xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /*
74  * There could be abnormal cpuset configurations for cpu or memory
75  * node binding, add this key to provide a quick low-cost judgment
76  * of the situation.
77  */
78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79 
80 /* See "Frequency meter" comments, below. */
81 
82 struct fmeter {
83 	int cnt;		/* unprocessed events count */
84 	int val;		/* most recent output value */
85 	time64_t time;		/* clock (secs) when val computed */
86 	spinlock_t lock;	/* guards read or write of above */
87 };
88 
89 /*
90  * Invalid partition error code
91  */
92 enum prs_errcode {
93 	PERR_NONE = 0,
94 	PERR_INVCPUS,
95 	PERR_INVPARENT,
96 	PERR_NOTPART,
97 	PERR_NOTEXCL,
98 	PERR_NOCPUS,
99 	PERR_HOTPLUG,
100 	PERR_CPUSEMPTY,
101 };
102 
103 static const char * const perr_strings[] = {
104 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
105 	[PERR_INVPARENT] = "Parent is an invalid partition root",
106 	[PERR_NOTPART]   = "Parent is not a partition root",
107 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
108 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
109 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
110 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111 };
112 
113 struct cpuset {
114 	struct cgroup_subsys_state css;
115 
116 	unsigned long flags;		/* "unsigned long" so bitops work */
117 
118 	/*
119 	 * On default hierarchy:
120 	 *
121 	 * The user-configured masks can only be changed by writing to
122 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 	 * parent masks.
124 	 *
125 	 * The effective masks is the real masks that apply to the tasks
126 	 * in the cpuset. They may be changed if the configured masks are
127 	 * changed or hotplug happens.
128 	 *
129 	 * effective_mask == configured_mask & parent's effective_mask,
130 	 * and if it ends up empty, it will inherit the parent's mask.
131 	 *
132 	 *
133 	 * On legacy hierarchy:
134 	 *
135 	 * The user-configured masks are always the same with effective masks.
136 	 */
137 
138 	/* user-configured CPUs and Memory Nodes allow to tasks */
139 	cpumask_var_t cpus_allowed;
140 	nodemask_t mems_allowed;
141 
142 	/* effective CPUs and Memory Nodes allow to tasks */
143 	cpumask_var_t effective_cpus;
144 	nodemask_t effective_mems;
145 
146 	/*
147 	 * CPUs allocated to child sub-partitions (default hierarchy only)
148 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 	 * - effective_cpus and subparts_cpus are mutually exclusive.
150 	 *
151 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 	 * may have offlined ones.
153 	 */
154 	cpumask_var_t subparts_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of CPUs in subparts_cpus */
183 	int nr_subparts_cpus;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/* Invalid partition error code, not lock protected */
197 	enum prs_errcode prs_err;
198 
199 	/* Handle for cpuset.cpus.partition */
200 	struct cgroup_file partition_file;
201 };
202 
203 /*
204  * Partition root states:
205  *
206  *   0 - member (not a partition root)
207  *   1 - partition root
208  *   2 - partition root without load balancing (isolated)
209  *  -1 - invalid partition root
210  *  -2 - invalid isolated partition root
211  */
212 #define PRS_MEMBER		0
213 #define PRS_ROOT		1
214 #define PRS_ISOLATED		2
215 #define PRS_INVALID_ROOT	-1
216 #define PRS_INVALID_ISOLATED	-2
217 
218 static inline bool is_prs_invalid(int prs_state)
219 {
220 	return prs_state < 0;
221 }
222 
223 /*
224  * Temporary cpumasks for working with partitions that are passed among
225  * functions to avoid memory allocation in inner functions.
226  */
227 struct tmpmasks {
228 	cpumask_var_t addmask, delmask;	/* For partition root */
229 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
230 };
231 
232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233 {
234 	return css ? container_of(css, struct cpuset, css) : NULL;
235 }
236 
237 /* Retrieve the cpuset for a task */
238 static inline struct cpuset *task_cs(struct task_struct *task)
239 {
240 	return css_cs(task_css(task, cpuset_cgrp_id));
241 }
242 
243 static inline struct cpuset *parent_cs(struct cpuset *cs)
244 {
245 	return css_cs(cs->css.parent);
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_rwsem and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
373  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374  * prevent change to cpuset structures.
375  *
376  * A task must hold both locks to modify cpusets.  If a task holds
377  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378  * is the only task able to also acquire callback_lock and be able to
379  * modify cpusets.  It can perform various checks on the cpuset structure
380  * first, knowing nothing will change.  It can also allocate memory while
381  * just holding cpuset_rwsem.  While it is performing these checks, various
382  * callback routines can briefly acquire callback_lock to query cpusets.
383  * Once it is ready to make the changes, it takes callback_lock, blocking
384  * everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407 
408 void cpuset_read_lock(void)
409 {
410 	percpu_down_read(&cpuset_rwsem);
411 }
412 
413 void cpuset_read_unlock(void)
414 {
415 	percpu_up_read(&cpuset_rwsem);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_rwsem held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_rwsem held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_rwsem held. The check can be skipped
554  * if on default hierarchy.
555  */
556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_rwsem.
579  */
580 
581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_rwsem held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_rwsem held.  */
833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_rwsem held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
1069 static void update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	css_task_iter_start(&cs->css, 0, &it);
1075 
1076 	while ((task = css_task_iter_next(&it)))
1077 		dl_add_task_root_domain(task);
1078 
1079 	css_task_iter_end(&it);
1080 }
1081 
1082 static void rebuild_root_domains(void)
1083 {
1084 	struct cpuset *cs = NULL;
1085 	struct cgroup_subsys_state *pos_css;
1086 
1087 	percpu_rwsem_assert_held(&cpuset_rwsem);
1088 	lockdep_assert_cpus_held();
1089 	lockdep_assert_held(&sched_domains_mutex);
1090 
1091 	rcu_read_lock();
1092 
1093 	/*
1094 	 * Clear default root domain DL accounting, it will be computed again
1095 	 * if a task belongs to it.
1096 	 */
1097 	dl_clear_root_domain(&def_root_domain);
1098 
1099 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1100 
1101 		if (cpumask_empty(cs->effective_cpus)) {
1102 			pos_css = css_rightmost_descendant(pos_css);
1103 			continue;
1104 		}
1105 
1106 		css_get(&cs->css);
1107 
1108 		rcu_read_unlock();
1109 
1110 		update_tasks_root_domain(cs);
1111 
1112 		rcu_read_lock();
1113 		css_put(&cs->css);
1114 	}
1115 	rcu_read_unlock();
1116 }
1117 
1118 static void
1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1120 				    struct sched_domain_attr *dattr_new)
1121 {
1122 	mutex_lock(&sched_domains_mutex);
1123 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1124 	rebuild_root_domains();
1125 	mutex_unlock(&sched_domains_mutex);
1126 }
1127 
1128 /*
1129  * Rebuild scheduler domains.
1130  *
1131  * If the flag 'sched_load_balance' of any cpuset with non-empty
1132  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1133  * which has that flag enabled, or if any cpuset with a non-empty
1134  * 'cpus' is removed, then call this routine to rebuild the
1135  * scheduler's dynamic sched domains.
1136  *
1137  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1138  */
1139 static void rebuild_sched_domains_locked(void)
1140 {
1141 	struct cgroup_subsys_state *pos_css;
1142 	struct sched_domain_attr *attr;
1143 	cpumask_var_t *doms;
1144 	struct cpuset *cs;
1145 	int ndoms;
1146 
1147 	lockdep_assert_cpus_held();
1148 	percpu_rwsem_assert_held(&cpuset_rwsem);
1149 
1150 	/*
1151 	 * If we have raced with CPU hotplug, return early to avoid
1152 	 * passing doms with offlined cpu to partition_sched_domains().
1153 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1154 	 *
1155 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1156 	 * should be the same as the active CPUs, so checking only top_cpuset
1157 	 * is enough to detect racing CPU offlines.
1158 	 */
1159 	if (!top_cpuset.nr_subparts_cpus &&
1160 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1161 		return;
1162 
1163 	/*
1164 	 * With subpartition CPUs, however, the effective CPUs of a partition
1165 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1166 	 * partition root could be offlined, all must be checked.
1167 	 */
1168 	if (top_cpuset.nr_subparts_cpus) {
1169 		rcu_read_lock();
1170 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1171 			if (!is_partition_valid(cs)) {
1172 				pos_css = css_rightmost_descendant(pos_css);
1173 				continue;
1174 			}
1175 			if (!cpumask_subset(cs->effective_cpus,
1176 					    cpu_active_mask)) {
1177 				rcu_read_unlock();
1178 				return;
1179 			}
1180 		}
1181 		rcu_read_unlock();
1182 	}
1183 
1184 	/* Generate domain masks and attrs */
1185 	ndoms = generate_sched_domains(&doms, &attr);
1186 
1187 	/* Have scheduler rebuild the domains */
1188 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1189 }
1190 #else /* !CONFIG_SMP */
1191 static void rebuild_sched_domains_locked(void)
1192 {
1193 }
1194 #endif /* CONFIG_SMP */
1195 
1196 void rebuild_sched_domains(void)
1197 {
1198 	cpus_read_lock();
1199 	percpu_down_write(&cpuset_rwsem);
1200 	rebuild_sched_domains_locked();
1201 	percpu_up_write(&cpuset_rwsem);
1202 	cpus_read_unlock();
1203 }
1204 
1205 /**
1206  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1207  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1208  * @new_cpus: the temp variable for the new effective_cpus mask
1209  *
1210  * Iterate through each task of @cs updating its cpus_allowed to the
1211  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1212  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1213  * is used instead of effective_cpus to make sure all offline CPUs are also
1214  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1215  */
1216 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1217 {
1218 	struct css_task_iter it;
1219 	struct task_struct *task;
1220 	bool top_cs = cs == &top_cpuset;
1221 
1222 	css_task_iter_start(&cs->css, 0, &it);
1223 	while ((task = css_task_iter_next(&it))) {
1224 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1225 
1226 		if (top_cs) {
1227 			/*
1228 			 * Percpu kthreads in top_cpuset are ignored
1229 			 */
1230 			if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task))
1231 				continue;
1232 			cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
1233 		} else {
1234 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1235 		}
1236 		set_cpus_allowed_ptr(task, new_cpus);
1237 	}
1238 	css_task_iter_end(&it);
1239 }
1240 
1241 /**
1242  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1243  * @new_cpus: the temp variable for the new effective_cpus mask
1244  * @cs: the cpuset the need to recompute the new effective_cpus mask
1245  * @parent: the parent cpuset
1246  *
1247  * If the parent has subpartition CPUs, include them in the list of
1248  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1249  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1250  * to mask those out.
1251  */
1252 static void compute_effective_cpumask(struct cpumask *new_cpus,
1253 				      struct cpuset *cs, struct cpuset *parent)
1254 {
1255 	if (parent->nr_subparts_cpus) {
1256 		cpumask_or(new_cpus, parent->effective_cpus,
1257 			   parent->subparts_cpus);
1258 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1259 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1260 	} else {
1261 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1262 	}
1263 }
1264 
1265 /*
1266  * Commands for update_parent_subparts_cpumask
1267  */
1268 enum subparts_cmd {
1269 	partcmd_enable,		/* Enable partition root	 */
1270 	partcmd_disable,	/* Disable partition root	 */
1271 	partcmd_update,		/* Update parent's subparts_cpus */
1272 	partcmd_invalidate,	/* Make partition invalid	 */
1273 };
1274 
1275 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1276 		       int turning_on);
1277 /**
1278  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1279  * @cs:      The cpuset that requests change in partition root state
1280  * @cmd:     Partition root state change command
1281  * @newmask: Optional new cpumask for partcmd_update
1282  * @tmp:     Temporary addmask and delmask
1283  * Return:   0 or a partition root state error code
1284  *
1285  * For partcmd_enable, the cpuset is being transformed from a non-partition
1286  * root to a partition root. The cpus_allowed mask of the given cpuset will
1287  * be put into parent's subparts_cpus and taken away from parent's
1288  * effective_cpus. The function will return 0 if all the CPUs listed in
1289  * cpus_allowed can be granted or an error code will be returned.
1290  *
1291  * For partcmd_disable, the cpuset is being transformed from a partition
1292  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1293  * parent's subparts_cpus will be taken away from that cpumask and put back
1294  * into parent's effective_cpus. 0 will always be returned.
1295  *
1296  * For partcmd_update, if the optional newmask is specified, the cpu list is
1297  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1298  * assumed to remain the same. The cpuset should either be a valid or invalid
1299  * partition root. The partition root state may change from valid to invalid
1300  * or vice versa. An error code will only be returned if transitioning from
1301  * invalid to valid violates the exclusivity rule.
1302  *
1303  * For partcmd_invalidate, the current partition will be made invalid.
1304  *
1305  * The partcmd_enable and partcmd_disable commands are used by
1306  * update_prstate(). An error code may be returned and the caller will check
1307  * for error.
1308  *
1309  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1310  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1311  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1312  * check for error and so partition_root_state and prs_error will be updated
1313  * directly.
1314  */
1315 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1316 					  struct cpumask *newmask,
1317 					  struct tmpmasks *tmp)
1318 {
1319 	struct cpuset *parent = parent_cs(cs);
1320 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1321 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1322 	int old_prs, new_prs;
1323 	int part_error = PERR_NONE;	/* Partition error? */
1324 
1325 	percpu_rwsem_assert_held(&cpuset_rwsem);
1326 
1327 	/*
1328 	 * The parent must be a partition root.
1329 	 * The new cpumask, if present, or the current cpus_allowed must
1330 	 * not be empty.
1331 	 */
1332 	if (!is_partition_valid(parent)) {
1333 		return is_partition_invalid(parent)
1334 		       ? PERR_INVPARENT : PERR_NOTPART;
1335 	}
1336 	if ((newmask && cpumask_empty(newmask)) ||
1337 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1338 		return PERR_CPUSEMPTY;
1339 
1340 	/*
1341 	 * new_prs will only be changed for the partcmd_update and
1342 	 * partcmd_invalidate commands.
1343 	 */
1344 	adding = deleting = false;
1345 	old_prs = new_prs = cs->partition_root_state;
1346 	if (cmd == partcmd_enable) {
1347 		/*
1348 		 * Enabling partition root is not allowed if cpus_allowed
1349 		 * doesn't overlap parent's cpus_allowed.
1350 		 */
1351 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1352 			return PERR_INVCPUS;
1353 
1354 		/*
1355 		 * A parent can be left with no CPU as long as there is no
1356 		 * task directly associated with the parent partition.
1357 		 */
1358 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1359 		    partition_is_populated(parent, cs))
1360 			return PERR_NOCPUS;
1361 
1362 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1363 		adding = true;
1364 	} else if (cmd == partcmd_disable) {
1365 		/*
1366 		 * Need to remove cpus from parent's subparts_cpus for valid
1367 		 * partition root.
1368 		 */
1369 		deleting = !is_prs_invalid(old_prs) &&
1370 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1371 				       parent->subparts_cpus);
1372 	} else if (cmd == partcmd_invalidate) {
1373 		if (is_prs_invalid(old_prs))
1374 			return 0;
1375 
1376 		/*
1377 		 * Make the current partition invalid. It is assumed that
1378 		 * invalidation is caused by violating cpu exclusivity rule.
1379 		 */
1380 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1381 				       parent->subparts_cpus);
1382 		if (old_prs > 0) {
1383 			new_prs = -old_prs;
1384 			part_error = PERR_NOTEXCL;
1385 		}
1386 	} else if (newmask) {
1387 		/*
1388 		 * partcmd_update with newmask:
1389 		 *
1390 		 * Compute add/delete mask to/from subparts_cpus
1391 		 *
1392 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1393 		 * addmask = newmask & parent->cpus_allowed
1394 		 *		     & ~parent->subparts_cpus
1395 		 */
1396 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1397 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1398 				       parent->subparts_cpus);
1399 
1400 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1401 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1402 					parent->subparts_cpus);
1403 		/*
1404 		 * Make partition invalid if parent's effective_cpus could
1405 		 * become empty and there are tasks in the parent.
1406 		 */
1407 		if (adding &&
1408 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1409 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1410 		    partition_is_populated(parent, cs)) {
1411 			part_error = PERR_NOCPUS;
1412 			adding = false;
1413 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1414 					       parent->subparts_cpus);
1415 		}
1416 	} else {
1417 		/*
1418 		 * partcmd_update w/o newmask:
1419 		 *
1420 		 * delmask = cpus_allowed & parent->subparts_cpus
1421 		 * addmask = cpus_allowed & parent->cpus_allowed
1422 		 *			  & ~parent->subparts_cpus
1423 		 *
1424 		 * This gets invoked either due to a hotplug event or from
1425 		 * update_cpumasks_hier(). This can cause the state of a
1426 		 * partition root to transition from valid to invalid or vice
1427 		 * versa. So we still need to compute the addmask and delmask.
1428 
1429 		 * A partition error happens when:
1430 		 * 1) Cpuset is valid partition, but parent does not distribute
1431 		 *    out any CPUs.
1432 		 * 2) Parent has tasks and all its effective CPUs will have
1433 		 *    to be distributed out.
1434 		 */
1435 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1436 					  parent->cpus_allowed);
1437 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1438 					parent->subparts_cpus);
1439 
1440 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1441 		    (adding &&
1442 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1443 		     partition_is_populated(parent, cs))) {
1444 			part_error = PERR_NOCPUS;
1445 			adding = false;
1446 		}
1447 
1448 		if (part_error && is_partition_valid(cs) &&
1449 		    parent->nr_subparts_cpus)
1450 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1451 					       parent->subparts_cpus);
1452 	}
1453 	if (part_error)
1454 		WRITE_ONCE(cs->prs_err, part_error);
1455 
1456 	if (cmd == partcmd_update) {
1457 		/*
1458 		 * Check for possible transition between valid and invalid
1459 		 * partition root.
1460 		 */
1461 		switch (cs->partition_root_state) {
1462 		case PRS_ROOT:
1463 		case PRS_ISOLATED:
1464 			if (part_error)
1465 				new_prs = -old_prs;
1466 			break;
1467 		case PRS_INVALID_ROOT:
1468 		case PRS_INVALID_ISOLATED:
1469 			if (!part_error)
1470 				new_prs = -old_prs;
1471 			break;
1472 		}
1473 	}
1474 
1475 	if (!adding && !deleting && (new_prs == old_prs))
1476 		return 0;
1477 
1478 	/*
1479 	 * Transitioning between invalid to valid or vice versa may require
1480 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1481 	 */
1482 	if (old_prs != new_prs) {
1483 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1484 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1485 			return PERR_NOTEXCL;
1486 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1487 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1488 	}
1489 
1490 	/*
1491 	 * Change the parent's subparts_cpus.
1492 	 * Newly added CPUs will be removed from effective_cpus and
1493 	 * newly deleted ones will be added back to effective_cpus.
1494 	 */
1495 	spin_lock_irq(&callback_lock);
1496 	if (adding) {
1497 		cpumask_or(parent->subparts_cpus,
1498 			   parent->subparts_cpus, tmp->addmask);
1499 		cpumask_andnot(parent->effective_cpus,
1500 			       parent->effective_cpus, tmp->addmask);
1501 	}
1502 	if (deleting) {
1503 		cpumask_andnot(parent->subparts_cpus,
1504 			       parent->subparts_cpus, tmp->delmask);
1505 		/*
1506 		 * Some of the CPUs in subparts_cpus might have been offlined.
1507 		 */
1508 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1509 		cpumask_or(parent->effective_cpus,
1510 			   parent->effective_cpus, tmp->delmask);
1511 	}
1512 
1513 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1514 
1515 	if (old_prs != new_prs)
1516 		cs->partition_root_state = new_prs;
1517 
1518 	spin_unlock_irq(&callback_lock);
1519 
1520 	if (adding || deleting)
1521 		update_tasks_cpumask(parent, tmp->addmask);
1522 
1523 	/*
1524 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1525 	 * rebuild_sched_domains_locked() may be called.
1526 	 */
1527 	if (old_prs != new_prs) {
1528 		if (old_prs == PRS_ISOLATED)
1529 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1530 		else if (new_prs == PRS_ISOLATED)
1531 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1532 	}
1533 	notify_partition_change(cs, old_prs);
1534 	return 0;
1535 }
1536 
1537 /*
1538  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1539  * @cs:  the cpuset to consider
1540  * @tmp: temp variables for calculating effective_cpus & partition setup
1541  * @force: don't skip any descendant cpusets if set
1542  *
1543  * When configured cpumask is changed, the effective cpumasks of this cpuset
1544  * and all its descendants need to be updated.
1545  *
1546  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1547  *
1548  * Called with cpuset_rwsem held
1549  */
1550 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1551 				 bool force)
1552 {
1553 	struct cpuset *cp;
1554 	struct cgroup_subsys_state *pos_css;
1555 	bool need_rebuild_sched_domains = false;
1556 	int old_prs, new_prs;
1557 
1558 	rcu_read_lock();
1559 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1560 		struct cpuset *parent = parent_cs(cp);
1561 		bool update_parent = false;
1562 
1563 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1564 
1565 		/*
1566 		 * If it becomes empty, inherit the effective mask of the
1567 		 * parent, which is guaranteed to have some CPUs unless
1568 		 * it is a partition root that has explicitly distributed
1569 		 * out all its CPUs.
1570 		 */
1571 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1572 			if (is_partition_valid(cp) &&
1573 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1574 				goto update_parent_subparts;
1575 
1576 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1577 			if (!cp->use_parent_ecpus) {
1578 				cp->use_parent_ecpus = true;
1579 				parent->child_ecpus_count++;
1580 			}
1581 		} else if (cp->use_parent_ecpus) {
1582 			cp->use_parent_ecpus = false;
1583 			WARN_ON_ONCE(!parent->child_ecpus_count);
1584 			parent->child_ecpus_count--;
1585 		}
1586 
1587 		/*
1588 		 * Skip the whole subtree if the cpumask remains the same
1589 		 * and has no partition root state and force flag not set.
1590 		 */
1591 		if (!cp->partition_root_state && !force &&
1592 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1593 			pos_css = css_rightmost_descendant(pos_css);
1594 			continue;
1595 		}
1596 
1597 update_parent_subparts:
1598 		/*
1599 		 * update_parent_subparts_cpumask() should have been called
1600 		 * for cs already in update_cpumask(). We should also call
1601 		 * update_tasks_cpumask() again for tasks in the parent
1602 		 * cpuset if the parent's subparts_cpus changes.
1603 		 */
1604 		old_prs = new_prs = cp->partition_root_state;
1605 		if ((cp != cs) && old_prs) {
1606 			switch (parent->partition_root_state) {
1607 			case PRS_ROOT:
1608 			case PRS_ISOLATED:
1609 				update_parent = true;
1610 				break;
1611 
1612 			default:
1613 				/*
1614 				 * When parent is not a partition root or is
1615 				 * invalid, child partition roots become
1616 				 * invalid too.
1617 				 */
1618 				if (is_partition_valid(cp))
1619 					new_prs = -cp->partition_root_state;
1620 				WRITE_ONCE(cp->prs_err,
1621 					   is_partition_invalid(parent)
1622 					   ? PERR_INVPARENT : PERR_NOTPART);
1623 				break;
1624 			}
1625 		}
1626 
1627 		if (!css_tryget_online(&cp->css))
1628 			continue;
1629 		rcu_read_unlock();
1630 
1631 		if (update_parent) {
1632 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1633 						       tmp);
1634 			/*
1635 			 * The cpuset partition_root_state may become
1636 			 * invalid. Capture it.
1637 			 */
1638 			new_prs = cp->partition_root_state;
1639 		}
1640 
1641 		spin_lock_irq(&callback_lock);
1642 
1643 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1644 			/*
1645 			 * Put all active subparts_cpus back to effective_cpus.
1646 			 */
1647 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1648 				   cp->subparts_cpus);
1649 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1650 				   cpu_active_mask);
1651 			cp->nr_subparts_cpus = 0;
1652 			cpumask_clear(cp->subparts_cpus);
1653 		}
1654 
1655 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1656 		if (cp->nr_subparts_cpus) {
1657 			/*
1658 			 * Make sure that effective_cpus & subparts_cpus
1659 			 * are mutually exclusive.
1660 			 */
1661 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1662 				       cp->subparts_cpus);
1663 		}
1664 
1665 		cp->partition_root_state = new_prs;
1666 		spin_unlock_irq(&callback_lock);
1667 
1668 		notify_partition_change(cp, old_prs);
1669 
1670 		WARN_ON(!is_in_v2_mode() &&
1671 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1672 
1673 		update_tasks_cpumask(cp, tmp->new_cpus);
1674 
1675 		/*
1676 		 * On legacy hierarchy, if the effective cpumask of any non-
1677 		 * empty cpuset is changed, we need to rebuild sched domains.
1678 		 * On default hierarchy, the cpuset needs to be a partition
1679 		 * root as well.
1680 		 */
1681 		if (!cpumask_empty(cp->cpus_allowed) &&
1682 		    is_sched_load_balance(cp) &&
1683 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1684 		    is_partition_valid(cp)))
1685 			need_rebuild_sched_domains = true;
1686 
1687 		rcu_read_lock();
1688 		css_put(&cp->css);
1689 	}
1690 	rcu_read_unlock();
1691 
1692 	if (need_rebuild_sched_domains)
1693 		rebuild_sched_domains_locked();
1694 }
1695 
1696 /**
1697  * update_sibling_cpumasks - Update siblings cpumasks
1698  * @parent:  Parent cpuset
1699  * @cs:      Current cpuset
1700  * @tmp:     Temp variables
1701  */
1702 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1703 				    struct tmpmasks *tmp)
1704 {
1705 	struct cpuset *sibling;
1706 	struct cgroup_subsys_state *pos_css;
1707 
1708 	percpu_rwsem_assert_held(&cpuset_rwsem);
1709 
1710 	/*
1711 	 * Check all its siblings and call update_cpumasks_hier()
1712 	 * if their use_parent_ecpus flag is set in order for them
1713 	 * to use the right effective_cpus value.
1714 	 *
1715 	 * The update_cpumasks_hier() function may sleep. So we have to
1716 	 * release the RCU read lock before calling it.
1717 	 */
1718 	rcu_read_lock();
1719 	cpuset_for_each_child(sibling, pos_css, parent) {
1720 		if (sibling == cs)
1721 			continue;
1722 		if (!sibling->use_parent_ecpus)
1723 			continue;
1724 		if (!css_tryget_online(&sibling->css))
1725 			continue;
1726 
1727 		rcu_read_unlock();
1728 		update_cpumasks_hier(sibling, tmp, false);
1729 		rcu_read_lock();
1730 		css_put(&sibling->css);
1731 	}
1732 	rcu_read_unlock();
1733 }
1734 
1735 /**
1736  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1737  * @cs: the cpuset to consider
1738  * @trialcs: trial cpuset
1739  * @buf: buffer of cpu numbers written to this cpuset
1740  */
1741 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1742 			  const char *buf)
1743 {
1744 	int retval;
1745 	struct tmpmasks tmp;
1746 	bool invalidate = false;
1747 
1748 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1749 	if (cs == &top_cpuset)
1750 		return -EACCES;
1751 
1752 	/*
1753 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1754 	 * Since cpulist_parse() fails on an empty mask, we special case
1755 	 * that parsing.  The validate_change() call ensures that cpusets
1756 	 * with tasks have cpus.
1757 	 */
1758 	if (!*buf) {
1759 		cpumask_clear(trialcs->cpus_allowed);
1760 	} else {
1761 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1762 		if (retval < 0)
1763 			return retval;
1764 
1765 		if (!cpumask_subset(trialcs->cpus_allowed,
1766 				    top_cpuset.cpus_allowed))
1767 			return -EINVAL;
1768 	}
1769 
1770 	/* Nothing to do if the cpus didn't change */
1771 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1772 		return 0;
1773 
1774 #ifdef CONFIG_CPUMASK_OFFSTACK
1775 	/*
1776 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1777 	 * to allocated cpumasks.
1778 	 *
1779 	 * Note that update_parent_subparts_cpumask() uses only addmask &
1780 	 * delmask, but not new_cpus.
1781 	 */
1782 	tmp.addmask  = trialcs->subparts_cpus;
1783 	tmp.delmask  = trialcs->effective_cpus;
1784 	tmp.new_cpus = NULL;
1785 #endif
1786 
1787 	retval = validate_change(cs, trialcs);
1788 
1789 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1790 		struct cpuset *cp, *parent;
1791 		struct cgroup_subsys_state *css;
1792 
1793 		/*
1794 		 * The -EINVAL error code indicates that partition sibling
1795 		 * CPU exclusivity rule has been violated. We still allow
1796 		 * the cpumask change to proceed while invalidating the
1797 		 * partition. However, any conflicting sibling partitions
1798 		 * have to be marked as invalid too.
1799 		 */
1800 		invalidate = true;
1801 		rcu_read_lock();
1802 		parent = parent_cs(cs);
1803 		cpuset_for_each_child(cp, css, parent)
1804 			if (is_partition_valid(cp) &&
1805 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1806 				rcu_read_unlock();
1807 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1808 				rcu_read_lock();
1809 			}
1810 		rcu_read_unlock();
1811 		retval = 0;
1812 	}
1813 	if (retval < 0)
1814 		return retval;
1815 
1816 	if (cs->partition_root_state) {
1817 		if (invalidate)
1818 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1819 						       NULL, &tmp);
1820 		else
1821 			update_parent_subparts_cpumask(cs, partcmd_update,
1822 						trialcs->cpus_allowed, &tmp);
1823 	}
1824 
1825 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1826 				  parent_cs(cs));
1827 	spin_lock_irq(&callback_lock);
1828 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1829 
1830 	/*
1831 	 * Make sure that subparts_cpus, if not empty, is a subset of
1832 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1833 	 * empty effective cpus with tasks.
1834 	 */
1835 	if (cs->nr_subparts_cpus) {
1836 		if (!is_partition_valid(cs) ||
1837 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1838 		    partition_is_populated(cs, NULL))) {
1839 			cs->nr_subparts_cpus = 0;
1840 			cpumask_clear(cs->subparts_cpus);
1841 		} else {
1842 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1843 				    cs->cpus_allowed);
1844 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1845 		}
1846 	}
1847 	spin_unlock_irq(&callback_lock);
1848 
1849 #ifdef CONFIG_CPUMASK_OFFSTACK
1850 	/* Now trialcs->cpus_allowed is available */
1851 	tmp.new_cpus = trialcs->cpus_allowed;
1852 #endif
1853 
1854 	/* effective_cpus will be updated here */
1855 	update_cpumasks_hier(cs, &tmp, false);
1856 
1857 	if (cs->partition_root_state) {
1858 		struct cpuset *parent = parent_cs(cs);
1859 
1860 		/*
1861 		 * For partition root, update the cpumasks of sibling
1862 		 * cpusets if they use parent's effective_cpus.
1863 		 */
1864 		if (parent->child_ecpus_count)
1865 			update_sibling_cpumasks(parent, cs, &tmp);
1866 	}
1867 	return 0;
1868 }
1869 
1870 /*
1871  * Migrate memory region from one set of nodes to another.  This is
1872  * performed asynchronously as it can be called from process migration path
1873  * holding locks involved in process management.  All mm migrations are
1874  * performed in the queued order and can be waited for by flushing
1875  * cpuset_migrate_mm_wq.
1876  */
1877 
1878 struct cpuset_migrate_mm_work {
1879 	struct work_struct	work;
1880 	struct mm_struct	*mm;
1881 	nodemask_t		from;
1882 	nodemask_t		to;
1883 };
1884 
1885 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1886 {
1887 	struct cpuset_migrate_mm_work *mwork =
1888 		container_of(work, struct cpuset_migrate_mm_work, work);
1889 
1890 	/* on a wq worker, no need to worry about %current's mems_allowed */
1891 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1892 	mmput(mwork->mm);
1893 	kfree(mwork);
1894 }
1895 
1896 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1897 							const nodemask_t *to)
1898 {
1899 	struct cpuset_migrate_mm_work *mwork;
1900 
1901 	if (nodes_equal(*from, *to)) {
1902 		mmput(mm);
1903 		return;
1904 	}
1905 
1906 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1907 	if (mwork) {
1908 		mwork->mm = mm;
1909 		mwork->from = *from;
1910 		mwork->to = *to;
1911 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1912 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1913 	} else {
1914 		mmput(mm);
1915 	}
1916 }
1917 
1918 static void cpuset_post_attach(void)
1919 {
1920 	flush_workqueue(cpuset_migrate_mm_wq);
1921 }
1922 
1923 /*
1924  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1925  * @tsk: the task to change
1926  * @newmems: new nodes that the task will be set
1927  *
1928  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1929  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1930  * parallel, it might temporarily see an empty intersection, which results in
1931  * a seqlock check and retry before OOM or allocation failure.
1932  */
1933 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1934 					nodemask_t *newmems)
1935 {
1936 	task_lock(tsk);
1937 
1938 	local_irq_disable();
1939 	write_seqcount_begin(&tsk->mems_allowed_seq);
1940 
1941 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1942 	mpol_rebind_task(tsk, newmems);
1943 	tsk->mems_allowed = *newmems;
1944 
1945 	write_seqcount_end(&tsk->mems_allowed_seq);
1946 	local_irq_enable();
1947 
1948 	task_unlock(tsk);
1949 }
1950 
1951 static void *cpuset_being_rebound;
1952 
1953 /**
1954  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1955  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1956  *
1957  * Iterate through each task of @cs updating its mems_allowed to the
1958  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1959  * cpuset membership stays stable.
1960  */
1961 static void update_tasks_nodemask(struct cpuset *cs)
1962 {
1963 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1964 	struct css_task_iter it;
1965 	struct task_struct *task;
1966 
1967 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1968 
1969 	guarantee_online_mems(cs, &newmems);
1970 
1971 	/*
1972 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1973 	 * take while holding tasklist_lock.  Forks can happen - the
1974 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1975 	 * and rebind their vma mempolicies too.  Because we still hold
1976 	 * the global cpuset_rwsem, we know that no other rebind effort
1977 	 * will be contending for the global variable cpuset_being_rebound.
1978 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1979 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1980 	 */
1981 	css_task_iter_start(&cs->css, 0, &it);
1982 	while ((task = css_task_iter_next(&it))) {
1983 		struct mm_struct *mm;
1984 		bool migrate;
1985 
1986 		cpuset_change_task_nodemask(task, &newmems);
1987 
1988 		mm = get_task_mm(task);
1989 		if (!mm)
1990 			continue;
1991 
1992 		migrate = is_memory_migrate(cs);
1993 
1994 		mpol_rebind_mm(mm, &cs->mems_allowed);
1995 		if (migrate)
1996 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1997 		else
1998 			mmput(mm);
1999 	}
2000 	css_task_iter_end(&it);
2001 
2002 	/*
2003 	 * All the tasks' nodemasks have been updated, update
2004 	 * cs->old_mems_allowed.
2005 	 */
2006 	cs->old_mems_allowed = newmems;
2007 
2008 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2009 	cpuset_being_rebound = NULL;
2010 }
2011 
2012 /*
2013  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2014  * @cs: the cpuset to consider
2015  * @new_mems: a temp variable for calculating new effective_mems
2016  *
2017  * When configured nodemask is changed, the effective nodemasks of this cpuset
2018  * and all its descendants need to be updated.
2019  *
2020  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2021  *
2022  * Called with cpuset_rwsem held
2023  */
2024 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2025 {
2026 	struct cpuset *cp;
2027 	struct cgroup_subsys_state *pos_css;
2028 
2029 	rcu_read_lock();
2030 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2031 		struct cpuset *parent = parent_cs(cp);
2032 
2033 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2034 
2035 		/*
2036 		 * If it becomes empty, inherit the effective mask of the
2037 		 * parent, which is guaranteed to have some MEMs.
2038 		 */
2039 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2040 			*new_mems = parent->effective_mems;
2041 
2042 		/* Skip the whole subtree if the nodemask remains the same. */
2043 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2044 			pos_css = css_rightmost_descendant(pos_css);
2045 			continue;
2046 		}
2047 
2048 		if (!css_tryget_online(&cp->css))
2049 			continue;
2050 		rcu_read_unlock();
2051 
2052 		spin_lock_irq(&callback_lock);
2053 		cp->effective_mems = *new_mems;
2054 		spin_unlock_irq(&callback_lock);
2055 
2056 		WARN_ON(!is_in_v2_mode() &&
2057 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2058 
2059 		update_tasks_nodemask(cp);
2060 
2061 		rcu_read_lock();
2062 		css_put(&cp->css);
2063 	}
2064 	rcu_read_unlock();
2065 }
2066 
2067 /*
2068  * Handle user request to change the 'mems' memory placement
2069  * of a cpuset.  Needs to validate the request, update the
2070  * cpusets mems_allowed, and for each task in the cpuset,
2071  * update mems_allowed and rebind task's mempolicy and any vma
2072  * mempolicies and if the cpuset is marked 'memory_migrate',
2073  * migrate the tasks pages to the new memory.
2074  *
2075  * Call with cpuset_rwsem held. May take callback_lock during call.
2076  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2077  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2078  * their mempolicies to the cpusets new mems_allowed.
2079  */
2080 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2081 			   const char *buf)
2082 {
2083 	int retval;
2084 
2085 	/*
2086 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2087 	 * it's read-only
2088 	 */
2089 	if (cs == &top_cpuset) {
2090 		retval = -EACCES;
2091 		goto done;
2092 	}
2093 
2094 	/*
2095 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2096 	 * Since nodelist_parse() fails on an empty mask, we special case
2097 	 * that parsing.  The validate_change() call ensures that cpusets
2098 	 * with tasks have memory.
2099 	 */
2100 	if (!*buf) {
2101 		nodes_clear(trialcs->mems_allowed);
2102 	} else {
2103 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2104 		if (retval < 0)
2105 			goto done;
2106 
2107 		if (!nodes_subset(trialcs->mems_allowed,
2108 				  top_cpuset.mems_allowed)) {
2109 			retval = -EINVAL;
2110 			goto done;
2111 		}
2112 	}
2113 
2114 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2115 		retval = 0;		/* Too easy - nothing to do */
2116 		goto done;
2117 	}
2118 	retval = validate_change(cs, trialcs);
2119 	if (retval < 0)
2120 		goto done;
2121 
2122 	check_insane_mems_config(&trialcs->mems_allowed);
2123 
2124 	spin_lock_irq(&callback_lock);
2125 	cs->mems_allowed = trialcs->mems_allowed;
2126 	spin_unlock_irq(&callback_lock);
2127 
2128 	/* use trialcs->mems_allowed as a temp variable */
2129 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2130 done:
2131 	return retval;
2132 }
2133 
2134 bool current_cpuset_is_being_rebound(void)
2135 {
2136 	bool ret;
2137 
2138 	rcu_read_lock();
2139 	ret = task_cs(current) == cpuset_being_rebound;
2140 	rcu_read_unlock();
2141 
2142 	return ret;
2143 }
2144 
2145 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2146 {
2147 #ifdef CONFIG_SMP
2148 	if (val < -1 || val >= sched_domain_level_max)
2149 		return -EINVAL;
2150 #endif
2151 
2152 	if (val != cs->relax_domain_level) {
2153 		cs->relax_domain_level = val;
2154 		if (!cpumask_empty(cs->cpus_allowed) &&
2155 		    is_sched_load_balance(cs))
2156 			rebuild_sched_domains_locked();
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 /**
2163  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2164  * @cs: the cpuset in which each task's spread flags needs to be changed
2165  *
2166  * Iterate through each task of @cs updating its spread flags.  As this
2167  * function is called with cpuset_rwsem held, cpuset membership stays
2168  * stable.
2169  */
2170 static void update_tasks_flags(struct cpuset *cs)
2171 {
2172 	struct css_task_iter it;
2173 	struct task_struct *task;
2174 
2175 	css_task_iter_start(&cs->css, 0, &it);
2176 	while ((task = css_task_iter_next(&it)))
2177 		cpuset_update_task_spread_flags(cs, task);
2178 	css_task_iter_end(&it);
2179 }
2180 
2181 /*
2182  * update_flag - read a 0 or a 1 in a file and update associated flag
2183  * bit:		the bit to update (see cpuset_flagbits_t)
2184  * cs:		the cpuset to update
2185  * turning_on: 	whether the flag is being set or cleared
2186  *
2187  * Call with cpuset_rwsem held.
2188  */
2189 
2190 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2191 		       int turning_on)
2192 {
2193 	struct cpuset *trialcs;
2194 	int balance_flag_changed;
2195 	int spread_flag_changed;
2196 	int err;
2197 
2198 	trialcs = alloc_trial_cpuset(cs);
2199 	if (!trialcs)
2200 		return -ENOMEM;
2201 
2202 	if (turning_on)
2203 		set_bit(bit, &trialcs->flags);
2204 	else
2205 		clear_bit(bit, &trialcs->flags);
2206 
2207 	err = validate_change(cs, trialcs);
2208 	if (err < 0)
2209 		goto out;
2210 
2211 	balance_flag_changed = (is_sched_load_balance(cs) !=
2212 				is_sched_load_balance(trialcs));
2213 
2214 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2215 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2216 
2217 	spin_lock_irq(&callback_lock);
2218 	cs->flags = trialcs->flags;
2219 	spin_unlock_irq(&callback_lock);
2220 
2221 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2222 		rebuild_sched_domains_locked();
2223 
2224 	if (spread_flag_changed)
2225 		update_tasks_flags(cs);
2226 out:
2227 	free_cpuset(trialcs);
2228 	return err;
2229 }
2230 
2231 /**
2232  * update_prstate - update partition_root_state
2233  * @cs: the cpuset to update
2234  * @new_prs: new partition root state
2235  * Return: 0 if successful, != 0 if error
2236  *
2237  * Call with cpuset_rwsem held.
2238  */
2239 static int update_prstate(struct cpuset *cs, int new_prs)
2240 {
2241 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2242 	bool sched_domain_rebuilt = false;
2243 	struct cpuset *parent = parent_cs(cs);
2244 	struct tmpmasks tmpmask;
2245 
2246 	if (old_prs == new_prs)
2247 		return 0;
2248 
2249 	/*
2250 	 * For a previously invalid partition root, leave it at being
2251 	 * invalid if new_prs is not "member".
2252 	 */
2253 	if (new_prs && is_prs_invalid(old_prs)) {
2254 		cs->partition_root_state = -new_prs;
2255 		return 0;
2256 	}
2257 
2258 	if (alloc_cpumasks(NULL, &tmpmask))
2259 		return -ENOMEM;
2260 
2261 	if (!old_prs) {
2262 		/*
2263 		 * Turning on partition root requires setting the
2264 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2265 		 * cannot be empty.
2266 		 */
2267 		if (cpumask_empty(cs->cpus_allowed)) {
2268 			err = PERR_CPUSEMPTY;
2269 			goto out;
2270 		}
2271 
2272 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2273 		if (err) {
2274 			err = PERR_NOTEXCL;
2275 			goto out;
2276 		}
2277 
2278 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2279 						     NULL, &tmpmask);
2280 		if (err) {
2281 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2282 			goto out;
2283 		}
2284 
2285 		if (new_prs == PRS_ISOLATED) {
2286 			/*
2287 			 * Disable the load balance flag should not return an
2288 			 * error unless the system is running out of memory.
2289 			 */
2290 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2291 			sched_domain_rebuilt = true;
2292 		}
2293 	} else if (old_prs && new_prs) {
2294 		/*
2295 		 * A change in load balance state only, no change in cpumasks.
2296 		 */
2297 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2298 		sched_domain_rebuilt = true;
2299 		goto out;	/* Sched domain is rebuilt in update_flag() */
2300 	} else {
2301 		/*
2302 		 * Switching back to member is always allowed even if it
2303 		 * disables child partitions.
2304 		 */
2305 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2306 					       &tmpmask);
2307 
2308 		/*
2309 		 * If there are child partitions, they will all become invalid.
2310 		 */
2311 		if (unlikely(cs->nr_subparts_cpus)) {
2312 			spin_lock_irq(&callback_lock);
2313 			cs->nr_subparts_cpus = 0;
2314 			cpumask_clear(cs->subparts_cpus);
2315 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2316 			spin_unlock_irq(&callback_lock);
2317 		}
2318 
2319 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2320 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2321 
2322 		if (!is_sched_load_balance(cs)) {
2323 			/* Make sure load balance is on */
2324 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2325 			sched_domain_rebuilt = true;
2326 		}
2327 	}
2328 
2329 	update_tasks_cpumask(parent, tmpmask.new_cpus);
2330 
2331 	if (parent->child_ecpus_count)
2332 		update_sibling_cpumasks(parent, cs, &tmpmask);
2333 
2334 	if (!sched_domain_rebuilt)
2335 		rebuild_sched_domains_locked();
2336 out:
2337 	/*
2338 	 * Make partition invalid if an error happen
2339 	 */
2340 	if (err)
2341 		new_prs = -new_prs;
2342 	spin_lock_irq(&callback_lock);
2343 	cs->partition_root_state = new_prs;
2344 	WRITE_ONCE(cs->prs_err, err);
2345 	spin_unlock_irq(&callback_lock);
2346 	/*
2347 	 * Update child cpusets, if present.
2348 	 * Force update if switching back to member.
2349 	 */
2350 	if (!list_empty(&cs->css.children))
2351 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2352 
2353 	notify_partition_change(cs, old_prs);
2354 	free_cpumasks(NULL, &tmpmask);
2355 	return 0;
2356 }
2357 
2358 /*
2359  * Frequency meter - How fast is some event occurring?
2360  *
2361  * These routines manage a digitally filtered, constant time based,
2362  * event frequency meter.  There are four routines:
2363  *   fmeter_init() - initialize a frequency meter.
2364  *   fmeter_markevent() - called each time the event happens.
2365  *   fmeter_getrate() - returns the recent rate of such events.
2366  *   fmeter_update() - internal routine used to update fmeter.
2367  *
2368  * A common data structure is passed to each of these routines,
2369  * which is used to keep track of the state required to manage the
2370  * frequency meter and its digital filter.
2371  *
2372  * The filter works on the number of events marked per unit time.
2373  * The filter is single-pole low-pass recursive (IIR).  The time unit
2374  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2375  * simulate 3 decimal digits of precision (multiplied by 1000).
2376  *
2377  * With an FM_COEF of 933, and a time base of 1 second, the filter
2378  * has a half-life of 10 seconds, meaning that if the events quit
2379  * happening, then the rate returned from the fmeter_getrate()
2380  * will be cut in half each 10 seconds, until it converges to zero.
2381  *
2382  * It is not worth doing a real infinitely recursive filter.  If more
2383  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2384  * just compute FM_MAXTICKS ticks worth, by which point the level
2385  * will be stable.
2386  *
2387  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2388  * arithmetic overflow in the fmeter_update() routine.
2389  *
2390  * Given the simple 32 bit integer arithmetic used, this meter works
2391  * best for reporting rates between one per millisecond (msec) and
2392  * one per 32 (approx) seconds.  At constant rates faster than one
2393  * per msec it maxes out at values just under 1,000,000.  At constant
2394  * rates between one per msec, and one per second it will stabilize
2395  * to a value N*1000, where N is the rate of events per second.
2396  * At constant rates between one per second and one per 32 seconds,
2397  * it will be choppy, moving up on the seconds that have an event,
2398  * and then decaying until the next event.  At rates slower than
2399  * about one in 32 seconds, it decays all the way back to zero between
2400  * each event.
2401  */
2402 
2403 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2404 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2405 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2406 #define FM_SCALE 1000		/* faux fixed point scale */
2407 
2408 /* Initialize a frequency meter */
2409 static void fmeter_init(struct fmeter *fmp)
2410 {
2411 	fmp->cnt = 0;
2412 	fmp->val = 0;
2413 	fmp->time = 0;
2414 	spin_lock_init(&fmp->lock);
2415 }
2416 
2417 /* Internal meter update - process cnt events and update value */
2418 static void fmeter_update(struct fmeter *fmp)
2419 {
2420 	time64_t now;
2421 	u32 ticks;
2422 
2423 	now = ktime_get_seconds();
2424 	ticks = now - fmp->time;
2425 
2426 	if (ticks == 0)
2427 		return;
2428 
2429 	ticks = min(FM_MAXTICKS, ticks);
2430 	while (ticks-- > 0)
2431 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2432 	fmp->time = now;
2433 
2434 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2435 	fmp->cnt = 0;
2436 }
2437 
2438 /* Process any previous ticks, then bump cnt by one (times scale). */
2439 static void fmeter_markevent(struct fmeter *fmp)
2440 {
2441 	spin_lock(&fmp->lock);
2442 	fmeter_update(fmp);
2443 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2444 	spin_unlock(&fmp->lock);
2445 }
2446 
2447 /* Process any previous ticks, then return current value. */
2448 static int fmeter_getrate(struct fmeter *fmp)
2449 {
2450 	int val;
2451 
2452 	spin_lock(&fmp->lock);
2453 	fmeter_update(fmp);
2454 	val = fmp->val;
2455 	spin_unlock(&fmp->lock);
2456 	return val;
2457 }
2458 
2459 static struct cpuset *cpuset_attach_old_cs;
2460 
2461 /*
2462  * Check to see if a cpuset can accept a new task
2463  * For v1, cpus_allowed and mems_allowed can't be empty.
2464  * For v2, effective_cpus can't be empty.
2465  * Note that in v1, effective_cpus = cpus_allowed.
2466  */
2467 static int cpuset_can_attach_check(struct cpuset *cs)
2468 {
2469 	if (cpumask_empty(cs->effective_cpus) ||
2470 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2471 		return -ENOSPC;
2472 	return 0;
2473 }
2474 
2475 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2476 static int cpuset_can_attach(struct cgroup_taskset *tset)
2477 {
2478 	struct cgroup_subsys_state *css;
2479 	struct cpuset *cs;
2480 	struct task_struct *task;
2481 	int ret;
2482 
2483 	/* used later by cpuset_attach() */
2484 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2485 	cs = css_cs(css);
2486 
2487 	percpu_down_write(&cpuset_rwsem);
2488 
2489 	/* Check to see if task is allowed in the cpuset */
2490 	ret = cpuset_can_attach_check(cs);
2491 	if (ret)
2492 		goto out_unlock;
2493 
2494 	cgroup_taskset_for_each(task, css, tset) {
2495 		ret = task_can_attach(task, cs->effective_cpus);
2496 		if (ret)
2497 			goto out_unlock;
2498 		ret = security_task_setscheduler(task);
2499 		if (ret)
2500 			goto out_unlock;
2501 	}
2502 
2503 	/*
2504 	 * Mark attach is in progress.  This makes validate_change() fail
2505 	 * changes which zero cpus/mems_allowed.
2506 	 */
2507 	cs->attach_in_progress++;
2508 out_unlock:
2509 	percpu_up_write(&cpuset_rwsem);
2510 	return ret;
2511 }
2512 
2513 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2514 {
2515 	struct cgroup_subsys_state *css;
2516 	struct cpuset *cs;
2517 
2518 	cgroup_taskset_first(tset, &css);
2519 	cs = css_cs(css);
2520 
2521 	percpu_down_write(&cpuset_rwsem);
2522 	cs->attach_in_progress--;
2523 	if (!cs->attach_in_progress)
2524 		wake_up(&cpuset_attach_wq);
2525 	percpu_up_write(&cpuset_rwsem);
2526 }
2527 
2528 /*
2529  * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach_task()
2530  * but we can't allocate it dynamically there.  Define it global and
2531  * allocate from cpuset_init().
2532  */
2533 static cpumask_var_t cpus_attach;
2534 static nodemask_t cpuset_attach_nodemask_to;
2535 
2536 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2537 {
2538 	percpu_rwsem_assert_held(&cpuset_rwsem);
2539 
2540 	if (cs != &top_cpuset)
2541 		guarantee_online_cpus(task, cpus_attach);
2542 	else
2543 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2544 			       cs->subparts_cpus);
2545 	/*
2546 	 * can_attach beforehand should guarantee that this doesn't
2547 	 * fail.  TODO: have a better way to handle failure here
2548 	 */
2549 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2550 
2551 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2552 	cpuset_update_task_spread_flags(cs, task);
2553 }
2554 
2555 static void cpuset_attach(struct cgroup_taskset *tset)
2556 {
2557 	struct task_struct *task;
2558 	struct task_struct *leader;
2559 	struct cgroup_subsys_state *css;
2560 	struct cpuset *cs;
2561 	struct cpuset *oldcs = cpuset_attach_old_cs;
2562 	bool cpus_updated, mems_updated;
2563 
2564 	cgroup_taskset_first(tset, &css);
2565 	cs = css_cs(css);
2566 
2567 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2568 	percpu_down_write(&cpuset_rwsem);
2569 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2570 				      oldcs->effective_cpus);
2571 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2572 
2573 	/*
2574 	 * In the default hierarchy, enabling cpuset in the child cgroups
2575 	 * will trigger a number of cpuset_attach() calls with no change
2576 	 * in effective cpus and mems. In that case, we can optimize out
2577 	 * by skipping the task iteration and update.
2578 	 */
2579 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2580 	    !cpus_updated && !mems_updated) {
2581 		cpuset_attach_nodemask_to = cs->effective_mems;
2582 		goto out;
2583 	}
2584 
2585 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2586 
2587 	cgroup_taskset_for_each(task, css, tset)
2588 		cpuset_attach_task(cs, task);
2589 
2590 	/*
2591 	 * Change mm for all threadgroup leaders. This is expensive and may
2592 	 * sleep and should be moved outside migration path proper. Skip it
2593 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2594 	 * not set.
2595 	 */
2596 	cpuset_attach_nodemask_to = cs->effective_mems;
2597 	if (!is_memory_migrate(cs) && !mems_updated)
2598 		goto out;
2599 
2600 	cgroup_taskset_for_each_leader(leader, css, tset) {
2601 		struct mm_struct *mm = get_task_mm(leader);
2602 
2603 		if (mm) {
2604 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2605 
2606 			/*
2607 			 * old_mems_allowed is the same with mems_allowed
2608 			 * here, except if this task is being moved
2609 			 * automatically due to hotplug.  In that case
2610 			 * @mems_allowed has been updated and is empty, so
2611 			 * @old_mems_allowed is the right nodesets that we
2612 			 * migrate mm from.
2613 			 */
2614 			if (is_memory_migrate(cs))
2615 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2616 						  &cpuset_attach_nodemask_to);
2617 			else
2618 				mmput(mm);
2619 		}
2620 	}
2621 
2622 out:
2623 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2624 
2625 	cs->attach_in_progress--;
2626 	if (!cs->attach_in_progress)
2627 		wake_up(&cpuset_attach_wq);
2628 
2629 	percpu_up_write(&cpuset_rwsem);
2630 }
2631 
2632 /* The various types of files and directories in a cpuset file system */
2633 
2634 typedef enum {
2635 	FILE_MEMORY_MIGRATE,
2636 	FILE_CPULIST,
2637 	FILE_MEMLIST,
2638 	FILE_EFFECTIVE_CPULIST,
2639 	FILE_EFFECTIVE_MEMLIST,
2640 	FILE_SUBPARTS_CPULIST,
2641 	FILE_CPU_EXCLUSIVE,
2642 	FILE_MEM_EXCLUSIVE,
2643 	FILE_MEM_HARDWALL,
2644 	FILE_SCHED_LOAD_BALANCE,
2645 	FILE_PARTITION_ROOT,
2646 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2647 	FILE_MEMORY_PRESSURE_ENABLED,
2648 	FILE_MEMORY_PRESSURE,
2649 	FILE_SPREAD_PAGE,
2650 	FILE_SPREAD_SLAB,
2651 } cpuset_filetype_t;
2652 
2653 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2654 			    u64 val)
2655 {
2656 	struct cpuset *cs = css_cs(css);
2657 	cpuset_filetype_t type = cft->private;
2658 	int retval = 0;
2659 
2660 	cpus_read_lock();
2661 	percpu_down_write(&cpuset_rwsem);
2662 	if (!is_cpuset_online(cs)) {
2663 		retval = -ENODEV;
2664 		goto out_unlock;
2665 	}
2666 
2667 	switch (type) {
2668 	case FILE_CPU_EXCLUSIVE:
2669 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2670 		break;
2671 	case FILE_MEM_EXCLUSIVE:
2672 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2673 		break;
2674 	case FILE_MEM_HARDWALL:
2675 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2676 		break;
2677 	case FILE_SCHED_LOAD_BALANCE:
2678 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2679 		break;
2680 	case FILE_MEMORY_MIGRATE:
2681 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2682 		break;
2683 	case FILE_MEMORY_PRESSURE_ENABLED:
2684 		cpuset_memory_pressure_enabled = !!val;
2685 		break;
2686 	case FILE_SPREAD_PAGE:
2687 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2688 		break;
2689 	case FILE_SPREAD_SLAB:
2690 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2691 		break;
2692 	default:
2693 		retval = -EINVAL;
2694 		break;
2695 	}
2696 out_unlock:
2697 	percpu_up_write(&cpuset_rwsem);
2698 	cpus_read_unlock();
2699 	return retval;
2700 }
2701 
2702 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2703 			    s64 val)
2704 {
2705 	struct cpuset *cs = css_cs(css);
2706 	cpuset_filetype_t type = cft->private;
2707 	int retval = -ENODEV;
2708 
2709 	cpus_read_lock();
2710 	percpu_down_write(&cpuset_rwsem);
2711 	if (!is_cpuset_online(cs))
2712 		goto out_unlock;
2713 
2714 	switch (type) {
2715 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2716 		retval = update_relax_domain_level(cs, val);
2717 		break;
2718 	default:
2719 		retval = -EINVAL;
2720 		break;
2721 	}
2722 out_unlock:
2723 	percpu_up_write(&cpuset_rwsem);
2724 	cpus_read_unlock();
2725 	return retval;
2726 }
2727 
2728 /*
2729  * Common handling for a write to a "cpus" or "mems" file.
2730  */
2731 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2732 				    char *buf, size_t nbytes, loff_t off)
2733 {
2734 	struct cpuset *cs = css_cs(of_css(of));
2735 	struct cpuset *trialcs;
2736 	int retval = -ENODEV;
2737 
2738 	buf = strstrip(buf);
2739 
2740 	/*
2741 	 * CPU or memory hotunplug may leave @cs w/o any execution
2742 	 * resources, in which case the hotplug code asynchronously updates
2743 	 * configuration and transfers all tasks to the nearest ancestor
2744 	 * which can execute.
2745 	 *
2746 	 * As writes to "cpus" or "mems" may restore @cs's execution
2747 	 * resources, wait for the previously scheduled operations before
2748 	 * proceeding, so that we don't end up keep removing tasks added
2749 	 * after execution capability is restored.
2750 	 *
2751 	 * cpuset_hotplug_work calls back into cgroup core via
2752 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2753 	 * operation like this one can lead to a deadlock through kernfs
2754 	 * active_ref protection.  Let's break the protection.  Losing the
2755 	 * protection is okay as we check whether @cs is online after
2756 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2757 	 * hierarchies.
2758 	 */
2759 	css_get(&cs->css);
2760 	kernfs_break_active_protection(of->kn);
2761 	flush_work(&cpuset_hotplug_work);
2762 
2763 	cpus_read_lock();
2764 	percpu_down_write(&cpuset_rwsem);
2765 	if (!is_cpuset_online(cs))
2766 		goto out_unlock;
2767 
2768 	trialcs = alloc_trial_cpuset(cs);
2769 	if (!trialcs) {
2770 		retval = -ENOMEM;
2771 		goto out_unlock;
2772 	}
2773 
2774 	switch (of_cft(of)->private) {
2775 	case FILE_CPULIST:
2776 		retval = update_cpumask(cs, trialcs, buf);
2777 		break;
2778 	case FILE_MEMLIST:
2779 		retval = update_nodemask(cs, trialcs, buf);
2780 		break;
2781 	default:
2782 		retval = -EINVAL;
2783 		break;
2784 	}
2785 
2786 	free_cpuset(trialcs);
2787 out_unlock:
2788 	percpu_up_write(&cpuset_rwsem);
2789 	cpus_read_unlock();
2790 	kernfs_unbreak_active_protection(of->kn);
2791 	css_put(&cs->css);
2792 	flush_workqueue(cpuset_migrate_mm_wq);
2793 	return retval ?: nbytes;
2794 }
2795 
2796 /*
2797  * These ascii lists should be read in a single call, by using a user
2798  * buffer large enough to hold the entire map.  If read in smaller
2799  * chunks, there is no guarantee of atomicity.  Since the display format
2800  * used, list of ranges of sequential numbers, is variable length,
2801  * and since these maps can change value dynamically, one could read
2802  * gibberish by doing partial reads while a list was changing.
2803  */
2804 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2805 {
2806 	struct cpuset *cs = css_cs(seq_css(sf));
2807 	cpuset_filetype_t type = seq_cft(sf)->private;
2808 	int ret = 0;
2809 
2810 	spin_lock_irq(&callback_lock);
2811 
2812 	switch (type) {
2813 	case FILE_CPULIST:
2814 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2815 		break;
2816 	case FILE_MEMLIST:
2817 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2818 		break;
2819 	case FILE_EFFECTIVE_CPULIST:
2820 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2821 		break;
2822 	case FILE_EFFECTIVE_MEMLIST:
2823 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2824 		break;
2825 	case FILE_SUBPARTS_CPULIST:
2826 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2827 		break;
2828 	default:
2829 		ret = -EINVAL;
2830 	}
2831 
2832 	spin_unlock_irq(&callback_lock);
2833 	return ret;
2834 }
2835 
2836 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2837 {
2838 	struct cpuset *cs = css_cs(css);
2839 	cpuset_filetype_t type = cft->private;
2840 	switch (type) {
2841 	case FILE_CPU_EXCLUSIVE:
2842 		return is_cpu_exclusive(cs);
2843 	case FILE_MEM_EXCLUSIVE:
2844 		return is_mem_exclusive(cs);
2845 	case FILE_MEM_HARDWALL:
2846 		return is_mem_hardwall(cs);
2847 	case FILE_SCHED_LOAD_BALANCE:
2848 		return is_sched_load_balance(cs);
2849 	case FILE_MEMORY_MIGRATE:
2850 		return is_memory_migrate(cs);
2851 	case FILE_MEMORY_PRESSURE_ENABLED:
2852 		return cpuset_memory_pressure_enabled;
2853 	case FILE_MEMORY_PRESSURE:
2854 		return fmeter_getrate(&cs->fmeter);
2855 	case FILE_SPREAD_PAGE:
2856 		return is_spread_page(cs);
2857 	case FILE_SPREAD_SLAB:
2858 		return is_spread_slab(cs);
2859 	default:
2860 		BUG();
2861 	}
2862 
2863 	/* Unreachable but makes gcc happy */
2864 	return 0;
2865 }
2866 
2867 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2868 {
2869 	struct cpuset *cs = css_cs(css);
2870 	cpuset_filetype_t type = cft->private;
2871 	switch (type) {
2872 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2873 		return cs->relax_domain_level;
2874 	default:
2875 		BUG();
2876 	}
2877 
2878 	/* Unreachable but makes gcc happy */
2879 	return 0;
2880 }
2881 
2882 static int sched_partition_show(struct seq_file *seq, void *v)
2883 {
2884 	struct cpuset *cs = css_cs(seq_css(seq));
2885 	const char *err, *type = NULL;
2886 
2887 	switch (cs->partition_root_state) {
2888 	case PRS_ROOT:
2889 		seq_puts(seq, "root\n");
2890 		break;
2891 	case PRS_ISOLATED:
2892 		seq_puts(seq, "isolated\n");
2893 		break;
2894 	case PRS_MEMBER:
2895 		seq_puts(seq, "member\n");
2896 		break;
2897 	case PRS_INVALID_ROOT:
2898 		type = "root";
2899 		fallthrough;
2900 	case PRS_INVALID_ISOLATED:
2901 		if (!type)
2902 			type = "isolated";
2903 		err = perr_strings[READ_ONCE(cs->prs_err)];
2904 		if (err)
2905 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2906 		else
2907 			seq_printf(seq, "%s invalid\n", type);
2908 		break;
2909 	}
2910 	return 0;
2911 }
2912 
2913 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2914 				     size_t nbytes, loff_t off)
2915 {
2916 	struct cpuset *cs = css_cs(of_css(of));
2917 	int val;
2918 	int retval = -ENODEV;
2919 
2920 	buf = strstrip(buf);
2921 
2922 	/*
2923 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2924 	 */
2925 	if (!strcmp(buf, "root"))
2926 		val = PRS_ROOT;
2927 	else if (!strcmp(buf, "member"))
2928 		val = PRS_MEMBER;
2929 	else if (!strcmp(buf, "isolated"))
2930 		val = PRS_ISOLATED;
2931 	else
2932 		return -EINVAL;
2933 
2934 	css_get(&cs->css);
2935 	cpus_read_lock();
2936 	percpu_down_write(&cpuset_rwsem);
2937 	if (!is_cpuset_online(cs))
2938 		goto out_unlock;
2939 
2940 	retval = update_prstate(cs, val);
2941 out_unlock:
2942 	percpu_up_write(&cpuset_rwsem);
2943 	cpus_read_unlock();
2944 	css_put(&cs->css);
2945 	return retval ?: nbytes;
2946 }
2947 
2948 /*
2949  * for the common functions, 'private' gives the type of file
2950  */
2951 
2952 static struct cftype legacy_files[] = {
2953 	{
2954 		.name = "cpus",
2955 		.seq_show = cpuset_common_seq_show,
2956 		.write = cpuset_write_resmask,
2957 		.max_write_len = (100U + 6 * NR_CPUS),
2958 		.private = FILE_CPULIST,
2959 	},
2960 
2961 	{
2962 		.name = "mems",
2963 		.seq_show = cpuset_common_seq_show,
2964 		.write = cpuset_write_resmask,
2965 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2966 		.private = FILE_MEMLIST,
2967 	},
2968 
2969 	{
2970 		.name = "effective_cpus",
2971 		.seq_show = cpuset_common_seq_show,
2972 		.private = FILE_EFFECTIVE_CPULIST,
2973 	},
2974 
2975 	{
2976 		.name = "effective_mems",
2977 		.seq_show = cpuset_common_seq_show,
2978 		.private = FILE_EFFECTIVE_MEMLIST,
2979 	},
2980 
2981 	{
2982 		.name = "cpu_exclusive",
2983 		.read_u64 = cpuset_read_u64,
2984 		.write_u64 = cpuset_write_u64,
2985 		.private = FILE_CPU_EXCLUSIVE,
2986 	},
2987 
2988 	{
2989 		.name = "mem_exclusive",
2990 		.read_u64 = cpuset_read_u64,
2991 		.write_u64 = cpuset_write_u64,
2992 		.private = FILE_MEM_EXCLUSIVE,
2993 	},
2994 
2995 	{
2996 		.name = "mem_hardwall",
2997 		.read_u64 = cpuset_read_u64,
2998 		.write_u64 = cpuset_write_u64,
2999 		.private = FILE_MEM_HARDWALL,
3000 	},
3001 
3002 	{
3003 		.name = "sched_load_balance",
3004 		.read_u64 = cpuset_read_u64,
3005 		.write_u64 = cpuset_write_u64,
3006 		.private = FILE_SCHED_LOAD_BALANCE,
3007 	},
3008 
3009 	{
3010 		.name = "sched_relax_domain_level",
3011 		.read_s64 = cpuset_read_s64,
3012 		.write_s64 = cpuset_write_s64,
3013 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3014 	},
3015 
3016 	{
3017 		.name = "memory_migrate",
3018 		.read_u64 = cpuset_read_u64,
3019 		.write_u64 = cpuset_write_u64,
3020 		.private = FILE_MEMORY_MIGRATE,
3021 	},
3022 
3023 	{
3024 		.name = "memory_pressure",
3025 		.read_u64 = cpuset_read_u64,
3026 		.private = FILE_MEMORY_PRESSURE,
3027 	},
3028 
3029 	{
3030 		.name = "memory_spread_page",
3031 		.read_u64 = cpuset_read_u64,
3032 		.write_u64 = cpuset_write_u64,
3033 		.private = FILE_SPREAD_PAGE,
3034 	},
3035 
3036 	{
3037 		.name = "memory_spread_slab",
3038 		.read_u64 = cpuset_read_u64,
3039 		.write_u64 = cpuset_write_u64,
3040 		.private = FILE_SPREAD_SLAB,
3041 	},
3042 
3043 	{
3044 		.name = "memory_pressure_enabled",
3045 		.flags = CFTYPE_ONLY_ON_ROOT,
3046 		.read_u64 = cpuset_read_u64,
3047 		.write_u64 = cpuset_write_u64,
3048 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3049 	},
3050 
3051 	{ }	/* terminate */
3052 };
3053 
3054 /*
3055  * This is currently a minimal set for the default hierarchy. It can be
3056  * expanded later on by migrating more features and control files from v1.
3057  */
3058 static struct cftype dfl_files[] = {
3059 	{
3060 		.name = "cpus",
3061 		.seq_show = cpuset_common_seq_show,
3062 		.write = cpuset_write_resmask,
3063 		.max_write_len = (100U + 6 * NR_CPUS),
3064 		.private = FILE_CPULIST,
3065 		.flags = CFTYPE_NOT_ON_ROOT,
3066 	},
3067 
3068 	{
3069 		.name = "mems",
3070 		.seq_show = cpuset_common_seq_show,
3071 		.write = cpuset_write_resmask,
3072 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3073 		.private = FILE_MEMLIST,
3074 		.flags = CFTYPE_NOT_ON_ROOT,
3075 	},
3076 
3077 	{
3078 		.name = "cpus.effective",
3079 		.seq_show = cpuset_common_seq_show,
3080 		.private = FILE_EFFECTIVE_CPULIST,
3081 	},
3082 
3083 	{
3084 		.name = "mems.effective",
3085 		.seq_show = cpuset_common_seq_show,
3086 		.private = FILE_EFFECTIVE_MEMLIST,
3087 	},
3088 
3089 	{
3090 		.name = "cpus.partition",
3091 		.seq_show = sched_partition_show,
3092 		.write = sched_partition_write,
3093 		.private = FILE_PARTITION_ROOT,
3094 		.flags = CFTYPE_NOT_ON_ROOT,
3095 		.file_offset = offsetof(struct cpuset, partition_file),
3096 	},
3097 
3098 	{
3099 		.name = "cpus.subpartitions",
3100 		.seq_show = cpuset_common_seq_show,
3101 		.private = FILE_SUBPARTS_CPULIST,
3102 		.flags = CFTYPE_DEBUG,
3103 	},
3104 
3105 	{ }	/* terminate */
3106 };
3107 
3108 
3109 /**
3110  * cpuset_css_alloc - Allocate a cpuset css
3111  * @parent_css: Parent css of the control group that the new cpuset will be
3112  *              part of
3113  * Return: cpuset css on success, -ENOMEM on failure.
3114  *
3115  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3116  * top cpuset css otherwise.
3117  */
3118 static struct cgroup_subsys_state *
3119 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3120 {
3121 	struct cpuset *cs;
3122 
3123 	if (!parent_css)
3124 		return &top_cpuset.css;
3125 
3126 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3127 	if (!cs)
3128 		return ERR_PTR(-ENOMEM);
3129 
3130 	if (alloc_cpumasks(cs, NULL)) {
3131 		kfree(cs);
3132 		return ERR_PTR(-ENOMEM);
3133 	}
3134 
3135 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3136 	nodes_clear(cs->mems_allowed);
3137 	nodes_clear(cs->effective_mems);
3138 	fmeter_init(&cs->fmeter);
3139 	cs->relax_domain_level = -1;
3140 
3141 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3142 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3143 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3144 
3145 	return &cs->css;
3146 }
3147 
3148 static int cpuset_css_online(struct cgroup_subsys_state *css)
3149 {
3150 	struct cpuset *cs = css_cs(css);
3151 	struct cpuset *parent = parent_cs(cs);
3152 	struct cpuset *tmp_cs;
3153 	struct cgroup_subsys_state *pos_css;
3154 
3155 	if (!parent)
3156 		return 0;
3157 
3158 	cpus_read_lock();
3159 	percpu_down_write(&cpuset_rwsem);
3160 
3161 	set_bit(CS_ONLINE, &cs->flags);
3162 	if (is_spread_page(parent))
3163 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3164 	if (is_spread_slab(parent))
3165 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3166 
3167 	cpuset_inc();
3168 
3169 	spin_lock_irq(&callback_lock);
3170 	if (is_in_v2_mode()) {
3171 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3172 		cs->effective_mems = parent->effective_mems;
3173 		cs->use_parent_ecpus = true;
3174 		parent->child_ecpus_count++;
3175 	}
3176 	spin_unlock_irq(&callback_lock);
3177 
3178 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3179 		goto out_unlock;
3180 
3181 	/*
3182 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3183 	 * set.  This flag handling is implemented in cgroup core for
3184 	 * historical reasons - the flag may be specified during mount.
3185 	 *
3186 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3187 	 * refuse to clone the configuration - thereby refusing the task to
3188 	 * be entered, and as a result refusing the sys_unshare() or
3189 	 * clone() which initiated it.  If this becomes a problem for some
3190 	 * users who wish to allow that scenario, then this could be
3191 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3192 	 * (and likewise for mems) to the new cgroup.
3193 	 */
3194 	rcu_read_lock();
3195 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3196 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3197 			rcu_read_unlock();
3198 			goto out_unlock;
3199 		}
3200 	}
3201 	rcu_read_unlock();
3202 
3203 	spin_lock_irq(&callback_lock);
3204 	cs->mems_allowed = parent->mems_allowed;
3205 	cs->effective_mems = parent->mems_allowed;
3206 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3207 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3208 	spin_unlock_irq(&callback_lock);
3209 out_unlock:
3210 	percpu_up_write(&cpuset_rwsem);
3211 	cpus_read_unlock();
3212 	return 0;
3213 }
3214 
3215 /*
3216  * If the cpuset being removed has its flag 'sched_load_balance'
3217  * enabled, then simulate turning sched_load_balance off, which
3218  * will call rebuild_sched_domains_locked(). That is not needed
3219  * in the default hierarchy where only changes in partition
3220  * will cause repartitioning.
3221  *
3222  * If the cpuset has the 'sched.partition' flag enabled, simulate
3223  * turning 'sched.partition" off.
3224  */
3225 
3226 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3227 {
3228 	struct cpuset *cs = css_cs(css);
3229 
3230 	cpus_read_lock();
3231 	percpu_down_write(&cpuset_rwsem);
3232 
3233 	if (is_partition_valid(cs))
3234 		update_prstate(cs, 0);
3235 
3236 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3237 	    is_sched_load_balance(cs))
3238 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3239 
3240 	if (cs->use_parent_ecpus) {
3241 		struct cpuset *parent = parent_cs(cs);
3242 
3243 		cs->use_parent_ecpus = false;
3244 		parent->child_ecpus_count--;
3245 	}
3246 
3247 	cpuset_dec();
3248 	clear_bit(CS_ONLINE, &cs->flags);
3249 
3250 	percpu_up_write(&cpuset_rwsem);
3251 	cpus_read_unlock();
3252 }
3253 
3254 static void cpuset_css_free(struct cgroup_subsys_state *css)
3255 {
3256 	struct cpuset *cs = css_cs(css);
3257 
3258 	free_cpuset(cs);
3259 }
3260 
3261 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3262 {
3263 	percpu_down_write(&cpuset_rwsem);
3264 	spin_lock_irq(&callback_lock);
3265 
3266 	if (is_in_v2_mode()) {
3267 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3268 		top_cpuset.mems_allowed = node_possible_map;
3269 	} else {
3270 		cpumask_copy(top_cpuset.cpus_allowed,
3271 			     top_cpuset.effective_cpus);
3272 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3273 	}
3274 
3275 	spin_unlock_irq(&callback_lock);
3276 	percpu_up_write(&cpuset_rwsem);
3277 }
3278 
3279 /*
3280  * In case the child is cloned into a cpuset different from its parent,
3281  * additional checks are done to see if the move is allowed.
3282  */
3283 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3284 {
3285 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3286 	bool same_cs;
3287 	int ret;
3288 
3289 	rcu_read_lock();
3290 	same_cs = (cs == task_cs(current));
3291 	rcu_read_unlock();
3292 
3293 	if (same_cs)
3294 		return 0;
3295 
3296 	lockdep_assert_held(&cgroup_mutex);
3297 	percpu_down_write(&cpuset_rwsem);
3298 
3299 	/* Check to see if task is allowed in the cpuset */
3300 	ret = cpuset_can_attach_check(cs);
3301 	if (ret)
3302 		goto out_unlock;
3303 
3304 	ret = task_can_attach(task, cs->effective_cpus);
3305 	if (ret)
3306 		goto out_unlock;
3307 
3308 	ret = security_task_setscheduler(task);
3309 	if (ret)
3310 		goto out_unlock;
3311 
3312 	/*
3313 	 * Mark attach is in progress.  This makes validate_change() fail
3314 	 * changes which zero cpus/mems_allowed.
3315 	 */
3316 	cs->attach_in_progress++;
3317 out_unlock:
3318 	percpu_up_write(&cpuset_rwsem);
3319 	return ret;
3320 }
3321 
3322 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3323 {
3324 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3325 	bool same_cs;
3326 
3327 	rcu_read_lock();
3328 	same_cs = (cs == task_cs(current));
3329 	rcu_read_unlock();
3330 
3331 	if (same_cs)
3332 		return;
3333 
3334 	percpu_down_write(&cpuset_rwsem);
3335 	cs->attach_in_progress--;
3336 	if (!cs->attach_in_progress)
3337 		wake_up(&cpuset_attach_wq);
3338 	percpu_up_write(&cpuset_rwsem);
3339 }
3340 
3341 /*
3342  * Make sure the new task conform to the current state of its parent,
3343  * which could have been changed by cpuset just after it inherits the
3344  * state from the parent and before it sits on the cgroup's task list.
3345  */
3346 static void cpuset_fork(struct task_struct *task)
3347 {
3348 	struct cpuset *cs;
3349 	bool same_cs;
3350 
3351 	rcu_read_lock();
3352 	cs = task_cs(task);
3353 	same_cs = (cs == task_cs(current));
3354 	rcu_read_unlock();
3355 
3356 	if (same_cs) {
3357 		if (cs == &top_cpuset)
3358 			return;
3359 
3360 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3361 		task->mems_allowed = current->mems_allowed;
3362 		return;
3363 	}
3364 
3365 	/* CLONE_INTO_CGROUP */
3366 	percpu_down_write(&cpuset_rwsem);
3367 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3368 	cpuset_attach_task(cs, task);
3369 
3370 	cs->attach_in_progress--;
3371 	if (!cs->attach_in_progress)
3372 		wake_up(&cpuset_attach_wq);
3373 
3374 	percpu_up_write(&cpuset_rwsem);
3375 }
3376 
3377 struct cgroup_subsys cpuset_cgrp_subsys = {
3378 	.css_alloc	= cpuset_css_alloc,
3379 	.css_online	= cpuset_css_online,
3380 	.css_offline	= cpuset_css_offline,
3381 	.css_free	= cpuset_css_free,
3382 	.can_attach	= cpuset_can_attach,
3383 	.cancel_attach	= cpuset_cancel_attach,
3384 	.attach		= cpuset_attach,
3385 	.post_attach	= cpuset_post_attach,
3386 	.bind		= cpuset_bind,
3387 	.can_fork	= cpuset_can_fork,
3388 	.cancel_fork	= cpuset_cancel_fork,
3389 	.fork		= cpuset_fork,
3390 	.legacy_cftypes	= legacy_files,
3391 	.dfl_cftypes	= dfl_files,
3392 	.early_init	= true,
3393 	.threaded	= true,
3394 };
3395 
3396 /**
3397  * cpuset_init - initialize cpusets at system boot
3398  *
3399  * Description: Initialize top_cpuset
3400  **/
3401 
3402 int __init cpuset_init(void)
3403 {
3404 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3405 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3406 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3407 
3408 	cpumask_setall(top_cpuset.cpus_allowed);
3409 	nodes_setall(top_cpuset.mems_allowed);
3410 	cpumask_setall(top_cpuset.effective_cpus);
3411 	nodes_setall(top_cpuset.effective_mems);
3412 
3413 	fmeter_init(&top_cpuset.fmeter);
3414 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3415 	top_cpuset.relax_domain_level = -1;
3416 
3417 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3424  * or memory nodes, we need to walk over the cpuset hierarchy,
3425  * removing that CPU or node from all cpusets.  If this removes the
3426  * last CPU or node from a cpuset, then move the tasks in the empty
3427  * cpuset to its next-highest non-empty parent.
3428  */
3429 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3430 {
3431 	struct cpuset *parent;
3432 
3433 	/*
3434 	 * Find its next-highest non-empty parent, (top cpuset
3435 	 * has online cpus, so can't be empty).
3436 	 */
3437 	parent = parent_cs(cs);
3438 	while (cpumask_empty(parent->cpus_allowed) ||
3439 			nodes_empty(parent->mems_allowed))
3440 		parent = parent_cs(parent);
3441 
3442 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3443 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3444 		pr_cont_cgroup_name(cs->css.cgroup);
3445 		pr_cont("\n");
3446 	}
3447 }
3448 
3449 static void
3450 hotplug_update_tasks_legacy(struct cpuset *cs,
3451 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3452 			    bool cpus_updated, bool mems_updated)
3453 {
3454 	bool is_empty;
3455 
3456 	spin_lock_irq(&callback_lock);
3457 	cpumask_copy(cs->cpus_allowed, new_cpus);
3458 	cpumask_copy(cs->effective_cpus, new_cpus);
3459 	cs->mems_allowed = *new_mems;
3460 	cs->effective_mems = *new_mems;
3461 	spin_unlock_irq(&callback_lock);
3462 
3463 	/*
3464 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3465 	 * as the tasks will be migrated to an ancestor.
3466 	 */
3467 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3468 		update_tasks_cpumask(cs, new_cpus);
3469 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3470 		update_tasks_nodemask(cs);
3471 
3472 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3473 		   nodes_empty(cs->mems_allowed);
3474 
3475 	percpu_up_write(&cpuset_rwsem);
3476 
3477 	/*
3478 	 * Move tasks to the nearest ancestor with execution resources,
3479 	 * This is full cgroup operation which will also call back into
3480 	 * cpuset. Should be done outside any lock.
3481 	 */
3482 	if (is_empty)
3483 		remove_tasks_in_empty_cpuset(cs);
3484 
3485 	percpu_down_write(&cpuset_rwsem);
3486 }
3487 
3488 static void
3489 hotplug_update_tasks(struct cpuset *cs,
3490 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3491 		     bool cpus_updated, bool mems_updated)
3492 {
3493 	/* A partition root is allowed to have empty effective cpus */
3494 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3495 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3496 	if (nodes_empty(*new_mems))
3497 		*new_mems = parent_cs(cs)->effective_mems;
3498 
3499 	spin_lock_irq(&callback_lock);
3500 	cpumask_copy(cs->effective_cpus, new_cpus);
3501 	cs->effective_mems = *new_mems;
3502 	spin_unlock_irq(&callback_lock);
3503 
3504 	if (cpus_updated)
3505 		update_tasks_cpumask(cs, new_cpus);
3506 	if (mems_updated)
3507 		update_tasks_nodemask(cs);
3508 }
3509 
3510 static bool force_rebuild;
3511 
3512 void cpuset_force_rebuild(void)
3513 {
3514 	force_rebuild = true;
3515 }
3516 
3517 /**
3518  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3519  * @cs: cpuset in interest
3520  * @tmp: the tmpmasks structure pointer
3521  *
3522  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3523  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3524  * all its tasks are moved to the nearest ancestor with both resources.
3525  */
3526 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3527 {
3528 	static cpumask_t new_cpus;
3529 	static nodemask_t new_mems;
3530 	bool cpus_updated;
3531 	bool mems_updated;
3532 	struct cpuset *parent;
3533 retry:
3534 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3535 
3536 	percpu_down_write(&cpuset_rwsem);
3537 
3538 	/*
3539 	 * We have raced with task attaching. We wait until attaching
3540 	 * is finished, so we won't attach a task to an empty cpuset.
3541 	 */
3542 	if (cs->attach_in_progress) {
3543 		percpu_up_write(&cpuset_rwsem);
3544 		goto retry;
3545 	}
3546 
3547 	parent = parent_cs(cs);
3548 	compute_effective_cpumask(&new_cpus, cs, parent);
3549 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3550 
3551 	if (cs->nr_subparts_cpus)
3552 		/*
3553 		 * Make sure that CPUs allocated to child partitions
3554 		 * do not show up in effective_cpus.
3555 		 */
3556 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3557 
3558 	if (!tmp || !cs->partition_root_state)
3559 		goto update_tasks;
3560 
3561 	/*
3562 	 * In the unlikely event that a partition root has empty
3563 	 * effective_cpus with tasks, we will have to invalidate child
3564 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3565 	 * reclaim their cpus.
3566 	 */
3567 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3568 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3569 		spin_lock_irq(&callback_lock);
3570 		cs->nr_subparts_cpus = 0;
3571 		cpumask_clear(cs->subparts_cpus);
3572 		spin_unlock_irq(&callback_lock);
3573 		compute_effective_cpumask(&new_cpus, cs, parent);
3574 	}
3575 
3576 	/*
3577 	 * Force the partition to become invalid if either one of
3578 	 * the following conditions hold:
3579 	 * 1) empty effective cpus but not valid empty partition.
3580 	 * 2) parent is invalid or doesn't grant any cpus to child
3581 	 *    partitions.
3582 	 */
3583 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3584 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3585 		int old_prs, parent_prs;
3586 
3587 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3588 		if (cs->nr_subparts_cpus) {
3589 			spin_lock_irq(&callback_lock);
3590 			cs->nr_subparts_cpus = 0;
3591 			cpumask_clear(cs->subparts_cpus);
3592 			spin_unlock_irq(&callback_lock);
3593 			compute_effective_cpumask(&new_cpus, cs, parent);
3594 		}
3595 
3596 		old_prs = cs->partition_root_state;
3597 		parent_prs = parent->partition_root_state;
3598 		if (is_partition_valid(cs)) {
3599 			spin_lock_irq(&callback_lock);
3600 			make_partition_invalid(cs);
3601 			spin_unlock_irq(&callback_lock);
3602 			if (is_prs_invalid(parent_prs))
3603 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3604 			else if (!parent_prs)
3605 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3606 			else
3607 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3608 			notify_partition_change(cs, old_prs);
3609 		}
3610 		cpuset_force_rebuild();
3611 	}
3612 
3613 	/*
3614 	 * On the other hand, an invalid partition root may be transitioned
3615 	 * back to a regular one.
3616 	 */
3617 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3618 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3619 		if (is_partition_valid(cs))
3620 			cpuset_force_rebuild();
3621 	}
3622 
3623 update_tasks:
3624 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3625 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3626 	if (!cpus_updated && !mems_updated)
3627 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3628 
3629 	if (mems_updated)
3630 		check_insane_mems_config(&new_mems);
3631 
3632 	if (is_in_v2_mode())
3633 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3634 				     cpus_updated, mems_updated);
3635 	else
3636 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3637 					    cpus_updated, mems_updated);
3638 
3639 unlock:
3640 	percpu_up_write(&cpuset_rwsem);
3641 }
3642 
3643 /**
3644  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3645  *
3646  * This function is called after either CPU or memory configuration has
3647  * changed and updates cpuset accordingly.  The top_cpuset is always
3648  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3649  * order to make cpusets transparent (of no affect) on systems that are
3650  * actively using CPU hotplug but making no active use of cpusets.
3651  *
3652  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3653  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3654  * all descendants.
3655  *
3656  * Note that CPU offlining during suspend is ignored.  We don't modify
3657  * cpusets across suspend/resume cycles at all.
3658  */
3659 static void cpuset_hotplug_workfn(struct work_struct *work)
3660 {
3661 	static cpumask_t new_cpus;
3662 	static nodemask_t new_mems;
3663 	bool cpus_updated, mems_updated;
3664 	bool on_dfl = is_in_v2_mode();
3665 	struct tmpmasks tmp, *ptmp = NULL;
3666 
3667 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3668 		ptmp = &tmp;
3669 
3670 	percpu_down_write(&cpuset_rwsem);
3671 
3672 	/* fetch the available cpus/mems and find out which changed how */
3673 	cpumask_copy(&new_cpus, cpu_active_mask);
3674 	new_mems = node_states[N_MEMORY];
3675 
3676 	/*
3677 	 * If subparts_cpus is populated, it is likely that the check below
3678 	 * will produce a false positive on cpus_updated when the cpu list
3679 	 * isn't changed. It is extra work, but it is better to be safe.
3680 	 */
3681 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3682 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3683 
3684 	/*
3685 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3686 	 * we assumed that cpus are updated.
3687 	 */
3688 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3689 		cpus_updated = true;
3690 
3691 	/* synchronize cpus_allowed to cpu_active_mask */
3692 	if (cpus_updated) {
3693 		spin_lock_irq(&callback_lock);
3694 		if (!on_dfl)
3695 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3696 		/*
3697 		 * Make sure that CPUs allocated to child partitions
3698 		 * do not show up in effective_cpus. If no CPU is left,
3699 		 * we clear the subparts_cpus & let the child partitions
3700 		 * fight for the CPUs again.
3701 		 */
3702 		if (top_cpuset.nr_subparts_cpus) {
3703 			if (cpumask_subset(&new_cpus,
3704 					   top_cpuset.subparts_cpus)) {
3705 				top_cpuset.nr_subparts_cpus = 0;
3706 				cpumask_clear(top_cpuset.subparts_cpus);
3707 			} else {
3708 				cpumask_andnot(&new_cpus, &new_cpus,
3709 					       top_cpuset.subparts_cpus);
3710 			}
3711 		}
3712 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3713 		spin_unlock_irq(&callback_lock);
3714 		/* we don't mess with cpumasks of tasks in top_cpuset */
3715 	}
3716 
3717 	/* synchronize mems_allowed to N_MEMORY */
3718 	if (mems_updated) {
3719 		spin_lock_irq(&callback_lock);
3720 		if (!on_dfl)
3721 			top_cpuset.mems_allowed = new_mems;
3722 		top_cpuset.effective_mems = new_mems;
3723 		spin_unlock_irq(&callback_lock);
3724 		update_tasks_nodemask(&top_cpuset);
3725 	}
3726 
3727 	percpu_up_write(&cpuset_rwsem);
3728 
3729 	/* if cpus or mems changed, we need to propagate to descendants */
3730 	if (cpus_updated || mems_updated) {
3731 		struct cpuset *cs;
3732 		struct cgroup_subsys_state *pos_css;
3733 
3734 		rcu_read_lock();
3735 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3736 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3737 				continue;
3738 			rcu_read_unlock();
3739 
3740 			cpuset_hotplug_update_tasks(cs, ptmp);
3741 
3742 			rcu_read_lock();
3743 			css_put(&cs->css);
3744 		}
3745 		rcu_read_unlock();
3746 	}
3747 
3748 	/* rebuild sched domains if cpus_allowed has changed */
3749 	if (cpus_updated || force_rebuild) {
3750 		force_rebuild = false;
3751 		rebuild_sched_domains();
3752 	}
3753 
3754 	free_cpumasks(NULL, ptmp);
3755 }
3756 
3757 void cpuset_update_active_cpus(void)
3758 {
3759 	/*
3760 	 * We're inside cpu hotplug critical region which usually nests
3761 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3762 	 * to a work item to avoid reverse locking order.
3763 	 */
3764 	schedule_work(&cpuset_hotplug_work);
3765 }
3766 
3767 void cpuset_wait_for_hotplug(void)
3768 {
3769 	flush_work(&cpuset_hotplug_work);
3770 }
3771 
3772 /*
3773  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3774  * Call this routine anytime after node_states[N_MEMORY] changes.
3775  * See cpuset_update_active_cpus() for CPU hotplug handling.
3776  */
3777 static int cpuset_track_online_nodes(struct notifier_block *self,
3778 				unsigned long action, void *arg)
3779 {
3780 	schedule_work(&cpuset_hotplug_work);
3781 	return NOTIFY_OK;
3782 }
3783 
3784 /**
3785  * cpuset_init_smp - initialize cpus_allowed
3786  *
3787  * Description: Finish top cpuset after cpu, node maps are initialized
3788  */
3789 void __init cpuset_init_smp(void)
3790 {
3791 	/*
3792 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3793 	 * cpuset_bind() call will be reset to v1 values in another
3794 	 * cpuset_bind() call when v1 cpuset is mounted.
3795 	 */
3796 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3797 
3798 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3799 	top_cpuset.effective_mems = node_states[N_MEMORY];
3800 
3801 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3802 
3803 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3804 	BUG_ON(!cpuset_migrate_mm_wq);
3805 }
3806 
3807 /**
3808  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3809  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3810  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3811  *
3812  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3813  * attached to the specified @tsk.  Guaranteed to return some non-empty
3814  * subset of cpu_online_mask, even if this means going outside the
3815  * tasks cpuset, except when the task is in the top cpuset.
3816  **/
3817 
3818 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3819 {
3820 	unsigned long flags;
3821 	struct cpuset *cs;
3822 
3823 	spin_lock_irqsave(&callback_lock, flags);
3824 	rcu_read_lock();
3825 
3826 	cs = task_cs(tsk);
3827 	if (cs != &top_cpuset)
3828 		guarantee_online_cpus(tsk, pmask);
3829 	/*
3830 	 * Tasks in the top cpuset won't get update to their cpumasks
3831 	 * when a hotplug online/offline event happens. So we include all
3832 	 * offline cpus in the allowed cpu list.
3833 	 */
3834 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3835 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3836 
3837 		/*
3838 		 * We first exclude cpus allocated to partitions. If there is no
3839 		 * allowable online cpu left, we fall back to all possible cpus.
3840 		 */
3841 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3842 		if (!cpumask_intersects(pmask, cpu_online_mask))
3843 			cpumask_copy(pmask, possible_mask);
3844 	}
3845 
3846 	rcu_read_unlock();
3847 	spin_unlock_irqrestore(&callback_lock, flags);
3848 }
3849 
3850 /**
3851  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3852  * @tsk: pointer to task_struct with which the scheduler is struggling
3853  *
3854  * Description: In the case that the scheduler cannot find an allowed cpu in
3855  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3856  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3857  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3858  * This is the absolute last resort for the scheduler and it is only used if
3859  * _every_ other avenue has been traveled.
3860  *
3861  * Returns true if the affinity of @tsk was changed, false otherwise.
3862  **/
3863 
3864 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3865 {
3866 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3867 	const struct cpumask *cs_mask;
3868 	bool changed = false;
3869 
3870 	rcu_read_lock();
3871 	cs_mask = task_cs(tsk)->cpus_allowed;
3872 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3873 		do_set_cpus_allowed(tsk, cs_mask);
3874 		changed = true;
3875 	}
3876 	rcu_read_unlock();
3877 
3878 	/*
3879 	 * We own tsk->cpus_allowed, nobody can change it under us.
3880 	 *
3881 	 * But we used cs && cs->cpus_allowed lockless and thus can
3882 	 * race with cgroup_attach_task() or update_cpumask() and get
3883 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3884 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3885 	 * which takes task_rq_lock().
3886 	 *
3887 	 * If we are called after it dropped the lock we must see all
3888 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3889 	 * set any mask even if it is not right from task_cs() pov,
3890 	 * the pending set_cpus_allowed_ptr() will fix things.
3891 	 *
3892 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3893 	 * if required.
3894 	 */
3895 	return changed;
3896 }
3897 
3898 void __init cpuset_init_current_mems_allowed(void)
3899 {
3900 	nodes_setall(current->mems_allowed);
3901 }
3902 
3903 /**
3904  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3905  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3906  *
3907  * Description: Returns the nodemask_t mems_allowed of the cpuset
3908  * attached to the specified @tsk.  Guaranteed to return some non-empty
3909  * subset of node_states[N_MEMORY], even if this means going outside the
3910  * tasks cpuset.
3911  **/
3912 
3913 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3914 {
3915 	nodemask_t mask;
3916 	unsigned long flags;
3917 
3918 	spin_lock_irqsave(&callback_lock, flags);
3919 	rcu_read_lock();
3920 	guarantee_online_mems(task_cs(tsk), &mask);
3921 	rcu_read_unlock();
3922 	spin_unlock_irqrestore(&callback_lock, flags);
3923 
3924 	return mask;
3925 }
3926 
3927 /**
3928  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3929  * @nodemask: the nodemask to be checked
3930  *
3931  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3932  */
3933 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3934 {
3935 	return nodes_intersects(*nodemask, current->mems_allowed);
3936 }
3937 
3938 /*
3939  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3940  * mem_hardwall ancestor to the specified cpuset.  Call holding
3941  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3942  * (an unusual configuration), then returns the root cpuset.
3943  */
3944 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3945 {
3946 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3947 		cs = parent_cs(cs);
3948 	return cs;
3949 }
3950 
3951 /*
3952  * cpuset_node_allowed - Can we allocate on a memory node?
3953  * @node: is this an allowed node?
3954  * @gfp_mask: memory allocation flags
3955  *
3956  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3957  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3958  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3959  * yes.  If current has access to memory reserves as an oom victim, yes.
3960  * Otherwise, no.
3961  *
3962  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3963  * and do not allow allocations outside the current tasks cpuset
3964  * unless the task has been OOM killed.
3965  * GFP_KERNEL allocations are not so marked, so can escape to the
3966  * nearest enclosing hardwalled ancestor cpuset.
3967  *
3968  * Scanning up parent cpusets requires callback_lock.  The
3969  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3970  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3971  * current tasks mems_allowed came up empty on the first pass over
3972  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3973  * cpuset are short of memory, might require taking the callback_lock.
3974  *
3975  * The first call here from mm/page_alloc:get_page_from_freelist()
3976  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3977  * so no allocation on a node outside the cpuset is allowed (unless
3978  * in interrupt, of course).
3979  *
3980  * The second pass through get_page_from_freelist() doesn't even call
3981  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3982  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3983  * in alloc_flags.  That logic and the checks below have the combined
3984  * affect that:
3985  *	in_interrupt - any node ok (current task context irrelevant)
3986  *	GFP_ATOMIC   - any node ok
3987  *	tsk_is_oom_victim   - any node ok
3988  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3989  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3990  */
3991 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
3992 {
3993 	struct cpuset *cs;		/* current cpuset ancestors */
3994 	bool allowed;			/* is allocation in zone z allowed? */
3995 	unsigned long flags;
3996 
3997 	if (in_interrupt())
3998 		return true;
3999 	if (node_isset(node, current->mems_allowed))
4000 		return true;
4001 	/*
4002 	 * Allow tasks that have access to memory reserves because they have
4003 	 * been OOM killed to get memory anywhere.
4004 	 */
4005 	if (unlikely(tsk_is_oom_victim(current)))
4006 		return true;
4007 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4008 		return false;
4009 
4010 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4011 		return true;
4012 
4013 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4014 	spin_lock_irqsave(&callback_lock, flags);
4015 
4016 	rcu_read_lock();
4017 	cs = nearest_hardwall_ancestor(task_cs(current));
4018 	allowed = node_isset(node, cs->mems_allowed);
4019 	rcu_read_unlock();
4020 
4021 	spin_unlock_irqrestore(&callback_lock, flags);
4022 	return allowed;
4023 }
4024 
4025 /**
4026  * cpuset_spread_node() - On which node to begin search for a page
4027  *
4028  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4029  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4030  * and if the memory allocation used cpuset_mem_spread_node()
4031  * to determine on which node to start looking, as it will for
4032  * certain page cache or slab cache pages such as used for file
4033  * system buffers and inode caches, then instead of starting on the
4034  * local node to look for a free page, rather spread the starting
4035  * node around the tasks mems_allowed nodes.
4036  *
4037  * We don't have to worry about the returned node being offline
4038  * because "it can't happen", and even if it did, it would be ok.
4039  *
4040  * The routines calling guarantee_online_mems() are careful to
4041  * only set nodes in task->mems_allowed that are online.  So it
4042  * should not be possible for the following code to return an
4043  * offline node.  But if it did, that would be ok, as this routine
4044  * is not returning the node where the allocation must be, only
4045  * the node where the search should start.  The zonelist passed to
4046  * __alloc_pages() will include all nodes.  If the slab allocator
4047  * is passed an offline node, it will fall back to the local node.
4048  * See kmem_cache_alloc_node().
4049  */
4050 static int cpuset_spread_node(int *rotor)
4051 {
4052 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4053 }
4054 
4055 /**
4056  * cpuset_mem_spread_node() - On which node to begin search for a file page
4057  */
4058 int cpuset_mem_spread_node(void)
4059 {
4060 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4061 		current->cpuset_mem_spread_rotor =
4062 			node_random(&current->mems_allowed);
4063 
4064 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4065 }
4066 
4067 /**
4068  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4069  */
4070 int cpuset_slab_spread_node(void)
4071 {
4072 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4073 		current->cpuset_slab_spread_rotor =
4074 			node_random(&current->mems_allowed);
4075 
4076 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4077 }
4078 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4079 
4080 /**
4081  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4082  * @tsk1: pointer to task_struct of some task.
4083  * @tsk2: pointer to task_struct of some other task.
4084  *
4085  * Description: Return true if @tsk1's mems_allowed intersects the
4086  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4087  * one of the task's memory usage might impact the memory available
4088  * to the other.
4089  **/
4090 
4091 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4092 				   const struct task_struct *tsk2)
4093 {
4094 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4095 }
4096 
4097 /**
4098  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4099  *
4100  * Description: Prints current's name, cpuset name, and cached copy of its
4101  * mems_allowed to the kernel log.
4102  */
4103 void cpuset_print_current_mems_allowed(void)
4104 {
4105 	struct cgroup *cgrp;
4106 
4107 	rcu_read_lock();
4108 
4109 	cgrp = task_cs(current)->css.cgroup;
4110 	pr_cont(",cpuset=");
4111 	pr_cont_cgroup_name(cgrp);
4112 	pr_cont(",mems_allowed=%*pbl",
4113 		nodemask_pr_args(&current->mems_allowed));
4114 
4115 	rcu_read_unlock();
4116 }
4117 
4118 /*
4119  * Collection of memory_pressure is suppressed unless
4120  * this flag is enabled by writing "1" to the special
4121  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4122  */
4123 
4124 int cpuset_memory_pressure_enabled __read_mostly;
4125 
4126 /*
4127  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4128  *
4129  * Keep a running average of the rate of synchronous (direct)
4130  * page reclaim efforts initiated by tasks in each cpuset.
4131  *
4132  * This represents the rate at which some task in the cpuset
4133  * ran low on memory on all nodes it was allowed to use, and
4134  * had to enter the kernels page reclaim code in an effort to
4135  * create more free memory by tossing clean pages or swapping
4136  * or writing dirty pages.
4137  *
4138  * Display to user space in the per-cpuset read-only file
4139  * "memory_pressure".  Value displayed is an integer
4140  * representing the recent rate of entry into the synchronous
4141  * (direct) page reclaim by any task attached to the cpuset.
4142  */
4143 
4144 void __cpuset_memory_pressure_bump(void)
4145 {
4146 	rcu_read_lock();
4147 	fmeter_markevent(&task_cs(current)->fmeter);
4148 	rcu_read_unlock();
4149 }
4150 
4151 #ifdef CONFIG_PROC_PID_CPUSET
4152 /*
4153  * proc_cpuset_show()
4154  *  - Print tasks cpuset path into seq_file.
4155  *  - Used for /proc/<pid>/cpuset.
4156  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4157  *    doesn't really matter if tsk->cpuset changes after we read it,
4158  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
4159  *    anyway.
4160  */
4161 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4162 		     struct pid *pid, struct task_struct *tsk)
4163 {
4164 	char *buf;
4165 	struct cgroup_subsys_state *css;
4166 	int retval;
4167 
4168 	retval = -ENOMEM;
4169 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4170 	if (!buf)
4171 		goto out;
4172 
4173 	css = task_get_css(tsk, cpuset_cgrp_id);
4174 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4175 				current->nsproxy->cgroup_ns);
4176 	css_put(css);
4177 	if (retval >= PATH_MAX)
4178 		retval = -ENAMETOOLONG;
4179 	if (retval < 0)
4180 		goto out_free;
4181 	seq_puts(m, buf);
4182 	seq_putc(m, '\n');
4183 	retval = 0;
4184 out_free:
4185 	kfree(buf);
4186 out:
4187 	return retval;
4188 }
4189 #endif /* CONFIG_PROC_PID_CPUSET */
4190 
4191 /* Display task mems_allowed in /proc/<pid>/status file. */
4192 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4193 {
4194 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4195 		   nodemask_pr_args(&task->mems_allowed));
4196 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4197 		   nodemask_pr_args(&task->mems_allowed));
4198 }
4199