3018 		err = perr_strings[READ_ONCE(cs->prs_err)];
3019 		if (err)
3020 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3021 		else
3022 			seq_printf(seq, "%s invalid\n", type);
3023 		break;
3024 	}
3025 	return 0;
3026 }
3027 
3028 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3029 				     size_t nbytes, loff_t off)
3030 {
3031 	struct cpuset *cs = css_cs(of_css(of));
3032 	int val;
3033 	int retval = -ENODEV;
3034 
3035 	buf = strstrip(buf);
3036 
3037 	/*
3038 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3039 	 */
3040 	if (!strcmp(buf, "root"))
3041 		val = PRS_ROOT;
3042 	else if (!strcmp(buf, "member"))
3043 		val = PRS_MEMBER;
3044 	else if (!strcmp(buf, "isolated"))
3045 		val = PRS_ISOLATED;
3046 	else
3047 		return -EINVAL;
3048 
3049 	css_get(&cs->css);
3050 	cpus_read_lock();
3051 	mutex_lock(&cpuset_mutex);
3052 	if (!is_cpuset_online(cs))
3053 		goto out_unlock;
3054 
3055 	retval = update_prstate(cs, val);
3056 out_unlock:
3057 	mutex_unlock(&cpuset_mutex);
3058 	cpus_read_unlock();
3059 	css_put(&cs->css);
3060 	return retval ?: nbytes;
3061 }
3062 
3063 /*
3064  * for the common functions, 'private' gives the type of file
3065  */
3066 
3067 static struct cftype legacy_files[] = {
3068 	{
3069 		.name = "cpus",
3070 		.seq_show = cpuset_common_seq_show,
3071 		.write = cpuset_write_resmask,
3072 		.max_write_len = (100U + 6 * NR_CPUS),
3073 		.private = FILE_CPULIST,
3074 	},
3075 
3076 	{
3077 		.name = "mems",
3078 		.seq_show = cpuset_common_seq_show,
3079 		.write = cpuset_write_resmask,
3080 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3081 		.private = FILE_MEMLIST,
3082 	},
3083 
3084 	{
3085 		.name = "effective_cpus",
3086 		.seq_show = cpuset_common_seq_show,
3087 		.private = FILE_EFFECTIVE_CPULIST,
3088 	},
3089 
3090 	{
3091 		.name = "effective_mems",
3092 		.seq_show = cpuset_common_seq_show,
3093 		.private = FILE_EFFECTIVE_MEMLIST,
3094 	},
3095 
3096 	{
3097 		.name = "cpu_exclusive",
3098 		.read_u64 = cpuset_read_u64,
3099 		.write_u64 = cpuset_write_u64,
3100 		.private = FILE_CPU_EXCLUSIVE,
3101 	},
3102 
3103 	{
3104 		.name = "mem_exclusive",
3105 		.read_u64 = cpuset_read_u64,
3106 		.write_u64 = cpuset_write_u64,
3107 		.private = FILE_MEM_EXCLUSIVE,
3108 	},
3109 
3110 	{
3111 		.name = "mem_hardwall",
3112 		.read_u64 = cpuset_read_u64,
3113 		.write_u64 = cpuset_write_u64,
3114 		.private = FILE_MEM_HARDWALL,
3115 	},
3116 
3117 	{
3118 		.name = "sched_load_balance",
3119 		.read_u64 = cpuset_read_u64,
3120 		.write_u64 = cpuset_write_u64,
3121 		.private = FILE_SCHED_LOAD_BALANCE,
3122 	},
3123 
3124 	{
3125 		.name = "sched_relax_domain_level",
3126 		.read_s64 = cpuset_read_s64,
3127 		.write_s64 = cpuset_write_s64,
3128 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3129 	},
3130 
3131 	{
3132 		.name = "memory_migrate",
3133 		.read_u64 = cpuset_read_u64,
3134 		.write_u64 = cpuset_write_u64,
3135 		.private = FILE_MEMORY_MIGRATE,
3136 	},
3137 
3138 	{
3139 		.name = "memory_pressure",
3140 		.read_u64 = cpuset_read_u64,
3141 		.private = FILE_MEMORY_PRESSURE,
3142 	},
3143 
3144 	{
3145 		.name = "memory_spread_page",
3146 		.read_u64 = cpuset_read_u64,
3147 		.write_u64 = cpuset_write_u64,
3148 		.private = FILE_SPREAD_PAGE,
3149 	},
3150 
3151 	{
3152 		.name = "memory_spread_slab",
3153 		.read_u64 = cpuset_read_u64,
3154 		.write_u64 = cpuset_write_u64,
3155 		.private = FILE_SPREAD_SLAB,
3156 	},
3157 
3158 	{
3159 		.name = "memory_pressure_enabled",
3160 		.flags = CFTYPE_ONLY_ON_ROOT,
3161 		.read_u64 = cpuset_read_u64,
3162 		.write_u64 = cpuset_write_u64,
3163 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3164 	},
3165 
3166 	{ }	/* terminate */
3167 };
3168 
3169 /*
3170  * This is currently a minimal set for the default hierarchy. It can be
3171  * expanded later on by migrating more features and control files from v1.
3172  */
3173 static struct cftype dfl_files[] = {
3174 	{
3175 		.name = "cpus",
3176 		.seq_show = cpuset_common_seq_show,
3177 		.write = cpuset_write_resmask,
3178 		.max_write_len = (100U + 6 * NR_CPUS),
3179 		.private = FILE_CPULIST,
3180 		.flags = CFTYPE_NOT_ON_ROOT,
3181 	},
3182 
3183 	{
3184 		.name = "mems",
3185 		.seq_show = cpuset_common_seq_show,
3186 		.write = cpuset_write_resmask,
3187 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3188 		.private = FILE_MEMLIST,
3189 		.flags = CFTYPE_NOT_ON_ROOT,
3190 	},
3191 
3192 	{
3193 		.name = "cpus.effective",
3194 		.seq_show = cpuset_common_seq_show,
3195 		.private = FILE_EFFECTIVE_CPULIST,
3196 	},
3197 
3198 	{
3199 		.name = "mems.effective",
3200 		.seq_show = cpuset_common_seq_show,
3201 		.private = FILE_EFFECTIVE_MEMLIST,
3202 	},
3203 
3204 	{
3205 		.name = "cpus.partition",
3206 		.seq_show = sched_partition_show,
3207 		.write = sched_partition_write,
3208 		.private = FILE_PARTITION_ROOT,
3209 		.flags = CFTYPE_NOT_ON_ROOT,
3210 		.file_offset = offsetof(struct cpuset, partition_file),
3211 	},
3212 
3213 	{
3214 		.name = "cpus.subpartitions",
3215 		.seq_show = cpuset_common_seq_show,
3216 		.private = FILE_SUBPARTS_CPULIST,
3217 		.flags = CFTYPE_DEBUG,
3218 	},
3219 
3220 	{ }	/* terminate */
3221 };
3222 
3223 
3224 /**
3225  * cpuset_css_alloc - Allocate a cpuset css
3226  * @parent_css: Parent css of the control group that the new cpuset will be
3227  *              part of
3228  * Return: cpuset css on success, -ENOMEM on failure.
3229  *
3230  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3231  * top cpuset css otherwise.
3232  */
3233 static struct cgroup_subsys_state *
3234 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3235 {
3236 	struct cpuset *cs;
3237 
3238 	if (!parent_css)
3239 		return &top_cpuset.css;
3240 
3241 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3242 	if (!cs)
3243 		return ERR_PTR(-ENOMEM);
3244 
3245 	if (alloc_cpumasks(cs, NULL)) {
3246 		kfree(cs);
3247 		return ERR_PTR(-ENOMEM);
3248 	}
3249 
3250 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3251 	nodes_clear(cs->mems_allowed);
3252 	nodes_clear(cs->effective_mems);
3253 	fmeter_init(&cs->fmeter);
3254 	cs->relax_domain_level = -1;
3255 
3256 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3257 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3258 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3259 
3260 	return &cs->css;
3261 }
3262 
3263 static int cpuset_css_online(struct cgroup_subsys_state *css)
3264 {
3265 	struct cpuset *cs = css_cs(css);
3266 	struct cpuset *parent = parent_cs(cs);
3267 	struct cpuset *tmp_cs;
3268 	struct cgroup_subsys_state *pos_css;
3269 
3270 	if (!parent)
3271 		return 0;
3272 
3273 	cpus_read_lock();
3274 	mutex_lock(&cpuset_mutex);
3275 
3276 	set_bit(CS_ONLINE, &cs->flags);
3277 	if (is_spread_page(parent))
3278 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3279 	if (is_spread_slab(parent))
3280 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3281 
3282 	cpuset_inc();
3283 
3284 	spin_lock_irq(&callback_lock);
3285 	if (is_in_v2_mode()) {
3286 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3287 		cs->effective_mems = parent->effective_mems;
3288 		cs->use_parent_ecpus = true;
3289 		parent->child_ecpus_count++;
3290 	}
3291 
3292 	/*
3293 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3294 	 */
3295 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3296 	    !is_sched_load_balance(parent))
3297 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3298 
3299 	spin_unlock_irq(&callback_lock);
3300 
3301 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3302 		goto out_unlock;
3303 
3304 	/*
3305 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3306 	 * set.  This flag handling is implemented in cgroup core for
3307 	 * historical reasons - the flag may be specified during mount.
3308 	 *
3309 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3310 	 * refuse to clone the configuration - thereby refusing the task to
3311 	 * be entered, and as a result refusing the sys_unshare() or
3312 	 * clone() which initiated it.  If this becomes a problem for some
3313 	 * users who wish to allow that scenario, then this could be
3314 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3315 	 * (and likewise for mems) to the new cgroup.
3316 	 */
3317 	rcu_read_lock();
3318 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3319 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3320 			rcu_read_unlock();
3321 			goto out_unlock;
3322 		}
3323 	}
3324 	rcu_read_unlock();
3325 
3326 	spin_lock_irq(&callback_lock);
3327 	cs->mems_allowed = parent->mems_allowed;
3328 	cs->effective_mems = parent->mems_allowed;
3329 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3330 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3331 	spin_unlock_irq(&callback_lock);
3332 out_unlock:
3333 	mutex_unlock(&cpuset_mutex);
3334 	cpus_read_unlock();
3335 	return 0;
3336 }
3337 
3338 /*
3339  * If the cpuset being removed has its flag 'sched_load_balance'
3340  * enabled, then simulate turning sched_load_balance off, which
3341  * will call rebuild_sched_domains_locked(). That is not needed
3342  * in the default hierarchy where only changes in partition
3343  * will cause repartitioning.
3344  *
3345  * If the cpuset has the 'sched.partition' flag enabled, simulate
3346  * turning 'sched.partition" off.
3347  */
3348 
3349 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3350 {
3351 	struct cpuset *cs = css_cs(css);
3352 
3353 	cpus_read_lock();
3354 	mutex_lock(&cpuset_mutex);
3355 
3356 	if (is_partition_valid(cs))
3357 		update_prstate(cs, 0);
3358 
3359 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3360 	    is_sched_load_balance(cs))
3361 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3362 
3363 	if (cs->use_parent_ecpus) {
3364 		struct cpuset *parent = parent_cs(cs);
3365 
3366 		cs->use_parent_ecpus = false;
3367 		parent->child_ecpus_count--;
3368 	}
3369 
3370 	cpuset_dec();
3371 	clear_bit(CS_ONLINE, &cs->flags);
3372 
3373 	mutex_unlock(&cpuset_mutex);
3374 	cpus_read_unlock();
3375 }
3376 
3377 static void cpuset_css_free(struct cgroup_subsys_state *css)
3378 {
3379 	struct cpuset *cs = css_cs(css);
3380 
3381 	free_cpuset(cs);
3382 }
3383 
3384 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3385 {
3386 	mutex_lock(&cpuset_mutex);
3387 	spin_lock_irq(&callback_lock);
3388 
3389 	if (is_in_v2_mode()) {
3390 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3391 		top_cpuset.mems_allowed = node_possible_map;
3392 	} else {
3393 		cpumask_copy(top_cpuset.cpus_allowed,
3394 			     top_cpuset.effective_cpus);
3395 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3396 	}
3397 
3398 	spin_unlock_irq(&callback_lock);
3399 	mutex_unlock(&cpuset_mutex);
3400 }
3401 
3402 /*
3403  * In case the child is cloned into a cpuset different from its parent,
3404  * additional checks are done to see if the move is allowed.
3405  */
3406 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3407 {
3408 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3409 	bool same_cs;
3410 	int ret;
3411 
3412 	rcu_read_lock();
3413 	same_cs = (cs == task_cs(current));
3414 	rcu_read_unlock();
3415 
3416 	if (same_cs)
3417 		return 0;
3418 
3419 	lockdep_assert_held(&cgroup_mutex);
3420 	mutex_lock(&cpuset_mutex);
3421 
3422 	/* Check to see if task is allowed in the cpuset */
3423 	ret = cpuset_can_attach_check(cs);
3424 	if (ret)
3425 		goto out_unlock;
3426 
3427 	ret = task_can_attach(task);
3428 	if (ret)
3429 		goto out_unlock;
3430 
3431 	ret = security_task_setscheduler(task);
3432 	if (ret)
3433 		goto out_unlock;
3434 
3435 	/*
3436 	 * Mark attach is in progress.  This makes validate_change() fail
3437 	 * changes which zero cpus/mems_allowed.
3438 	 */
3439 	cs->attach_in_progress++;
3440 out_unlock:
3441 	mutex_unlock(&cpuset_mutex);
3442 	return ret;
3443 }
3444 
3445 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3446 {
3447 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3448 	bool same_cs;
3449 
3450 	rcu_read_lock();
3451 	same_cs = (cs == task_cs(current));
3452 	rcu_read_unlock();
3453 
3454 	if (same_cs)
3455 		return;
3456 
3457 	mutex_lock(&cpuset_mutex);
3458 	cs->attach_in_progress--;
3459 	if (!cs->attach_in_progress)
3460 		wake_up(&cpuset_attach_wq);
3461 	mutex_unlock(&cpuset_mutex);
3462 }
3463 
3464 /*
3465  * Make sure the new task conform to the current state of its parent,
3466  * which could have been changed by cpuset just after it inherits the
3467  * state from the parent and before it sits on the cgroup's task list.
3468  */
3469 static void cpuset_fork(struct task_struct *task)
3470 {
3471 	struct cpuset *cs;
3472 	bool same_cs;
3473 
3474 	rcu_read_lock();
3475 	cs = task_cs(task);
3476 	same_cs = (cs == task_cs(current));
3477 	rcu_read_unlock();
3478 
3479 	if (same_cs) {
3480 		if (cs == &top_cpuset)
3481 			return;
3482 
3483 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3484 		task->mems_allowed = current->mems_allowed;
3485 		return;
3486 	}
3487 
3488 	/* CLONE_INTO_CGROUP */
3489 	mutex_lock(&cpuset_mutex);
3490 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3491 	cpuset_attach_task(cs, task);
3492 
3493 	cs->attach_in_progress--;
3494 	if (!cs->attach_in_progress)
3495 		wake_up(&cpuset_attach_wq);
3496 
3497 	mutex_unlock(&cpuset_mutex);
3498 }
3499 
3500 struct cgroup_subsys cpuset_cgrp_subsys = {
3501 	.css_alloc	= cpuset_css_alloc,
3502 	.css_online	= cpuset_css_online,
3503 	.css_offline	= cpuset_css_offline,
3504 	.css_free	= cpuset_css_free,
3505 	.can_attach	= cpuset_can_attach,
3506 	.cancel_attach	= cpuset_cancel_attach,
3507 	.attach		= cpuset_attach,
3508 	.post_attach	= cpuset_post_attach,
3509 	.bind		= cpuset_bind,
3510 	.can_fork	= cpuset_can_fork,
3511 	.cancel_fork	= cpuset_cancel_fork,
3512 	.fork		= cpuset_fork,
3513 	.legacy_cftypes	= legacy_files,
3514 	.dfl_cftypes	= dfl_files,
3515 	.early_init	= true,
3516 	.threaded	= true,
3517 };
3518 
3519 /**
3520  * cpuset_init - initialize cpusets at system boot
3521  *
3522  * Description: Initialize top_cpuset
3523  **/
3524 
3525 int __init cpuset_init(void)
3526 {
3527 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3528 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3529 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3530 
3531 	cpumask_setall(top_cpuset.cpus_allowed);
3532 	nodes_setall(top_cpuset.mems_allowed);
3533 	cpumask_setall(top_cpuset.effective_cpus);
3534 	nodes_setall(top_cpuset.effective_mems);
3535 
3536 	fmeter_init(&top_cpuset.fmeter);
3537 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3538 	top_cpuset.relax_domain_level = -1;
3539 
3540 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3541 
3542 	return 0;
3543 }
3544 
3545 /*
3546  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3547  * or memory nodes, we need to walk over the cpuset hierarchy,
3548  * removing that CPU or node from all cpusets.  If this removes the
3549  * last CPU or node from a cpuset, then move the tasks in the empty
3550  * cpuset to its next-highest non-empty parent.
3551  */
3552 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3553 {
3554 	struct cpuset *parent;
3555 
3556 	/*
3557 	 * Find its next-highest non-empty parent, (top cpuset
3558 	 * has online cpus, so can't be empty).
3559 	 */
3560 	parent = parent_cs(cs);
3561 	while (cpumask_empty(parent->cpus_allowed) ||
3562 			nodes_empty(parent->mems_allowed))
3563 		parent = parent_cs(parent);
3564 
3565 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3566 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3567 		pr_cont_cgroup_name(cs->css.cgroup);
3568 		pr_cont("\n");
3569 	}
3570 }
3571 
3572 static void
3573 hotplug_update_tasks_legacy(struct cpuset *cs,
3574 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3575 			    bool cpus_updated, bool mems_updated)
3576 {
3577 	bool is_empty;
3578 
3579 	spin_lock_irq(&callback_lock);
3580 	cpumask_copy(cs->cpus_allowed, new_cpus);
3581 	cpumask_copy(cs->effective_cpus, new_cpus);
3582 	cs->mems_allowed = *new_mems;
3583 	cs->effective_mems = *new_mems;
3584 	spin_unlock_irq(&callback_lock);
3585 
3586 	/*
3587 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3588 	 * as the tasks will be migrated to an ancestor.
3589 	 */
3590 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3591 		update_tasks_cpumask(cs, new_cpus);
3592 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3593 		update_tasks_nodemask(cs);
3594 
3595 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3596 		   nodes_empty(cs->mems_allowed);
3597 
3598 	/*
3599 	 * Move tasks to the nearest ancestor with execution resources,
3600 	 * This is full cgroup operation which will also call back into
3601 	 * cpuset. Should be done outside any lock.
3602 	 */
3603 	if (is_empty) {
3604 		mutex_unlock(&cpuset_mutex);
3605 		remove_tasks_in_empty_cpuset(cs);
3606 		mutex_lock(&cpuset_mutex);
3607 	}
3608 }
3609 
3610 static void
3611 hotplug_update_tasks(struct cpuset *cs,
3612 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3613 		     bool cpus_updated, bool mems_updated)
3614 {
3615 	/* A partition root is allowed to have empty effective cpus */
3616 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3617 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3618 	if (nodes_empty(*new_mems))
3619 		*new_mems = parent_cs(cs)->effective_mems;
3620 
3621 	spin_lock_irq(&callback_lock);
3622 	cpumask_copy(cs->effective_cpus, new_cpus);
3623 	cs->effective_mems = *new_mems;
3624 	spin_unlock_irq(&callback_lock);
3625 
3626 	if (cpus_updated)
3627 		update_tasks_cpumask(cs, new_cpus);
3628 	if (mems_updated)
3629 		update_tasks_nodemask(cs);
3630 }
3631 
3632 static bool force_rebuild;
3633 
3634 void cpuset_force_rebuild(void)
3635 {
3636 	force_rebuild = true;
3637 }
3638 
3639 /**
3640  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3641  * @cs: cpuset in interest
3642  * @tmp: the tmpmasks structure pointer
3643  *
3644  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3645  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3646  * all its tasks are moved to the nearest ancestor with both resources.
3647  */
3648 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3649 {
3650 	static cpumask_t new_cpus;
3651 	static nodemask_t new_mems;
3652 	bool cpus_updated;
3653 	bool mems_updated;
3654 	struct cpuset *parent;
3655 retry:
3656 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3657 
3658 	mutex_lock(&cpuset_mutex);
3659 
3660 	/*
3661 	 * We have raced with task attaching. We wait until attaching
3662 	 * is finished, so we won't attach a task to an empty cpuset.
3663 	 */
3664 	if (cs->attach_in_progress) {
3665 		mutex_unlock(&cpuset_mutex);
3666 		goto retry;
3667 	}
3668 
3669 	parent = parent_cs(cs);
3670 	compute_effective_cpumask(&new_cpus, cs, parent);
3671 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3672 
3673 	if (cs->nr_subparts_cpus)
3674 		/*
3675 		 * Make sure that CPUs allocated to child partitions
3676 		 * do not show up in effective_cpus.
3677 		 */
3678 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3679 
3680 	if (!tmp || !cs->partition_root_state)
3681 		goto update_tasks;
3682 
3683 	/*
3684 	 * In the unlikely event that a partition root has empty
3685 	 * effective_cpus with tasks, we will have to invalidate child
3686 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3687 	 * reclaim their cpus.
3688 	 */
3689 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3690 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3691 		spin_lock_irq(&callback_lock);
3692 		cs->nr_subparts_cpus = 0;
3693 		cpumask_clear(cs->subparts_cpus);
3694 		spin_unlock_irq(&callback_lock);
3695 		compute_effective_cpumask(&new_cpus, cs, parent);
3696 	}
3697 
3698 	/*
3699 	 * Force the partition to become invalid if either one of
3700 	 * the following conditions hold:
3701 	 * 1) empty effective cpus but not valid empty partition.
3702 	 * 2) parent is invalid or doesn't grant any cpus to child
3703 	 *    partitions.
3704 	 */
3705 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3706 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3707 		int old_prs, parent_prs;
3708 
3709 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3710 		if (cs->nr_subparts_cpus) {
3711 			spin_lock_irq(&callback_lock);
3712 			cs->nr_subparts_cpus = 0;
3713 			cpumask_clear(cs->subparts_cpus);
3714 			spin_unlock_irq(&callback_lock);
3715 			compute_effective_cpumask(&new_cpus, cs, parent);
3716 		}
3717 
3718 		old_prs = cs->partition_root_state;
3719 		parent_prs = parent->partition_root_state;
3720 		if (is_partition_valid(cs)) {
3721 			spin_lock_irq(&callback_lock);
3722 			make_partition_invalid(cs);
3723 			spin_unlock_irq(&callback_lock);
3724 			if (is_prs_invalid(parent_prs))
3725 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3726 			else if (!parent_prs)
3727 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3728 			else
3729 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3730 			notify_partition_change(cs, old_prs);
3731 		}
3732 		cpuset_force_rebuild();
3733 	}
3734 
3735 	/*
3736 	 * On the other hand, an invalid partition root may be transitioned
3737 	 * back to a regular one.
3738 	 */
3739 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3740 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3741 		if (is_partition_valid(cs))
3742 			cpuset_force_rebuild();
3743 	}
3744 
3745 update_tasks:
3746 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3747 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3748 	if (!cpus_updated && !mems_updated)
3749 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3750 
3751 	if (mems_updated)
3752 		check_insane_mems_config(&new_mems);
3753 
3754 	if (is_in_v2_mode())
3755 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3756 				     cpus_updated, mems_updated);
3757 	else
3758 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3759 					    cpus_updated, mems_updated);
3760 
3761 unlock:
3762 	mutex_unlock(&cpuset_mutex);
3763 }
3764 
3765 /**
3766  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3767  * @work: unused
3768  *
3769  * This function is called after either CPU or memory configuration has
3770  * changed and updates cpuset accordingly.  The top_cpuset is always
3771  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3772  * order to make cpusets transparent (of no affect) on systems that are
3773  * actively using CPU hotplug but making no active use of cpusets.
3774  *
3775  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3776  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3777  * all descendants.
3778  *
3779  * Note that CPU offlining during suspend is ignored.  We don't modify
3780  * cpusets across suspend/resume cycles at all.
3781  */
3782 static void cpuset_hotplug_workfn(struct work_struct *work)
3783 {
3784 	static cpumask_t new_cpus;
3785 	static nodemask_t new_mems;
3786 	bool cpus_updated, mems_updated;
3787 	bool on_dfl = is_in_v2_mode();
3788 	struct tmpmasks tmp, *ptmp = NULL;
3789 
3790 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3791 		ptmp = &tmp;
3792 
3793 	mutex_lock(&cpuset_mutex);
3794 
3795 	/* fetch the available cpus/mems and find out which changed how */
3796 	cpumask_copy(&new_cpus, cpu_active_mask);
3797 	new_mems = node_states[N_MEMORY];
3798 
3799 	/*
3800 	 * If subparts_cpus is populated, it is likely that the check below
3801 	 * will produce a false positive on cpus_updated when the cpu list
3802 	 * isn't changed. It is extra work, but it is better to be safe.
3803 	 */
3804 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3805 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3806 
3807 	/*
3808 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3809 	 * we assumed that cpus are updated.
3810 	 */
3811 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3812 		cpus_updated = true;
3813 
3814 	/* synchronize cpus_allowed to cpu_active_mask */
3815 	if (cpus_updated) {
3816 		spin_lock_irq(&callback_lock);
3817 		if (!on_dfl)
3818 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3819 		/*
3820 		 * Make sure that CPUs allocated to child partitions
3821 		 * do not show up in effective_cpus. If no CPU is left,
3822 		 * we clear the subparts_cpus & let the child partitions
3823 		 * fight for the CPUs again.
3824 		 */
3825 		if (top_cpuset.nr_subparts_cpus) {
3826 			if (cpumask_subset(&new_cpus,
3827 					   top_cpuset.subparts_cpus)) {
3828 				top_cpuset.nr_subparts_cpus = 0;
3829 				cpumask_clear(top_cpuset.subparts_cpus);
3830 			} else {
3831 				cpumask_andnot(&new_cpus, &new_cpus,
3832 					       top_cpuset.subparts_cpus);
3833 			}
3834 		}
3835 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3836 		spin_unlock_irq(&callback_lock);
3837 		/* we don't mess with cpumasks of tasks in top_cpuset */
3838 	}
3839 
3840 	/* synchronize mems_allowed to N_MEMORY */
3841 	if (mems_updated) {
3842 		spin_lock_irq(&callback_lock);
3843 		if (!on_dfl)
3844 			top_cpuset.mems_allowed = new_mems;
3845 		top_cpuset.effective_mems = new_mems;
3846 		spin_unlock_irq(&callback_lock);
3847 		update_tasks_nodemask(&top_cpuset);
3848 	}
3849 
3850 	mutex_unlock(&cpuset_mutex);
3851 
3852 	/* if cpus or mems changed, we need to propagate to descendants */
3853 	if (cpus_updated || mems_updated) {
3854 		struct cpuset *cs;
3855 		struct cgroup_subsys_state *pos_css;
3856 
3857 		rcu_read_lock();
3858 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3859 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3860 				continue;
3861 			rcu_read_unlock();
3862 
3863 			cpuset_hotplug_update_tasks(cs, ptmp);
3864 
3865 			rcu_read_lock();
3866 			css_put(&cs->css);
3867 		}
3868 		rcu_read_unlock();
3869 	}
3870 
3871 	/* rebuild sched domains if cpus_allowed has changed */
3872 	if (cpus_updated || force_rebuild) {
3873 		force_rebuild = false;
3874 		rebuild_sched_domains();
3875 	}
3876 
3877 	free_cpumasks(NULL, ptmp);
3878 }
3879 
3880 void cpuset_update_active_cpus(void)
3881 {
3882 	/*
3883 	 * We're inside cpu hotplug critical region which usually nests
3884 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3885 	 * to a work item to avoid reverse locking order.
3886 	 */
3887 	schedule_work(&cpuset_hotplug_work);
3888 }
3889 
3890 void cpuset_wait_for_hotplug(void)
3891 {
3892 	flush_work(&cpuset_hotplug_work);
3893 }
3894 
3895 /*
3896  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3897  * Call this routine anytime after node_states[N_MEMORY] changes.
3898  * See cpuset_update_active_cpus() for CPU hotplug handling.
3899  */
3900 static int cpuset_track_online_nodes(struct notifier_block *self,
3901 				unsigned long action, void *arg)
3902 {
3903 	schedule_work(&cpuset_hotplug_work);
3904 	return NOTIFY_OK;
3905 }
3906 
3907 /**
3908  * cpuset_init_smp - initialize cpus_allowed
3909  *
3910  * Description: Finish top cpuset after cpu, node maps are initialized
3911  */
3912 void __init cpuset_init_smp(void)
3913 {
3914 	/*
3915 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3916 	 * cpuset_bind() call will be reset to v1 values in another
3917 	 * cpuset_bind() call when v1 cpuset is mounted.
3918 	 */
3919 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3920 
3921 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3922 	top_cpuset.effective_mems = node_states[N_MEMORY];
3923 
3924 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3925 
3926 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3927 	BUG_ON(!cpuset_migrate_mm_wq);
3928 }
3929 
3930 /**
3931  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3932  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3933  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3934  *
3935  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3936  * attached to the specified @tsk.  Guaranteed to return some non-empty
3937  * subset of cpu_online_mask, even if this means going outside the
3938  * tasks cpuset, except when the task is in the top cpuset.
3939  **/
3940 
3941 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3942 {
3943 	unsigned long flags;
3944 	struct cpuset *cs;
3945 
3946 	spin_lock_irqsave(&callback_lock, flags);
3947 	rcu_read_lock();
3948 
3949 	cs = task_cs(tsk);
3950 	if (cs != &top_cpuset)
3951 		guarantee_online_cpus(tsk, pmask);
3952 	/*
3953 	 * Tasks in the top cpuset won't get update to their cpumasks
3954 	 * when a hotplug online/offline event happens. So we include all
3955 	 * offline cpus in the allowed cpu list.
3956 	 */
3957 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3958 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3959 
3960 		/*
3961 		 * We first exclude cpus allocated to partitions. If there is no
3962 		 * allowable online cpu left, we fall back to all possible cpus.
3963 		 */
3964 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3965 		if (!cpumask_intersects(pmask, cpu_online_mask))
3966 			cpumask_copy(pmask, possible_mask);
3967 	}
3968 
3969 	rcu_read_unlock();
3970 	spin_unlock_irqrestore(&callback_lock, flags);
3971 }
3972 
3973 /**
3974  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3975  * @tsk: pointer to task_struct with which the scheduler is struggling
3976  *
3977  * Description: In the case that the scheduler cannot find an allowed cpu in
3978  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3979  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3980  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3981  * This is the absolute last resort for the scheduler and it is only used if
3982  * _every_ other avenue has been traveled.
3983  *
3984  * Returns true if the affinity of @tsk was changed, false otherwise.
3985  **/
3986 
3987 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3988 {
3989 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3990 	const struct cpumask *cs_mask;
3991 	bool changed = false;
3992 
3993 	rcu_read_lock();
3994 	cs_mask = task_cs(tsk)->cpus_allowed;
3995 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3996 		do_set_cpus_allowed(tsk, cs_mask);
3997 		changed = true;
3998 	}
3999 	rcu_read_unlock();
4000 
4001 	/*
4002 	 * We own tsk->cpus_allowed, nobody can change it under us.
4003 	 *
4004 	 * But we used cs && cs->cpus_allowed lockless and thus can
4005 	 * race with cgroup_attach_task() or update_cpumask() and get
4006 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4007 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4008 	 * which takes task_rq_lock().
4009 	 *
4010 	 * If we are called after it dropped the lock we must see all
4011 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4012 	 * set any mask even if it is not right from task_cs() pov,
4013 	 * the pending set_cpus_allowed_ptr() will fix things.
4014 	 *
4015 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4016 	 * if required.
4017 	 */
4018 	return changed;
4019 }
4020 
4021 void __init cpuset_init_current_mems_allowed(void)
4022 {
4023 	nodes_setall(current->mems_allowed);
4024 }
4025 
4026 /**
4027  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4028  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4029  *
4030  * Description: Returns the nodemask_t mems_allowed of the cpuset
4031  * attached to the specified @tsk.  Guaranteed to return some non-empty
4032  * subset of node_states[N_MEMORY], even if this means going outside the
4033  * tasks cpuset.
4034  **/
4035 
4036 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4037 {
4038 	nodemask_t mask;
4039 	unsigned long flags;
4040 
4041 	spin_lock_irqsave(&callback_lock, flags);
4042 	rcu_read_lock();
4043 	guarantee_online_mems(task_cs(tsk), &mask);
4044 	rcu_read_unlock();
4045 	spin_unlock_irqrestore(&callback_lock, flags);
4046 
4047 	return mask;
4048 }
4049 
4050 /**
4051  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4052  * @nodemask: the nodemask to be checked
4053  *
4054  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4055  */
4056 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4057 {
4058 	return nodes_intersects(*nodemask, current->mems_allowed);
4059 }
4060 
4061 /*
4062  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4063  * mem_hardwall ancestor to the specified cpuset.  Call holding
4064  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4065  * (an unusual configuration), then returns the root cpuset.
4066  */
4067 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4068 {
4069 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4070 		cs = parent_cs(cs);
4071 	return cs;
4072 }
4073 
4074 /*
4075  * cpuset_node_allowed - Can we allocate on a memory node?
4076  * @node: is this an allowed node?
4077  * @gfp_mask: memory allocation flags
4078  *
4079  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4080  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4081  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4082  * yes.  If current has access to memory reserves as an oom victim, yes.
4083  * Otherwise, no.
4084  *
4085  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4086  * and do not allow allocations outside the current tasks cpuset
4087  * unless the task has been OOM killed.
4088  * GFP_KERNEL allocations are not so marked, so can escape to the
4089  * nearest enclosing hardwalled ancestor cpuset.
4090  *
4091  * Scanning up parent cpusets requires callback_lock.  The
4092  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4093  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4094  * current tasks mems_allowed came up empty on the first pass over
4095  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4096  * cpuset are short of memory, might require taking the callback_lock.
4097  *
4098  * The first call here from mm/page_alloc:get_page_from_freelist()
4099  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4100  * so no allocation on a node outside the cpuset is allowed (unless
4101  * in interrupt, of course).
4102  *
4103  * The second pass through get_page_from_freelist() doesn't even call
4104  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4105  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4106  * in alloc_flags.  That logic and the checks below have the combined
4107  * affect that:
4108  *	in_interrupt - any node ok (current task context irrelevant)
4109  *	GFP_ATOMIC   - any node ok
4110  *	tsk_is_oom_victim   - any node ok
4111  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4112  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4113  */
4114 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4115 {
4116 	struct cpuset *cs;		/* current cpuset ancestors */
4117 	bool allowed;			/* is allocation in zone z allowed? */
4118 	unsigned long flags;
4119 
4120 	if (in_interrupt())
4121 		return true;
4122 	if (node_isset(node, current->mems_allowed))
4123 		return true;
4124 	/*
4125 	 * Allow tasks that have access to memory reserves because they have
4126 	 * been OOM killed to get memory anywhere.
4127 	 */
4128 	if (unlikely(tsk_is_oom_victim(current)))
4129 		return true;
4130 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4131 		return false;
4132 
4133 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4134 		return true;
4135 
4136 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4137 	spin_lock_irqsave(&callback_lock, flags);
4138 
4139 	rcu_read_lock();
4140 	cs = nearest_hardwall_ancestor(task_cs(current));
4141 	allowed = node_isset(node, cs->mems_allowed);
4142 	rcu_read_unlock();
4143 
4144 	spin_unlock_irqrestore(&callback_lock, flags);
4145 	return allowed;
4146 }
4147 
4148 /**
4149  * cpuset_spread_node() - On which node to begin search for a page
4150  * @rotor: round robin rotor
4151  *
4152  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4153  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4154  * and if the memory allocation used cpuset_mem_spread_node()
4155  * to determine on which node to start looking, as it will for
4156  * certain page cache or slab cache pages such as used for file
4157  * system buffers and inode caches, then instead of starting on the
4158  * local node to look for a free page, rather spread the starting
4159  * node around the tasks mems_allowed nodes.
4160  *
4161  * We don't have to worry about the returned node being offline
4162  * because "it can't happen", and even if it did, it would be ok.
4163  *
4164  * The routines calling guarantee_online_mems() are careful to
4165  * only set nodes in task->mems_allowed that are online.  So it
4166  * should not be possible for the following code to return an
4167  * offline node.  But if it did, that would be ok, as this routine
4168  * is not returning the node where the allocation must be, only
4169  * the node where the search should start.  The zonelist passed to
4170  * __alloc_pages() will include all nodes.  If the slab allocator
4171  * is passed an offline node, it will fall back to the local node.
4172  * See kmem_cache_alloc_node().
4173  */
4174 static int cpuset_spread_node(int *rotor)
4175 {
4176 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4177 }
4178 
4179 /**
4180  * cpuset_mem_spread_node() - On which node to begin search for a file page
4181  */
4182 int cpuset_mem_spread_node(void)
4183 {
4184 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4185 		current->cpuset_mem_spread_rotor =
4186 			node_random(&current->mems_allowed);
4187 
4188 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4189 }
4190 
4191 /**
4192  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4193  */
4194 int cpuset_slab_spread_node(void)
4195 {
4196 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4197 		current->cpuset_slab_spread_rotor =
4198 			node_random(&current->mems_allowed);
4199 
4200 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4201 }
4202 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4203 
4204 /**
4205  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4206  * @tsk1: pointer to task_struct of some task.
4207  * @tsk2: pointer to task_struct of some other task.
4208  *
4209  * Description: Return true if @tsk1's mems_allowed intersects the
4210  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4211  * one of the task's memory usage might impact the memory available
4212  * to the other.
4213  **/
4214 
4215 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4216 				   const struct task_struct *tsk2)
4217 {
4218 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4219 }
4220 
4221 /**
4222  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4223  *
4224  * Description: Prints current's name, cpuset name, and cached copy of its
4225  * mems_allowed to the kernel log.
4226  */
4227 void cpuset_print_current_mems_allowed(void)
4228 {
4229 	struct cgroup *cgrp;
4230 
4231 	rcu_read_lock();
4232 
4233 	cgrp = task_cs(current)->css.cgroup;
4234 	pr_cont(",cpuset=");
4235 	pr_cont_cgroup_name(cgrp);
4236 	pr_cont(",mems_allowed=%*pbl",
4237 		nodemask_pr_args(&current->mems_allowed));
4238 
4239 	rcu_read_unlock();
4240 }
4241 
4242 /*
4243  * Collection of memory_pressure is suppressed unless
4244  * this flag is enabled by writing "1" to the special
4245  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4246  */
4247 
4248 int cpuset_memory_pressure_enabled __read_mostly;
4249 
4250 /*
4251  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4252  *
4253  * Keep a running average of the rate of synchronous (direct)
4254  * page reclaim efforts initiated by tasks in each cpuset.
4255  *
4256  * This represents the rate at which some task in the cpuset
4257  * ran low on memory on all nodes it was allowed to use, and
4258  * had to enter the kernels page reclaim code in an effort to
4259  * create more free memory by tossing clean pages or swapping
4260  * or writing dirty pages.
4261  *
4262  * Display to user space in the per-cpuset read-only file
4263  * "memory_pressure".  Value displayed is an integer
4264  * representing the recent rate of entry into the synchronous
4265  * (direct) page reclaim by any task attached to the cpuset.
4266  */
4267 
4268 void __cpuset_memory_pressure_bump(void)
4269 {
4270 	rcu_read_lock();
4271 	fmeter_markevent(&task_cs(current)->fmeter);
4272 	rcu_read_unlock();
4273 }
4274 
4275 #ifdef CONFIG_PROC_PID_CPUSET
4276 /*
4277  * proc_cpuset_show()
4278  *  - Print tasks cpuset path into seq_file.
4279  *  - Used for /proc/<pid>/cpuset.
4280  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4281  *    doesn't really matter if tsk->cpuset changes after we read it,
4282  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4283  *    anyway.
4284  */
4285 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4286 		     struct pid *pid, struct task_struct *tsk)
4287 {
4288 	char *buf;
4289 	struct cgroup_subsys_state *css;
4290 	int retval;
4291 
4292 	retval = -ENOMEM;
4293 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4294 	if (!buf)
4295 		goto out;
4296 
4297 	rcu_read_lock();
4298 	spin_lock_irq(&css_set_lock);
4299 	css = task_css(tsk, cpuset_cgrp_id);
4300 	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
4301 				       current->nsproxy->cgroup_ns);
4302 	spin_unlock_irq(&css_set_lock);
4303 	rcu_read_unlock();
4304 
4305 	if (retval == -E2BIG)
4306 		retval = -ENAMETOOLONG;
4307 	if (retval < 0)
4308 		goto out_free;
4309 	seq_puts(m, buf);
4310 	seq_putc(m, '\n');
4311 	retval = 0;
4312 out_free:
4313 	kfree(buf);
4314 out:
4315 	return retval;
4316 }
4317 #endif /* CONFIG_PROC_PID_CPUSET */
4318 
4319 /* Display task mems_allowed in /proc/<pid>/status file. */
4320 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4321 {
4322 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4323 		   nodemask_pr_args(&task->mems_allowed));
4324 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4325 		   nodemask_pr_args(&task->mems_allowed));
4326 }
4327