1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierachy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 }; 164 165 /* 166 * Partition root states: 167 * 168 * 0 - not a partition root 169 * 170 * 1 - partition root 171 * 172 * -1 - invalid partition root 173 * None of the cpus in cpus_allowed can be put into the parent's 174 * subparts_cpus. In this case, the cpuset is not a real partition 175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 176 * and the cpuset can be restored back to a partition root if the 177 * parent cpuset can give more CPUs back to this child cpuset. 178 */ 179 #define PRS_DISABLED 0 180 #define PRS_ENABLED 1 181 #define PRS_ERROR -1 182 183 /* 184 * Temporary cpumasks for working with partitions that are passed among 185 * functions to avoid memory allocation in inner functions. 186 */ 187 struct tmpmasks { 188 cpumask_var_t addmask, delmask; /* For partition root */ 189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 190 }; 191 192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 193 { 194 return css ? container_of(css, struct cpuset, css) : NULL; 195 } 196 197 /* Retrieve the cpuset for a task */ 198 static inline struct cpuset *task_cs(struct task_struct *task) 199 { 200 return css_cs(task_css(task, cpuset_cgrp_id)); 201 } 202 203 static inline struct cpuset *parent_cs(struct cpuset *cs) 204 { 205 return css_cs(cs->css.parent); 206 } 207 208 /* bits in struct cpuset flags field */ 209 typedef enum { 210 CS_ONLINE, 211 CS_CPU_EXCLUSIVE, 212 CS_MEM_EXCLUSIVE, 213 CS_MEM_HARDWALL, 214 CS_MEMORY_MIGRATE, 215 CS_SCHED_LOAD_BALANCE, 216 CS_SPREAD_PAGE, 217 CS_SPREAD_SLAB, 218 } cpuset_flagbits_t; 219 220 /* convenient tests for these bits */ 221 static inline bool is_cpuset_online(struct cpuset *cs) 222 { 223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 224 } 225 226 static inline int is_cpu_exclusive(const struct cpuset *cs) 227 { 228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 229 } 230 231 static inline int is_mem_exclusive(const struct cpuset *cs) 232 { 233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 234 } 235 236 static inline int is_mem_hardwall(const struct cpuset *cs) 237 { 238 return test_bit(CS_MEM_HARDWALL, &cs->flags); 239 } 240 241 static inline int is_sched_load_balance(const struct cpuset *cs) 242 { 243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 244 } 245 246 static inline int is_memory_migrate(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 249 } 250 251 static inline int is_spread_page(const struct cpuset *cs) 252 { 253 return test_bit(CS_SPREAD_PAGE, &cs->flags); 254 } 255 256 static inline int is_spread_slab(const struct cpuset *cs) 257 { 258 return test_bit(CS_SPREAD_SLAB, &cs->flags); 259 } 260 261 static inline int is_partition_root(const struct cpuset *cs) 262 { 263 return cs->partition_root_state > 0; 264 } 265 266 static struct cpuset top_cpuset = { 267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 268 (1 << CS_MEM_EXCLUSIVE)), 269 .partition_root_state = PRS_ENABLED, 270 }; 271 272 /** 273 * cpuset_for_each_child - traverse online children of a cpuset 274 * @child_cs: loop cursor pointing to the current child 275 * @pos_css: used for iteration 276 * @parent_cs: target cpuset to walk children of 277 * 278 * Walk @child_cs through the online children of @parent_cs. Must be used 279 * with RCU read locked. 280 */ 281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 282 css_for_each_child((pos_css), &(parent_cs)->css) \ 283 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 284 285 /** 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 287 * @des_cs: loop cursor pointing to the current descendant 288 * @pos_css: used for iteration 289 * @root_cs: target cpuset to walk ancestor of 290 * 291 * Walk @des_cs through the online descendants of @root_cs. Must be used 292 * with RCU read locked. The caller may modify @pos_css by calling 293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 294 * iteration and the first node to be visited. 295 */ 296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 298 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 299 300 /* 301 * There are two global locks guarding cpuset structures - cpuset_mutex and 302 * callback_lock. We also require taking task_lock() when dereferencing a 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this 304 * comment. 305 * 306 * A task must hold both locks to modify cpusets. If a task holds 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 308 * is the only task able to also acquire callback_lock and be able to 309 * modify cpusets. It can perform various checks on the cpuset structure 310 * first, knowing nothing will change. It can also allocate memory while 311 * just holding cpuset_mutex. While it is performing these checks, various 312 * callback routines can briefly acquire callback_lock to query cpusets. 313 * Once it is ready to make the changes, it takes callback_lock, blocking 314 * everyone else. 315 * 316 * Calls to the kernel memory allocator can not be made while holding 317 * callback_lock, as that would risk double tripping on callback_lock 318 * from one of the callbacks into the cpuset code from within 319 * __alloc_pages(). 320 * 321 * If a task is only holding callback_lock, then it has read-only 322 * access to cpusets. 323 * 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed 325 * by other task, we use alloc_lock in the task_struct fields to protect 326 * them. 327 * 328 * The cpuset_common_file_read() handlers only hold callback_lock across 329 * small pieces of code, such as when reading out possibly multi-word 330 * cpumasks and nodemasks. 331 * 332 * Accessing a task's cpuset should be done in accordance with the 333 * guidelines for accessing subsystem state in kernel/cgroup.c 334 */ 335 336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 337 338 void cpuset_read_lock(void) 339 { 340 percpu_down_read(&cpuset_rwsem); 341 } 342 343 void cpuset_read_unlock(void) 344 { 345 percpu_up_read(&cpuset_rwsem); 346 } 347 348 static DEFINE_SPINLOCK(callback_lock); 349 350 static struct workqueue_struct *cpuset_migrate_mm_wq; 351 352 /* 353 * CPU / memory hotplug is handled asynchronously. 354 */ 355 static void cpuset_hotplug_workfn(struct work_struct *work); 356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 357 358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 359 360 /* 361 * Cgroup v2 behavior is used when on default hierarchy or the 362 * cgroup_v2_mode flag is set. 363 */ 364 static inline bool is_in_v2_mode(void) 365 { 366 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 367 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 368 } 369 370 /* 371 * Return in pmask the portion of a cpusets's cpus_allowed that 372 * are online. If none are online, walk up the cpuset hierarchy 373 * until we find one that does have some online cpus. 374 * 375 * One way or another, we guarantee to return some non-empty subset 376 * of cpu_online_mask. 377 * 378 * Call with callback_lock or cpuset_mutex held. 379 */ 380 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 381 { 382 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 383 cs = parent_cs(cs); 384 if (unlikely(!cs)) { 385 /* 386 * The top cpuset doesn't have any online cpu as a 387 * consequence of a race between cpuset_hotplug_work 388 * and cpu hotplug notifier. But we know the top 389 * cpuset's effective_cpus is on its way to to be 390 * identical to cpu_online_mask. 391 */ 392 cpumask_copy(pmask, cpu_online_mask); 393 return; 394 } 395 } 396 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 397 } 398 399 /* 400 * Return in *pmask the portion of a cpusets's mems_allowed that 401 * are online, with memory. If none are online with memory, walk 402 * up the cpuset hierarchy until we find one that does have some 403 * online mems. The top cpuset always has some mems online. 404 * 405 * One way or another, we guarantee to return some non-empty subset 406 * of node_states[N_MEMORY]. 407 * 408 * Call with callback_lock or cpuset_mutex held. 409 */ 410 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 411 { 412 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 413 cs = parent_cs(cs); 414 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 415 } 416 417 /* 418 * update task's spread flag if cpuset's page/slab spread flag is set 419 * 420 * Call with callback_lock or cpuset_mutex held. 421 */ 422 static void cpuset_update_task_spread_flag(struct cpuset *cs, 423 struct task_struct *tsk) 424 { 425 if (is_spread_page(cs)) 426 task_set_spread_page(tsk); 427 else 428 task_clear_spread_page(tsk); 429 430 if (is_spread_slab(cs)) 431 task_set_spread_slab(tsk); 432 else 433 task_clear_spread_slab(tsk); 434 } 435 436 /* 437 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 438 * 439 * One cpuset is a subset of another if all its allowed CPUs and 440 * Memory Nodes are a subset of the other, and its exclusive flags 441 * are only set if the other's are set. Call holding cpuset_mutex. 442 */ 443 444 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 445 { 446 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 447 nodes_subset(p->mems_allowed, q->mems_allowed) && 448 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 449 is_mem_exclusive(p) <= is_mem_exclusive(q); 450 } 451 452 /** 453 * alloc_cpumasks - allocate three cpumasks for cpuset 454 * @cs: the cpuset that have cpumasks to be allocated. 455 * @tmp: the tmpmasks structure pointer 456 * Return: 0 if successful, -ENOMEM otherwise. 457 * 458 * Only one of the two input arguments should be non-NULL. 459 */ 460 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 461 { 462 cpumask_var_t *pmask1, *pmask2, *pmask3; 463 464 if (cs) { 465 pmask1 = &cs->cpus_allowed; 466 pmask2 = &cs->effective_cpus; 467 pmask3 = &cs->subparts_cpus; 468 } else { 469 pmask1 = &tmp->new_cpus; 470 pmask2 = &tmp->addmask; 471 pmask3 = &tmp->delmask; 472 } 473 474 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 475 return -ENOMEM; 476 477 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 478 goto free_one; 479 480 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 481 goto free_two; 482 483 return 0; 484 485 free_two: 486 free_cpumask_var(*pmask2); 487 free_one: 488 free_cpumask_var(*pmask1); 489 return -ENOMEM; 490 } 491 492 /** 493 * free_cpumasks - free cpumasks in a tmpmasks structure 494 * @cs: the cpuset that have cpumasks to be free. 495 * @tmp: the tmpmasks structure pointer 496 */ 497 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 498 { 499 if (cs) { 500 free_cpumask_var(cs->cpus_allowed); 501 free_cpumask_var(cs->effective_cpus); 502 free_cpumask_var(cs->subparts_cpus); 503 } 504 if (tmp) { 505 free_cpumask_var(tmp->new_cpus); 506 free_cpumask_var(tmp->addmask); 507 free_cpumask_var(tmp->delmask); 508 } 509 } 510 511 /** 512 * alloc_trial_cpuset - allocate a trial cpuset 513 * @cs: the cpuset that the trial cpuset duplicates 514 */ 515 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 516 { 517 struct cpuset *trial; 518 519 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 520 if (!trial) 521 return NULL; 522 523 if (alloc_cpumasks(trial, NULL)) { 524 kfree(trial); 525 return NULL; 526 } 527 528 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 529 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 530 return trial; 531 } 532 533 /** 534 * free_cpuset - free the cpuset 535 * @cs: the cpuset to be freed 536 */ 537 static inline void free_cpuset(struct cpuset *cs) 538 { 539 free_cpumasks(cs, NULL); 540 kfree(cs); 541 } 542 543 /* 544 * validate_change() - Used to validate that any proposed cpuset change 545 * follows the structural rules for cpusets. 546 * 547 * If we replaced the flag and mask values of the current cpuset 548 * (cur) with those values in the trial cpuset (trial), would 549 * our various subset and exclusive rules still be valid? Presumes 550 * cpuset_mutex held. 551 * 552 * 'cur' is the address of an actual, in-use cpuset. Operations 553 * such as list traversal that depend on the actual address of the 554 * cpuset in the list must use cur below, not trial. 555 * 556 * 'trial' is the address of bulk structure copy of cur, with 557 * perhaps one or more of the fields cpus_allowed, mems_allowed, 558 * or flags changed to new, trial values. 559 * 560 * Return 0 if valid, -errno if not. 561 */ 562 563 static int validate_change(struct cpuset *cur, struct cpuset *trial) 564 { 565 struct cgroup_subsys_state *css; 566 struct cpuset *c, *par; 567 int ret; 568 569 rcu_read_lock(); 570 571 /* Each of our child cpusets must be a subset of us */ 572 ret = -EBUSY; 573 cpuset_for_each_child(c, css, cur) 574 if (!is_cpuset_subset(c, trial)) 575 goto out; 576 577 /* Remaining checks don't apply to root cpuset */ 578 ret = 0; 579 if (cur == &top_cpuset) 580 goto out; 581 582 par = parent_cs(cur); 583 584 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 585 ret = -EACCES; 586 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 587 goto out; 588 589 /* 590 * If either I or some sibling (!= me) is exclusive, we can't 591 * overlap 592 */ 593 ret = -EINVAL; 594 cpuset_for_each_child(c, css, par) { 595 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 596 c != cur && 597 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 598 goto out; 599 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 600 c != cur && 601 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 602 goto out; 603 } 604 605 /* 606 * Cpusets with tasks - existing or newly being attached - can't 607 * be changed to have empty cpus_allowed or mems_allowed. 608 */ 609 ret = -ENOSPC; 610 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 611 if (!cpumask_empty(cur->cpus_allowed) && 612 cpumask_empty(trial->cpus_allowed)) 613 goto out; 614 if (!nodes_empty(cur->mems_allowed) && 615 nodes_empty(trial->mems_allowed)) 616 goto out; 617 } 618 619 /* 620 * We can't shrink if we won't have enough room for SCHED_DEADLINE 621 * tasks. 622 */ 623 ret = -EBUSY; 624 if (is_cpu_exclusive(cur) && 625 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 626 trial->cpus_allowed)) 627 goto out; 628 629 ret = 0; 630 out: 631 rcu_read_unlock(); 632 return ret; 633 } 634 635 #ifdef CONFIG_SMP 636 /* 637 * Helper routine for generate_sched_domains(). 638 * Do cpusets a, b have overlapping effective cpus_allowed masks? 639 */ 640 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 641 { 642 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 643 } 644 645 static void 646 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 647 { 648 if (dattr->relax_domain_level < c->relax_domain_level) 649 dattr->relax_domain_level = c->relax_domain_level; 650 return; 651 } 652 653 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 654 struct cpuset *root_cs) 655 { 656 struct cpuset *cp; 657 struct cgroup_subsys_state *pos_css; 658 659 rcu_read_lock(); 660 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 661 /* skip the whole subtree if @cp doesn't have any CPU */ 662 if (cpumask_empty(cp->cpus_allowed)) { 663 pos_css = css_rightmost_descendant(pos_css); 664 continue; 665 } 666 667 if (is_sched_load_balance(cp)) 668 update_domain_attr(dattr, cp); 669 } 670 rcu_read_unlock(); 671 } 672 673 /* Must be called with cpuset_mutex held. */ 674 static inline int nr_cpusets(void) 675 { 676 /* jump label reference count + the top-level cpuset */ 677 return static_key_count(&cpusets_enabled_key.key) + 1; 678 } 679 680 /* 681 * generate_sched_domains() 682 * 683 * This function builds a partial partition of the systems CPUs 684 * A 'partial partition' is a set of non-overlapping subsets whose 685 * union is a subset of that set. 686 * The output of this function needs to be passed to kernel/sched/core.c 687 * partition_sched_domains() routine, which will rebuild the scheduler's 688 * load balancing domains (sched domains) as specified by that partial 689 * partition. 690 * 691 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 692 * for a background explanation of this. 693 * 694 * Does not return errors, on the theory that the callers of this 695 * routine would rather not worry about failures to rebuild sched 696 * domains when operating in the severe memory shortage situations 697 * that could cause allocation failures below. 698 * 699 * Must be called with cpuset_mutex held. 700 * 701 * The three key local variables below are: 702 * cp - cpuset pointer, used (together with pos_css) to perform a 703 * top-down scan of all cpusets. For our purposes, rebuilding 704 * the schedulers sched domains, we can ignore !is_sched_load_ 705 * balance cpusets. 706 * csa - (for CpuSet Array) Array of pointers to all the cpusets 707 * that need to be load balanced, for convenient iterative 708 * access by the subsequent code that finds the best partition, 709 * i.e the set of domains (subsets) of CPUs such that the 710 * cpus_allowed of every cpuset marked is_sched_load_balance 711 * is a subset of one of these domains, while there are as 712 * many such domains as possible, each as small as possible. 713 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 714 * the kernel/sched/core.c routine partition_sched_domains() in a 715 * convenient format, that can be easily compared to the prior 716 * value to determine what partition elements (sched domains) 717 * were changed (added or removed.) 718 * 719 * Finding the best partition (set of domains): 720 * The triple nested loops below over i, j, k scan over the 721 * load balanced cpusets (using the array of cpuset pointers in 722 * csa[]) looking for pairs of cpusets that have overlapping 723 * cpus_allowed, but which don't have the same 'pn' partition 724 * number and gives them in the same partition number. It keeps 725 * looping on the 'restart' label until it can no longer find 726 * any such pairs. 727 * 728 * The union of the cpus_allowed masks from the set of 729 * all cpusets having the same 'pn' value then form the one 730 * element of the partition (one sched domain) to be passed to 731 * partition_sched_domains(). 732 */ 733 static int generate_sched_domains(cpumask_var_t **domains, 734 struct sched_domain_attr **attributes) 735 { 736 struct cpuset *cp; /* top-down scan of cpusets */ 737 struct cpuset **csa; /* array of all cpuset ptrs */ 738 int csn; /* how many cpuset ptrs in csa so far */ 739 int i, j, k; /* indices for partition finding loops */ 740 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 741 struct sched_domain_attr *dattr; /* attributes for custom domains */ 742 int ndoms = 0; /* number of sched domains in result */ 743 int nslot; /* next empty doms[] struct cpumask slot */ 744 struct cgroup_subsys_state *pos_css; 745 bool root_load_balance = is_sched_load_balance(&top_cpuset); 746 747 doms = NULL; 748 dattr = NULL; 749 csa = NULL; 750 751 /* Special case for the 99% of systems with one, full, sched domain */ 752 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 753 ndoms = 1; 754 doms = alloc_sched_domains(ndoms); 755 if (!doms) 756 goto done; 757 758 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 759 if (dattr) { 760 *dattr = SD_ATTR_INIT; 761 update_domain_attr_tree(dattr, &top_cpuset); 762 } 763 cpumask_and(doms[0], top_cpuset.effective_cpus, 764 housekeeping_cpumask(HK_FLAG_DOMAIN)); 765 766 goto done; 767 } 768 769 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 770 if (!csa) 771 goto done; 772 csn = 0; 773 774 rcu_read_lock(); 775 if (root_load_balance) 776 csa[csn++] = &top_cpuset; 777 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 778 if (cp == &top_cpuset) 779 continue; 780 /* 781 * Continue traversing beyond @cp iff @cp has some CPUs and 782 * isn't load balancing. The former is obvious. The 783 * latter: All child cpusets contain a subset of the 784 * parent's cpus, so just skip them, and then we call 785 * update_domain_attr_tree() to calc relax_domain_level of 786 * the corresponding sched domain. 787 * 788 * If root is load-balancing, we can skip @cp if it 789 * is a subset of the root's effective_cpus. 790 */ 791 if (!cpumask_empty(cp->cpus_allowed) && 792 !(is_sched_load_balance(cp) && 793 cpumask_intersects(cp->cpus_allowed, 794 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 795 continue; 796 797 if (root_load_balance && 798 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 799 continue; 800 801 if (is_sched_load_balance(cp) && 802 !cpumask_empty(cp->effective_cpus)) 803 csa[csn++] = cp; 804 805 /* skip @cp's subtree if not a partition root */ 806 if (!is_partition_root(cp)) 807 pos_css = css_rightmost_descendant(pos_css); 808 } 809 rcu_read_unlock(); 810 811 for (i = 0; i < csn; i++) 812 csa[i]->pn = i; 813 ndoms = csn; 814 815 restart: 816 /* Find the best partition (set of sched domains) */ 817 for (i = 0; i < csn; i++) { 818 struct cpuset *a = csa[i]; 819 int apn = a->pn; 820 821 for (j = 0; j < csn; j++) { 822 struct cpuset *b = csa[j]; 823 int bpn = b->pn; 824 825 if (apn != bpn && cpusets_overlap(a, b)) { 826 for (k = 0; k < csn; k++) { 827 struct cpuset *c = csa[k]; 828 829 if (c->pn == bpn) 830 c->pn = apn; 831 } 832 ndoms--; /* one less element */ 833 goto restart; 834 } 835 } 836 } 837 838 /* 839 * Now we know how many domains to create. 840 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 841 */ 842 doms = alloc_sched_domains(ndoms); 843 if (!doms) 844 goto done; 845 846 /* 847 * The rest of the code, including the scheduler, can deal with 848 * dattr==NULL case. No need to abort if alloc fails. 849 */ 850 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 851 GFP_KERNEL); 852 853 for (nslot = 0, i = 0; i < csn; i++) { 854 struct cpuset *a = csa[i]; 855 struct cpumask *dp; 856 int apn = a->pn; 857 858 if (apn < 0) { 859 /* Skip completed partitions */ 860 continue; 861 } 862 863 dp = doms[nslot]; 864 865 if (nslot == ndoms) { 866 static int warnings = 10; 867 if (warnings) { 868 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 869 nslot, ndoms, csn, i, apn); 870 warnings--; 871 } 872 continue; 873 } 874 875 cpumask_clear(dp); 876 if (dattr) 877 *(dattr + nslot) = SD_ATTR_INIT; 878 for (j = i; j < csn; j++) { 879 struct cpuset *b = csa[j]; 880 881 if (apn == b->pn) { 882 cpumask_or(dp, dp, b->effective_cpus); 883 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 884 if (dattr) 885 update_domain_attr_tree(dattr + nslot, b); 886 887 /* Done with this partition */ 888 b->pn = -1; 889 } 890 } 891 nslot++; 892 } 893 BUG_ON(nslot != ndoms); 894 895 done: 896 kfree(csa); 897 898 /* 899 * Fallback to the default domain if kmalloc() failed. 900 * See comments in partition_sched_domains(). 901 */ 902 if (doms == NULL) 903 ndoms = 1; 904 905 *domains = doms; 906 *attributes = dattr; 907 return ndoms; 908 } 909 910 static void update_tasks_root_domain(struct cpuset *cs) 911 { 912 struct css_task_iter it; 913 struct task_struct *task; 914 915 css_task_iter_start(&cs->css, 0, &it); 916 917 while ((task = css_task_iter_next(&it))) 918 dl_add_task_root_domain(task); 919 920 css_task_iter_end(&it); 921 } 922 923 static void rebuild_root_domains(void) 924 { 925 struct cpuset *cs = NULL; 926 struct cgroup_subsys_state *pos_css; 927 928 percpu_rwsem_assert_held(&cpuset_rwsem); 929 lockdep_assert_cpus_held(); 930 lockdep_assert_held(&sched_domains_mutex); 931 932 rcu_read_lock(); 933 934 /* 935 * Clear default root domain DL accounting, it will be computed again 936 * if a task belongs to it. 937 */ 938 dl_clear_root_domain(&def_root_domain); 939 940 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 941 942 if (cpumask_empty(cs->effective_cpus)) { 943 pos_css = css_rightmost_descendant(pos_css); 944 continue; 945 } 946 947 css_get(&cs->css); 948 949 rcu_read_unlock(); 950 951 update_tasks_root_domain(cs); 952 953 rcu_read_lock(); 954 css_put(&cs->css); 955 } 956 rcu_read_unlock(); 957 } 958 959 static void 960 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 961 struct sched_domain_attr *dattr_new) 962 { 963 mutex_lock(&sched_domains_mutex); 964 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 965 rebuild_root_domains(); 966 mutex_unlock(&sched_domains_mutex); 967 } 968 969 /* 970 * Rebuild scheduler domains. 971 * 972 * If the flag 'sched_load_balance' of any cpuset with non-empty 973 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 974 * which has that flag enabled, or if any cpuset with a non-empty 975 * 'cpus' is removed, then call this routine to rebuild the 976 * scheduler's dynamic sched domains. 977 * 978 * Call with cpuset_mutex held. Takes get_online_cpus(). 979 */ 980 static void rebuild_sched_domains_locked(void) 981 { 982 struct sched_domain_attr *attr; 983 cpumask_var_t *doms; 984 int ndoms; 985 986 lockdep_assert_cpus_held(); 987 percpu_rwsem_assert_held(&cpuset_rwsem); 988 989 /* 990 * We have raced with CPU hotplug. Don't do anything to avoid 991 * passing doms with offlined cpu to partition_sched_domains(). 992 * Anyways, hotplug work item will rebuild sched domains. 993 */ 994 if (!top_cpuset.nr_subparts_cpus && 995 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 996 return; 997 998 if (top_cpuset.nr_subparts_cpus && 999 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 1000 return; 1001 1002 /* Generate domain masks and attrs */ 1003 ndoms = generate_sched_domains(&doms, &attr); 1004 1005 /* Have scheduler rebuild the domains */ 1006 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1007 } 1008 #else /* !CONFIG_SMP */ 1009 static void rebuild_sched_domains_locked(void) 1010 { 1011 } 1012 #endif /* CONFIG_SMP */ 1013 1014 void rebuild_sched_domains(void) 1015 { 1016 get_online_cpus(); 1017 percpu_down_write(&cpuset_rwsem); 1018 rebuild_sched_domains_locked(); 1019 percpu_up_write(&cpuset_rwsem); 1020 put_online_cpus(); 1021 } 1022 1023 /** 1024 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1025 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1026 * 1027 * Iterate through each task of @cs updating its cpus_allowed to the 1028 * effective cpuset's. As this function is called with cpuset_mutex held, 1029 * cpuset membership stays stable. 1030 */ 1031 static void update_tasks_cpumask(struct cpuset *cs) 1032 { 1033 struct css_task_iter it; 1034 struct task_struct *task; 1035 1036 css_task_iter_start(&cs->css, 0, &it); 1037 while ((task = css_task_iter_next(&it))) 1038 set_cpus_allowed_ptr(task, cs->effective_cpus); 1039 css_task_iter_end(&it); 1040 } 1041 1042 /** 1043 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1044 * @new_cpus: the temp variable for the new effective_cpus mask 1045 * @cs: the cpuset the need to recompute the new effective_cpus mask 1046 * @parent: the parent cpuset 1047 * 1048 * If the parent has subpartition CPUs, include them in the list of 1049 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1050 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1051 * to mask those out. 1052 */ 1053 static void compute_effective_cpumask(struct cpumask *new_cpus, 1054 struct cpuset *cs, struct cpuset *parent) 1055 { 1056 if (parent->nr_subparts_cpus) { 1057 cpumask_or(new_cpus, parent->effective_cpus, 1058 parent->subparts_cpus); 1059 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1060 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1061 } else { 1062 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1063 } 1064 } 1065 1066 /* 1067 * Commands for update_parent_subparts_cpumask 1068 */ 1069 enum subparts_cmd { 1070 partcmd_enable, /* Enable partition root */ 1071 partcmd_disable, /* Disable partition root */ 1072 partcmd_update, /* Update parent's subparts_cpus */ 1073 }; 1074 1075 /** 1076 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1077 * @cpuset: The cpuset that requests change in partition root state 1078 * @cmd: Partition root state change command 1079 * @newmask: Optional new cpumask for partcmd_update 1080 * @tmp: Temporary addmask and delmask 1081 * Return: 0, 1 or an error code 1082 * 1083 * For partcmd_enable, the cpuset is being transformed from a non-partition 1084 * root to a partition root. The cpus_allowed mask of the given cpuset will 1085 * be put into parent's subparts_cpus and taken away from parent's 1086 * effective_cpus. The function will return 0 if all the CPUs listed in 1087 * cpus_allowed can be granted or an error code will be returned. 1088 * 1089 * For partcmd_disable, the cpuset is being transofrmed from a partition 1090 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1091 * parent's subparts_cpus will be taken away from that cpumask and put back 1092 * into parent's effective_cpus. 0 should always be returned. 1093 * 1094 * For partcmd_update, if the optional newmask is specified, the cpu 1095 * list is to be changed from cpus_allowed to newmask. Otherwise, 1096 * cpus_allowed is assumed to remain the same. The cpuset should either 1097 * be a partition root or an invalid partition root. The partition root 1098 * state may change if newmask is NULL and none of the requested CPUs can 1099 * be granted by the parent. The function will return 1 if changes to 1100 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1101 * Error code should only be returned when newmask is non-NULL. 1102 * 1103 * The partcmd_enable and partcmd_disable commands are used by 1104 * update_prstate(). The partcmd_update command is used by 1105 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1106 * newmask set. 1107 * 1108 * The checking is more strict when enabling partition root than the 1109 * other two commands. 1110 * 1111 * Because of the implicit cpu exclusive nature of a partition root, 1112 * cpumask changes that violates the cpu exclusivity rule will not be 1113 * permitted when checked by validate_change(). The validate_change() 1114 * function will also prevent any changes to the cpu list if it is not 1115 * a superset of children's cpu lists. 1116 */ 1117 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1118 struct cpumask *newmask, 1119 struct tmpmasks *tmp) 1120 { 1121 struct cpuset *parent = parent_cs(cpuset); 1122 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1123 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1124 bool part_error = false; /* Partition error? */ 1125 1126 percpu_rwsem_assert_held(&cpuset_rwsem); 1127 1128 /* 1129 * The parent must be a partition root. 1130 * The new cpumask, if present, or the current cpus_allowed must 1131 * not be empty. 1132 */ 1133 if (!is_partition_root(parent) || 1134 (newmask && cpumask_empty(newmask)) || 1135 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1136 return -EINVAL; 1137 1138 /* 1139 * Enabling/disabling partition root is not allowed if there are 1140 * online children. 1141 */ 1142 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1143 return -EBUSY; 1144 1145 /* 1146 * Enabling partition root is not allowed if not all the CPUs 1147 * can be granted from parent's effective_cpus or at least one 1148 * CPU will be left after that. 1149 */ 1150 if ((cmd == partcmd_enable) && 1151 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1152 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1153 return -EINVAL; 1154 1155 /* 1156 * A cpumask update cannot make parent's effective_cpus become empty. 1157 */ 1158 adding = deleting = false; 1159 if (cmd == partcmd_enable) { 1160 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1161 adding = true; 1162 } else if (cmd == partcmd_disable) { 1163 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1164 parent->subparts_cpus); 1165 } else if (newmask) { 1166 /* 1167 * partcmd_update with newmask: 1168 * 1169 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1170 * addmask = newmask & parent->effective_cpus 1171 * & ~parent->subparts_cpus 1172 */ 1173 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1174 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1175 parent->subparts_cpus); 1176 1177 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1178 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1179 parent->subparts_cpus); 1180 /* 1181 * Return error if the new effective_cpus could become empty. 1182 */ 1183 if (adding && 1184 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1185 if (!deleting) 1186 return -EINVAL; 1187 /* 1188 * As some of the CPUs in subparts_cpus might have 1189 * been offlined, we need to compute the real delmask 1190 * to confirm that. 1191 */ 1192 if (!cpumask_and(tmp->addmask, tmp->delmask, 1193 cpu_active_mask)) 1194 return -EINVAL; 1195 cpumask_copy(tmp->addmask, parent->effective_cpus); 1196 } 1197 } else { 1198 /* 1199 * partcmd_update w/o newmask: 1200 * 1201 * addmask = cpus_allowed & parent->effectiveb_cpus 1202 * 1203 * Note that parent's subparts_cpus may have been 1204 * pre-shrunk in case there is a change in the cpu list. 1205 * So no deletion is needed. 1206 */ 1207 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1208 parent->effective_cpus); 1209 part_error = cpumask_equal(tmp->addmask, 1210 parent->effective_cpus); 1211 } 1212 1213 if (cmd == partcmd_update) { 1214 int prev_prs = cpuset->partition_root_state; 1215 1216 /* 1217 * Check for possible transition between PRS_ENABLED 1218 * and PRS_ERROR. 1219 */ 1220 switch (cpuset->partition_root_state) { 1221 case PRS_ENABLED: 1222 if (part_error) 1223 cpuset->partition_root_state = PRS_ERROR; 1224 break; 1225 case PRS_ERROR: 1226 if (!part_error) 1227 cpuset->partition_root_state = PRS_ENABLED; 1228 break; 1229 } 1230 /* 1231 * Set part_error if previously in invalid state. 1232 */ 1233 part_error = (prev_prs == PRS_ERROR); 1234 } 1235 1236 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1237 return 0; /* Nothing need to be done */ 1238 1239 if (cpuset->partition_root_state == PRS_ERROR) { 1240 /* 1241 * Remove all its cpus from parent's subparts_cpus. 1242 */ 1243 adding = false; 1244 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1245 parent->subparts_cpus); 1246 } 1247 1248 if (!adding && !deleting) 1249 return 0; 1250 1251 /* 1252 * Change the parent's subparts_cpus. 1253 * Newly added CPUs will be removed from effective_cpus and 1254 * newly deleted ones will be added back to effective_cpus. 1255 */ 1256 spin_lock_irq(&callback_lock); 1257 if (adding) { 1258 cpumask_or(parent->subparts_cpus, 1259 parent->subparts_cpus, tmp->addmask); 1260 cpumask_andnot(parent->effective_cpus, 1261 parent->effective_cpus, tmp->addmask); 1262 } 1263 if (deleting) { 1264 cpumask_andnot(parent->subparts_cpus, 1265 parent->subparts_cpus, tmp->delmask); 1266 /* 1267 * Some of the CPUs in subparts_cpus might have been offlined. 1268 */ 1269 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1270 cpumask_or(parent->effective_cpus, 1271 parent->effective_cpus, tmp->delmask); 1272 } 1273 1274 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1275 spin_unlock_irq(&callback_lock); 1276 1277 return cmd == partcmd_update; 1278 } 1279 1280 /* 1281 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1282 * @cs: the cpuset to consider 1283 * @tmp: temp variables for calculating effective_cpus & partition setup 1284 * 1285 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1286 * and all its descendants need to be updated. 1287 * 1288 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1289 * 1290 * Called with cpuset_mutex held 1291 */ 1292 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1293 { 1294 struct cpuset *cp; 1295 struct cgroup_subsys_state *pos_css; 1296 bool need_rebuild_sched_domains = false; 1297 1298 rcu_read_lock(); 1299 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1300 struct cpuset *parent = parent_cs(cp); 1301 1302 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1303 1304 /* 1305 * If it becomes empty, inherit the effective mask of the 1306 * parent, which is guaranteed to have some CPUs. 1307 */ 1308 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1309 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1310 if (!cp->use_parent_ecpus) { 1311 cp->use_parent_ecpus = true; 1312 parent->child_ecpus_count++; 1313 } 1314 } else if (cp->use_parent_ecpus) { 1315 cp->use_parent_ecpus = false; 1316 WARN_ON_ONCE(!parent->child_ecpus_count); 1317 parent->child_ecpus_count--; 1318 } 1319 1320 /* 1321 * Skip the whole subtree if the cpumask remains the same 1322 * and has no partition root state. 1323 */ 1324 if (!cp->partition_root_state && 1325 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1326 pos_css = css_rightmost_descendant(pos_css); 1327 continue; 1328 } 1329 1330 /* 1331 * update_parent_subparts_cpumask() should have been called 1332 * for cs already in update_cpumask(). We should also call 1333 * update_tasks_cpumask() again for tasks in the parent 1334 * cpuset if the parent's subparts_cpus changes. 1335 */ 1336 if ((cp != cs) && cp->partition_root_state) { 1337 switch (parent->partition_root_state) { 1338 case PRS_DISABLED: 1339 /* 1340 * If parent is not a partition root or an 1341 * invalid partition root, clear the state 1342 * state and the CS_CPU_EXCLUSIVE flag. 1343 */ 1344 WARN_ON_ONCE(cp->partition_root_state 1345 != PRS_ERROR); 1346 cp->partition_root_state = 0; 1347 1348 /* 1349 * clear_bit() is an atomic operation and 1350 * readers aren't interested in the state 1351 * of CS_CPU_EXCLUSIVE anyway. So we can 1352 * just update the flag without holding 1353 * the callback_lock. 1354 */ 1355 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1356 break; 1357 1358 case PRS_ENABLED: 1359 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1360 update_tasks_cpumask(parent); 1361 break; 1362 1363 case PRS_ERROR: 1364 /* 1365 * When parent is invalid, it has to be too. 1366 */ 1367 cp->partition_root_state = PRS_ERROR; 1368 if (cp->nr_subparts_cpus) { 1369 cp->nr_subparts_cpus = 0; 1370 cpumask_clear(cp->subparts_cpus); 1371 } 1372 break; 1373 } 1374 } 1375 1376 if (!css_tryget_online(&cp->css)) 1377 continue; 1378 rcu_read_unlock(); 1379 1380 spin_lock_irq(&callback_lock); 1381 1382 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1383 if (cp->nr_subparts_cpus && 1384 (cp->partition_root_state != PRS_ENABLED)) { 1385 cp->nr_subparts_cpus = 0; 1386 cpumask_clear(cp->subparts_cpus); 1387 } else if (cp->nr_subparts_cpus) { 1388 /* 1389 * Make sure that effective_cpus & subparts_cpus 1390 * are mutually exclusive. 1391 * 1392 * In the unlikely event that effective_cpus 1393 * becomes empty. we clear cp->nr_subparts_cpus and 1394 * let its child partition roots to compete for 1395 * CPUs again. 1396 */ 1397 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1398 cp->subparts_cpus); 1399 if (cpumask_empty(cp->effective_cpus)) { 1400 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1401 cpumask_clear(cp->subparts_cpus); 1402 cp->nr_subparts_cpus = 0; 1403 } else if (!cpumask_subset(cp->subparts_cpus, 1404 tmp->new_cpus)) { 1405 cpumask_andnot(cp->subparts_cpus, 1406 cp->subparts_cpus, tmp->new_cpus); 1407 cp->nr_subparts_cpus 1408 = cpumask_weight(cp->subparts_cpus); 1409 } 1410 } 1411 spin_unlock_irq(&callback_lock); 1412 1413 WARN_ON(!is_in_v2_mode() && 1414 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1415 1416 update_tasks_cpumask(cp); 1417 1418 /* 1419 * On legacy hierarchy, if the effective cpumask of any non- 1420 * empty cpuset is changed, we need to rebuild sched domains. 1421 * On default hierarchy, the cpuset needs to be a partition 1422 * root as well. 1423 */ 1424 if (!cpumask_empty(cp->cpus_allowed) && 1425 is_sched_load_balance(cp) && 1426 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1427 is_partition_root(cp))) 1428 need_rebuild_sched_domains = true; 1429 1430 rcu_read_lock(); 1431 css_put(&cp->css); 1432 } 1433 rcu_read_unlock(); 1434 1435 if (need_rebuild_sched_domains) 1436 rebuild_sched_domains_locked(); 1437 } 1438 1439 /** 1440 * update_sibling_cpumasks - Update siblings cpumasks 1441 * @parent: Parent cpuset 1442 * @cs: Current cpuset 1443 * @tmp: Temp variables 1444 */ 1445 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1446 struct tmpmasks *tmp) 1447 { 1448 struct cpuset *sibling; 1449 struct cgroup_subsys_state *pos_css; 1450 1451 /* 1452 * Check all its siblings and call update_cpumasks_hier() 1453 * if their use_parent_ecpus flag is set in order for them 1454 * to use the right effective_cpus value. 1455 */ 1456 rcu_read_lock(); 1457 cpuset_for_each_child(sibling, pos_css, parent) { 1458 if (sibling == cs) 1459 continue; 1460 if (!sibling->use_parent_ecpus) 1461 continue; 1462 1463 update_cpumasks_hier(sibling, tmp); 1464 } 1465 rcu_read_unlock(); 1466 } 1467 1468 /** 1469 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1470 * @cs: the cpuset to consider 1471 * @trialcs: trial cpuset 1472 * @buf: buffer of cpu numbers written to this cpuset 1473 */ 1474 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1475 const char *buf) 1476 { 1477 int retval; 1478 struct tmpmasks tmp; 1479 1480 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1481 if (cs == &top_cpuset) 1482 return -EACCES; 1483 1484 /* 1485 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1486 * Since cpulist_parse() fails on an empty mask, we special case 1487 * that parsing. The validate_change() call ensures that cpusets 1488 * with tasks have cpus. 1489 */ 1490 if (!*buf) { 1491 cpumask_clear(trialcs->cpus_allowed); 1492 } else { 1493 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1494 if (retval < 0) 1495 return retval; 1496 1497 if (!cpumask_subset(trialcs->cpus_allowed, 1498 top_cpuset.cpus_allowed)) 1499 return -EINVAL; 1500 } 1501 1502 /* Nothing to do if the cpus didn't change */ 1503 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1504 return 0; 1505 1506 retval = validate_change(cs, trialcs); 1507 if (retval < 0) 1508 return retval; 1509 1510 #ifdef CONFIG_CPUMASK_OFFSTACK 1511 /* 1512 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1513 * to allocated cpumasks. 1514 */ 1515 tmp.addmask = trialcs->subparts_cpus; 1516 tmp.delmask = trialcs->effective_cpus; 1517 tmp.new_cpus = trialcs->cpus_allowed; 1518 #endif 1519 1520 if (cs->partition_root_state) { 1521 /* Cpumask of a partition root cannot be empty */ 1522 if (cpumask_empty(trialcs->cpus_allowed)) 1523 return -EINVAL; 1524 if (update_parent_subparts_cpumask(cs, partcmd_update, 1525 trialcs->cpus_allowed, &tmp) < 0) 1526 return -EINVAL; 1527 } 1528 1529 spin_lock_irq(&callback_lock); 1530 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1531 1532 /* 1533 * Make sure that subparts_cpus is a subset of cpus_allowed. 1534 */ 1535 if (cs->nr_subparts_cpus) { 1536 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1537 cs->cpus_allowed); 1538 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1539 } 1540 spin_unlock_irq(&callback_lock); 1541 1542 update_cpumasks_hier(cs, &tmp); 1543 1544 if (cs->partition_root_state) { 1545 struct cpuset *parent = parent_cs(cs); 1546 1547 /* 1548 * For partition root, update the cpumasks of sibling 1549 * cpusets if they use parent's effective_cpus. 1550 */ 1551 if (parent->child_ecpus_count) 1552 update_sibling_cpumasks(parent, cs, &tmp); 1553 } 1554 return 0; 1555 } 1556 1557 /* 1558 * Migrate memory region from one set of nodes to another. This is 1559 * performed asynchronously as it can be called from process migration path 1560 * holding locks involved in process management. All mm migrations are 1561 * performed in the queued order and can be waited for by flushing 1562 * cpuset_migrate_mm_wq. 1563 */ 1564 1565 struct cpuset_migrate_mm_work { 1566 struct work_struct work; 1567 struct mm_struct *mm; 1568 nodemask_t from; 1569 nodemask_t to; 1570 }; 1571 1572 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1573 { 1574 struct cpuset_migrate_mm_work *mwork = 1575 container_of(work, struct cpuset_migrate_mm_work, work); 1576 1577 /* on a wq worker, no need to worry about %current's mems_allowed */ 1578 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1579 mmput(mwork->mm); 1580 kfree(mwork); 1581 } 1582 1583 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1584 const nodemask_t *to) 1585 { 1586 struct cpuset_migrate_mm_work *mwork; 1587 1588 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1589 if (mwork) { 1590 mwork->mm = mm; 1591 mwork->from = *from; 1592 mwork->to = *to; 1593 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1594 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1595 } else { 1596 mmput(mm); 1597 } 1598 } 1599 1600 static void cpuset_post_attach(void) 1601 { 1602 flush_workqueue(cpuset_migrate_mm_wq); 1603 } 1604 1605 /* 1606 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1607 * @tsk: the task to change 1608 * @newmems: new nodes that the task will be set 1609 * 1610 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1611 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1612 * parallel, it might temporarily see an empty intersection, which results in 1613 * a seqlock check and retry before OOM or allocation failure. 1614 */ 1615 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1616 nodemask_t *newmems) 1617 { 1618 task_lock(tsk); 1619 1620 local_irq_disable(); 1621 write_seqcount_begin(&tsk->mems_allowed_seq); 1622 1623 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1624 mpol_rebind_task(tsk, newmems); 1625 tsk->mems_allowed = *newmems; 1626 1627 write_seqcount_end(&tsk->mems_allowed_seq); 1628 local_irq_enable(); 1629 1630 task_unlock(tsk); 1631 } 1632 1633 static void *cpuset_being_rebound; 1634 1635 /** 1636 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1637 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1638 * 1639 * Iterate through each task of @cs updating its mems_allowed to the 1640 * effective cpuset's. As this function is called with cpuset_mutex held, 1641 * cpuset membership stays stable. 1642 */ 1643 static void update_tasks_nodemask(struct cpuset *cs) 1644 { 1645 static nodemask_t newmems; /* protected by cpuset_mutex */ 1646 struct css_task_iter it; 1647 struct task_struct *task; 1648 1649 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1650 1651 guarantee_online_mems(cs, &newmems); 1652 1653 /* 1654 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1655 * take while holding tasklist_lock. Forks can happen - the 1656 * mpol_dup() cpuset_being_rebound check will catch such forks, 1657 * and rebind their vma mempolicies too. Because we still hold 1658 * the global cpuset_mutex, we know that no other rebind effort 1659 * will be contending for the global variable cpuset_being_rebound. 1660 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1661 * is idempotent. Also migrate pages in each mm to new nodes. 1662 */ 1663 css_task_iter_start(&cs->css, 0, &it); 1664 while ((task = css_task_iter_next(&it))) { 1665 struct mm_struct *mm; 1666 bool migrate; 1667 1668 cpuset_change_task_nodemask(task, &newmems); 1669 1670 mm = get_task_mm(task); 1671 if (!mm) 1672 continue; 1673 1674 migrate = is_memory_migrate(cs); 1675 1676 mpol_rebind_mm(mm, &cs->mems_allowed); 1677 if (migrate) 1678 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1679 else 1680 mmput(mm); 1681 } 1682 css_task_iter_end(&it); 1683 1684 /* 1685 * All the tasks' nodemasks have been updated, update 1686 * cs->old_mems_allowed. 1687 */ 1688 cs->old_mems_allowed = newmems; 1689 1690 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1691 cpuset_being_rebound = NULL; 1692 } 1693 1694 /* 1695 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1696 * @cs: the cpuset to consider 1697 * @new_mems: a temp variable for calculating new effective_mems 1698 * 1699 * When configured nodemask is changed, the effective nodemasks of this cpuset 1700 * and all its descendants need to be updated. 1701 * 1702 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1703 * 1704 * Called with cpuset_mutex held 1705 */ 1706 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1707 { 1708 struct cpuset *cp; 1709 struct cgroup_subsys_state *pos_css; 1710 1711 rcu_read_lock(); 1712 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1713 struct cpuset *parent = parent_cs(cp); 1714 1715 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1716 1717 /* 1718 * If it becomes empty, inherit the effective mask of the 1719 * parent, which is guaranteed to have some MEMs. 1720 */ 1721 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1722 *new_mems = parent->effective_mems; 1723 1724 /* Skip the whole subtree if the nodemask remains the same. */ 1725 if (nodes_equal(*new_mems, cp->effective_mems)) { 1726 pos_css = css_rightmost_descendant(pos_css); 1727 continue; 1728 } 1729 1730 if (!css_tryget_online(&cp->css)) 1731 continue; 1732 rcu_read_unlock(); 1733 1734 spin_lock_irq(&callback_lock); 1735 cp->effective_mems = *new_mems; 1736 spin_unlock_irq(&callback_lock); 1737 1738 WARN_ON(!is_in_v2_mode() && 1739 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1740 1741 update_tasks_nodemask(cp); 1742 1743 rcu_read_lock(); 1744 css_put(&cp->css); 1745 } 1746 rcu_read_unlock(); 1747 } 1748 1749 /* 1750 * Handle user request to change the 'mems' memory placement 1751 * of a cpuset. Needs to validate the request, update the 1752 * cpusets mems_allowed, and for each task in the cpuset, 1753 * update mems_allowed and rebind task's mempolicy and any vma 1754 * mempolicies and if the cpuset is marked 'memory_migrate', 1755 * migrate the tasks pages to the new memory. 1756 * 1757 * Call with cpuset_mutex held. May take callback_lock during call. 1758 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1759 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1760 * their mempolicies to the cpusets new mems_allowed. 1761 */ 1762 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1763 const char *buf) 1764 { 1765 int retval; 1766 1767 /* 1768 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1769 * it's read-only 1770 */ 1771 if (cs == &top_cpuset) { 1772 retval = -EACCES; 1773 goto done; 1774 } 1775 1776 /* 1777 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1778 * Since nodelist_parse() fails on an empty mask, we special case 1779 * that parsing. The validate_change() call ensures that cpusets 1780 * with tasks have memory. 1781 */ 1782 if (!*buf) { 1783 nodes_clear(trialcs->mems_allowed); 1784 } else { 1785 retval = nodelist_parse(buf, trialcs->mems_allowed); 1786 if (retval < 0) 1787 goto done; 1788 1789 if (!nodes_subset(trialcs->mems_allowed, 1790 top_cpuset.mems_allowed)) { 1791 retval = -EINVAL; 1792 goto done; 1793 } 1794 } 1795 1796 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1797 retval = 0; /* Too easy - nothing to do */ 1798 goto done; 1799 } 1800 retval = validate_change(cs, trialcs); 1801 if (retval < 0) 1802 goto done; 1803 1804 spin_lock_irq(&callback_lock); 1805 cs->mems_allowed = trialcs->mems_allowed; 1806 spin_unlock_irq(&callback_lock); 1807 1808 /* use trialcs->mems_allowed as a temp variable */ 1809 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1810 done: 1811 return retval; 1812 } 1813 1814 bool current_cpuset_is_being_rebound(void) 1815 { 1816 bool ret; 1817 1818 rcu_read_lock(); 1819 ret = task_cs(current) == cpuset_being_rebound; 1820 rcu_read_unlock(); 1821 1822 return ret; 1823 } 1824 1825 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1826 { 1827 #ifdef CONFIG_SMP 1828 if (val < -1 || val >= sched_domain_level_max) 1829 return -EINVAL; 1830 #endif 1831 1832 if (val != cs->relax_domain_level) { 1833 cs->relax_domain_level = val; 1834 if (!cpumask_empty(cs->cpus_allowed) && 1835 is_sched_load_balance(cs)) 1836 rebuild_sched_domains_locked(); 1837 } 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1844 * @cs: the cpuset in which each task's spread flags needs to be changed 1845 * 1846 * Iterate through each task of @cs updating its spread flags. As this 1847 * function is called with cpuset_mutex held, cpuset membership stays 1848 * stable. 1849 */ 1850 static void update_tasks_flags(struct cpuset *cs) 1851 { 1852 struct css_task_iter it; 1853 struct task_struct *task; 1854 1855 css_task_iter_start(&cs->css, 0, &it); 1856 while ((task = css_task_iter_next(&it))) 1857 cpuset_update_task_spread_flag(cs, task); 1858 css_task_iter_end(&it); 1859 } 1860 1861 /* 1862 * update_flag - read a 0 or a 1 in a file and update associated flag 1863 * bit: the bit to update (see cpuset_flagbits_t) 1864 * cs: the cpuset to update 1865 * turning_on: whether the flag is being set or cleared 1866 * 1867 * Call with cpuset_mutex held. 1868 */ 1869 1870 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1871 int turning_on) 1872 { 1873 struct cpuset *trialcs; 1874 int balance_flag_changed; 1875 int spread_flag_changed; 1876 int err; 1877 1878 trialcs = alloc_trial_cpuset(cs); 1879 if (!trialcs) 1880 return -ENOMEM; 1881 1882 if (turning_on) 1883 set_bit(bit, &trialcs->flags); 1884 else 1885 clear_bit(bit, &trialcs->flags); 1886 1887 err = validate_change(cs, trialcs); 1888 if (err < 0) 1889 goto out; 1890 1891 balance_flag_changed = (is_sched_load_balance(cs) != 1892 is_sched_load_balance(trialcs)); 1893 1894 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1895 || (is_spread_page(cs) != is_spread_page(trialcs))); 1896 1897 spin_lock_irq(&callback_lock); 1898 cs->flags = trialcs->flags; 1899 spin_unlock_irq(&callback_lock); 1900 1901 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1902 rebuild_sched_domains_locked(); 1903 1904 if (spread_flag_changed) 1905 update_tasks_flags(cs); 1906 out: 1907 free_cpuset(trialcs); 1908 return err; 1909 } 1910 1911 /* 1912 * update_prstate - update partititon_root_state 1913 * cs: the cpuset to update 1914 * val: 0 - disabled, 1 - enabled 1915 * 1916 * Call with cpuset_mutex held. 1917 */ 1918 static int update_prstate(struct cpuset *cs, int val) 1919 { 1920 int err; 1921 struct cpuset *parent = parent_cs(cs); 1922 struct tmpmasks tmp; 1923 1924 if ((val != 0) && (val != 1)) 1925 return -EINVAL; 1926 if (val == cs->partition_root_state) 1927 return 0; 1928 1929 /* 1930 * Cannot force a partial or invalid partition root to a full 1931 * partition root. 1932 */ 1933 if (val && cs->partition_root_state) 1934 return -EINVAL; 1935 1936 if (alloc_cpumasks(NULL, &tmp)) 1937 return -ENOMEM; 1938 1939 err = -EINVAL; 1940 if (!cs->partition_root_state) { 1941 /* 1942 * Turning on partition root requires setting the 1943 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1944 * cannot be NULL. 1945 */ 1946 if (cpumask_empty(cs->cpus_allowed)) 1947 goto out; 1948 1949 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1950 if (err) 1951 goto out; 1952 1953 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1954 NULL, &tmp); 1955 if (err) { 1956 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1957 goto out; 1958 } 1959 cs->partition_root_state = PRS_ENABLED; 1960 } else { 1961 /* 1962 * Turning off partition root will clear the 1963 * CS_CPU_EXCLUSIVE bit. 1964 */ 1965 if (cs->partition_root_state == PRS_ERROR) { 1966 cs->partition_root_state = 0; 1967 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1968 err = 0; 1969 goto out; 1970 } 1971 1972 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1973 NULL, &tmp); 1974 if (err) 1975 goto out; 1976 1977 cs->partition_root_state = 0; 1978 1979 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1980 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1981 } 1982 1983 /* 1984 * Update cpumask of parent's tasks except when it is the top 1985 * cpuset as some system daemons cannot be mapped to other CPUs. 1986 */ 1987 if (parent != &top_cpuset) 1988 update_tasks_cpumask(parent); 1989 1990 if (parent->child_ecpus_count) 1991 update_sibling_cpumasks(parent, cs, &tmp); 1992 1993 rebuild_sched_domains_locked(); 1994 out: 1995 free_cpumasks(NULL, &tmp); 1996 return err; 1997 } 1998 1999 /* 2000 * Frequency meter - How fast is some event occurring? 2001 * 2002 * These routines manage a digitally filtered, constant time based, 2003 * event frequency meter. There are four routines: 2004 * fmeter_init() - initialize a frequency meter. 2005 * fmeter_markevent() - called each time the event happens. 2006 * fmeter_getrate() - returns the recent rate of such events. 2007 * fmeter_update() - internal routine used to update fmeter. 2008 * 2009 * A common data structure is passed to each of these routines, 2010 * which is used to keep track of the state required to manage the 2011 * frequency meter and its digital filter. 2012 * 2013 * The filter works on the number of events marked per unit time. 2014 * The filter is single-pole low-pass recursive (IIR). The time unit 2015 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2016 * simulate 3 decimal digits of precision (multiplied by 1000). 2017 * 2018 * With an FM_COEF of 933, and a time base of 1 second, the filter 2019 * has a half-life of 10 seconds, meaning that if the events quit 2020 * happening, then the rate returned from the fmeter_getrate() 2021 * will be cut in half each 10 seconds, until it converges to zero. 2022 * 2023 * It is not worth doing a real infinitely recursive filter. If more 2024 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2025 * just compute FM_MAXTICKS ticks worth, by which point the level 2026 * will be stable. 2027 * 2028 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2029 * arithmetic overflow in the fmeter_update() routine. 2030 * 2031 * Given the simple 32 bit integer arithmetic used, this meter works 2032 * best for reporting rates between one per millisecond (msec) and 2033 * one per 32 (approx) seconds. At constant rates faster than one 2034 * per msec it maxes out at values just under 1,000,000. At constant 2035 * rates between one per msec, and one per second it will stabilize 2036 * to a value N*1000, where N is the rate of events per second. 2037 * At constant rates between one per second and one per 32 seconds, 2038 * it will be choppy, moving up on the seconds that have an event, 2039 * and then decaying until the next event. At rates slower than 2040 * about one in 32 seconds, it decays all the way back to zero between 2041 * each event. 2042 */ 2043 2044 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2045 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2046 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2047 #define FM_SCALE 1000 /* faux fixed point scale */ 2048 2049 /* Initialize a frequency meter */ 2050 static void fmeter_init(struct fmeter *fmp) 2051 { 2052 fmp->cnt = 0; 2053 fmp->val = 0; 2054 fmp->time = 0; 2055 spin_lock_init(&fmp->lock); 2056 } 2057 2058 /* Internal meter update - process cnt events and update value */ 2059 static void fmeter_update(struct fmeter *fmp) 2060 { 2061 time64_t now; 2062 u32 ticks; 2063 2064 now = ktime_get_seconds(); 2065 ticks = now - fmp->time; 2066 2067 if (ticks == 0) 2068 return; 2069 2070 ticks = min(FM_MAXTICKS, ticks); 2071 while (ticks-- > 0) 2072 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2073 fmp->time = now; 2074 2075 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2076 fmp->cnt = 0; 2077 } 2078 2079 /* Process any previous ticks, then bump cnt by one (times scale). */ 2080 static void fmeter_markevent(struct fmeter *fmp) 2081 { 2082 spin_lock(&fmp->lock); 2083 fmeter_update(fmp); 2084 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2085 spin_unlock(&fmp->lock); 2086 } 2087 2088 /* Process any previous ticks, then return current value. */ 2089 static int fmeter_getrate(struct fmeter *fmp) 2090 { 2091 int val; 2092 2093 spin_lock(&fmp->lock); 2094 fmeter_update(fmp); 2095 val = fmp->val; 2096 spin_unlock(&fmp->lock); 2097 return val; 2098 } 2099 2100 static struct cpuset *cpuset_attach_old_cs; 2101 2102 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2103 static int cpuset_can_attach(struct cgroup_taskset *tset) 2104 { 2105 struct cgroup_subsys_state *css; 2106 struct cpuset *cs; 2107 struct task_struct *task; 2108 int ret; 2109 2110 /* used later by cpuset_attach() */ 2111 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2112 cs = css_cs(css); 2113 2114 percpu_down_write(&cpuset_rwsem); 2115 2116 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2117 ret = -ENOSPC; 2118 if (!is_in_v2_mode() && 2119 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2120 goto out_unlock; 2121 2122 cgroup_taskset_for_each(task, css, tset) { 2123 ret = task_can_attach(task, cs->cpus_allowed); 2124 if (ret) 2125 goto out_unlock; 2126 ret = security_task_setscheduler(task); 2127 if (ret) 2128 goto out_unlock; 2129 } 2130 2131 /* 2132 * Mark attach is in progress. This makes validate_change() fail 2133 * changes which zero cpus/mems_allowed. 2134 */ 2135 cs->attach_in_progress++; 2136 ret = 0; 2137 out_unlock: 2138 percpu_up_write(&cpuset_rwsem); 2139 return ret; 2140 } 2141 2142 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2143 { 2144 struct cgroup_subsys_state *css; 2145 2146 cgroup_taskset_first(tset, &css); 2147 2148 percpu_down_write(&cpuset_rwsem); 2149 css_cs(css)->attach_in_progress--; 2150 percpu_up_write(&cpuset_rwsem); 2151 } 2152 2153 /* 2154 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2155 * but we can't allocate it dynamically there. Define it global and 2156 * allocate from cpuset_init(). 2157 */ 2158 static cpumask_var_t cpus_attach; 2159 2160 static void cpuset_attach(struct cgroup_taskset *tset) 2161 { 2162 /* static buf protected by cpuset_mutex */ 2163 static nodemask_t cpuset_attach_nodemask_to; 2164 struct task_struct *task; 2165 struct task_struct *leader; 2166 struct cgroup_subsys_state *css; 2167 struct cpuset *cs; 2168 struct cpuset *oldcs = cpuset_attach_old_cs; 2169 2170 cgroup_taskset_first(tset, &css); 2171 cs = css_cs(css); 2172 2173 percpu_down_write(&cpuset_rwsem); 2174 2175 /* prepare for attach */ 2176 if (cs == &top_cpuset) 2177 cpumask_copy(cpus_attach, cpu_possible_mask); 2178 else 2179 guarantee_online_cpus(cs, cpus_attach); 2180 2181 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2182 2183 cgroup_taskset_for_each(task, css, tset) { 2184 /* 2185 * can_attach beforehand should guarantee that this doesn't 2186 * fail. TODO: have a better way to handle failure here 2187 */ 2188 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2189 2190 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2191 cpuset_update_task_spread_flag(cs, task); 2192 } 2193 2194 /* 2195 * Change mm for all threadgroup leaders. This is expensive and may 2196 * sleep and should be moved outside migration path proper. 2197 */ 2198 cpuset_attach_nodemask_to = cs->effective_mems; 2199 cgroup_taskset_for_each_leader(leader, css, tset) { 2200 struct mm_struct *mm = get_task_mm(leader); 2201 2202 if (mm) { 2203 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2204 2205 /* 2206 * old_mems_allowed is the same with mems_allowed 2207 * here, except if this task is being moved 2208 * automatically due to hotplug. In that case 2209 * @mems_allowed has been updated and is empty, so 2210 * @old_mems_allowed is the right nodesets that we 2211 * migrate mm from. 2212 */ 2213 if (is_memory_migrate(cs)) 2214 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2215 &cpuset_attach_nodemask_to); 2216 else 2217 mmput(mm); 2218 } 2219 } 2220 2221 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2222 2223 cs->attach_in_progress--; 2224 if (!cs->attach_in_progress) 2225 wake_up(&cpuset_attach_wq); 2226 2227 percpu_up_write(&cpuset_rwsem); 2228 } 2229 2230 /* The various types of files and directories in a cpuset file system */ 2231 2232 typedef enum { 2233 FILE_MEMORY_MIGRATE, 2234 FILE_CPULIST, 2235 FILE_MEMLIST, 2236 FILE_EFFECTIVE_CPULIST, 2237 FILE_EFFECTIVE_MEMLIST, 2238 FILE_SUBPARTS_CPULIST, 2239 FILE_CPU_EXCLUSIVE, 2240 FILE_MEM_EXCLUSIVE, 2241 FILE_MEM_HARDWALL, 2242 FILE_SCHED_LOAD_BALANCE, 2243 FILE_PARTITION_ROOT, 2244 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2245 FILE_MEMORY_PRESSURE_ENABLED, 2246 FILE_MEMORY_PRESSURE, 2247 FILE_SPREAD_PAGE, 2248 FILE_SPREAD_SLAB, 2249 } cpuset_filetype_t; 2250 2251 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2252 u64 val) 2253 { 2254 struct cpuset *cs = css_cs(css); 2255 cpuset_filetype_t type = cft->private; 2256 int retval = 0; 2257 2258 get_online_cpus(); 2259 percpu_down_write(&cpuset_rwsem); 2260 if (!is_cpuset_online(cs)) { 2261 retval = -ENODEV; 2262 goto out_unlock; 2263 } 2264 2265 switch (type) { 2266 case FILE_CPU_EXCLUSIVE: 2267 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2268 break; 2269 case FILE_MEM_EXCLUSIVE: 2270 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2271 break; 2272 case FILE_MEM_HARDWALL: 2273 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2274 break; 2275 case FILE_SCHED_LOAD_BALANCE: 2276 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2277 break; 2278 case FILE_MEMORY_MIGRATE: 2279 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2280 break; 2281 case FILE_MEMORY_PRESSURE_ENABLED: 2282 cpuset_memory_pressure_enabled = !!val; 2283 break; 2284 case FILE_SPREAD_PAGE: 2285 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2286 break; 2287 case FILE_SPREAD_SLAB: 2288 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2289 break; 2290 default: 2291 retval = -EINVAL; 2292 break; 2293 } 2294 out_unlock: 2295 percpu_up_write(&cpuset_rwsem); 2296 put_online_cpus(); 2297 return retval; 2298 } 2299 2300 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2301 s64 val) 2302 { 2303 struct cpuset *cs = css_cs(css); 2304 cpuset_filetype_t type = cft->private; 2305 int retval = -ENODEV; 2306 2307 get_online_cpus(); 2308 percpu_down_write(&cpuset_rwsem); 2309 if (!is_cpuset_online(cs)) 2310 goto out_unlock; 2311 2312 switch (type) { 2313 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2314 retval = update_relax_domain_level(cs, val); 2315 break; 2316 default: 2317 retval = -EINVAL; 2318 break; 2319 } 2320 out_unlock: 2321 percpu_up_write(&cpuset_rwsem); 2322 put_online_cpus(); 2323 return retval; 2324 } 2325 2326 /* 2327 * Common handling for a write to a "cpus" or "mems" file. 2328 */ 2329 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2330 char *buf, size_t nbytes, loff_t off) 2331 { 2332 struct cpuset *cs = css_cs(of_css(of)); 2333 struct cpuset *trialcs; 2334 int retval = -ENODEV; 2335 2336 buf = strstrip(buf); 2337 2338 /* 2339 * CPU or memory hotunplug may leave @cs w/o any execution 2340 * resources, in which case the hotplug code asynchronously updates 2341 * configuration and transfers all tasks to the nearest ancestor 2342 * which can execute. 2343 * 2344 * As writes to "cpus" or "mems" may restore @cs's execution 2345 * resources, wait for the previously scheduled operations before 2346 * proceeding, so that we don't end up keep removing tasks added 2347 * after execution capability is restored. 2348 * 2349 * cpuset_hotplug_work calls back into cgroup core via 2350 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2351 * operation like this one can lead to a deadlock through kernfs 2352 * active_ref protection. Let's break the protection. Losing the 2353 * protection is okay as we check whether @cs is online after 2354 * grabbing cpuset_mutex anyway. This only happens on the legacy 2355 * hierarchies. 2356 */ 2357 css_get(&cs->css); 2358 kernfs_break_active_protection(of->kn); 2359 flush_work(&cpuset_hotplug_work); 2360 2361 get_online_cpus(); 2362 percpu_down_write(&cpuset_rwsem); 2363 if (!is_cpuset_online(cs)) 2364 goto out_unlock; 2365 2366 trialcs = alloc_trial_cpuset(cs); 2367 if (!trialcs) { 2368 retval = -ENOMEM; 2369 goto out_unlock; 2370 } 2371 2372 switch (of_cft(of)->private) { 2373 case FILE_CPULIST: 2374 retval = update_cpumask(cs, trialcs, buf); 2375 break; 2376 case FILE_MEMLIST: 2377 retval = update_nodemask(cs, trialcs, buf); 2378 break; 2379 default: 2380 retval = -EINVAL; 2381 break; 2382 } 2383 2384 free_cpuset(trialcs); 2385 out_unlock: 2386 percpu_up_write(&cpuset_rwsem); 2387 put_online_cpus(); 2388 kernfs_unbreak_active_protection(of->kn); 2389 css_put(&cs->css); 2390 flush_workqueue(cpuset_migrate_mm_wq); 2391 return retval ?: nbytes; 2392 } 2393 2394 /* 2395 * These ascii lists should be read in a single call, by using a user 2396 * buffer large enough to hold the entire map. If read in smaller 2397 * chunks, there is no guarantee of atomicity. Since the display format 2398 * used, list of ranges of sequential numbers, is variable length, 2399 * and since these maps can change value dynamically, one could read 2400 * gibberish by doing partial reads while a list was changing. 2401 */ 2402 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2403 { 2404 struct cpuset *cs = css_cs(seq_css(sf)); 2405 cpuset_filetype_t type = seq_cft(sf)->private; 2406 int ret = 0; 2407 2408 spin_lock_irq(&callback_lock); 2409 2410 switch (type) { 2411 case FILE_CPULIST: 2412 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2413 break; 2414 case FILE_MEMLIST: 2415 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2416 break; 2417 case FILE_EFFECTIVE_CPULIST: 2418 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2419 break; 2420 case FILE_EFFECTIVE_MEMLIST: 2421 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2422 break; 2423 case FILE_SUBPARTS_CPULIST: 2424 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2425 break; 2426 default: 2427 ret = -EINVAL; 2428 } 2429 2430 spin_unlock_irq(&callback_lock); 2431 return ret; 2432 } 2433 2434 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2435 { 2436 struct cpuset *cs = css_cs(css); 2437 cpuset_filetype_t type = cft->private; 2438 switch (type) { 2439 case FILE_CPU_EXCLUSIVE: 2440 return is_cpu_exclusive(cs); 2441 case FILE_MEM_EXCLUSIVE: 2442 return is_mem_exclusive(cs); 2443 case FILE_MEM_HARDWALL: 2444 return is_mem_hardwall(cs); 2445 case FILE_SCHED_LOAD_BALANCE: 2446 return is_sched_load_balance(cs); 2447 case FILE_MEMORY_MIGRATE: 2448 return is_memory_migrate(cs); 2449 case FILE_MEMORY_PRESSURE_ENABLED: 2450 return cpuset_memory_pressure_enabled; 2451 case FILE_MEMORY_PRESSURE: 2452 return fmeter_getrate(&cs->fmeter); 2453 case FILE_SPREAD_PAGE: 2454 return is_spread_page(cs); 2455 case FILE_SPREAD_SLAB: 2456 return is_spread_slab(cs); 2457 default: 2458 BUG(); 2459 } 2460 2461 /* Unreachable but makes gcc happy */ 2462 return 0; 2463 } 2464 2465 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2466 { 2467 struct cpuset *cs = css_cs(css); 2468 cpuset_filetype_t type = cft->private; 2469 switch (type) { 2470 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2471 return cs->relax_domain_level; 2472 default: 2473 BUG(); 2474 } 2475 2476 /* Unrechable but makes gcc happy */ 2477 return 0; 2478 } 2479 2480 static int sched_partition_show(struct seq_file *seq, void *v) 2481 { 2482 struct cpuset *cs = css_cs(seq_css(seq)); 2483 2484 switch (cs->partition_root_state) { 2485 case PRS_ENABLED: 2486 seq_puts(seq, "root\n"); 2487 break; 2488 case PRS_DISABLED: 2489 seq_puts(seq, "member\n"); 2490 break; 2491 case PRS_ERROR: 2492 seq_puts(seq, "root invalid\n"); 2493 break; 2494 } 2495 return 0; 2496 } 2497 2498 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2499 size_t nbytes, loff_t off) 2500 { 2501 struct cpuset *cs = css_cs(of_css(of)); 2502 int val; 2503 int retval = -ENODEV; 2504 2505 buf = strstrip(buf); 2506 2507 /* 2508 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2509 */ 2510 if (!strcmp(buf, "root")) 2511 val = PRS_ENABLED; 2512 else if (!strcmp(buf, "member")) 2513 val = PRS_DISABLED; 2514 else 2515 return -EINVAL; 2516 2517 css_get(&cs->css); 2518 get_online_cpus(); 2519 percpu_down_write(&cpuset_rwsem); 2520 if (!is_cpuset_online(cs)) 2521 goto out_unlock; 2522 2523 retval = update_prstate(cs, val); 2524 out_unlock: 2525 percpu_up_write(&cpuset_rwsem); 2526 put_online_cpus(); 2527 css_put(&cs->css); 2528 return retval ?: nbytes; 2529 } 2530 2531 /* 2532 * for the common functions, 'private' gives the type of file 2533 */ 2534 2535 static struct cftype legacy_files[] = { 2536 { 2537 .name = "cpus", 2538 .seq_show = cpuset_common_seq_show, 2539 .write = cpuset_write_resmask, 2540 .max_write_len = (100U + 6 * NR_CPUS), 2541 .private = FILE_CPULIST, 2542 }, 2543 2544 { 2545 .name = "mems", 2546 .seq_show = cpuset_common_seq_show, 2547 .write = cpuset_write_resmask, 2548 .max_write_len = (100U + 6 * MAX_NUMNODES), 2549 .private = FILE_MEMLIST, 2550 }, 2551 2552 { 2553 .name = "effective_cpus", 2554 .seq_show = cpuset_common_seq_show, 2555 .private = FILE_EFFECTIVE_CPULIST, 2556 }, 2557 2558 { 2559 .name = "effective_mems", 2560 .seq_show = cpuset_common_seq_show, 2561 .private = FILE_EFFECTIVE_MEMLIST, 2562 }, 2563 2564 { 2565 .name = "cpu_exclusive", 2566 .read_u64 = cpuset_read_u64, 2567 .write_u64 = cpuset_write_u64, 2568 .private = FILE_CPU_EXCLUSIVE, 2569 }, 2570 2571 { 2572 .name = "mem_exclusive", 2573 .read_u64 = cpuset_read_u64, 2574 .write_u64 = cpuset_write_u64, 2575 .private = FILE_MEM_EXCLUSIVE, 2576 }, 2577 2578 { 2579 .name = "mem_hardwall", 2580 .read_u64 = cpuset_read_u64, 2581 .write_u64 = cpuset_write_u64, 2582 .private = FILE_MEM_HARDWALL, 2583 }, 2584 2585 { 2586 .name = "sched_load_balance", 2587 .read_u64 = cpuset_read_u64, 2588 .write_u64 = cpuset_write_u64, 2589 .private = FILE_SCHED_LOAD_BALANCE, 2590 }, 2591 2592 { 2593 .name = "sched_relax_domain_level", 2594 .read_s64 = cpuset_read_s64, 2595 .write_s64 = cpuset_write_s64, 2596 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2597 }, 2598 2599 { 2600 .name = "memory_migrate", 2601 .read_u64 = cpuset_read_u64, 2602 .write_u64 = cpuset_write_u64, 2603 .private = FILE_MEMORY_MIGRATE, 2604 }, 2605 2606 { 2607 .name = "memory_pressure", 2608 .read_u64 = cpuset_read_u64, 2609 .private = FILE_MEMORY_PRESSURE, 2610 }, 2611 2612 { 2613 .name = "memory_spread_page", 2614 .read_u64 = cpuset_read_u64, 2615 .write_u64 = cpuset_write_u64, 2616 .private = FILE_SPREAD_PAGE, 2617 }, 2618 2619 { 2620 .name = "memory_spread_slab", 2621 .read_u64 = cpuset_read_u64, 2622 .write_u64 = cpuset_write_u64, 2623 .private = FILE_SPREAD_SLAB, 2624 }, 2625 2626 { 2627 .name = "memory_pressure_enabled", 2628 .flags = CFTYPE_ONLY_ON_ROOT, 2629 .read_u64 = cpuset_read_u64, 2630 .write_u64 = cpuset_write_u64, 2631 .private = FILE_MEMORY_PRESSURE_ENABLED, 2632 }, 2633 2634 { } /* terminate */ 2635 }; 2636 2637 /* 2638 * This is currently a minimal set for the default hierarchy. It can be 2639 * expanded later on by migrating more features and control files from v1. 2640 */ 2641 static struct cftype dfl_files[] = { 2642 { 2643 .name = "cpus", 2644 .seq_show = cpuset_common_seq_show, 2645 .write = cpuset_write_resmask, 2646 .max_write_len = (100U + 6 * NR_CPUS), 2647 .private = FILE_CPULIST, 2648 .flags = CFTYPE_NOT_ON_ROOT, 2649 }, 2650 2651 { 2652 .name = "mems", 2653 .seq_show = cpuset_common_seq_show, 2654 .write = cpuset_write_resmask, 2655 .max_write_len = (100U + 6 * MAX_NUMNODES), 2656 .private = FILE_MEMLIST, 2657 .flags = CFTYPE_NOT_ON_ROOT, 2658 }, 2659 2660 { 2661 .name = "cpus.effective", 2662 .seq_show = cpuset_common_seq_show, 2663 .private = FILE_EFFECTIVE_CPULIST, 2664 }, 2665 2666 { 2667 .name = "mems.effective", 2668 .seq_show = cpuset_common_seq_show, 2669 .private = FILE_EFFECTIVE_MEMLIST, 2670 }, 2671 2672 { 2673 .name = "cpus.partition", 2674 .seq_show = sched_partition_show, 2675 .write = sched_partition_write, 2676 .private = FILE_PARTITION_ROOT, 2677 .flags = CFTYPE_NOT_ON_ROOT, 2678 }, 2679 2680 { 2681 .name = "cpus.subpartitions", 2682 .seq_show = cpuset_common_seq_show, 2683 .private = FILE_SUBPARTS_CPULIST, 2684 .flags = CFTYPE_DEBUG, 2685 }, 2686 2687 { } /* terminate */ 2688 }; 2689 2690 2691 /* 2692 * cpuset_css_alloc - allocate a cpuset css 2693 * cgrp: control group that the new cpuset will be part of 2694 */ 2695 2696 static struct cgroup_subsys_state * 2697 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2698 { 2699 struct cpuset *cs; 2700 2701 if (!parent_css) 2702 return &top_cpuset.css; 2703 2704 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2705 if (!cs) 2706 return ERR_PTR(-ENOMEM); 2707 2708 if (alloc_cpumasks(cs, NULL)) { 2709 kfree(cs); 2710 return ERR_PTR(-ENOMEM); 2711 } 2712 2713 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2714 nodes_clear(cs->mems_allowed); 2715 nodes_clear(cs->effective_mems); 2716 fmeter_init(&cs->fmeter); 2717 cs->relax_domain_level = -1; 2718 2719 return &cs->css; 2720 } 2721 2722 static int cpuset_css_online(struct cgroup_subsys_state *css) 2723 { 2724 struct cpuset *cs = css_cs(css); 2725 struct cpuset *parent = parent_cs(cs); 2726 struct cpuset *tmp_cs; 2727 struct cgroup_subsys_state *pos_css; 2728 2729 if (!parent) 2730 return 0; 2731 2732 get_online_cpus(); 2733 percpu_down_write(&cpuset_rwsem); 2734 2735 set_bit(CS_ONLINE, &cs->flags); 2736 if (is_spread_page(parent)) 2737 set_bit(CS_SPREAD_PAGE, &cs->flags); 2738 if (is_spread_slab(parent)) 2739 set_bit(CS_SPREAD_SLAB, &cs->flags); 2740 2741 cpuset_inc(); 2742 2743 spin_lock_irq(&callback_lock); 2744 if (is_in_v2_mode()) { 2745 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2746 cs->effective_mems = parent->effective_mems; 2747 cs->use_parent_ecpus = true; 2748 parent->child_ecpus_count++; 2749 } 2750 spin_unlock_irq(&callback_lock); 2751 2752 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2753 goto out_unlock; 2754 2755 /* 2756 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2757 * set. This flag handling is implemented in cgroup core for 2758 * histrical reasons - the flag may be specified during mount. 2759 * 2760 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2761 * refuse to clone the configuration - thereby refusing the task to 2762 * be entered, and as a result refusing the sys_unshare() or 2763 * clone() which initiated it. If this becomes a problem for some 2764 * users who wish to allow that scenario, then this could be 2765 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2766 * (and likewise for mems) to the new cgroup. 2767 */ 2768 rcu_read_lock(); 2769 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2770 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2771 rcu_read_unlock(); 2772 goto out_unlock; 2773 } 2774 } 2775 rcu_read_unlock(); 2776 2777 spin_lock_irq(&callback_lock); 2778 cs->mems_allowed = parent->mems_allowed; 2779 cs->effective_mems = parent->mems_allowed; 2780 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2781 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2782 spin_unlock_irq(&callback_lock); 2783 out_unlock: 2784 percpu_up_write(&cpuset_rwsem); 2785 put_online_cpus(); 2786 return 0; 2787 } 2788 2789 /* 2790 * If the cpuset being removed has its flag 'sched_load_balance' 2791 * enabled, then simulate turning sched_load_balance off, which 2792 * will call rebuild_sched_domains_locked(). That is not needed 2793 * in the default hierarchy where only changes in partition 2794 * will cause repartitioning. 2795 * 2796 * If the cpuset has the 'sched.partition' flag enabled, simulate 2797 * turning 'sched.partition" off. 2798 */ 2799 2800 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2801 { 2802 struct cpuset *cs = css_cs(css); 2803 2804 get_online_cpus(); 2805 percpu_down_write(&cpuset_rwsem); 2806 2807 if (is_partition_root(cs)) 2808 update_prstate(cs, 0); 2809 2810 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2811 is_sched_load_balance(cs)) 2812 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2813 2814 if (cs->use_parent_ecpus) { 2815 struct cpuset *parent = parent_cs(cs); 2816 2817 cs->use_parent_ecpus = false; 2818 parent->child_ecpus_count--; 2819 } 2820 2821 cpuset_dec(); 2822 clear_bit(CS_ONLINE, &cs->flags); 2823 2824 percpu_up_write(&cpuset_rwsem); 2825 put_online_cpus(); 2826 } 2827 2828 static void cpuset_css_free(struct cgroup_subsys_state *css) 2829 { 2830 struct cpuset *cs = css_cs(css); 2831 2832 free_cpuset(cs); 2833 } 2834 2835 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2836 { 2837 percpu_down_write(&cpuset_rwsem); 2838 spin_lock_irq(&callback_lock); 2839 2840 if (is_in_v2_mode()) { 2841 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2842 top_cpuset.mems_allowed = node_possible_map; 2843 } else { 2844 cpumask_copy(top_cpuset.cpus_allowed, 2845 top_cpuset.effective_cpus); 2846 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2847 } 2848 2849 spin_unlock_irq(&callback_lock); 2850 percpu_up_write(&cpuset_rwsem); 2851 } 2852 2853 /* 2854 * Make sure the new task conform to the current state of its parent, 2855 * which could have been changed by cpuset just after it inherits the 2856 * state from the parent and before it sits on the cgroup's task list. 2857 */ 2858 static void cpuset_fork(struct task_struct *task) 2859 { 2860 if (task_css_is_root(task, cpuset_cgrp_id)) 2861 return; 2862 2863 set_cpus_allowed_ptr(task, current->cpus_ptr); 2864 task->mems_allowed = current->mems_allowed; 2865 } 2866 2867 struct cgroup_subsys cpuset_cgrp_subsys = { 2868 .css_alloc = cpuset_css_alloc, 2869 .css_online = cpuset_css_online, 2870 .css_offline = cpuset_css_offline, 2871 .css_free = cpuset_css_free, 2872 .can_attach = cpuset_can_attach, 2873 .cancel_attach = cpuset_cancel_attach, 2874 .attach = cpuset_attach, 2875 .post_attach = cpuset_post_attach, 2876 .bind = cpuset_bind, 2877 .fork = cpuset_fork, 2878 .legacy_cftypes = legacy_files, 2879 .dfl_cftypes = dfl_files, 2880 .early_init = true, 2881 .threaded = true, 2882 }; 2883 2884 /** 2885 * cpuset_init - initialize cpusets at system boot 2886 * 2887 * Description: Initialize top_cpuset 2888 **/ 2889 2890 int __init cpuset_init(void) 2891 { 2892 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2893 2894 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2895 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2896 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2897 2898 cpumask_setall(top_cpuset.cpus_allowed); 2899 nodes_setall(top_cpuset.mems_allowed); 2900 cpumask_setall(top_cpuset.effective_cpus); 2901 nodes_setall(top_cpuset.effective_mems); 2902 2903 fmeter_init(&top_cpuset.fmeter); 2904 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2905 top_cpuset.relax_domain_level = -1; 2906 2907 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2908 2909 return 0; 2910 } 2911 2912 /* 2913 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2914 * or memory nodes, we need to walk over the cpuset hierarchy, 2915 * removing that CPU or node from all cpusets. If this removes the 2916 * last CPU or node from a cpuset, then move the tasks in the empty 2917 * cpuset to its next-highest non-empty parent. 2918 */ 2919 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2920 { 2921 struct cpuset *parent; 2922 2923 /* 2924 * Find its next-highest non-empty parent, (top cpuset 2925 * has online cpus, so can't be empty). 2926 */ 2927 parent = parent_cs(cs); 2928 while (cpumask_empty(parent->cpus_allowed) || 2929 nodes_empty(parent->mems_allowed)) 2930 parent = parent_cs(parent); 2931 2932 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2933 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2934 pr_cont_cgroup_name(cs->css.cgroup); 2935 pr_cont("\n"); 2936 } 2937 } 2938 2939 static void 2940 hotplug_update_tasks_legacy(struct cpuset *cs, 2941 struct cpumask *new_cpus, nodemask_t *new_mems, 2942 bool cpus_updated, bool mems_updated) 2943 { 2944 bool is_empty; 2945 2946 spin_lock_irq(&callback_lock); 2947 cpumask_copy(cs->cpus_allowed, new_cpus); 2948 cpumask_copy(cs->effective_cpus, new_cpus); 2949 cs->mems_allowed = *new_mems; 2950 cs->effective_mems = *new_mems; 2951 spin_unlock_irq(&callback_lock); 2952 2953 /* 2954 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2955 * as the tasks will be migratecd to an ancestor. 2956 */ 2957 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2958 update_tasks_cpumask(cs); 2959 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2960 update_tasks_nodemask(cs); 2961 2962 is_empty = cpumask_empty(cs->cpus_allowed) || 2963 nodes_empty(cs->mems_allowed); 2964 2965 percpu_up_write(&cpuset_rwsem); 2966 2967 /* 2968 * Move tasks to the nearest ancestor with execution resources, 2969 * This is full cgroup operation which will also call back into 2970 * cpuset. Should be done outside any lock. 2971 */ 2972 if (is_empty) 2973 remove_tasks_in_empty_cpuset(cs); 2974 2975 percpu_down_write(&cpuset_rwsem); 2976 } 2977 2978 static void 2979 hotplug_update_tasks(struct cpuset *cs, 2980 struct cpumask *new_cpus, nodemask_t *new_mems, 2981 bool cpus_updated, bool mems_updated) 2982 { 2983 if (cpumask_empty(new_cpus)) 2984 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2985 if (nodes_empty(*new_mems)) 2986 *new_mems = parent_cs(cs)->effective_mems; 2987 2988 spin_lock_irq(&callback_lock); 2989 cpumask_copy(cs->effective_cpus, new_cpus); 2990 cs->effective_mems = *new_mems; 2991 spin_unlock_irq(&callback_lock); 2992 2993 if (cpus_updated) 2994 update_tasks_cpumask(cs); 2995 if (mems_updated) 2996 update_tasks_nodemask(cs); 2997 } 2998 2999 static bool force_rebuild; 3000 3001 void cpuset_force_rebuild(void) 3002 { 3003 force_rebuild = true; 3004 } 3005 3006 /** 3007 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3008 * @cs: cpuset in interest 3009 * @tmp: the tmpmasks structure pointer 3010 * 3011 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3012 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3013 * all its tasks are moved to the nearest ancestor with both resources. 3014 */ 3015 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3016 { 3017 static cpumask_t new_cpus; 3018 static nodemask_t new_mems; 3019 bool cpus_updated; 3020 bool mems_updated; 3021 struct cpuset *parent; 3022 retry: 3023 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3024 3025 percpu_down_write(&cpuset_rwsem); 3026 3027 /* 3028 * We have raced with task attaching. We wait until attaching 3029 * is finished, so we won't attach a task to an empty cpuset. 3030 */ 3031 if (cs->attach_in_progress) { 3032 percpu_up_write(&cpuset_rwsem); 3033 goto retry; 3034 } 3035 3036 parent = parent_cs(cs); 3037 compute_effective_cpumask(&new_cpus, cs, parent); 3038 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3039 3040 if (cs->nr_subparts_cpus) 3041 /* 3042 * Make sure that CPUs allocated to child partitions 3043 * do not show up in effective_cpus. 3044 */ 3045 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3046 3047 if (!tmp || !cs->partition_root_state) 3048 goto update_tasks; 3049 3050 /* 3051 * In the unlikely event that a partition root has empty 3052 * effective_cpus or its parent becomes erroneous, we have to 3053 * transition it to the erroneous state. 3054 */ 3055 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3056 (parent->partition_root_state == PRS_ERROR))) { 3057 if (cs->nr_subparts_cpus) { 3058 cs->nr_subparts_cpus = 0; 3059 cpumask_clear(cs->subparts_cpus); 3060 compute_effective_cpumask(&new_cpus, cs, parent); 3061 } 3062 3063 /* 3064 * If the effective_cpus is empty because the child 3065 * partitions take away all the CPUs, we can keep 3066 * the current partition and let the child partitions 3067 * fight for available CPUs. 3068 */ 3069 if ((parent->partition_root_state == PRS_ERROR) || 3070 cpumask_empty(&new_cpus)) { 3071 update_parent_subparts_cpumask(cs, partcmd_disable, 3072 NULL, tmp); 3073 cs->partition_root_state = PRS_ERROR; 3074 } 3075 cpuset_force_rebuild(); 3076 } 3077 3078 /* 3079 * On the other hand, an erroneous partition root may be transitioned 3080 * back to a regular one or a partition root with no CPU allocated 3081 * from the parent may change to erroneous. 3082 */ 3083 if (is_partition_root(parent) && 3084 ((cs->partition_root_state == PRS_ERROR) || 3085 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3086 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3087 cpuset_force_rebuild(); 3088 3089 update_tasks: 3090 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3091 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3092 3093 if (is_in_v2_mode()) 3094 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3095 cpus_updated, mems_updated); 3096 else 3097 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3098 cpus_updated, mems_updated); 3099 3100 percpu_up_write(&cpuset_rwsem); 3101 } 3102 3103 /** 3104 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3105 * 3106 * This function is called after either CPU or memory configuration has 3107 * changed and updates cpuset accordingly. The top_cpuset is always 3108 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3109 * order to make cpusets transparent (of no affect) on systems that are 3110 * actively using CPU hotplug but making no active use of cpusets. 3111 * 3112 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3113 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3114 * all descendants. 3115 * 3116 * Note that CPU offlining during suspend is ignored. We don't modify 3117 * cpusets across suspend/resume cycles at all. 3118 */ 3119 static void cpuset_hotplug_workfn(struct work_struct *work) 3120 { 3121 static cpumask_t new_cpus; 3122 static nodemask_t new_mems; 3123 bool cpus_updated, mems_updated; 3124 bool on_dfl = is_in_v2_mode(); 3125 struct tmpmasks tmp, *ptmp = NULL; 3126 3127 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3128 ptmp = &tmp; 3129 3130 percpu_down_write(&cpuset_rwsem); 3131 3132 /* fetch the available cpus/mems and find out which changed how */ 3133 cpumask_copy(&new_cpus, cpu_active_mask); 3134 new_mems = node_states[N_MEMORY]; 3135 3136 /* 3137 * If subparts_cpus is populated, it is likely that the check below 3138 * will produce a false positive on cpus_updated when the cpu list 3139 * isn't changed. It is extra work, but it is better to be safe. 3140 */ 3141 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3142 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3143 3144 /* synchronize cpus_allowed to cpu_active_mask */ 3145 if (cpus_updated) { 3146 spin_lock_irq(&callback_lock); 3147 if (!on_dfl) 3148 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3149 /* 3150 * Make sure that CPUs allocated to child partitions 3151 * do not show up in effective_cpus. If no CPU is left, 3152 * we clear the subparts_cpus & let the child partitions 3153 * fight for the CPUs again. 3154 */ 3155 if (top_cpuset.nr_subparts_cpus) { 3156 if (cpumask_subset(&new_cpus, 3157 top_cpuset.subparts_cpus)) { 3158 top_cpuset.nr_subparts_cpus = 0; 3159 cpumask_clear(top_cpuset.subparts_cpus); 3160 } else { 3161 cpumask_andnot(&new_cpus, &new_cpus, 3162 top_cpuset.subparts_cpus); 3163 } 3164 } 3165 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3166 spin_unlock_irq(&callback_lock); 3167 /* we don't mess with cpumasks of tasks in top_cpuset */ 3168 } 3169 3170 /* synchronize mems_allowed to N_MEMORY */ 3171 if (mems_updated) { 3172 spin_lock_irq(&callback_lock); 3173 if (!on_dfl) 3174 top_cpuset.mems_allowed = new_mems; 3175 top_cpuset.effective_mems = new_mems; 3176 spin_unlock_irq(&callback_lock); 3177 update_tasks_nodemask(&top_cpuset); 3178 } 3179 3180 percpu_up_write(&cpuset_rwsem); 3181 3182 /* if cpus or mems changed, we need to propagate to descendants */ 3183 if (cpus_updated || mems_updated) { 3184 struct cpuset *cs; 3185 struct cgroup_subsys_state *pos_css; 3186 3187 rcu_read_lock(); 3188 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3189 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3190 continue; 3191 rcu_read_unlock(); 3192 3193 cpuset_hotplug_update_tasks(cs, ptmp); 3194 3195 rcu_read_lock(); 3196 css_put(&cs->css); 3197 } 3198 rcu_read_unlock(); 3199 } 3200 3201 /* rebuild sched domains if cpus_allowed has changed */ 3202 if (cpus_updated || force_rebuild) { 3203 force_rebuild = false; 3204 rebuild_sched_domains(); 3205 } 3206 3207 free_cpumasks(NULL, ptmp); 3208 } 3209 3210 void cpuset_update_active_cpus(void) 3211 { 3212 /* 3213 * We're inside cpu hotplug critical region which usually nests 3214 * inside cgroup synchronization. Bounce actual hotplug processing 3215 * to a work item to avoid reverse locking order. 3216 */ 3217 schedule_work(&cpuset_hotplug_work); 3218 } 3219 3220 void cpuset_wait_for_hotplug(void) 3221 { 3222 flush_work(&cpuset_hotplug_work); 3223 } 3224 3225 /* 3226 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3227 * Call this routine anytime after node_states[N_MEMORY] changes. 3228 * See cpuset_update_active_cpus() for CPU hotplug handling. 3229 */ 3230 static int cpuset_track_online_nodes(struct notifier_block *self, 3231 unsigned long action, void *arg) 3232 { 3233 schedule_work(&cpuset_hotplug_work); 3234 return NOTIFY_OK; 3235 } 3236 3237 static struct notifier_block cpuset_track_online_nodes_nb = { 3238 .notifier_call = cpuset_track_online_nodes, 3239 .priority = 10, /* ??! */ 3240 }; 3241 3242 /** 3243 * cpuset_init_smp - initialize cpus_allowed 3244 * 3245 * Description: Finish top cpuset after cpu, node maps are initialized 3246 */ 3247 void __init cpuset_init_smp(void) 3248 { 3249 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3250 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3251 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3252 3253 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3254 top_cpuset.effective_mems = node_states[N_MEMORY]; 3255 3256 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3257 3258 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3259 BUG_ON(!cpuset_migrate_mm_wq); 3260 } 3261 3262 /** 3263 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3264 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3265 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3266 * 3267 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3268 * attached to the specified @tsk. Guaranteed to return some non-empty 3269 * subset of cpu_online_mask, even if this means going outside the 3270 * tasks cpuset. 3271 **/ 3272 3273 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3274 { 3275 unsigned long flags; 3276 3277 spin_lock_irqsave(&callback_lock, flags); 3278 rcu_read_lock(); 3279 guarantee_online_cpus(task_cs(tsk), pmask); 3280 rcu_read_unlock(); 3281 spin_unlock_irqrestore(&callback_lock, flags); 3282 } 3283 3284 /** 3285 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3286 * @tsk: pointer to task_struct with which the scheduler is struggling 3287 * 3288 * Description: In the case that the scheduler cannot find an allowed cpu in 3289 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3290 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3291 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3292 * This is the absolute last resort for the scheduler and it is only used if 3293 * _every_ other avenue has been traveled. 3294 **/ 3295 3296 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3297 { 3298 rcu_read_lock(); 3299 do_set_cpus_allowed(tsk, is_in_v2_mode() ? 3300 task_cs(tsk)->cpus_allowed : cpu_possible_mask); 3301 rcu_read_unlock(); 3302 3303 /* 3304 * We own tsk->cpus_allowed, nobody can change it under us. 3305 * 3306 * But we used cs && cs->cpus_allowed lockless and thus can 3307 * race with cgroup_attach_task() or update_cpumask() and get 3308 * the wrong tsk->cpus_allowed. However, both cases imply the 3309 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3310 * which takes task_rq_lock(). 3311 * 3312 * If we are called after it dropped the lock we must see all 3313 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3314 * set any mask even if it is not right from task_cs() pov, 3315 * the pending set_cpus_allowed_ptr() will fix things. 3316 * 3317 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3318 * if required. 3319 */ 3320 } 3321 3322 void __init cpuset_init_current_mems_allowed(void) 3323 { 3324 nodes_setall(current->mems_allowed); 3325 } 3326 3327 /** 3328 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3329 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3330 * 3331 * Description: Returns the nodemask_t mems_allowed of the cpuset 3332 * attached to the specified @tsk. Guaranteed to return some non-empty 3333 * subset of node_states[N_MEMORY], even if this means going outside the 3334 * tasks cpuset. 3335 **/ 3336 3337 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3338 { 3339 nodemask_t mask; 3340 unsigned long flags; 3341 3342 spin_lock_irqsave(&callback_lock, flags); 3343 rcu_read_lock(); 3344 guarantee_online_mems(task_cs(tsk), &mask); 3345 rcu_read_unlock(); 3346 spin_unlock_irqrestore(&callback_lock, flags); 3347 3348 return mask; 3349 } 3350 3351 /** 3352 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3353 * @nodemask: the nodemask to be checked 3354 * 3355 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3356 */ 3357 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3358 { 3359 return nodes_intersects(*nodemask, current->mems_allowed); 3360 } 3361 3362 /* 3363 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3364 * mem_hardwall ancestor to the specified cpuset. Call holding 3365 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3366 * (an unusual configuration), then returns the root cpuset. 3367 */ 3368 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3369 { 3370 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3371 cs = parent_cs(cs); 3372 return cs; 3373 } 3374 3375 /** 3376 * cpuset_node_allowed - Can we allocate on a memory node? 3377 * @node: is this an allowed node? 3378 * @gfp_mask: memory allocation flags 3379 * 3380 * If we're in interrupt, yes, we can always allocate. If @node is set in 3381 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3382 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3383 * yes. If current has access to memory reserves as an oom victim, yes. 3384 * Otherwise, no. 3385 * 3386 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3387 * and do not allow allocations outside the current tasks cpuset 3388 * unless the task has been OOM killed. 3389 * GFP_KERNEL allocations are not so marked, so can escape to the 3390 * nearest enclosing hardwalled ancestor cpuset. 3391 * 3392 * Scanning up parent cpusets requires callback_lock. The 3393 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3394 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3395 * current tasks mems_allowed came up empty on the first pass over 3396 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3397 * cpuset are short of memory, might require taking the callback_lock. 3398 * 3399 * The first call here from mm/page_alloc:get_page_from_freelist() 3400 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3401 * so no allocation on a node outside the cpuset is allowed (unless 3402 * in interrupt, of course). 3403 * 3404 * The second pass through get_page_from_freelist() doesn't even call 3405 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3406 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3407 * in alloc_flags. That logic and the checks below have the combined 3408 * affect that: 3409 * in_interrupt - any node ok (current task context irrelevant) 3410 * GFP_ATOMIC - any node ok 3411 * tsk_is_oom_victim - any node ok 3412 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3413 * GFP_USER - only nodes in current tasks mems allowed ok. 3414 */ 3415 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3416 { 3417 struct cpuset *cs; /* current cpuset ancestors */ 3418 int allowed; /* is allocation in zone z allowed? */ 3419 unsigned long flags; 3420 3421 if (in_interrupt()) 3422 return true; 3423 if (node_isset(node, current->mems_allowed)) 3424 return true; 3425 /* 3426 * Allow tasks that have access to memory reserves because they have 3427 * been OOM killed to get memory anywhere. 3428 */ 3429 if (unlikely(tsk_is_oom_victim(current))) 3430 return true; 3431 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3432 return false; 3433 3434 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3435 return true; 3436 3437 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3438 spin_lock_irqsave(&callback_lock, flags); 3439 3440 rcu_read_lock(); 3441 cs = nearest_hardwall_ancestor(task_cs(current)); 3442 allowed = node_isset(node, cs->mems_allowed); 3443 rcu_read_unlock(); 3444 3445 spin_unlock_irqrestore(&callback_lock, flags); 3446 return allowed; 3447 } 3448 3449 /** 3450 * cpuset_mem_spread_node() - On which node to begin search for a file page 3451 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3452 * 3453 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3454 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3455 * and if the memory allocation used cpuset_mem_spread_node() 3456 * to determine on which node to start looking, as it will for 3457 * certain page cache or slab cache pages such as used for file 3458 * system buffers and inode caches, then instead of starting on the 3459 * local node to look for a free page, rather spread the starting 3460 * node around the tasks mems_allowed nodes. 3461 * 3462 * We don't have to worry about the returned node being offline 3463 * because "it can't happen", and even if it did, it would be ok. 3464 * 3465 * The routines calling guarantee_online_mems() are careful to 3466 * only set nodes in task->mems_allowed that are online. So it 3467 * should not be possible for the following code to return an 3468 * offline node. But if it did, that would be ok, as this routine 3469 * is not returning the node where the allocation must be, only 3470 * the node where the search should start. The zonelist passed to 3471 * __alloc_pages() will include all nodes. If the slab allocator 3472 * is passed an offline node, it will fall back to the local node. 3473 * See kmem_cache_alloc_node(). 3474 */ 3475 3476 static int cpuset_spread_node(int *rotor) 3477 { 3478 return *rotor = next_node_in(*rotor, current->mems_allowed); 3479 } 3480 3481 int cpuset_mem_spread_node(void) 3482 { 3483 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3484 current->cpuset_mem_spread_rotor = 3485 node_random(¤t->mems_allowed); 3486 3487 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3488 } 3489 3490 int cpuset_slab_spread_node(void) 3491 { 3492 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3493 current->cpuset_slab_spread_rotor = 3494 node_random(¤t->mems_allowed); 3495 3496 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3497 } 3498 3499 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3500 3501 /** 3502 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3503 * @tsk1: pointer to task_struct of some task. 3504 * @tsk2: pointer to task_struct of some other task. 3505 * 3506 * Description: Return true if @tsk1's mems_allowed intersects the 3507 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3508 * one of the task's memory usage might impact the memory available 3509 * to the other. 3510 **/ 3511 3512 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3513 const struct task_struct *tsk2) 3514 { 3515 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3516 } 3517 3518 /** 3519 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3520 * 3521 * Description: Prints current's name, cpuset name, and cached copy of its 3522 * mems_allowed to the kernel log. 3523 */ 3524 void cpuset_print_current_mems_allowed(void) 3525 { 3526 struct cgroup *cgrp; 3527 3528 rcu_read_lock(); 3529 3530 cgrp = task_cs(current)->css.cgroup; 3531 pr_cont(",cpuset="); 3532 pr_cont_cgroup_name(cgrp); 3533 pr_cont(",mems_allowed=%*pbl", 3534 nodemask_pr_args(¤t->mems_allowed)); 3535 3536 rcu_read_unlock(); 3537 } 3538 3539 /* 3540 * Collection of memory_pressure is suppressed unless 3541 * this flag is enabled by writing "1" to the special 3542 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3543 */ 3544 3545 int cpuset_memory_pressure_enabled __read_mostly; 3546 3547 /** 3548 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3549 * 3550 * Keep a running average of the rate of synchronous (direct) 3551 * page reclaim efforts initiated by tasks in each cpuset. 3552 * 3553 * This represents the rate at which some task in the cpuset 3554 * ran low on memory on all nodes it was allowed to use, and 3555 * had to enter the kernels page reclaim code in an effort to 3556 * create more free memory by tossing clean pages or swapping 3557 * or writing dirty pages. 3558 * 3559 * Display to user space in the per-cpuset read-only file 3560 * "memory_pressure". Value displayed is an integer 3561 * representing the recent rate of entry into the synchronous 3562 * (direct) page reclaim by any task attached to the cpuset. 3563 **/ 3564 3565 void __cpuset_memory_pressure_bump(void) 3566 { 3567 rcu_read_lock(); 3568 fmeter_markevent(&task_cs(current)->fmeter); 3569 rcu_read_unlock(); 3570 } 3571 3572 #ifdef CONFIG_PROC_PID_CPUSET 3573 /* 3574 * proc_cpuset_show() 3575 * - Print tasks cpuset path into seq_file. 3576 * - Used for /proc/<pid>/cpuset. 3577 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3578 * doesn't really matter if tsk->cpuset changes after we read it, 3579 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3580 * anyway. 3581 */ 3582 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3583 struct pid *pid, struct task_struct *tsk) 3584 { 3585 char *buf; 3586 struct cgroup_subsys_state *css; 3587 int retval; 3588 3589 retval = -ENOMEM; 3590 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3591 if (!buf) 3592 goto out; 3593 3594 css = task_get_css(tsk, cpuset_cgrp_id); 3595 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3596 current->nsproxy->cgroup_ns); 3597 css_put(css); 3598 if (retval >= PATH_MAX) 3599 retval = -ENAMETOOLONG; 3600 if (retval < 0) 3601 goto out_free; 3602 seq_puts(m, buf); 3603 seq_putc(m, '\n'); 3604 retval = 0; 3605 out_free: 3606 kfree(buf); 3607 out: 3608 return retval; 3609 } 3610 #endif /* CONFIG_PROC_PID_CPUSET */ 3611 3612 /* Display task mems_allowed in /proc/<pid>/status file. */ 3613 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3614 { 3615 seq_printf(m, "Mems_allowed:\t%*pb\n", 3616 nodemask_pr_args(&task->mems_allowed)); 3617 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3618 nodemask_pr_args(&task->mems_allowed)); 3619 } 3620