xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision e063330a)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /*
74  * There could be abnormal cpuset configurations for cpu or memory
75  * node binding, add this key to provide a quick low-cost judgment
76  * of the situation.
77  */
78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79 
80 /* See "Frequency meter" comments, below. */
81 
82 struct fmeter {
83 	int cnt;		/* unprocessed events count */
84 	int val;		/* most recent output value */
85 	time64_t time;		/* clock (secs) when val computed */
86 	spinlock_t lock;	/* guards read or write of above */
87 };
88 
89 /*
90  * Invalid partition error code
91  */
92 enum prs_errcode {
93 	PERR_NONE = 0,
94 	PERR_INVCPUS,
95 	PERR_INVPARENT,
96 	PERR_NOTPART,
97 	PERR_NOTEXCL,
98 	PERR_NOCPUS,
99 	PERR_HOTPLUG,
100 	PERR_CPUSEMPTY,
101 };
102 
103 static const char * const perr_strings[] = {
104 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
105 	[PERR_INVPARENT] = "Parent is an invalid partition root",
106 	[PERR_NOTPART]   = "Parent is not a partition root",
107 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
108 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
109 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
110 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111 };
112 
113 struct cpuset {
114 	struct cgroup_subsys_state css;
115 
116 	unsigned long flags;		/* "unsigned long" so bitops work */
117 
118 	/*
119 	 * On default hierarchy:
120 	 *
121 	 * The user-configured masks can only be changed by writing to
122 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 	 * parent masks.
124 	 *
125 	 * The effective masks is the real masks that apply to the tasks
126 	 * in the cpuset. They may be changed if the configured masks are
127 	 * changed or hotplug happens.
128 	 *
129 	 * effective_mask == configured_mask & parent's effective_mask,
130 	 * and if it ends up empty, it will inherit the parent's mask.
131 	 *
132 	 *
133 	 * On legacy hierarchy:
134 	 *
135 	 * The user-configured masks are always the same with effective masks.
136 	 */
137 
138 	/* user-configured CPUs and Memory Nodes allow to tasks */
139 	cpumask_var_t cpus_allowed;
140 	nodemask_t mems_allowed;
141 
142 	/* effective CPUs and Memory Nodes allow to tasks */
143 	cpumask_var_t effective_cpus;
144 	nodemask_t effective_mems;
145 
146 	/*
147 	 * CPUs allocated to child sub-partitions (default hierarchy only)
148 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 	 * - effective_cpus and subparts_cpus are mutually exclusive.
150 	 *
151 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 	 * may have offlined ones.
153 	 */
154 	cpumask_var_t subparts_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of CPUs in subparts_cpus */
183 	int nr_subparts_cpus;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/* Invalid partition error code, not lock protected */
197 	enum prs_errcode prs_err;
198 
199 	/* Handle for cpuset.cpus.partition */
200 	struct cgroup_file partition_file;
201 };
202 
203 /*
204  * Partition root states:
205  *
206  *   0 - member (not a partition root)
207  *   1 - partition root
208  *   2 - partition root without load balancing (isolated)
209  *  -1 - invalid partition root
210  *  -2 - invalid isolated partition root
211  */
212 #define PRS_MEMBER		0
213 #define PRS_ROOT		1
214 #define PRS_ISOLATED		2
215 #define PRS_INVALID_ROOT	-1
216 #define PRS_INVALID_ISOLATED	-2
217 
218 static inline bool is_prs_invalid(int prs_state)
219 {
220 	return prs_state < 0;
221 }
222 
223 /*
224  * Temporary cpumasks for working with partitions that are passed among
225  * functions to avoid memory allocation in inner functions.
226  */
227 struct tmpmasks {
228 	cpumask_var_t addmask, delmask;	/* For partition root */
229 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
230 };
231 
232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233 {
234 	return css ? container_of(css, struct cpuset, css) : NULL;
235 }
236 
237 /* Retrieve the cpuset for a task */
238 static inline struct cpuset *task_cs(struct task_struct *task)
239 {
240 	return css_cs(task_css(task, cpuset_cgrp_id));
241 }
242 
243 static inline struct cpuset *parent_cs(struct cpuset *cs)
244 {
245 	return css_cs(cs->css.parent);
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_rwsem and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
373  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374  * prevent change to cpuset structures.
375  *
376  * A task must hold both locks to modify cpusets.  If a task holds
377  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378  * is the only task able to also acquire callback_lock and be able to
379  * modify cpusets.  It can perform various checks on the cpuset structure
380  * first, knowing nothing will change.  It can also allocate memory while
381  * just holding cpuset_rwsem.  While it is performing these checks, various
382  * callback routines can briefly acquire callback_lock to query cpusets.
383  * Once it is ready to make the changes, it takes callback_lock, blocking
384  * everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407 
408 void cpuset_read_lock(void)
409 {
410 	percpu_down_read(&cpuset_rwsem);
411 }
412 
413 void cpuset_read_unlock(void)
414 {
415 	percpu_up_read(&cpuset_rwsem);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_rwsem held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_rwsem held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_rwsem held.
554  */
555 static void cpuset_update_task_spread_flag(struct cpuset *cs,
556 					struct task_struct *tsk)
557 {
558 	if (is_spread_page(cs))
559 		task_set_spread_page(tsk);
560 	else
561 		task_clear_spread_page(tsk);
562 
563 	if (is_spread_slab(cs))
564 		task_set_spread_slab(tsk);
565 	else
566 		task_clear_spread_slab(tsk);
567 }
568 
569 /*
570  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
571  *
572  * One cpuset is a subset of another if all its allowed CPUs and
573  * Memory Nodes are a subset of the other, and its exclusive flags
574  * are only set if the other's are set.  Call holding cpuset_rwsem.
575  */
576 
577 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
578 {
579 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
580 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
581 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
582 		is_mem_exclusive(p) <= is_mem_exclusive(q);
583 }
584 
585 /**
586  * alloc_cpumasks - allocate three cpumasks for cpuset
587  * @cs:  the cpuset that have cpumasks to be allocated.
588  * @tmp: the tmpmasks structure pointer
589  * Return: 0 if successful, -ENOMEM otherwise.
590  *
591  * Only one of the two input arguments should be non-NULL.
592  */
593 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
594 {
595 	cpumask_var_t *pmask1, *pmask2, *pmask3;
596 
597 	if (cs) {
598 		pmask1 = &cs->cpus_allowed;
599 		pmask2 = &cs->effective_cpus;
600 		pmask3 = &cs->subparts_cpus;
601 	} else {
602 		pmask1 = &tmp->new_cpus;
603 		pmask2 = &tmp->addmask;
604 		pmask3 = &tmp->delmask;
605 	}
606 
607 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
608 		return -ENOMEM;
609 
610 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
611 		goto free_one;
612 
613 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
614 		goto free_two;
615 
616 	return 0;
617 
618 free_two:
619 	free_cpumask_var(*pmask2);
620 free_one:
621 	free_cpumask_var(*pmask1);
622 	return -ENOMEM;
623 }
624 
625 /**
626  * free_cpumasks - free cpumasks in a tmpmasks structure
627  * @cs:  the cpuset that have cpumasks to be free.
628  * @tmp: the tmpmasks structure pointer
629  */
630 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
631 {
632 	if (cs) {
633 		free_cpumask_var(cs->cpus_allowed);
634 		free_cpumask_var(cs->effective_cpus);
635 		free_cpumask_var(cs->subparts_cpus);
636 	}
637 	if (tmp) {
638 		free_cpumask_var(tmp->new_cpus);
639 		free_cpumask_var(tmp->addmask);
640 		free_cpumask_var(tmp->delmask);
641 	}
642 }
643 
644 /**
645  * alloc_trial_cpuset - allocate a trial cpuset
646  * @cs: the cpuset that the trial cpuset duplicates
647  */
648 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
649 {
650 	struct cpuset *trial;
651 
652 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
653 	if (!trial)
654 		return NULL;
655 
656 	if (alloc_cpumasks(trial, NULL)) {
657 		kfree(trial);
658 		return NULL;
659 	}
660 
661 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
662 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
663 	return trial;
664 }
665 
666 /**
667  * free_cpuset - free the cpuset
668  * @cs: the cpuset to be freed
669  */
670 static inline void free_cpuset(struct cpuset *cs)
671 {
672 	free_cpumasks(cs, NULL);
673 	kfree(cs);
674 }
675 
676 /*
677  * validate_change_legacy() - Validate conditions specific to legacy (v1)
678  *                            behavior.
679  */
680 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
681 {
682 	struct cgroup_subsys_state *css;
683 	struct cpuset *c, *par;
684 	int ret;
685 
686 	WARN_ON_ONCE(!rcu_read_lock_held());
687 
688 	/* Each of our child cpusets must be a subset of us */
689 	ret = -EBUSY;
690 	cpuset_for_each_child(c, css, cur)
691 		if (!is_cpuset_subset(c, trial))
692 			goto out;
693 
694 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
695 	ret = -EACCES;
696 	par = parent_cs(cur);
697 	if (par && !is_cpuset_subset(trial, par))
698 		goto out;
699 
700 	ret = 0;
701 out:
702 	return ret;
703 }
704 
705 /*
706  * validate_change() - Used to validate that any proposed cpuset change
707  *		       follows the structural rules for cpusets.
708  *
709  * If we replaced the flag and mask values of the current cpuset
710  * (cur) with those values in the trial cpuset (trial), would
711  * our various subset and exclusive rules still be valid?  Presumes
712  * cpuset_rwsem held.
713  *
714  * 'cur' is the address of an actual, in-use cpuset.  Operations
715  * such as list traversal that depend on the actual address of the
716  * cpuset in the list must use cur below, not trial.
717  *
718  * 'trial' is the address of bulk structure copy of cur, with
719  * perhaps one or more of the fields cpus_allowed, mems_allowed,
720  * or flags changed to new, trial values.
721  *
722  * Return 0 if valid, -errno if not.
723  */
724 
725 static int validate_change(struct cpuset *cur, struct cpuset *trial)
726 {
727 	struct cgroup_subsys_state *css;
728 	struct cpuset *c, *par;
729 	int ret = 0;
730 
731 	rcu_read_lock();
732 
733 	if (!is_in_v2_mode())
734 		ret = validate_change_legacy(cur, trial);
735 	if (ret)
736 		goto out;
737 
738 	/* Remaining checks don't apply to root cpuset */
739 	if (cur == &top_cpuset)
740 		goto out;
741 
742 	par = parent_cs(cur);
743 
744 	/*
745 	 * Cpusets with tasks - existing or newly being attached - can't
746 	 * be changed to have empty cpus_allowed or mems_allowed.
747 	 */
748 	ret = -ENOSPC;
749 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
750 		if (!cpumask_empty(cur->cpus_allowed) &&
751 		    cpumask_empty(trial->cpus_allowed))
752 			goto out;
753 		if (!nodes_empty(cur->mems_allowed) &&
754 		    nodes_empty(trial->mems_allowed))
755 			goto out;
756 	}
757 
758 	/*
759 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
760 	 * tasks.
761 	 */
762 	ret = -EBUSY;
763 	if (is_cpu_exclusive(cur) &&
764 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
765 				       trial->cpus_allowed))
766 		goto out;
767 
768 	/*
769 	 * If either I or some sibling (!= me) is exclusive, we can't
770 	 * overlap
771 	 */
772 	ret = -EINVAL;
773 	cpuset_for_each_child(c, css, par) {
774 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
775 		    c != cur &&
776 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
777 			goto out;
778 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
779 		    c != cur &&
780 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
781 			goto out;
782 	}
783 
784 	ret = 0;
785 out:
786 	rcu_read_unlock();
787 	return ret;
788 }
789 
790 #ifdef CONFIG_SMP
791 /*
792  * Helper routine for generate_sched_domains().
793  * Do cpusets a, b have overlapping effective cpus_allowed masks?
794  */
795 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
796 {
797 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
798 }
799 
800 static void
801 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
802 {
803 	if (dattr->relax_domain_level < c->relax_domain_level)
804 		dattr->relax_domain_level = c->relax_domain_level;
805 	return;
806 }
807 
808 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
809 				    struct cpuset *root_cs)
810 {
811 	struct cpuset *cp;
812 	struct cgroup_subsys_state *pos_css;
813 
814 	rcu_read_lock();
815 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
816 		/* skip the whole subtree if @cp doesn't have any CPU */
817 		if (cpumask_empty(cp->cpus_allowed)) {
818 			pos_css = css_rightmost_descendant(pos_css);
819 			continue;
820 		}
821 
822 		if (is_sched_load_balance(cp))
823 			update_domain_attr(dattr, cp);
824 	}
825 	rcu_read_unlock();
826 }
827 
828 /* Must be called with cpuset_rwsem held.  */
829 static inline int nr_cpusets(void)
830 {
831 	/* jump label reference count + the top-level cpuset */
832 	return static_key_count(&cpusets_enabled_key.key) + 1;
833 }
834 
835 /*
836  * generate_sched_domains()
837  *
838  * This function builds a partial partition of the systems CPUs
839  * A 'partial partition' is a set of non-overlapping subsets whose
840  * union is a subset of that set.
841  * The output of this function needs to be passed to kernel/sched/core.c
842  * partition_sched_domains() routine, which will rebuild the scheduler's
843  * load balancing domains (sched domains) as specified by that partial
844  * partition.
845  *
846  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
847  * for a background explanation of this.
848  *
849  * Does not return errors, on the theory that the callers of this
850  * routine would rather not worry about failures to rebuild sched
851  * domains when operating in the severe memory shortage situations
852  * that could cause allocation failures below.
853  *
854  * Must be called with cpuset_rwsem held.
855  *
856  * The three key local variables below are:
857  *    cp - cpuset pointer, used (together with pos_css) to perform a
858  *	   top-down scan of all cpusets. For our purposes, rebuilding
859  *	   the schedulers sched domains, we can ignore !is_sched_load_
860  *	   balance cpusets.
861  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
862  *	   that need to be load balanced, for convenient iterative
863  *	   access by the subsequent code that finds the best partition,
864  *	   i.e the set of domains (subsets) of CPUs such that the
865  *	   cpus_allowed of every cpuset marked is_sched_load_balance
866  *	   is a subset of one of these domains, while there are as
867  *	   many such domains as possible, each as small as possible.
868  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
869  *	   the kernel/sched/core.c routine partition_sched_domains() in a
870  *	   convenient format, that can be easily compared to the prior
871  *	   value to determine what partition elements (sched domains)
872  *	   were changed (added or removed.)
873  *
874  * Finding the best partition (set of domains):
875  *	The triple nested loops below over i, j, k scan over the
876  *	load balanced cpusets (using the array of cpuset pointers in
877  *	csa[]) looking for pairs of cpusets that have overlapping
878  *	cpus_allowed, but which don't have the same 'pn' partition
879  *	number and gives them in the same partition number.  It keeps
880  *	looping on the 'restart' label until it can no longer find
881  *	any such pairs.
882  *
883  *	The union of the cpus_allowed masks from the set of
884  *	all cpusets having the same 'pn' value then form the one
885  *	element of the partition (one sched domain) to be passed to
886  *	partition_sched_domains().
887  */
888 static int generate_sched_domains(cpumask_var_t **domains,
889 			struct sched_domain_attr **attributes)
890 {
891 	struct cpuset *cp;	/* top-down scan of cpusets */
892 	struct cpuset **csa;	/* array of all cpuset ptrs */
893 	int csn;		/* how many cpuset ptrs in csa so far */
894 	int i, j, k;		/* indices for partition finding loops */
895 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
896 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
897 	int ndoms = 0;		/* number of sched domains in result */
898 	int nslot;		/* next empty doms[] struct cpumask slot */
899 	struct cgroup_subsys_state *pos_css;
900 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
901 
902 	doms = NULL;
903 	dattr = NULL;
904 	csa = NULL;
905 
906 	/* Special case for the 99% of systems with one, full, sched domain */
907 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
908 		ndoms = 1;
909 		doms = alloc_sched_domains(ndoms);
910 		if (!doms)
911 			goto done;
912 
913 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
914 		if (dattr) {
915 			*dattr = SD_ATTR_INIT;
916 			update_domain_attr_tree(dattr, &top_cpuset);
917 		}
918 		cpumask_and(doms[0], top_cpuset.effective_cpus,
919 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
920 
921 		goto done;
922 	}
923 
924 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
925 	if (!csa)
926 		goto done;
927 	csn = 0;
928 
929 	rcu_read_lock();
930 	if (root_load_balance)
931 		csa[csn++] = &top_cpuset;
932 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
933 		if (cp == &top_cpuset)
934 			continue;
935 		/*
936 		 * Continue traversing beyond @cp iff @cp has some CPUs and
937 		 * isn't load balancing.  The former is obvious.  The
938 		 * latter: All child cpusets contain a subset of the
939 		 * parent's cpus, so just skip them, and then we call
940 		 * update_domain_attr_tree() to calc relax_domain_level of
941 		 * the corresponding sched domain.
942 		 *
943 		 * If root is load-balancing, we can skip @cp if it
944 		 * is a subset of the root's effective_cpus.
945 		 */
946 		if (!cpumask_empty(cp->cpus_allowed) &&
947 		    !(is_sched_load_balance(cp) &&
948 		      cpumask_intersects(cp->cpus_allowed,
949 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
950 			continue;
951 
952 		if (root_load_balance &&
953 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
954 			continue;
955 
956 		if (is_sched_load_balance(cp) &&
957 		    !cpumask_empty(cp->effective_cpus))
958 			csa[csn++] = cp;
959 
960 		/* skip @cp's subtree if not a partition root */
961 		if (!is_partition_valid(cp))
962 			pos_css = css_rightmost_descendant(pos_css);
963 	}
964 	rcu_read_unlock();
965 
966 	for (i = 0; i < csn; i++)
967 		csa[i]->pn = i;
968 	ndoms = csn;
969 
970 restart:
971 	/* Find the best partition (set of sched domains) */
972 	for (i = 0; i < csn; i++) {
973 		struct cpuset *a = csa[i];
974 		int apn = a->pn;
975 
976 		for (j = 0; j < csn; j++) {
977 			struct cpuset *b = csa[j];
978 			int bpn = b->pn;
979 
980 			if (apn != bpn && cpusets_overlap(a, b)) {
981 				for (k = 0; k < csn; k++) {
982 					struct cpuset *c = csa[k];
983 
984 					if (c->pn == bpn)
985 						c->pn = apn;
986 				}
987 				ndoms--;	/* one less element */
988 				goto restart;
989 			}
990 		}
991 	}
992 
993 	/*
994 	 * Now we know how many domains to create.
995 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
996 	 */
997 	doms = alloc_sched_domains(ndoms);
998 	if (!doms)
999 		goto done;
1000 
1001 	/*
1002 	 * The rest of the code, including the scheduler, can deal with
1003 	 * dattr==NULL case. No need to abort if alloc fails.
1004 	 */
1005 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1006 			      GFP_KERNEL);
1007 
1008 	for (nslot = 0, i = 0; i < csn; i++) {
1009 		struct cpuset *a = csa[i];
1010 		struct cpumask *dp;
1011 		int apn = a->pn;
1012 
1013 		if (apn < 0) {
1014 			/* Skip completed partitions */
1015 			continue;
1016 		}
1017 
1018 		dp = doms[nslot];
1019 
1020 		if (nslot == ndoms) {
1021 			static int warnings = 10;
1022 			if (warnings) {
1023 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1024 					nslot, ndoms, csn, i, apn);
1025 				warnings--;
1026 			}
1027 			continue;
1028 		}
1029 
1030 		cpumask_clear(dp);
1031 		if (dattr)
1032 			*(dattr + nslot) = SD_ATTR_INIT;
1033 		for (j = i; j < csn; j++) {
1034 			struct cpuset *b = csa[j];
1035 
1036 			if (apn == b->pn) {
1037 				cpumask_or(dp, dp, b->effective_cpus);
1038 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1039 				if (dattr)
1040 					update_domain_attr_tree(dattr + nslot, b);
1041 
1042 				/* Done with this partition */
1043 				b->pn = -1;
1044 			}
1045 		}
1046 		nslot++;
1047 	}
1048 	BUG_ON(nslot != ndoms);
1049 
1050 done:
1051 	kfree(csa);
1052 
1053 	/*
1054 	 * Fallback to the default domain if kmalloc() failed.
1055 	 * See comments in partition_sched_domains().
1056 	 */
1057 	if (doms == NULL)
1058 		ndoms = 1;
1059 
1060 	*domains    = doms;
1061 	*attributes = dattr;
1062 	return ndoms;
1063 }
1064 
1065 static void update_tasks_root_domain(struct cpuset *cs)
1066 {
1067 	struct css_task_iter it;
1068 	struct task_struct *task;
1069 
1070 	css_task_iter_start(&cs->css, 0, &it);
1071 
1072 	while ((task = css_task_iter_next(&it)))
1073 		dl_add_task_root_domain(task);
1074 
1075 	css_task_iter_end(&it);
1076 }
1077 
1078 static void rebuild_root_domains(void)
1079 {
1080 	struct cpuset *cs = NULL;
1081 	struct cgroup_subsys_state *pos_css;
1082 
1083 	percpu_rwsem_assert_held(&cpuset_rwsem);
1084 	lockdep_assert_cpus_held();
1085 	lockdep_assert_held(&sched_domains_mutex);
1086 
1087 	rcu_read_lock();
1088 
1089 	/*
1090 	 * Clear default root domain DL accounting, it will be computed again
1091 	 * if a task belongs to it.
1092 	 */
1093 	dl_clear_root_domain(&def_root_domain);
1094 
1095 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1096 
1097 		if (cpumask_empty(cs->effective_cpus)) {
1098 			pos_css = css_rightmost_descendant(pos_css);
1099 			continue;
1100 		}
1101 
1102 		css_get(&cs->css);
1103 
1104 		rcu_read_unlock();
1105 
1106 		update_tasks_root_domain(cs);
1107 
1108 		rcu_read_lock();
1109 		css_put(&cs->css);
1110 	}
1111 	rcu_read_unlock();
1112 }
1113 
1114 static void
1115 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1116 				    struct sched_domain_attr *dattr_new)
1117 {
1118 	mutex_lock(&sched_domains_mutex);
1119 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1120 	rebuild_root_domains();
1121 	mutex_unlock(&sched_domains_mutex);
1122 }
1123 
1124 /*
1125  * Rebuild scheduler domains.
1126  *
1127  * If the flag 'sched_load_balance' of any cpuset with non-empty
1128  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1129  * which has that flag enabled, or if any cpuset with a non-empty
1130  * 'cpus' is removed, then call this routine to rebuild the
1131  * scheduler's dynamic sched domains.
1132  *
1133  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1134  */
1135 static void rebuild_sched_domains_locked(void)
1136 {
1137 	struct cgroup_subsys_state *pos_css;
1138 	struct sched_domain_attr *attr;
1139 	cpumask_var_t *doms;
1140 	struct cpuset *cs;
1141 	int ndoms;
1142 
1143 	lockdep_assert_cpus_held();
1144 	percpu_rwsem_assert_held(&cpuset_rwsem);
1145 
1146 	/*
1147 	 * If we have raced with CPU hotplug, return early to avoid
1148 	 * passing doms with offlined cpu to partition_sched_domains().
1149 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1150 	 *
1151 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1152 	 * should be the same as the active CPUs, so checking only top_cpuset
1153 	 * is enough to detect racing CPU offlines.
1154 	 */
1155 	if (!top_cpuset.nr_subparts_cpus &&
1156 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1157 		return;
1158 
1159 	/*
1160 	 * With subpartition CPUs, however, the effective CPUs of a partition
1161 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1162 	 * partition root could be offlined, all must be checked.
1163 	 */
1164 	if (top_cpuset.nr_subparts_cpus) {
1165 		rcu_read_lock();
1166 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1167 			if (!is_partition_valid(cs)) {
1168 				pos_css = css_rightmost_descendant(pos_css);
1169 				continue;
1170 			}
1171 			if (!cpumask_subset(cs->effective_cpus,
1172 					    cpu_active_mask)) {
1173 				rcu_read_unlock();
1174 				return;
1175 			}
1176 		}
1177 		rcu_read_unlock();
1178 	}
1179 
1180 	/* Generate domain masks and attrs */
1181 	ndoms = generate_sched_domains(&doms, &attr);
1182 
1183 	/* Have scheduler rebuild the domains */
1184 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1185 }
1186 #else /* !CONFIG_SMP */
1187 static void rebuild_sched_domains_locked(void)
1188 {
1189 }
1190 #endif /* CONFIG_SMP */
1191 
1192 void rebuild_sched_domains(void)
1193 {
1194 	cpus_read_lock();
1195 	percpu_down_write(&cpuset_rwsem);
1196 	rebuild_sched_domains_locked();
1197 	percpu_up_write(&cpuset_rwsem);
1198 	cpus_read_unlock();
1199 }
1200 
1201 /**
1202  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1203  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1204  *
1205  * Iterate through each task of @cs updating its cpus_allowed to the
1206  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1207  * cpuset membership stays stable.
1208  */
1209 static void update_tasks_cpumask(struct cpuset *cs)
1210 {
1211 	struct css_task_iter it;
1212 	struct task_struct *task;
1213 	bool top_cs = cs == &top_cpuset;
1214 
1215 	css_task_iter_start(&cs->css, 0, &it);
1216 	while ((task = css_task_iter_next(&it))) {
1217 		/*
1218 		 * Percpu kthreads in top_cpuset are ignored
1219 		 */
1220 		if (top_cs && (task->flags & PF_KTHREAD) &&
1221 		    kthread_is_per_cpu(task))
1222 			continue;
1223 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1224 	}
1225 	css_task_iter_end(&it);
1226 }
1227 
1228 /**
1229  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1230  * @new_cpus: the temp variable for the new effective_cpus mask
1231  * @cs: the cpuset the need to recompute the new effective_cpus mask
1232  * @parent: the parent cpuset
1233  *
1234  * If the parent has subpartition CPUs, include them in the list of
1235  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1236  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1237  * to mask those out.
1238  */
1239 static void compute_effective_cpumask(struct cpumask *new_cpus,
1240 				      struct cpuset *cs, struct cpuset *parent)
1241 {
1242 	if (parent->nr_subparts_cpus) {
1243 		cpumask_or(new_cpus, parent->effective_cpus,
1244 			   parent->subparts_cpus);
1245 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1246 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1247 	} else {
1248 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1249 	}
1250 }
1251 
1252 /*
1253  * Commands for update_parent_subparts_cpumask
1254  */
1255 enum subparts_cmd {
1256 	partcmd_enable,		/* Enable partition root	 */
1257 	partcmd_disable,	/* Disable partition root	 */
1258 	partcmd_update,		/* Update parent's subparts_cpus */
1259 	partcmd_invalidate,	/* Make partition invalid	 */
1260 };
1261 
1262 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1263 		       int turning_on);
1264 /**
1265  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1266  * @cpuset:  The cpuset that requests change in partition root state
1267  * @cmd:     Partition root state change command
1268  * @newmask: Optional new cpumask for partcmd_update
1269  * @tmp:     Temporary addmask and delmask
1270  * Return:   0 or a partition root state error code
1271  *
1272  * For partcmd_enable, the cpuset is being transformed from a non-partition
1273  * root to a partition root. The cpus_allowed mask of the given cpuset will
1274  * be put into parent's subparts_cpus and taken away from parent's
1275  * effective_cpus. The function will return 0 if all the CPUs listed in
1276  * cpus_allowed can be granted or an error code will be returned.
1277  *
1278  * For partcmd_disable, the cpuset is being transformed from a partition
1279  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1280  * parent's subparts_cpus will be taken away from that cpumask and put back
1281  * into parent's effective_cpus. 0 will always be returned.
1282  *
1283  * For partcmd_update, if the optional newmask is specified, the cpu list is
1284  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1285  * assumed to remain the same. The cpuset should either be a valid or invalid
1286  * partition root. The partition root state may change from valid to invalid
1287  * or vice versa. An error code will only be returned if transitioning from
1288  * invalid to valid violates the exclusivity rule.
1289  *
1290  * For partcmd_invalidate, the current partition will be made invalid.
1291  *
1292  * The partcmd_enable and partcmd_disable commands are used by
1293  * update_prstate(). An error code may be returned and the caller will check
1294  * for error.
1295  *
1296  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1297  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1298  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1299  * check for error and so partition_root_state and prs_error will be updated
1300  * directly.
1301  */
1302 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1303 					  struct cpumask *newmask,
1304 					  struct tmpmasks *tmp)
1305 {
1306 	struct cpuset *parent = parent_cs(cs);
1307 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1308 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1309 	int old_prs, new_prs;
1310 	int part_error = PERR_NONE;	/* Partition error? */
1311 
1312 	percpu_rwsem_assert_held(&cpuset_rwsem);
1313 
1314 	/*
1315 	 * The parent must be a partition root.
1316 	 * The new cpumask, if present, or the current cpus_allowed must
1317 	 * not be empty.
1318 	 */
1319 	if (!is_partition_valid(parent)) {
1320 		return is_partition_invalid(parent)
1321 		       ? PERR_INVPARENT : PERR_NOTPART;
1322 	}
1323 	if ((newmask && cpumask_empty(newmask)) ||
1324 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1325 		return PERR_CPUSEMPTY;
1326 
1327 	/*
1328 	 * new_prs will only be changed for the partcmd_update and
1329 	 * partcmd_invalidate commands.
1330 	 */
1331 	adding = deleting = false;
1332 	old_prs = new_prs = cs->partition_root_state;
1333 	if (cmd == partcmd_enable) {
1334 		/*
1335 		 * Enabling partition root is not allowed if cpus_allowed
1336 		 * doesn't overlap parent's cpus_allowed.
1337 		 */
1338 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1339 			return PERR_INVCPUS;
1340 
1341 		/*
1342 		 * A parent can be left with no CPU as long as there is no
1343 		 * task directly associated with the parent partition.
1344 		 */
1345 		if (!cpumask_intersects(cs->cpus_allowed, parent->effective_cpus) &&
1346 		    partition_is_populated(parent, cs))
1347 			return PERR_NOCPUS;
1348 
1349 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1350 		adding = true;
1351 	} else if (cmd == partcmd_disable) {
1352 		/*
1353 		 * Need to remove cpus from parent's subparts_cpus for valid
1354 		 * partition root.
1355 		 */
1356 		deleting = !is_prs_invalid(old_prs) &&
1357 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1358 				       parent->subparts_cpus);
1359 	} else if (cmd == partcmd_invalidate) {
1360 		if (is_prs_invalid(old_prs))
1361 			return 0;
1362 
1363 		/*
1364 		 * Make the current partition invalid. It is assumed that
1365 		 * invalidation is caused by violating cpu exclusivity rule.
1366 		 */
1367 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1368 				       parent->subparts_cpus);
1369 		if (old_prs > 0) {
1370 			new_prs = -old_prs;
1371 			part_error = PERR_NOTEXCL;
1372 		}
1373 	} else if (newmask) {
1374 		/*
1375 		 * partcmd_update with newmask:
1376 		 *
1377 		 * Compute add/delete mask to/from subparts_cpus
1378 		 *
1379 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1380 		 * addmask = newmask & parent->cpus_allowed
1381 		 *		     & ~parent->subparts_cpus
1382 		 */
1383 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1384 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1385 				       parent->subparts_cpus);
1386 
1387 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1388 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1389 					parent->subparts_cpus);
1390 		/*
1391 		 * Make partition invalid if parent's effective_cpus could
1392 		 * become empty and there are tasks in the parent.
1393 		 */
1394 		if (adding &&
1395 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1396 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1397 		    partition_is_populated(parent, cs)) {
1398 			part_error = PERR_NOCPUS;
1399 			adding = false;
1400 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1401 					       parent->subparts_cpus);
1402 		}
1403 	} else {
1404 		/*
1405 		 * partcmd_update w/o newmask:
1406 		 *
1407 		 * delmask = cpus_allowed & parent->subparts_cpus
1408 		 * addmask = cpus_allowed & parent->cpus_allowed
1409 		 *			  & ~parent->subparts_cpus
1410 		 *
1411 		 * This gets invoked either due to a hotplug event or from
1412 		 * update_cpumasks_hier(). This can cause the state of a
1413 		 * partition root to transition from valid to invalid or vice
1414 		 * versa. So we still need to compute the addmask and delmask.
1415 
1416 		 * A partition error happens when:
1417 		 * 1) Cpuset is valid partition, but parent does not distribute
1418 		 *    out any CPUs.
1419 		 * 2) Parent has tasks and all its effective CPUs will have
1420 		 *    to be distributed out.
1421 		 */
1422 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1423 					  parent->cpus_allowed);
1424 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1425 					parent->subparts_cpus);
1426 
1427 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1428 		    (adding &&
1429 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1430 		     partition_is_populated(parent, cs))) {
1431 			part_error = PERR_NOCPUS;
1432 			adding = false;
1433 		}
1434 
1435 		if (part_error && is_partition_valid(cs) &&
1436 		    parent->nr_subparts_cpus)
1437 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1438 					       parent->subparts_cpus);
1439 	}
1440 	if (part_error)
1441 		WRITE_ONCE(cs->prs_err, part_error);
1442 
1443 	if (cmd == partcmd_update) {
1444 		/*
1445 		 * Check for possible transition between valid and invalid
1446 		 * partition root.
1447 		 */
1448 		switch (cs->partition_root_state) {
1449 		case PRS_ROOT:
1450 		case PRS_ISOLATED:
1451 			if (part_error)
1452 				new_prs = -old_prs;
1453 			break;
1454 		case PRS_INVALID_ROOT:
1455 		case PRS_INVALID_ISOLATED:
1456 			if (!part_error)
1457 				new_prs = -old_prs;
1458 			break;
1459 		}
1460 	}
1461 
1462 	if (!adding && !deleting && (new_prs == old_prs))
1463 		return 0;
1464 
1465 	/*
1466 	 * Transitioning between invalid to valid or vice versa may require
1467 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1468 	 */
1469 	if (old_prs != new_prs) {
1470 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1471 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1472 			return PERR_NOTEXCL;
1473 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1474 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1475 	}
1476 
1477 	/*
1478 	 * Change the parent's subparts_cpus.
1479 	 * Newly added CPUs will be removed from effective_cpus and
1480 	 * newly deleted ones will be added back to effective_cpus.
1481 	 */
1482 	spin_lock_irq(&callback_lock);
1483 	if (adding) {
1484 		cpumask_or(parent->subparts_cpus,
1485 			   parent->subparts_cpus, tmp->addmask);
1486 		cpumask_andnot(parent->effective_cpus,
1487 			       parent->effective_cpus, tmp->addmask);
1488 	}
1489 	if (deleting) {
1490 		cpumask_andnot(parent->subparts_cpus,
1491 			       parent->subparts_cpus, tmp->delmask);
1492 		/*
1493 		 * Some of the CPUs in subparts_cpus might have been offlined.
1494 		 */
1495 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1496 		cpumask_or(parent->effective_cpus,
1497 			   parent->effective_cpus, tmp->delmask);
1498 	}
1499 
1500 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1501 
1502 	if (old_prs != new_prs)
1503 		cs->partition_root_state = new_prs;
1504 
1505 	spin_unlock_irq(&callback_lock);
1506 
1507 	if (adding || deleting)
1508 		update_tasks_cpumask(parent);
1509 
1510 	/*
1511 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1512 	 * rebuild_sched_domains_locked() may be called.
1513 	 */
1514 	if (old_prs != new_prs) {
1515 		if (old_prs == PRS_ISOLATED)
1516 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1517 		else if (new_prs == PRS_ISOLATED)
1518 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1519 	}
1520 	notify_partition_change(cs, old_prs);
1521 	return 0;
1522 }
1523 
1524 /*
1525  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1526  * @cs:  the cpuset to consider
1527  * @tmp: temp variables for calculating effective_cpus & partition setup
1528  * @force: don't skip any descendant cpusets if set
1529  *
1530  * When configured cpumask is changed, the effective cpumasks of this cpuset
1531  * and all its descendants need to be updated.
1532  *
1533  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1534  *
1535  * Called with cpuset_rwsem held
1536  */
1537 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1538 				 bool force)
1539 {
1540 	struct cpuset *cp;
1541 	struct cgroup_subsys_state *pos_css;
1542 	bool need_rebuild_sched_domains = false;
1543 	int old_prs, new_prs;
1544 
1545 	rcu_read_lock();
1546 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1547 		struct cpuset *parent = parent_cs(cp);
1548 		bool update_parent = false;
1549 
1550 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1551 
1552 		/*
1553 		 * If it becomes empty, inherit the effective mask of the
1554 		 * parent, which is guaranteed to have some CPUs unless
1555 		 * it is a partition root that has explicitly distributed
1556 		 * out all its CPUs.
1557 		 */
1558 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1559 			if (is_partition_valid(cp) &&
1560 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1561 				goto update_parent_subparts;
1562 
1563 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1564 			if (!cp->use_parent_ecpus) {
1565 				cp->use_parent_ecpus = true;
1566 				parent->child_ecpus_count++;
1567 			}
1568 		} else if (cp->use_parent_ecpus) {
1569 			cp->use_parent_ecpus = false;
1570 			WARN_ON_ONCE(!parent->child_ecpus_count);
1571 			parent->child_ecpus_count--;
1572 		}
1573 
1574 		/*
1575 		 * Skip the whole subtree if the cpumask remains the same
1576 		 * and has no partition root state and force flag not set.
1577 		 */
1578 		if (!cp->partition_root_state && !force &&
1579 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1580 			pos_css = css_rightmost_descendant(pos_css);
1581 			continue;
1582 		}
1583 
1584 update_parent_subparts:
1585 		/*
1586 		 * update_parent_subparts_cpumask() should have been called
1587 		 * for cs already in update_cpumask(). We should also call
1588 		 * update_tasks_cpumask() again for tasks in the parent
1589 		 * cpuset if the parent's subparts_cpus changes.
1590 		 */
1591 		old_prs = new_prs = cp->partition_root_state;
1592 		if ((cp != cs) && old_prs) {
1593 			switch (parent->partition_root_state) {
1594 			case PRS_ROOT:
1595 			case PRS_ISOLATED:
1596 				update_parent = true;
1597 				break;
1598 
1599 			default:
1600 				/*
1601 				 * When parent is not a partition root or is
1602 				 * invalid, child partition roots become
1603 				 * invalid too.
1604 				 */
1605 				if (is_partition_valid(cp))
1606 					new_prs = -cp->partition_root_state;
1607 				WRITE_ONCE(cp->prs_err,
1608 					   is_partition_invalid(parent)
1609 					   ? PERR_INVPARENT : PERR_NOTPART);
1610 				break;
1611 			}
1612 		}
1613 
1614 		if (!css_tryget_online(&cp->css))
1615 			continue;
1616 		rcu_read_unlock();
1617 
1618 		if (update_parent) {
1619 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1620 						       tmp);
1621 			/*
1622 			 * The cpuset partition_root_state may become
1623 			 * invalid. Capture it.
1624 			 */
1625 			new_prs = cp->partition_root_state;
1626 		}
1627 
1628 		spin_lock_irq(&callback_lock);
1629 
1630 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1631 			/*
1632 			 * Put all active subparts_cpus back to effective_cpus.
1633 			 */
1634 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1635 				   cp->subparts_cpus);
1636 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1637 				   cpu_active_mask);
1638 			cp->nr_subparts_cpus = 0;
1639 			cpumask_clear(cp->subparts_cpus);
1640 		}
1641 
1642 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1643 		if (cp->nr_subparts_cpus) {
1644 			/*
1645 			 * Make sure that effective_cpus & subparts_cpus
1646 			 * are mutually exclusive.
1647 			 */
1648 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1649 				       cp->subparts_cpus);
1650 		}
1651 
1652 		cp->partition_root_state = new_prs;
1653 		spin_unlock_irq(&callback_lock);
1654 
1655 		notify_partition_change(cp, old_prs);
1656 
1657 		WARN_ON(!is_in_v2_mode() &&
1658 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1659 
1660 		update_tasks_cpumask(cp);
1661 
1662 		/*
1663 		 * On legacy hierarchy, if the effective cpumask of any non-
1664 		 * empty cpuset is changed, we need to rebuild sched domains.
1665 		 * On default hierarchy, the cpuset needs to be a partition
1666 		 * root as well.
1667 		 */
1668 		if (!cpumask_empty(cp->cpus_allowed) &&
1669 		    is_sched_load_balance(cp) &&
1670 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1671 		    is_partition_valid(cp)))
1672 			need_rebuild_sched_domains = true;
1673 
1674 		rcu_read_lock();
1675 		css_put(&cp->css);
1676 	}
1677 	rcu_read_unlock();
1678 
1679 	if (need_rebuild_sched_domains)
1680 		rebuild_sched_domains_locked();
1681 }
1682 
1683 /**
1684  * update_sibling_cpumasks - Update siblings cpumasks
1685  * @parent:  Parent cpuset
1686  * @cs:      Current cpuset
1687  * @tmp:     Temp variables
1688  */
1689 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1690 				    struct tmpmasks *tmp)
1691 {
1692 	struct cpuset *sibling;
1693 	struct cgroup_subsys_state *pos_css;
1694 
1695 	percpu_rwsem_assert_held(&cpuset_rwsem);
1696 
1697 	/*
1698 	 * Check all its siblings and call update_cpumasks_hier()
1699 	 * if their use_parent_ecpus flag is set in order for them
1700 	 * to use the right effective_cpus value.
1701 	 *
1702 	 * The update_cpumasks_hier() function may sleep. So we have to
1703 	 * release the RCU read lock before calling it.
1704 	 */
1705 	rcu_read_lock();
1706 	cpuset_for_each_child(sibling, pos_css, parent) {
1707 		if (sibling == cs)
1708 			continue;
1709 		if (!sibling->use_parent_ecpus)
1710 			continue;
1711 		if (!css_tryget_online(&sibling->css))
1712 			continue;
1713 
1714 		rcu_read_unlock();
1715 		update_cpumasks_hier(sibling, tmp, false);
1716 		rcu_read_lock();
1717 		css_put(&sibling->css);
1718 	}
1719 	rcu_read_unlock();
1720 }
1721 
1722 /**
1723  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1724  * @cs: the cpuset to consider
1725  * @trialcs: trial cpuset
1726  * @buf: buffer of cpu numbers written to this cpuset
1727  */
1728 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1729 			  const char *buf)
1730 {
1731 	int retval;
1732 	struct tmpmasks tmp;
1733 	bool invalidate = false;
1734 
1735 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1736 	if (cs == &top_cpuset)
1737 		return -EACCES;
1738 
1739 	/*
1740 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1741 	 * Since cpulist_parse() fails on an empty mask, we special case
1742 	 * that parsing.  The validate_change() call ensures that cpusets
1743 	 * with tasks have cpus.
1744 	 */
1745 	if (!*buf) {
1746 		cpumask_clear(trialcs->cpus_allowed);
1747 	} else {
1748 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1749 		if (retval < 0)
1750 			return retval;
1751 
1752 		if (!cpumask_subset(trialcs->cpus_allowed,
1753 				    top_cpuset.cpus_allowed))
1754 			return -EINVAL;
1755 	}
1756 
1757 	/* Nothing to do if the cpus didn't change */
1758 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1759 		return 0;
1760 
1761 #ifdef CONFIG_CPUMASK_OFFSTACK
1762 	/*
1763 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1764 	 * to allocated cpumasks.
1765 	 */
1766 	tmp.addmask  = trialcs->subparts_cpus;
1767 	tmp.delmask  = trialcs->effective_cpus;
1768 	tmp.new_cpus = trialcs->cpus_allowed;
1769 #endif
1770 
1771 	retval = validate_change(cs, trialcs);
1772 
1773 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1774 		struct cpuset *cp, *parent;
1775 		struct cgroup_subsys_state *css;
1776 
1777 		/*
1778 		 * The -EINVAL error code indicates that partition sibling
1779 		 * CPU exclusivity rule has been violated. We still allow
1780 		 * the cpumask change to proceed while invalidating the
1781 		 * partition. However, any conflicting sibling partitions
1782 		 * have to be marked as invalid too.
1783 		 */
1784 		invalidate = true;
1785 		rcu_read_lock();
1786 		parent = parent_cs(cs);
1787 		cpuset_for_each_child(cp, css, parent)
1788 			if (is_partition_valid(cp) &&
1789 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1790 				rcu_read_unlock();
1791 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1792 				rcu_read_lock();
1793 			}
1794 		rcu_read_unlock();
1795 		retval = 0;
1796 	}
1797 	if (retval < 0)
1798 		return retval;
1799 
1800 	if (cs->partition_root_state) {
1801 		if (invalidate)
1802 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1803 						       NULL, &tmp);
1804 		else
1805 			update_parent_subparts_cpumask(cs, partcmd_update,
1806 						trialcs->cpus_allowed, &tmp);
1807 	}
1808 
1809 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1810 				  parent_cs(cs));
1811 	spin_lock_irq(&callback_lock);
1812 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1813 
1814 	/*
1815 	 * Make sure that subparts_cpus, if not empty, is a subset of
1816 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1817 	 * empty effective cpus with tasks.
1818 	 */
1819 	if (cs->nr_subparts_cpus) {
1820 		if (!is_partition_valid(cs) ||
1821 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1822 		    partition_is_populated(cs, NULL))) {
1823 			cs->nr_subparts_cpus = 0;
1824 			cpumask_clear(cs->subparts_cpus);
1825 		} else {
1826 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1827 				    cs->cpus_allowed);
1828 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1829 		}
1830 	}
1831 	spin_unlock_irq(&callback_lock);
1832 
1833 	/* effective_cpus will be updated here */
1834 	update_cpumasks_hier(cs, &tmp, false);
1835 
1836 	if (cs->partition_root_state) {
1837 		struct cpuset *parent = parent_cs(cs);
1838 
1839 		/*
1840 		 * For partition root, update the cpumasks of sibling
1841 		 * cpusets if they use parent's effective_cpus.
1842 		 */
1843 		if (parent->child_ecpus_count)
1844 			update_sibling_cpumasks(parent, cs, &tmp);
1845 	}
1846 	return 0;
1847 }
1848 
1849 /*
1850  * Migrate memory region from one set of nodes to another.  This is
1851  * performed asynchronously as it can be called from process migration path
1852  * holding locks involved in process management.  All mm migrations are
1853  * performed in the queued order and can be waited for by flushing
1854  * cpuset_migrate_mm_wq.
1855  */
1856 
1857 struct cpuset_migrate_mm_work {
1858 	struct work_struct	work;
1859 	struct mm_struct	*mm;
1860 	nodemask_t		from;
1861 	nodemask_t		to;
1862 };
1863 
1864 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1865 {
1866 	struct cpuset_migrate_mm_work *mwork =
1867 		container_of(work, struct cpuset_migrate_mm_work, work);
1868 
1869 	/* on a wq worker, no need to worry about %current's mems_allowed */
1870 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1871 	mmput(mwork->mm);
1872 	kfree(mwork);
1873 }
1874 
1875 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1876 							const nodemask_t *to)
1877 {
1878 	struct cpuset_migrate_mm_work *mwork;
1879 
1880 	if (nodes_equal(*from, *to)) {
1881 		mmput(mm);
1882 		return;
1883 	}
1884 
1885 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1886 	if (mwork) {
1887 		mwork->mm = mm;
1888 		mwork->from = *from;
1889 		mwork->to = *to;
1890 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1891 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1892 	} else {
1893 		mmput(mm);
1894 	}
1895 }
1896 
1897 static void cpuset_post_attach(void)
1898 {
1899 	flush_workqueue(cpuset_migrate_mm_wq);
1900 }
1901 
1902 /*
1903  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1904  * @tsk: the task to change
1905  * @newmems: new nodes that the task will be set
1906  *
1907  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1908  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1909  * parallel, it might temporarily see an empty intersection, which results in
1910  * a seqlock check and retry before OOM or allocation failure.
1911  */
1912 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1913 					nodemask_t *newmems)
1914 {
1915 	task_lock(tsk);
1916 
1917 	local_irq_disable();
1918 	write_seqcount_begin(&tsk->mems_allowed_seq);
1919 
1920 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1921 	mpol_rebind_task(tsk, newmems);
1922 	tsk->mems_allowed = *newmems;
1923 
1924 	write_seqcount_end(&tsk->mems_allowed_seq);
1925 	local_irq_enable();
1926 
1927 	task_unlock(tsk);
1928 }
1929 
1930 static void *cpuset_being_rebound;
1931 
1932 /**
1933  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1934  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1935  *
1936  * Iterate through each task of @cs updating its mems_allowed to the
1937  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1938  * cpuset membership stays stable.
1939  */
1940 static void update_tasks_nodemask(struct cpuset *cs)
1941 {
1942 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1943 	struct css_task_iter it;
1944 	struct task_struct *task;
1945 
1946 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1947 
1948 	guarantee_online_mems(cs, &newmems);
1949 
1950 	/*
1951 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1952 	 * take while holding tasklist_lock.  Forks can happen - the
1953 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1954 	 * and rebind their vma mempolicies too.  Because we still hold
1955 	 * the global cpuset_rwsem, we know that no other rebind effort
1956 	 * will be contending for the global variable cpuset_being_rebound.
1957 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1958 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1959 	 */
1960 	css_task_iter_start(&cs->css, 0, &it);
1961 	while ((task = css_task_iter_next(&it))) {
1962 		struct mm_struct *mm;
1963 		bool migrate;
1964 
1965 		cpuset_change_task_nodemask(task, &newmems);
1966 
1967 		mm = get_task_mm(task);
1968 		if (!mm)
1969 			continue;
1970 
1971 		migrate = is_memory_migrate(cs);
1972 
1973 		mpol_rebind_mm(mm, &cs->mems_allowed);
1974 		if (migrate)
1975 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1976 		else
1977 			mmput(mm);
1978 	}
1979 	css_task_iter_end(&it);
1980 
1981 	/*
1982 	 * All the tasks' nodemasks have been updated, update
1983 	 * cs->old_mems_allowed.
1984 	 */
1985 	cs->old_mems_allowed = newmems;
1986 
1987 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1988 	cpuset_being_rebound = NULL;
1989 }
1990 
1991 /*
1992  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1993  * @cs: the cpuset to consider
1994  * @new_mems: a temp variable for calculating new effective_mems
1995  *
1996  * When configured nodemask is changed, the effective nodemasks of this cpuset
1997  * and all its descendants need to be updated.
1998  *
1999  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2000  *
2001  * Called with cpuset_rwsem held
2002  */
2003 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2004 {
2005 	struct cpuset *cp;
2006 	struct cgroup_subsys_state *pos_css;
2007 
2008 	rcu_read_lock();
2009 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2010 		struct cpuset *parent = parent_cs(cp);
2011 
2012 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2013 
2014 		/*
2015 		 * If it becomes empty, inherit the effective mask of the
2016 		 * parent, which is guaranteed to have some MEMs.
2017 		 */
2018 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2019 			*new_mems = parent->effective_mems;
2020 
2021 		/* Skip the whole subtree if the nodemask remains the same. */
2022 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2023 			pos_css = css_rightmost_descendant(pos_css);
2024 			continue;
2025 		}
2026 
2027 		if (!css_tryget_online(&cp->css))
2028 			continue;
2029 		rcu_read_unlock();
2030 
2031 		spin_lock_irq(&callback_lock);
2032 		cp->effective_mems = *new_mems;
2033 		spin_unlock_irq(&callback_lock);
2034 
2035 		WARN_ON(!is_in_v2_mode() &&
2036 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2037 
2038 		update_tasks_nodemask(cp);
2039 
2040 		rcu_read_lock();
2041 		css_put(&cp->css);
2042 	}
2043 	rcu_read_unlock();
2044 }
2045 
2046 /*
2047  * Handle user request to change the 'mems' memory placement
2048  * of a cpuset.  Needs to validate the request, update the
2049  * cpusets mems_allowed, and for each task in the cpuset,
2050  * update mems_allowed and rebind task's mempolicy and any vma
2051  * mempolicies and if the cpuset is marked 'memory_migrate',
2052  * migrate the tasks pages to the new memory.
2053  *
2054  * Call with cpuset_rwsem held. May take callback_lock during call.
2055  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2056  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2057  * their mempolicies to the cpusets new mems_allowed.
2058  */
2059 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2060 			   const char *buf)
2061 {
2062 	int retval;
2063 
2064 	/*
2065 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2066 	 * it's read-only
2067 	 */
2068 	if (cs == &top_cpuset) {
2069 		retval = -EACCES;
2070 		goto done;
2071 	}
2072 
2073 	/*
2074 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2075 	 * Since nodelist_parse() fails on an empty mask, we special case
2076 	 * that parsing.  The validate_change() call ensures that cpusets
2077 	 * with tasks have memory.
2078 	 */
2079 	if (!*buf) {
2080 		nodes_clear(trialcs->mems_allowed);
2081 	} else {
2082 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2083 		if (retval < 0)
2084 			goto done;
2085 
2086 		if (!nodes_subset(trialcs->mems_allowed,
2087 				  top_cpuset.mems_allowed)) {
2088 			retval = -EINVAL;
2089 			goto done;
2090 		}
2091 	}
2092 
2093 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2094 		retval = 0;		/* Too easy - nothing to do */
2095 		goto done;
2096 	}
2097 	retval = validate_change(cs, trialcs);
2098 	if (retval < 0)
2099 		goto done;
2100 
2101 	check_insane_mems_config(&trialcs->mems_allowed);
2102 
2103 	spin_lock_irq(&callback_lock);
2104 	cs->mems_allowed = trialcs->mems_allowed;
2105 	spin_unlock_irq(&callback_lock);
2106 
2107 	/* use trialcs->mems_allowed as a temp variable */
2108 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2109 done:
2110 	return retval;
2111 }
2112 
2113 bool current_cpuset_is_being_rebound(void)
2114 {
2115 	bool ret;
2116 
2117 	rcu_read_lock();
2118 	ret = task_cs(current) == cpuset_being_rebound;
2119 	rcu_read_unlock();
2120 
2121 	return ret;
2122 }
2123 
2124 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2125 {
2126 #ifdef CONFIG_SMP
2127 	if (val < -1 || val >= sched_domain_level_max)
2128 		return -EINVAL;
2129 #endif
2130 
2131 	if (val != cs->relax_domain_level) {
2132 		cs->relax_domain_level = val;
2133 		if (!cpumask_empty(cs->cpus_allowed) &&
2134 		    is_sched_load_balance(cs))
2135 			rebuild_sched_domains_locked();
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2143  * @cs: the cpuset in which each task's spread flags needs to be changed
2144  *
2145  * Iterate through each task of @cs updating its spread flags.  As this
2146  * function is called with cpuset_rwsem held, cpuset membership stays
2147  * stable.
2148  */
2149 static void update_tasks_flags(struct cpuset *cs)
2150 {
2151 	struct css_task_iter it;
2152 	struct task_struct *task;
2153 
2154 	css_task_iter_start(&cs->css, 0, &it);
2155 	while ((task = css_task_iter_next(&it)))
2156 		cpuset_update_task_spread_flag(cs, task);
2157 	css_task_iter_end(&it);
2158 }
2159 
2160 /*
2161  * update_flag - read a 0 or a 1 in a file and update associated flag
2162  * bit:		the bit to update (see cpuset_flagbits_t)
2163  * cs:		the cpuset to update
2164  * turning_on: 	whether the flag is being set or cleared
2165  *
2166  * Call with cpuset_rwsem held.
2167  */
2168 
2169 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2170 		       int turning_on)
2171 {
2172 	struct cpuset *trialcs;
2173 	int balance_flag_changed;
2174 	int spread_flag_changed;
2175 	int err;
2176 
2177 	trialcs = alloc_trial_cpuset(cs);
2178 	if (!trialcs)
2179 		return -ENOMEM;
2180 
2181 	if (turning_on)
2182 		set_bit(bit, &trialcs->flags);
2183 	else
2184 		clear_bit(bit, &trialcs->flags);
2185 
2186 	err = validate_change(cs, trialcs);
2187 	if (err < 0)
2188 		goto out;
2189 
2190 	balance_flag_changed = (is_sched_load_balance(cs) !=
2191 				is_sched_load_balance(trialcs));
2192 
2193 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2194 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2195 
2196 	spin_lock_irq(&callback_lock);
2197 	cs->flags = trialcs->flags;
2198 	spin_unlock_irq(&callback_lock);
2199 
2200 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2201 		rebuild_sched_domains_locked();
2202 
2203 	if (spread_flag_changed)
2204 		update_tasks_flags(cs);
2205 out:
2206 	free_cpuset(trialcs);
2207 	return err;
2208 }
2209 
2210 /**
2211  * update_prstate - update partition_root_state
2212  * @cs: the cpuset to update
2213  * @new_prs: new partition root state
2214  * Return: 0 if successful, != 0 if error
2215  *
2216  * Call with cpuset_rwsem held.
2217  */
2218 static int update_prstate(struct cpuset *cs, int new_prs)
2219 {
2220 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2221 	bool sched_domain_rebuilt = false;
2222 	struct cpuset *parent = parent_cs(cs);
2223 	struct tmpmasks tmpmask;
2224 
2225 	if (old_prs == new_prs)
2226 		return 0;
2227 
2228 	/*
2229 	 * For a previously invalid partition root, leave it at being
2230 	 * invalid if new_prs is not "member".
2231 	 */
2232 	if (new_prs && is_prs_invalid(old_prs)) {
2233 		cs->partition_root_state = -new_prs;
2234 		return 0;
2235 	}
2236 
2237 	if (alloc_cpumasks(NULL, &tmpmask))
2238 		return -ENOMEM;
2239 
2240 	if (!old_prs) {
2241 		/*
2242 		 * Turning on partition root requires setting the
2243 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2244 		 * cannot be empty.
2245 		 */
2246 		if (cpumask_empty(cs->cpus_allowed)) {
2247 			err = PERR_CPUSEMPTY;
2248 			goto out;
2249 		}
2250 
2251 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2252 		if (err) {
2253 			err = PERR_NOTEXCL;
2254 			goto out;
2255 		}
2256 
2257 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2258 						     NULL, &tmpmask);
2259 		if (err) {
2260 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2261 			goto out;
2262 		}
2263 
2264 		if (new_prs == PRS_ISOLATED) {
2265 			/*
2266 			 * Disable the load balance flag should not return an
2267 			 * error unless the system is running out of memory.
2268 			 */
2269 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2270 			sched_domain_rebuilt = true;
2271 		}
2272 	} else if (old_prs && new_prs) {
2273 		/*
2274 		 * A change in load balance state only, no change in cpumasks.
2275 		 */
2276 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2277 		sched_domain_rebuilt = true;
2278 		goto out;	/* Sched domain is rebuilt in update_flag() */
2279 	} else {
2280 		/*
2281 		 * Switching back to member is always allowed even if it
2282 		 * disables child partitions.
2283 		 */
2284 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2285 					       &tmpmask);
2286 
2287 		/*
2288 		 * If there are child partitions, they will all become invalid.
2289 		 */
2290 		if (unlikely(cs->nr_subparts_cpus)) {
2291 			spin_lock_irq(&callback_lock);
2292 			cs->nr_subparts_cpus = 0;
2293 			cpumask_clear(cs->subparts_cpus);
2294 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2295 			spin_unlock_irq(&callback_lock);
2296 		}
2297 
2298 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2299 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2300 
2301 		if (!is_sched_load_balance(cs)) {
2302 			/* Make sure load balance is on */
2303 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2304 			sched_domain_rebuilt = true;
2305 		}
2306 	}
2307 
2308 	update_tasks_cpumask(parent);
2309 
2310 	if (parent->child_ecpus_count)
2311 		update_sibling_cpumasks(parent, cs, &tmpmask);
2312 
2313 	if (!sched_domain_rebuilt)
2314 		rebuild_sched_domains_locked();
2315 out:
2316 	/*
2317 	 * Make partition invalid if an error happen
2318 	 */
2319 	if (err)
2320 		new_prs = -new_prs;
2321 	spin_lock_irq(&callback_lock);
2322 	cs->partition_root_state = new_prs;
2323 	spin_unlock_irq(&callback_lock);
2324 	/*
2325 	 * Update child cpusets, if present.
2326 	 * Force update if switching back to member.
2327 	 */
2328 	if (!list_empty(&cs->css.children))
2329 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2330 
2331 	notify_partition_change(cs, old_prs);
2332 	free_cpumasks(NULL, &tmpmask);
2333 	return 0;
2334 }
2335 
2336 /*
2337  * Frequency meter - How fast is some event occurring?
2338  *
2339  * These routines manage a digitally filtered, constant time based,
2340  * event frequency meter.  There are four routines:
2341  *   fmeter_init() - initialize a frequency meter.
2342  *   fmeter_markevent() - called each time the event happens.
2343  *   fmeter_getrate() - returns the recent rate of such events.
2344  *   fmeter_update() - internal routine used to update fmeter.
2345  *
2346  * A common data structure is passed to each of these routines,
2347  * which is used to keep track of the state required to manage the
2348  * frequency meter and its digital filter.
2349  *
2350  * The filter works on the number of events marked per unit time.
2351  * The filter is single-pole low-pass recursive (IIR).  The time unit
2352  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2353  * simulate 3 decimal digits of precision (multiplied by 1000).
2354  *
2355  * With an FM_COEF of 933, and a time base of 1 second, the filter
2356  * has a half-life of 10 seconds, meaning that if the events quit
2357  * happening, then the rate returned from the fmeter_getrate()
2358  * will be cut in half each 10 seconds, until it converges to zero.
2359  *
2360  * It is not worth doing a real infinitely recursive filter.  If more
2361  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2362  * just compute FM_MAXTICKS ticks worth, by which point the level
2363  * will be stable.
2364  *
2365  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2366  * arithmetic overflow in the fmeter_update() routine.
2367  *
2368  * Given the simple 32 bit integer arithmetic used, this meter works
2369  * best for reporting rates between one per millisecond (msec) and
2370  * one per 32 (approx) seconds.  At constant rates faster than one
2371  * per msec it maxes out at values just under 1,000,000.  At constant
2372  * rates between one per msec, and one per second it will stabilize
2373  * to a value N*1000, where N is the rate of events per second.
2374  * At constant rates between one per second and one per 32 seconds,
2375  * it will be choppy, moving up on the seconds that have an event,
2376  * and then decaying until the next event.  At rates slower than
2377  * about one in 32 seconds, it decays all the way back to zero between
2378  * each event.
2379  */
2380 
2381 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2382 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2383 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2384 #define FM_SCALE 1000		/* faux fixed point scale */
2385 
2386 /* Initialize a frequency meter */
2387 static void fmeter_init(struct fmeter *fmp)
2388 {
2389 	fmp->cnt = 0;
2390 	fmp->val = 0;
2391 	fmp->time = 0;
2392 	spin_lock_init(&fmp->lock);
2393 }
2394 
2395 /* Internal meter update - process cnt events and update value */
2396 static void fmeter_update(struct fmeter *fmp)
2397 {
2398 	time64_t now;
2399 	u32 ticks;
2400 
2401 	now = ktime_get_seconds();
2402 	ticks = now - fmp->time;
2403 
2404 	if (ticks == 0)
2405 		return;
2406 
2407 	ticks = min(FM_MAXTICKS, ticks);
2408 	while (ticks-- > 0)
2409 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2410 	fmp->time = now;
2411 
2412 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2413 	fmp->cnt = 0;
2414 }
2415 
2416 /* Process any previous ticks, then bump cnt by one (times scale). */
2417 static void fmeter_markevent(struct fmeter *fmp)
2418 {
2419 	spin_lock(&fmp->lock);
2420 	fmeter_update(fmp);
2421 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2422 	spin_unlock(&fmp->lock);
2423 }
2424 
2425 /* Process any previous ticks, then return current value. */
2426 static int fmeter_getrate(struct fmeter *fmp)
2427 {
2428 	int val;
2429 
2430 	spin_lock(&fmp->lock);
2431 	fmeter_update(fmp);
2432 	val = fmp->val;
2433 	spin_unlock(&fmp->lock);
2434 	return val;
2435 }
2436 
2437 static struct cpuset *cpuset_attach_old_cs;
2438 
2439 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2440 static int cpuset_can_attach(struct cgroup_taskset *tset)
2441 {
2442 	struct cgroup_subsys_state *css;
2443 	struct cpuset *cs;
2444 	struct task_struct *task;
2445 	int ret;
2446 
2447 	/* used later by cpuset_attach() */
2448 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2449 	cs = css_cs(css);
2450 
2451 	percpu_down_write(&cpuset_rwsem);
2452 
2453 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2454 	ret = -ENOSPC;
2455 	if (!is_in_v2_mode() &&
2456 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2457 		goto out_unlock;
2458 
2459 	/*
2460 	 * Task cannot be moved to a cpuset with empty effective cpus.
2461 	 */
2462 	if (cpumask_empty(cs->effective_cpus))
2463 		goto out_unlock;
2464 
2465 	cgroup_taskset_for_each(task, css, tset) {
2466 		ret = task_can_attach(task, cs->effective_cpus);
2467 		if (ret)
2468 			goto out_unlock;
2469 		ret = security_task_setscheduler(task);
2470 		if (ret)
2471 			goto out_unlock;
2472 	}
2473 
2474 	/*
2475 	 * Mark attach is in progress.  This makes validate_change() fail
2476 	 * changes which zero cpus/mems_allowed.
2477 	 */
2478 	cs->attach_in_progress++;
2479 	ret = 0;
2480 out_unlock:
2481 	percpu_up_write(&cpuset_rwsem);
2482 	return ret;
2483 }
2484 
2485 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2486 {
2487 	struct cgroup_subsys_state *css;
2488 
2489 	cgroup_taskset_first(tset, &css);
2490 
2491 	percpu_down_write(&cpuset_rwsem);
2492 	css_cs(css)->attach_in_progress--;
2493 	percpu_up_write(&cpuset_rwsem);
2494 }
2495 
2496 /*
2497  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2498  * but we can't allocate it dynamically there.  Define it global and
2499  * allocate from cpuset_init().
2500  */
2501 static cpumask_var_t cpus_attach;
2502 
2503 static void cpuset_attach(struct cgroup_taskset *tset)
2504 {
2505 	/* static buf protected by cpuset_rwsem */
2506 	static nodemask_t cpuset_attach_nodemask_to;
2507 	struct task_struct *task;
2508 	struct task_struct *leader;
2509 	struct cgroup_subsys_state *css;
2510 	struct cpuset *cs;
2511 	struct cpuset *oldcs = cpuset_attach_old_cs;
2512 
2513 	cgroup_taskset_first(tset, &css);
2514 	cs = css_cs(css);
2515 
2516 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2517 	percpu_down_write(&cpuset_rwsem);
2518 
2519 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2520 
2521 	cgroup_taskset_for_each(task, css, tset) {
2522 		if (cs != &top_cpuset)
2523 			guarantee_online_cpus(task, cpus_attach);
2524 		else
2525 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2526 		/*
2527 		 * can_attach beforehand should guarantee that this doesn't
2528 		 * fail.  TODO: have a better way to handle failure here
2529 		 */
2530 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2531 
2532 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2533 		cpuset_update_task_spread_flag(cs, task);
2534 	}
2535 
2536 	/*
2537 	 * Change mm for all threadgroup leaders. This is expensive and may
2538 	 * sleep and should be moved outside migration path proper.
2539 	 */
2540 	cpuset_attach_nodemask_to = cs->effective_mems;
2541 	cgroup_taskset_for_each_leader(leader, css, tset) {
2542 		struct mm_struct *mm = get_task_mm(leader);
2543 
2544 		if (mm) {
2545 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2546 
2547 			/*
2548 			 * old_mems_allowed is the same with mems_allowed
2549 			 * here, except if this task is being moved
2550 			 * automatically due to hotplug.  In that case
2551 			 * @mems_allowed has been updated and is empty, so
2552 			 * @old_mems_allowed is the right nodesets that we
2553 			 * migrate mm from.
2554 			 */
2555 			if (is_memory_migrate(cs))
2556 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2557 						  &cpuset_attach_nodemask_to);
2558 			else
2559 				mmput(mm);
2560 		}
2561 	}
2562 
2563 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2564 
2565 	cs->attach_in_progress--;
2566 	if (!cs->attach_in_progress)
2567 		wake_up(&cpuset_attach_wq);
2568 
2569 	percpu_up_write(&cpuset_rwsem);
2570 }
2571 
2572 /* The various types of files and directories in a cpuset file system */
2573 
2574 typedef enum {
2575 	FILE_MEMORY_MIGRATE,
2576 	FILE_CPULIST,
2577 	FILE_MEMLIST,
2578 	FILE_EFFECTIVE_CPULIST,
2579 	FILE_EFFECTIVE_MEMLIST,
2580 	FILE_SUBPARTS_CPULIST,
2581 	FILE_CPU_EXCLUSIVE,
2582 	FILE_MEM_EXCLUSIVE,
2583 	FILE_MEM_HARDWALL,
2584 	FILE_SCHED_LOAD_BALANCE,
2585 	FILE_PARTITION_ROOT,
2586 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2587 	FILE_MEMORY_PRESSURE_ENABLED,
2588 	FILE_MEMORY_PRESSURE,
2589 	FILE_SPREAD_PAGE,
2590 	FILE_SPREAD_SLAB,
2591 } cpuset_filetype_t;
2592 
2593 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2594 			    u64 val)
2595 {
2596 	struct cpuset *cs = css_cs(css);
2597 	cpuset_filetype_t type = cft->private;
2598 	int retval = 0;
2599 
2600 	cpus_read_lock();
2601 	percpu_down_write(&cpuset_rwsem);
2602 	if (!is_cpuset_online(cs)) {
2603 		retval = -ENODEV;
2604 		goto out_unlock;
2605 	}
2606 
2607 	switch (type) {
2608 	case FILE_CPU_EXCLUSIVE:
2609 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2610 		break;
2611 	case FILE_MEM_EXCLUSIVE:
2612 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2613 		break;
2614 	case FILE_MEM_HARDWALL:
2615 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2616 		break;
2617 	case FILE_SCHED_LOAD_BALANCE:
2618 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2619 		break;
2620 	case FILE_MEMORY_MIGRATE:
2621 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2622 		break;
2623 	case FILE_MEMORY_PRESSURE_ENABLED:
2624 		cpuset_memory_pressure_enabled = !!val;
2625 		break;
2626 	case FILE_SPREAD_PAGE:
2627 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2628 		break;
2629 	case FILE_SPREAD_SLAB:
2630 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2631 		break;
2632 	default:
2633 		retval = -EINVAL;
2634 		break;
2635 	}
2636 out_unlock:
2637 	percpu_up_write(&cpuset_rwsem);
2638 	cpus_read_unlock();
2639 	return retval;
2640 }
2641 
2642 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2643 			    s64 val)
2644 {
2645 	struct cpuset *cs = css_cs(css);
2646 	cpuset_filetype_t type = cft->private;
2647 	int retval = -ENODEV;
2648 
2649 	cpus_read_lock();
2650 	percpu_down_write(&cpuset_rwsem);
2651 	if (!is_cpuset_online(cs))
2652 		goto out_unlock;
2653 
2654 	switch (type) {
2655 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2656 		retval = update_relax_domain_level(cs, val);
2657 		break;
2658 	default:
2659 		retval = -EINVAL;
2660 		break;
2661 	}
2662 out_unlock:
2663 	percpu_up_write(&cpuset_rwsem);
2664 	cpus_read_unlock();
2665 	return retval;
2666 }
2667 
2668 /*
2669  * Common handling for a write to a "cpus" or "mems" file.
2670  */
2671 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2672 				    char *buf, size_t nbytes, loff_t off)
2673 {
2674 	struct cpuset *cs = css_cs(of_css(of));
2675 	struct cpuset *trialcs;
2676 	int retval = -ENODEV;
2677 
2678 	buf = strstrip(buf);
2679 
2680 	/*
2681 	 * CPU or memory hotunplug may leave @cs w/o any execution
2682 	 * resources, in which case the hotplug code asynchronously updates
2683 	 * configuration and transfers all tasks to the nearest ancestor
2684 	 * which can execute.
2685 	 *
2686 	 * As writes to "cpus" or "mems" may restore @cs's execution
2687 	 * resources, wait for the previously scheduled operations before
2688 	 * proceeding, so that we don't end up keep removing tasks added
2689 	 * after execution capability is restored.
2690 	 *
2691 	 * cpuset_hotplug_work calls back into cgroup core via
2692 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2693 	 * operation like this one can lead to a deadlock through kernfs
2694 	 * active_ref protection.  Let's break the protection.  Losing the
2695 	 * protection is okay as we check whether @cs is online after
2696 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2697 	 * hierarchies.
2698 	 */
2699 	css_get(&cs->css);
2700 	kernfs_break_active_protection(of->kn);
2701 	flush_work(&cpuset_hotplug_work);
2702 
2703 	cpus_read_lock();
2704 	percpu_down_write(&cpuset_rwsem);
2705 	if (!is_cpuset_online(cs))
2706 		goto out_unlock;
2707 
2708 	trialcs = alloc_trial_cpuset(cs);
2709 	if (!trialcs) {
2710 		retval = -ENOMEM;
2711 		goto out_unlock;
2712 	}
2713 
2714 	switch (of_cft(of)->private) {
2715 	case FILE_CPULIST:
2716 		retval = update_cpumask(cs, trialcs, buf);
2717 		break;
2718 	case FILE_MEMLIST:
2719 		retval = update_nodemask(cs, trialcs, buf);
2720 		break;
2721 	default:
2722 		retval = -EINVAL;
2723 		break;
2724 	}
2725 
2726 	free_cpuset(trialcs);
2727 out_unlock:
2728 	percpu_up_write(&cpuset_rwsem);
2729 	cpus_read_unlock();
2730 	kernfs_unbreak_active_protection(of->kn);
2731 	css_put(&cs->css);
2732 	flush_workqueue(cpuset_migrate_mm_wq);
2733 	return retval ?: nbytes;
2734 }
2735 
2736 /*
2737  * These ascii lists should be read in a single call, by using a user
2738  * buffer large enough to hold the entire map.  If read in smaller
2739  * chunks, there is no guarantee of atomicity.  Since the display format
2740  * used, list of ranges of sequential numbers, is variable length,
2741  * and since these maps can change value dynamically, one could read
2742  * gibberish by doing partial reads while a list was changing.
2743  */
2744 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2745 {
2746 	struct cpuset *cs = css_cs(seq_css(sf));
2747 	cpuset_filetype_t type = seq_cft(sf)->private;
2748 	int ret = 0;
2749 
2750 	spin_lock_irq(&callback_lock);
2751 
2752 	switch (type) {
2753 	case FILE_CPULIST:
2754 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2755 		break;
2756 	case FILE_MEMLIST:
2757 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2758 		break;
2759 	case FILE_EFFECTIVE_CPULIST:
2760 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2761 		break;
2762 	case FILE_EFFECTIVE_MEMLIST:
2763 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2764 		break;
2765 	case FILE_SUBPARTS_CPULIST:
2766 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2767 		break;
2768 	default:
2769 		ret = -EINVAL;
2770 	}
2771 
2772 	spin_unlock_irq(&callback_lock);
2773 	return ret;
2774 }
2775 
2776 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2777 {
2778 	struct cpuset *cs = css_cs(css);
2779 	cpuset_filetype_t type = cft->private;
2780 	switch (type) {
2781 	case FILE_CPU_EXCLUSIVE:
2782 		return is_cpu_exclusive(cs);
2783 	case FILE_MEM_EXCLUSIVE:
2784 		return is_mem_exclusive(cs);
2785 	case FILE_MEM_HARDWALL:
2786 		return is_mem_hardwall(cs);
2787 	case FILE_SCHED_LOAD_BALANCE:
2788 		return is_sched_load_balance(cs);
2789 	case FILE_MEMORY_MIGRATE:
2790 		return is_memory_migrate(cs);
2791 	case FILE_MEMORY_PRESSURE_ENABLED:
2792 		return cpuset_memory_pressure_enabled;
2793 	case FILE_MEMORY_PRESSURE:
2794 		return fmeter_getrate(&cs->fmeter);
2795 	case FILE_SPREAD_PAGE:
2796 		return is_spread_page(cs);
2797 	case FILE_SPREAD_SLAB:
2798 		return is_spread_slab(cs);
2799 	default:
2800 		BUG();
2801 	}
2802 
2803 	/* Unreachable but makes gcc happy */
2804 	return 0;
2805 }
2806 
2807 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2808 {
2809 	struct cpuset *cs = css_cs(css);
2810 	cpuset_filetype_t type = cft->private;
2811 	switch (type) {
2812 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2813 		return cs->relax_domain_level;
2814 	default:
2815 		BUG();
2816 	}
2817 
2818 	/* Unreachable but makes gcc happy */
2819 	return 0;
2820 }
2821 
2822 static int sched_partition_show(struct seq_file *seq, void *v)
2823 {
2824 	struct cpuset *cs = css_cs(seq_css(seq));
2825 	const char *err, *type = NULL;
2826 
2827 	switch (cs->partition_root_state) {
2828 	case PRS_ROOT:
2829 		seq_puts(seq, "root\n");
2830 		break;
2831 	case PRS_ISOLATED:
2832 		seq_puts(seq, "isolated\n");
2833 		break;
2834 	case PRS_MEMBER:
2835 		seq_puts(seq, "member\n");
2836 		break;
2837 	case PRS_INVALID_ROOT:
2838 		type = "root";
2839 		fallthrough;
2840 	case PRS_INVALID_ISOLATED:
2841 		if (!type)
2842 			type = "isolated";
2843 		err = perr_strings[READ_ONCE(cs->prs_err)];
2844 		if (err)
2845 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2846 		else
2847 			seq_printf(seq, "%s invalid\n", type);
2848 		break;
2849 	}
2850 	return 0;
2851 }
2852 
2853 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2854 				     size_t nbytes, loff_t off)
2855 {
2856 	struct cpuset *cs = css_cs(of_css(of));
2857 	int val;
2858 	int retval = -ENODEV;
2859 
2860 	buf = strstrip(buf);
2861 
2862 	/*
2863 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2864 	 */
2865 	if (!strcmp(buf, "root"))
2866 		val = PRS_ROOT;
2867 	else if (!strcmp(buf, "member"))
2868 		val = PRS_MEMBER;
2869 	else if (!strcmp(buf, "isolated"))
2870 		val = PRS_ISOLATED;
2871 	else
2872 		return -EINVAL;
2873 
2874 	css_get(&cs->css);
2875 	cpus_read_lock();
2876 	percpu_down_write(&cpuset_rwsem);
2877 	if (!is_cpuset_online(cs))
2878 		goto out_unlock;
2879 
2880 	retval = update_prstate(cs, val);
2881 out_unlock:
2882 	percpu_up_write(&cpuset_rwsem);
2883 	cpus_read_unlock();
2884 	css_put(&cs->css);
2885 	return retval ?: nbytes;
2886 }
2887 
2888 /*
2889  * for the common functions, 'private' gives the type of file
2890  */
2891 
2892 static struct cftype legacy_files[] = {
2893 	{
2894 		.name = "cpus",
2895 		.seq_show = cpuset_common_seq_show,
2896 		.write = cpuset_write_resmask,
2897 		.max_write_len = (100U + 6 * NR_CPUS),
2898 		.private = FILE_CPULIST,
2899 	},
2900 
2901 	{
2902 		.name = "mems",
2903 		.seq_show = cpuset_common_seq_show,
2904 		.write = cpuset_write_resmask,
2905 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2906 		.private = FILE_MEMLIST,
2907 	},
2908 
2909 	{
2910 		.name = "effective_cpus",
2911 		.seq_show = cpuset_common_seq_show,
2912 		.private = FILE_EFFECTIVE_CPULIST,
2913 	},
2914 
2915 	{
2916 		.name = "effective_mems",
2917 		.seq_show = cpuset_common_seq_show,
2918 		.private = FILE_EFFECTIVE_MEMLIST,
2919 	},
2920 
2921 	{
2922 		.name = "cpu_exclusive",
2923 		.read_u64 = cpuset_read_u64,
2924 		.write_u64 = cpuset_write_u64,
2925 		.private = FILE_CPU_EXCLUSIVE,
2926 	},
2927 
2928 	{
2929 		.name = "mem_exclusive",
2930 		.read_u64 = cpuset_read_u64,
2931 		.write_u64 = cpuset_write_u64,
2932 		.private = FILE_MEM_EXCLUSIVE,
2933 	},
2934 
2935 	{
2936 		.name = "mem_hardwall",
2937 		.read_u64 = cpuset_read_u64,
2938 		.write_u64 = cpuset_write_u64,
2939 		.private = FILE_MEM_HARDWALL,
2940 	},
2941 
2942 	{
2943 		.name = "sched_load_balance",
2944 		.read_u64 = cpuset_read_u64,
2945 		.write_u64 = cpuset_write_u64,
2946 		.private = FILE_SCHED_LOAD_BALANCE,
2947 	},
2948 
2949 	{
2950 		.name = "sched_relax_domain_level",
2951 		.read_s64 = cpuset_read_s64,
2952 		.write_s64 = cpuset_write_s64,
2953 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2954 	},
2955 
2956 	{
2957 		.name = "memory_migrate",
2958 		.read_u64 = cpuset_read_u64,
2959 		.write_u64 = cpuset_write_u64,
2960 		.private = FILE_MEMORY_MIGRATE,
2961 	},
2962 
2963 	{
2964 		.name = "memory_pressure",
2965 		.read_u64 = cpuset_read_u64,
2966 		.private = FILE_MEMORY_PRESSURE,
2967 	},
2968 
2969 	{
2970 		.name = "memory_spread_page",
2971 		.read_u64 = cpuset_read_u64,
2972 		.write_u64 = cpuset_write_u64,
2973 		.private = FILE_SPREAD_PAGE,
2974 	},
2975 
2976 	{
2977 		.name = "memory_spread_slab",
2978 		.read_u64 = cpuset_read_u64,
2979 		.write_u64 = cpuset_write_u64,
2980 		.private = FILE_SPREAD_SLAB,
2981 	},
2982 
2983 	{
2984 		.name = "memory_pressure_enabled",
2985 		.flags = CFTYPE_ONLY_ON_ROOT,
2986 		.read_u64 = cpuset_read_u64,
2987 		.write_u64 = cpuset_write_u64,
2988 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2989 	},
2990 
2991 	{ }	/* terminate */
2992 };
2993 
2994 /*
2995  * This is currently a minimal set for the default hierarchy. It can be
2996  * expanded later on by migrating more features and control files from v1.
2997  */
2998 static struct cftype dfl_files[] = {
2999 	{
3000 		.name = "cpus",
3001 		.seq_show = cpuset_common_seq_show,
3002 		.write = cpuset_write_resmask,
3003 		.max_write_len = (100U + 6 * NR_CPUS),
3004 		.private = FILE_CPULIST,
3005 		.flags = CFTYPE_NOT_ON_ROOT,
3006 	},
3007 
3008 	{
3009 		.name = "mems",
3010 		.seq_show = cpuset_common_seq_show,
3011 		.write = cpuset_write_resmask,
3012 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3013 		.private = FILE_MEMLIST,
3014 		.flags = CFTYPE_NOT_ON_ROOT,
3015 	},
3016 
3017 	{
3018 		.name = "cpus.effective",
3019 		.seq_show = cpuset_common_seq_show,
3020 		.private = FILE_EFFECTIVE_CPULIST,
3021 	},
3022 
3023 	{
3024 		.name = "mems.effective",
3025 		.seq_show = cpuset_common_seq_show,
3026 		.private = FILE_EFFECTIVE_MEMLIST,
3027 	},
3028 
3029 	{
3030 		.name = "cpus.partition",
3031 		.seq_show = sched_partition_show,
3032 		.write = sched_partition_write,
3033 		.private = FILE_PARTITION_ROOT,
3034 		.flags = CFTYPE_NOT_ON_ROOT,
3035 		.file_offset = offsetof(struct cpuset, partition_file),
3036 	},
3037 
3038 	{
3039 		.name = "cpus.subpartitions",
3040 		.seq_show = cpuset_common_seq_show,
3041 		.private = FILE_SUBPARTS_CPULIST,
3042 		.flags = CFTYPE_DEBUG,
3043 	},
3044 
3045 	{ }	/* terminate */
3046 };
3047 
3048 
3049 /*
3050  *	cpuset_css_alloc - allocate a cpuset css
3051  *	cgrp:	control group that the new cpuset will be part of
3052  */
3053 
3054 static struct cgroup_subsys_state *
3055 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3056 {
3057 	struct cpuset *cs;
3058 
3059 	if (!parent_css)
3060 		return &top_cpuset.css;
3061 
3062 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3063 	if (!cs)
3064 		return ERR_PTR(-ENOMEM);
3065 
3066 	if (alloc_cpumasks(cs, NULL)) {
3067 		kfree(cs);
3068 		return ERR_PTR(-ENOMEM);
3069 	}
3070 
3071 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3072 	nodes_clear(cs->mems_allowed);
3073 	nodes_clear(cs->effective_mems);
3074 	fmeter_init(&cs->fmeter);
3075 	cs->relax_domain_level = -1;
3076 
3077 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3078 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3079 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3080 
3081 	return &cs->css;
3082 }
3083 
3084 static int cpuset_css_online(struct cgroup_subsys_state *css)
3085 {
3086 	struct cpuset *cs = css_cs(css);
3087 	struct cpuset *parent = parent_cs(cs);
3088 	struct cpuset *tmp_cs;
3089 	struct cgroup_subsys_state *pos_css;
3090 
3091 	if (!parent)
3092 		return 0;
3093 
3094 	cpus_read_lock();
3095 	percpu_down_write(&cpuset_rwsem);
3096 
3097 	set_bit(CS_ONLINE, &cs->flags);
3098 	if (is_spread_page(parent))
3099 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3100 	if (is_spread_slab(parent))
3101 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3102 
3103 	cpuset_inc();
3104 
3105 	spin_lock_irq(&callback_lock);
3106 	if (is_in_v2_mode()) {
3107 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3108 		cs->effective_mems = parent->effective_mems;
3109 		cs->use_parent_ecpus = true;
3110 		parent->child_ecpus_count++;
3111 	}
3112 	spin_unlock_irq(&callback_lock);
3113 
3114 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3115 		goto out_unlock;
3116 
3117 	/*
3118 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3119 	 * set.  This flag handling is implemented in cgroup core for
3120 	 * historical reasons - the flag may be specified during mount.
3121 	 *
3122 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3123 	 * refuse to clone the configuration - thereby refusing the task to
3124 	 * be entered, and as a result refusing the sys_unshare() or
3125 	 * clone() which initiated it.  If this becomes a problem for some
3126 	 * users who wish to allow that scenario, then this could be
3127 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3128 	 * (and likewise for mems) to the new cgroup.
3129 	 */
3130 	rcu_read_lock();
3131 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3132 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3133 			rcu_read_unlock();
3134 			goto out_unlock;
3135 		}
3136 	}
3137 	rcu_read_unlock();
3138 
3139 	spin_lock_irq(&callback_lock);
3140 	cs->mems_allowed = parent->mems_allowed;
3141 	cs->effective_mems = parent->mems_allowed;
3142 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3143 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3144 	spin_unlock_irq(&callback_lock);
3145 out_unlock:
3146 	percpu_up_write(&cpuset_rwsem);
3147 	cpus_read_unlock();
3148 	return 0;
3149 }
3150 
3151 /*
3152  * If the cpuset being removed has its flag 'sched_load_balance'
3153  * enabled, then simulate turning sched_load_balance off, which
3154  * will call rebuild_sched_domains_locked(). That is not needed
3155  * in the default hierarchy where only changes in partition
3156  * will cause repartitioning.
3157  *
3158  * If the cpuset has the 'sched.partition' flag enabled, simulate
3159  * turning 'sched.partition" off.
3160  */
3161 
3162 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3163 {
3164 	struct cpuset *cs = css_cs(css);
3165 
3166 	cpus_read_lock();
3167 	percpu_down_write(&cpuset_rwsem);
3168 
3169 	if (is_partition_valid(cs))
3170 		update_prstate(cs, 0);
3171 
3172 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3173 	    is_sched_load_balance(cs))
3174 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3175 
3176 	if (cs->use_parent_ecpus) {
3177 		struct cpuset *parent = parent_cs(cs);
3178 
3179 		cs->use_parent_ecpus = false;
3180 		parent->child_ecpus_count--;
3181 	}
3182 
3183 	cpuset_dec();
3184 	clear_bit(CS_ONLINE, &cs->flags);
3185 
3186 	percpu_up_write(&cpuset_rwsem);
3187 	cpus_read_unlock();
3188 }
3189 
3190 static void cpuset_css_free(struct cgroup_subsys_state *css)
3191 {
3192 	struct cpuset *cs = css_cs(css);
3193 
3194 	free_cpuset(cs);
3195 }
3196 
3197 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3198 {
3199 	percpu_down_write(&cpuset_rwsem);
3200 	spin_lock_irq(&callback_lock);
3201 
3202 	if (is_in_v2_mode()) {
3203 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3204 		top_cpuset.mems_allowed = node_possible_map;
3205 	} else {
3206 		cpumask_copy(top_cpuset.cpus_allowed,
3207 			     top_cpuset.effective_cpus);
3208 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3209 	}
3210 
3211 	spin_unlock_irq(&callback_lock);
3212 	percpu_up_write(&cpuset_rwsem);
3213 }
3214 
3215 /*
3216  * Make sure the new task conform to the current state of its parent,
3217  * which could have been changed by cpuset just after it inherits the
3218  * state from the parent and before it sits on the cgroup's task list.
3219  */
3220 static void cpuset_fork(struct task_struct *task)
3221 {
3222 	if (task_css_is_root(task, cpuset_cgrp_id))
3223 		return;
3224 
3225 	set_cpus_allowed_ptr(task, current->cpus_ptr);
3226 	task->mems_allowed = current->mems_allowed;
3227 }
3228 
3229 struct cgroup_subsys cpuset_cgrp_subsys = {
3230 	.css_alloc	= cpuset_css_alloc,
3231 	.css_online	= cpuset_css_online,
3232 	.css_offline	= cpuset_css_offline,
3233 	.css_free	= cpuset_css_free,
3234 	.can_attach	= cpuset_can_attach,
3235 	.cancel_attach	= cpuset_cancel_attach,
3236 	.attach		= cpuset_attach,
3237 	.post_attach	= cpuset_post_attach,
3238 	.bind		= cpuset_bind,
3239 	.fork		= cpuset_fork,
3240 	.legacy_cftypes	= legacy_files,
3241 	.dfl_cftypes	= dfl_files,
3242 	.early_init	= true,
3243 	.threaded	= true,
3244 };
3245 
3246 /**
3247  * cpuset_init - initialize cpusets at system boot
3248  *
3249  * Description: Initialize top_cpuset
3250  **/
3251 
3252 int __init cpuset_init(void)
3253 {
3254 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
3255 
3256 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3257 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3258 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3259 
3260 	cpumask_setall(top_cpuset.cpus_allowed);
3261 	nodes_setall(top_cpuset.mems_allowed);
3262 	cpumask_setall(top_cpuset.effective_cpus);
3263 	nodes_setall(top_cpuset.effective_mems);
3264 
3265 	fmeter_init(&top_cpuset.fmeter);
3266 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3267 	top_cpuset.relax_domain_level = -1;
3268 
3269 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3270 
3271 	return 0;
3272 }
3273 
3274 /*
3275  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3276  * or memory nodes, we need to walk over the cpuset hierarchy,
3277  * removing that CPU or node from all cpusets.  If this removes the
3278  * last CPU or node from a cpuset, then move the tasks in the empty
3279  * cpuset to its next-highest non-empty parent.
3280  */
3281 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3282 {
3283 	struct cpuset *parent;
3284 
3285 	/*
3286 	 * Find its next-highest non-empty parent, (top cpuset
3287 	 * has online cpus, so can't be empty).
3288 	 */
3289 	parent = parent_cs(cs);
3290 	while (cpumask_empty(parent->cpus_allowed) ||
3291 			nodes_empty(parent->mems_allowed))
3292 		parent = parent_cs(parent);
3293 
3294 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3295 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3296 		pr_cont_cgroup_name(cs->css.cgroup);
3297 		pr_cont("\n");
3298 	}
3299 }
3300 
3301 static void
3302 hotplug_update_tasks_legacy(struct cpuset *cs,
3303 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3304 			    bool cpus_updated, bool mems_updated)
3305 {
3306 	bool is_empty;
3307 
3308 	spin_lock_irq(&callback_lock);
3309 	cpumask_copy(cs->cpus_allowed, new_cpus);
3310 	cpumask_copy(cs->effective_cpus, new_cpus);
3311 	cs->mems_allowed = *new_mems;
3312 	cs->effective_mems = *new_mems;
3313 	spin_unlock_irq(&callback_lock);
3314 
3315 	/*
3316 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3317 	 * as the tasks will be migrated to an ancestor.
3318 	 */
3319 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3320 		update_tasks_cpumask(cs);
3321 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3322 		update_tasks_nodemask(cs);
3323 
3324 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3325 		   nodes_empty(cs->mems_allowed);
3326 
3327 	percpu_up_write(&cpuset_rwsem);
3328 
3329 	/*
3330 	 * Move tasks to the nearest ancestor with execution resources,
3331 	 * This is full cgroup operation which will also call back into
3332 	 * cpuset. Should be done outside any lock.
3333 	 */
3334 	if (is_empty)
3335 		remove_tasks_in_empty_cpuset(cs);
3336 
3337 	percpu_down_write(&cpuset_rwsem);
3338 }
3339 
3340 static void
3341 hotplug_update_tasks(struct cpuset *cs,
3342 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3343 		     bool cpus_updated, bool mems_updated)
3344 {
3345 	/* A partition root is allowed to have empty effective cpus */
3346 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3347 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3348 	if (nodes_empty(*new_mems))
3349 		*new_mems = parent_cs(cs)->effective_mems;
3350 
3351 	spin_lock_irq(&callback_lock);
3352 	cpumask_copy(cs->effective_cpus, new_cpus);
3353 	cs->effective_mems = *new_mems;
3354 	spin_unlock_irq(&callback_lock);
3355 
3356 	if (cpus_updated)
3357 		update_tasks_cpumask(cs);
3358 	if (mems_updated)
3359 		update_tasks_nodemask(cs);
3360 }
3361 
3362 static bool force_rebuild;
3363 
3364 void cpuset_force_rebuild(void)
3365 {
3366 	force_rebuild = true;
3367 }
3368 
3369 /**
3370  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3371  * @cs: cpuset in interest
3372  * @tmp: the tmpmasks structure pointer
3373  *
3374  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3375  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3376  * all its tasks are moved to the nearest ancestor with both resources.
3377  */
3378 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3379 {
3380 	static cpumask_t new_cpus;
3381 	static nodemask_t new_mems;
3382 	bool cpus_updated;
3383 	bool mems_updated;
3384 	struct cpuset *parent;
3385 retry:
3386 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3387 
3388 	percpu_down_write(&cpuset_rwsem);
3389 
3390 	/*
3391 	 * We have raced with task attaching. We wait until attaching
3392 	 * is finished, so we won't attach a task to an empty cpuset.
3393 	 */
3394 	if (cs->attach_in_progress) {
3395 		percpu_up_write(&cpuset_rwsem);
3396 		goto retry;
3397 	}
3398 
3399 	parent = parent_cs(cs);
3400 	compute_effective_cpumask(&new_cpus, cs, parent);
3401 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3402 
3403 	if (cs->nr_subparts_cpus)
3404 		/*
3405 		 * Make sure that CPUs allocated to child partitions
3406 		 * do not show up in effective_cpus.
3407 		 */
3408 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3409 
3410 	if (!tmp || !cs->partition_root_state)
3411 		goto update_tasks;
3412 
3413 	/*
3414 	 * In the unlikely event that a partition root has empty
3415 	 * effective_cpus with tasks, we will have to invalidate child
3416 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3417 	 * reclaim their cpus.
3418 	 */
3419 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3420 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3421 		spin_lock_irq(&callback_lock);
3422 		cs->nr_subparts_cpus = 0;
3423 		cpumask_clear(cs->subparts_cpus);
3424 		spin_unlock_irq(&callback_lock);
3425 		compute_effective_cpumask(&new_cpus, cs, parent);
3426 	}
3427 
3428 	/*
3429 	 * Force the partition to become invalid if either one of
3430 	 * the following conditions hold:
3431 	 * 1) empty effective cpus but not valid empty partition.
3432 	 * 2) parent is invalid or doesn't grant any cpus to child
3433 	 *    partitions.
3434 	 */
3435 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3436 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3437 		int old_prs, parent_prs;
3438 
3439 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3440 		if (cs->nr_subparts_cpus) {
3441 			spin_lock_irq(&callback_lock);
3442 			cs->nr_subparts_cpus = 0;
3443 			cpumask_clear(cs->subparts_cpus);
3444 			spin_unlock_irq(&callback_lock);
3445 			compute_effective_cpumask(&new_cpus, cs, parent);
3446 		}
3447 
3448 		old_prs = cs->partition_root_state;
3449 		parent_prs = parent->partition_root_state;
3450 		if (is_partition_valid(cs)) {
3451 			spin_lock_irq(&callback_lock);
3452 			make_partition_invalid(cs);
3453 			spin_unlock_irq(&callback_lock);
3454 			if (is_prs_invalid(parent_prs))
3455 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3456 			else if (!parent_prs)
3457 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3458 			else
3459 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3460 			notify_partition_change(cs, old_prs);
3461 		}
3462 		cpuset_force_rebuild();
3463 	}
3464 
3465 	/*
3466 	 * On the other hand, an invalid partition root may be transitioned
3467 	 * back to a regular one.
3468 	 */
3469 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3470 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3471 		if (is_partition_valid(cs))
3472 			cpuset_force_rebuild();
3473 	}
3474 
3475 update_tasks:
3476 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3477 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3478 
3479 	if (mems_updated)
3480 		check_insane_mems_config(&new_mems);
3481 
3482 	if (is_in_v2_mode())
3483 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3484 				     cpus_updated, mems_updated);
3485 	else
3486 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3487 					    cpus_updated, mems_updated);
3488 
3489 	percpu_up_write(&cpuset_rwsem);
3490 }
3491 
3492 /**
3493  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3494  *
3495  * This function is called after either CPU or memory configuration has
3496  * changed and updates cpuset accordingly.  The top_cpuset is always
3497  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3498  * order to make cpusets transparent (of no affect) on systems that are
3499  * actively using CPU hotplug but making no active use of cpusets.
3500  *
3501  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3502  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3503  * all descendants.
3504  *
3505  * Note that CPU offlining during suspend is ignored.  We don't modify
3506  * cpusets across suspend/resume cycles at all.
3507  */
3508 static void cpuset_hotplug_workfn(struct work_struct *work)
3509 {
3510 	static cpumask_t new_cpus;
3511 	static nodemask_t new_mems;
3512 	bool cpus_updated, mems_updated;
3513 	bool on_dfl = is_in_v2_mode();
3514 	struct tmpmasks tmp, *ptmp = NULL;
3515 
3516 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3517 		ptmp = &tmp;
3518 
3519 	percpu_down_write(&cpuset_rwsem);
3520 
3521 	/* fetch the available cpus/mems and find out which changed how */
3522 	cpumask_copy(&new_cpus, cpu_active_mask);
3523 	new_mems = node_states[N_MEMORY];
3524 
3525 	/*
3526 	 * If subparts_cpus is populated, it is likely that the check below
3527 	 * will produce a false positive on cpus_updated when the cpu list
3528 	 * isn't changed. It is extra work, but it is better to be safe.
3529 	 */
3530 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3531 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3532 
3533 	/*
3534 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3535 	 * we assumed that cpus are updated.
3536 	 */
3537 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3538 		cpus_updated = true;
3539 
3540 	/* synchronize cpus_allowed to cpu_active_mask */
3541 	if (cpus_updated) {
3542 		spin_lock_irq(&callback_lock);
3543 		if (!on_dfl)
3544 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3545 		/*
3546 		 * Make sure that CPUs allocated to child partitions
3547 		 * do not show up in effective_cpus. If no CPU is left,
3548 		 * we clear the subparts_cpus & let the child partitions
3549 		 * fight for the CPUs again.
3550 		 */
3551 		if (top_cpuset.nr_subparts_cpus) {
3552 			if (cpumask_subset(&new_cpus,
3553 					   top_cpuset.subparts_cpus)) {
3554 				top_cpuset.nr_subparts_cpus = 0;
3555 				cpumask_clear(top_cpuset.subparts_cpus);
3556 			} else {
3557 				cpumask_andnot(&new_cpus, &new_cpus,
3558 					       top_cpuset.subparts_cpus);
3559 			}
3560 		}
3561 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3562 		spin_unlock_irq(&callback_lock);
3563 		/* we don't mess with cpumasks of tasks in top_cpuset */
3564 	}
3565 
3566 	/* synchronize mems_allowed to N_MEMORY */
3567 	if (mems_updated) {
3568 		spin_lock_irq(&callback_lock);
3569 		if (!on_dfl)
3570 			top_cpuset.mems_allowed = new_mems;
3571 		top_cpuset.effective_mems = new_mems;
3572 		spin_unlock_irq(&callback_lock);
3573 		update_tasks_nodemask(&top_cpuset);
3574 	}
3575 
3576 	percpu_up_write(&cpuset_rwsem);
3577 
3578 	/* if cpus or mems changed, we need to propagate to descendants */
3579 	if (cpus_updated || mems_updated) {
3580 		struct cpuset *cs;
3581 		struct cgroup_subsys_state *pos_css;
3582 
3583 		rcu_read_lock();
3584 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3585 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3586 				continue;
3587 			rcu_read_unlock();
3588 
3589 			cpuset_hotplug_update_tasks(cs, ptmp);
3590 
3591 			rcu_read_lock();
3592 			css_put(&cs->css);
3593 		}
3594 		rcu_read_unlock();
3595 	}
3596 
3597 	/* rebuild sched domains if cpus_allowed has changed */
3598 	if (cpus_updated || force_rebuild) {
3599 		force_rebuild = false;
3600 		rebuild_sched_domains();
3601 	}
3602 
3603 	free_cpumasks(NULL, ptmp);
3604 }
3605 
3606 void cpuset_update_active_cpus(void)
3607 {
3608 	/*
3609 	 * We're inside cpu hotplug critical region which usually nests
3610 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3611 	 * to a work item to avoid reverse locking order.
3612 	 */
3613 	schedule_work(&cpuset_hotplug_work);
3614 }
3615 
3616 void cpuset_wait_for_hotplug(void)
3617 {
3618 	flush_work(&cpuset_hotplug_work);
3619 }
3620 
3621 /*
3622  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3623  * Call this routine anytime after node_states[N_MEMORY] changes.
3624  * See cpuset_update_active_cpus() for CPU hotplug handling.
3625  */
3626 static int cpuset_track_online_nodes(struct notifier_block *self,
3627 				unsigned long action, void *arg)
3628 {
3629 	schedule_work(&cpuset_hotplug_work);
3630 	return NOTIFY_OK;
3631 }
3632 
3633 static struct notifier_block cpuset_track_online_nodes_nb = {
3634 	.notifier_call = cpuset_track_online_nodes,
3635 	.priority = 10,		/* ??! */
3636 };
3637 
3638 /**
3639  * cpuset_init_smp - initialize cpus_allowed
3640  *
3641  * Description: Finish top cpuset after cpu, node maps are initialized
3642  */
3643 void __init cpuset_init_smp(void)
3644 {
3645 	/*
3646 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3647 	 * cpuset_bind() call will be reset to v1 values in another
3648 	 * cpuset_bind() call when v1 cpuset is mounted.
3649 	 */
3650 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3651 
3652 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3653 	top_cpuset.effective_mems = node_states[N_MEMORY];
3654 
3655 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3656 
3657 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3658 	BUG_ON(!cpuset_migrate_mm_wq);
3659 }
3660 
3661 /**
3662  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3663  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3664  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3665  *
3666  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3667  * attached to the specified @tsk.  Guaranteed to return some non-empty
3668  * subset of cpu_online_mask, even if this means going outside the
3669  * tasks cpuset.
3670  **/
3671 
3672 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3673 {
3674 	unsigned long flags;
3675 
3676 	spin_lock_irqsave(&callback_lock, flags);
3677 	guarantee_online_cpus(tsk, pmask);
3678 	spin_unlock_irqrestore(&callback_lock, flags);
3679 }
3680 
3681 /**
3682  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3683  * @tsk: pointer to task_struct with which the scheduler is struggling
3684  *
3685  * Description: In the case that the scheduler cannot find an allowed cpu in
3686  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3687  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3688  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3689  * This is the absolute last resort for the scheduler and it is only used if
3690  * _every_ other avenue has been traveled.
3691  *
3692  * Returns true if the affinity of @tsk was changed, false otherwise.
3693  **/
3694 
3695 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3696 {
3697 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3698 	const struct cpumask *cs_mask;
3699 	bool changed = false;
3700 
3701 	rcu_read_lock();
3702 	cs_mask = task_cs(tsk)->cpus_allowed;
3703 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3704 		do_set_cpus_allowed(tsk, cs_mask);
3705 		changed = true;
3706 	}
3707 	rcu_read_unlock();
3708 
3709 	/*
3710 	 * We own tsk->cpus_allowed, nobody can change it under us.
3711 	 *
3712 	 * But we used cs && cs->cpus_allowed lockless and thus can
3713 	 * race with cgroup_attach_task() or update_cpumask() and get
3714 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3715 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3716 	 * which takes task_rq_lock().
3717 	 *
3718 	 * If we are called after it dropped the lock we must see all
3719 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3720 	 * set any mask even if it is not right from task_cs() pov,
3721 	 * the pending set_cpus_allowed_ptr() will fix things.
3722 	 *
3723 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3724 	 * if required.
3725 	 */
3726 	return changed;
3727 }
3728 
3729 void __init cpuset_init_current_mems_allowed(void)
3730 {
3731 	nodes_setall(current->mems_allowed);
3732 }
3733 
3734 /**
3735  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3736  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3737  *
3738  * Description: Returns the nodemask_t mems_allowed of the cpuset
3739  * attached to the specified @tsk.  Guaranteed to return some non-empty
3740  * subset of node_states[N_MEMORY], even if this means going outside the
3741  * tasks cpuset.
3742  **/
3743 
3744 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3745 {
3746 	nodemask_t mask;
3747 	unsigned long flags;
3748 
3749 	spin_lock_irqsave(&callback_lock, flags);
3750 	rcu_read_lock();
3751 	guarantee_online_mems(task_cs(tsk), &mask);
3752 	rcu_read_unlock();
3753 	spin_unlock_irqrestore(&callback_lock, flags);
3754 
3755 	return mask;
3756 }
3757 
3758 /**
3759  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3760  * @nodemask: the nodemask to be checked
3761  *
3762  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3763  */
3764 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3765 {
3766 	return nodes_intersects(*nodemask, current->mems_allowed);
3767 }
3768 
3769 /*
3770  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3771  * mem_hardwall ancestor to the specified cpuset.  Call holding
3772  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3773  * (an unusual configuration), then returns the root cpuset.
3774  */
3775 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3776 {
3777 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3778 		cs = parent_cs(cs);
3779 	return cs;
3780 }
3781 
3782 /*
3783  * __cpuset_node_allowed - Can we allocate on a memory node?
3784  * @node: is this an allowed node?
3785  * @gfp_mask: memory allocation flags
3786  *
3787  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3788  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3789  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3790  * yes.  If current has access to memory reserves as an oom victim, yes.
3791  * Otherwise, no.
3792  *
3793  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3794  * and do not allow allocations outside the current tasks cpuset
3795  * unless the task has been OOM killed.
3796  * GFP_KERNEL allocations are not so marked, so can escape to the
3797  * nearest enclosing hardwalled ancestor cpuset.
3798  *
3799  * Scanning up parent cpusets requires callback_lock.  The
3800  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3801  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3802  * current tasks mems_allowed came up empty on the first pass over
3803  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3804  * cpuset are short of memory, might require taking the callback_lock.
3805  *
3806  * The first call here from mm/page_alloc:get_page_from_freelist()
3807  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3808  * so no allocation on a node outside the cpuset is allowed (unless
3809  * in interrupt, of course).
3810  *
3811  * The second pass through get_page_from_freelist() doesn't even call
3812  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3813  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3814  * in alloc_flags.  That logic and the checks below have the combined
3815  * affect that:
3816  *	in_interrupt - any node ok (current task context irrelevant)
3817  *	GFP_ATOMIC   - any node ok
3818  *	tsk_is_oom_victim   - any node ok
3819  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3820  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3821  */
3822 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3823 {
3824 	struct cpuset *cs;		/* current cpuset ancestors */
3825 	bool allowed;			/* is allocation in zone z allowed? */
3826 	unsigned long flags;
3827 
3828 	if (in_interrupt())
3829 		return true;
3830 	if (node_isset(node, current->mems_allowed))
3831 		return true;
3832 	/*
3833 	 * Allow tasks that have access to memory reserves because they have
3834 	 * been OOM killed to get memory anywhere.
3835 	 */
3836 	if (unlikely(tsk_is_oom_victim(current)))
3837 		return true;
3838 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3839 		return false;
3840 
3841 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3842 		return true;
3843 
3844 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3845 	spin_lock_irqsave(&callback_lock, flags);
3846 
3847 	rcu_read_lock();
3848 	cs = nearest_hardwall_ancestor(task_cs(current));
3849 	allowed = node_isset(node, cs->mems_allowed);
3850 	rcu_read_unlock();
3851 
3852 	spin_unlock_irqrestore(&callback_lock, flags);
3853 	return allowed;
3854 }
3855 
3856 /**
3857  * cpuset_mem_spread_node() - On which node to begin search for a file page
3858  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3859  *
3860  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3861  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3862  * and if the memory allocation used cpuset_mem_spread_node()
3863  * to determine on which node to start looking, as it will for
3864  * certain page cache or slab cache pages such as used for file
3865  * system buffers and inode caches, then instead of starting on the
3866  * local node to look for a free page, rather spread the starting
3867  * node around the tasks mems_allowed nodes.
3868  *
3869  * We don't have to worry about the returned node being offline
3870  * because "it can't happen", and even if it did, it would be ok.
3871  *
3872  * The routines calling guarantee_online_mems() are careful to
3873  * only set nodes in task->mems_allowed that are online.  So it
3874  * should not be possible for the following code to return an
3875  * offline node.  But if it did, that would be ok, as this routine
3876  * is not returning the node where the allocation must be, only
3877  * the node where the search should start.  The zonelist passed to
3878  * __alloc_pages() will include all nodes.  If the slab allocator
3879  * is passed an offline node, it will fall back to the local node.
3880  * See kmem_cache_alloc_node().
3881  */
3882 
3883 static int cpuset_spread_node(int *rotor)
3884 {
3885 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3886 }
3887 
3888 int cpuset_mem_spread_node(void)
3889 {
3890 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3891 		current->cpuset_mem_spread_rotor =
3892 			node_random(&current->mems_allowed);
3893 
3894 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3895 }
3896 
3897 int cpuset_slab_spread_node(void)
3898 {
3899 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3900 		current->cpuset_slab_spread_rotor =
3901 			node_random(&current->mems_allowed);
3902 
3903 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3904 }
3905 
3906 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3907 
3908 /**
3909  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3910  * @tsk1: pointer to task_struct of some task.
3911  * @tsk2: pointer to task_struct of some other task.
3912  *
3913  * Description: Return true if @tsk1's mems_allowed intersects the
3914  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3915  * one of the task's memory usage might impact the memory available
3916  * to the other.
3917  **/
3918 
3919 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3920 				   const struct task_struct *tsk2)
3921 {
3922 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3923 }
3924 
3925 /**
3926  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3927  *
3928  * Description: Prints current's name, cpuset name, and cached copy of its
3929  * mems_allowed to the kernel log.
3930  */
3931 void cpuset_print_current_mems_allowed(void)
3932 {
3933 	struct cgroup *cgrp;
3934 
3935 	rcu_read_lock();
3936 
3937 	cgrp = task_cs(current)->css.cgroup;
3938 	pr_cont(",cpuset=");
3939 	pr_cont_cgroup_name(cgrp);
3940 	pr_cont(",mems_allowed=%*pbl",
3941 		nodemask_pr_args(&current->mems_allowed));
3942 
3943 	rcu_read_unlock();
3944 }
3945 
3946 /*
3947  * Collection of memory_pressure is suppressed unless
3948  * this flag is enabled by writing "1" to the special
3949  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3950  */
3951 
3952 int cpuset_memory_pressure_enabled __read_mostly;
3953 
3954 /*
3955  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3956  *
3957  * Keep a running average of the rate of synchronous (direct)
3958  * page reclaim efforts initiated by tasks in each cpuset.
3959  *
3960  * This represents the rate at which some task in the cpuset
3961  * ran low on memory on all nodes it was allowed to use, and
3962  * had to enter the kernels page reclaim code in an effort to
3963  * create more free memory by tossing clean pages or swapping
3964  * or writing dirty pages.
3965  *
3966  * Display to user space in the per-cpuset read-only file
3967  * "memory_pressure".  Value displayed is an integer
3968  * representing the recent rate of entry into the synchronous
3969  * (direct) page reclaim by any task attached to the cpuset.
3970  */
3971 
3972 void __cpuset_memory_pressure_bump(void)
3973 {
3974 	rcu_read_lock();
3975 	fmeter_markevent(&task_cs(current)->fmeter);
3976 	rcu_read_unlock();
3977 }
3978 
3979 #ifdef CONFIG_PROC_PID_CPUSET
3980 /*
3981  * proc_cpuset_show()
3982  *  - Print tasks cpuset path into seq_file.
3983  *  - Used for /proc/<pid>/cpuset.
3984  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3985  *    doesn't really matter if tsk->cpuset changes after we read it,
3986  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3987  *    anyway.
3988  */
3989 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3990 		     struct pid *pid, struct task_struct *tsk)
3991 {
3992 	char *buf;
3993 	struct cgroup_subsys_state *css;
3994 	int retval;
3995 
3996 	retval = -ENOMEM;
3997 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3998 	if (!buf)
3999 		goto out;
4000 
4001 	css = task_get_css(tsk, cpuset_cgrp_id);
4002 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4003 				current->nsproxy->cgroup_ns);
4004 	css_put(css);
4005 	if (retval >= PATH_MAX)
4006 		retval = -ENAMETOOLONG;
4007 	if (retval < 0)
4008 		goto out_free;
4009 	seq_puts(m, buf);
4010 	seq_putc(m, '\n');
4011 	retval = 0;
4012 out_free:
4013 	kfree(buf);
4014 out:
4015 	return retval;
4016 }
4017 #endif /* CONFIG_PROC_PID_CPUSET */
4018 
4019 /* Display task mems_allowed in /proc/<pid>/status file. */
4020 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4021 {
4022 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4023 		   nodemask_pr_args(&task->mems_allowed));
4024 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4025 		   nodemask_pr_args(&task->mems_allowed));
4026 }
4027