xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision d88e0493)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /*
73  * There could be abnormal cpuset configurations for cpu or memory
74  * node binding, add this key to provide a quick low-cost judgement
75  * of the situation.
76  */
77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
78 
79 /* See "Frequency meter" comments, below. */
80 
81 struct fmeter {
82 	int cnt;		/* unprocessed events count */
83 	int val;		/* most recent output value */
84 	time64_t time;		/* clock (secs) when val computed */
85 	spinlock_t lock;	/* guards read or write of above */
86 };
87 
88 struct cpuset {
89 	struct cgroup_subsys_state css;
90 
91 	unsigned long flags;		/* "unsigned long" so bitops work */
92 
93 	/*
94 	 * On default hierarchy:
95 	 *
96 	 * The user-configured masks can only be changed by writing to
97 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
98 	 * parent masks.
99 	 *
100 	 * The effective masks is the real masks that apply to the tasks
101 	 * in the cpuset. They may be changed if the configured masks are
102 	 * changed or hotplug happens.
103 	 *
104 	 * effective_mask == configured_mask & parent's effective_mask,
105 	 * and if it ends up empty, it will inherit the parent's mask.
106 	 *
107 	 *
108 	 * On legacy hierarchy:
109 	 *
110 	 * The user-configured masks are always the same with effective masks.
111 	 */
112 
113 	/* user-configured CPUs and Memory Nodes allow to tasks */
114 	cpumask_var_t cpus_allowed;
115 	nodemask_t mems_allowed;
116 
117 	/* effective CPUs and Memory Nodes allow to tasks */
118 	cpumask_var_t effective_cpus;
119 	nodemask_t effective_mems;
120 
121 	/*
122 	 * CPUs allocated to child sub-partitions (default hierarchy only)
123 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
124 	 * - effective_cpus and subparts_cpus are mutually exclusive.
125 	 *
126 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
127 	 * may have offlined ones.
128 	 */
129 	cpumask_var_t subparts_cpus;
130 
131 	/*
132 	 * This is old Memory Nodes tasks took on.
133 	 *
134 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
135 	 * - A new cpuset's old_mems_allowed is initialized when some
136 	 *   task is moved into it.
137 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
138 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
139 	 *   then old_mems_allowed is updated to mems_allowed.
140 	 */
141 	nodemask_t old_mems_allowed;
142 
143 	struct fmeter fmeter;		/* memory_pressure filter */
144 
145 	/*
146 	 * Tasks are being attached to this cpuset.  Used to prevent
147 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
148 	 */
149 	int attach_in_progress;
150 
151 	/* partition number for rebuild_sched_domains() */
152 	int pn;
153 
154 	/* for custom sched domain */
155 	int relax_domain_level;
156 
157 	/* number of CPUs in subparts_cpus */
158 	int nr_subparts_cpus;
159 
160 	/* partition root state */
161 	int partition_root_state;
162 
163 	/*
164 	 * Default hierarchy only:
165 	 * use_parent_ecpus - set if using parent's effective_cpus
166 	 * child_ecpus_count - # of children with use_parent_ecpus set
167 	 */
168 	int use_parent_ecpus;
169 	int child_ecpus_count;
170 
171 	/* Handle for cpuset.cpus.partition */
172 	struct cgroup_file partition_file;
173 };
174 
175 /*
176  * Partition root states:
177  *
178  *   0 - not a partition root
179  *
180  *   1 - partition root
181  *
182  *  -1 - invalid partition root
183  *       None of the cpus in cpus_allowed can be put into the parent's
184  *       subparts_cpus. In this case, the cpuset is not a real partition
185  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
186  *       and the cpuset can be restored back to a partition root if the
187  *       parent cpuset can give more CPUs back to this child cpuset.
188  */
189 #define PRS_DISABLED		0
190 #define PRS_ENABLED		1
191 #define PRS_ERROR		-1
192 
193 /*
194  * Temporary cpumasks for working with partitions that are passed among
195  * functions to avoid memory allocation in inner functions.
196  */
197 struct tmpmasks {
198 	cpumask_var_t addmask, delmask;	/* For partition root */
199 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
200 };
201 
202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
203 {
204 	return css ? container_of(css, struct cpuset, css) : NULL;
205 }
206 
207 /* Retrieve the cpuset for a task */
208 static inline struct cpuset *task_cs(struct task_struct *task)
209 {
210 	return css_cs(task_css(task, cpuset_cgrp_id));
211 }
212 
213 static inline struct cpuset *parent_cs(struct cpuset *cs)
214 {
215 	return css_cs(cs->css.parent);
216 }
217 
218 /* bits in struct cpuset flags field */
219 typedef enum {
220 	CS_ONLINE,
221 	CS_CPU_EXCLUSIVE,
222 	CS_MEM_EXCLUSIVE,
223 	CS_MEM_HARDWALL,
224 	CS_MEMORY_MIGRATE,
225 	CS_SCHED_LOAD_BALANCE,
226 	CS_SPREAD_PAGE,
227 	CS_SPREAD_SLAB,
228 } cpuset_flagbits_t;
229 
230 /* convenient tests for these bits */
231 static inline bool is_cpuset_online(struct cpuset *cs)
232 {
233 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
234 }
235 
236 static inline int is_cpu_exclusive(const struct cpuset *cs)
237 {
238 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
239 }
240 
241 static inline int is_mem_exclusive(const struct cpuset *cs)
242 {
243 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
244 }
245 
246 static inline int is_mem_hardwall(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
249 }
250 
251 static inline int is_sched_load_balance(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
254 }
255 
256 static inline int is_memory_migrate(const struct cpuset *cs)
257 {
258 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
259 }
260 
261 static inline int is_spread_page(const struct cpuset *cs)
262 {
263 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
264 }
265 
266 static inline int is_spread_slab(const struct cpuset *cs)
267 {
268 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
269 }
270 
271 static inline int is_partition_root(const struct cpuset *cs)
272 {
273 	return cs->partition_root_state > 0;
274 }
275 
276 /*
277  * Send notification event of whenever partition_root_state changes.
278  */
279 static inline void notify_partition_change(struct cpuset *cs,
280 					   int old_prs, int new_prs)
281 {
282 	if (old_prs != new_prs)
283 		cgroup_file_notify(&cs->partition_file);
284 }
285 
286 static struct cpuset top_cpuset = {
287 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
288 		  (1 << CS_MEM_EXCLUSIVE)),
289 	.partition_root_state = PRS_ENABLED,
290 };
291 
292 /**
293  * cpuset_for_each_child - traverse online children of a cpuset
294  * @child_cs: loop cursor pointing to the current child
295  * @pos_css: used for iteration
296  * @parent_cs: target cpuset to walk children of
297  *
298  * Walk @child_cs through the online children of @parent_cs.  Must be used
299  * with RCU read locked.
300  */
301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
302 	css_for_each_child((pos_css), &(parent_cs)->css)		\
303 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
304 
305 /**
306  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
307  * @des_cs: loop cursor pointing to the current descendant
308  * @pos_css: used for iteration
309  * @root_cs: target cpuset to walk ancestor of
310  *
311  * Walk @des_cs through the online descendants of @root_cs.  Must be used
312  * with RCU read locked.  The caller may modify @pos_css by calling
313  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
314  * iteration and the first node to be visited.
315  */
316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
317 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
318 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
319 
320 /*
321  * There are two global locks guarding cpuset structures - cpuset_rwsem and
322  * callback_lock. We also require taking task_lock() when dereferencing a
323  * task's cpuset pointer. See "The task_lock() exception", at the end of this
324  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
325  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
326  * prevent change to cpuset structures.
327  *
328  * A task must hold both locks to modify cpusets.  If a task holds
329  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
330  * is the only task able to also acquire callback_lock and be able to
331  * modify cpusets.  It can perform various checks on the cpuset structure
332  * first, knowing nothing will change.  It can also allocate memory while
333  * just holding cpuset_rwsem.  While it is performing these checks, various
334  * callback routines can briefly acquire callback_lock to query cpusets.
335  * Once it is ready to make the changes, it takes callback_lock, blocking
336  * everyone else.
337  *
338  * Calls to the kernel memory allocator can not be made while holding
339  * callback_lock, as that would risk double tripping on callback_lock
340  * from one of the callbacks into the cpuset code from within
341  * __alloc_pages().
342  *
343  * If a task is only holding callback_lock, then it has read-only
344  * access to cpusets.
345  *
346  * Now, the task_struct fields mems_allowed and mempolicy may be changed
347  * by other task, we use alloc_lock in the task_struct fields to protect
348  * them.
349  *
350  * The cpuset_common_file_read() handlers only hold callback_lock across
351  * small pieces of code, such as when reading out possibly multi-word
352  * cpumasks and nodemasks.
353  *
354  * Accessing a task's cpuset should be done in accordance with the
355  * guidelines for accessing subsystem state in kernel/cgroup.c
356  */
357 
358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
359 
360 void cpuset_read_lock(void)
361 {
362 	percpu_down_read(&cpuset_rwsem);
363 }
364 
365 void cpuset_read_unlock(void)
366 {
367 	percpu_up_read(&cpuset_rwsem);
368 }
369 
370 static DEFINE_SPINLOCK(callback_lock);
371 
372 static struct workqueue_struct *cpuset_migrate_mm_wq;
373 
374 /*
375  * CPU / memory hotplug is handled asynchronously.
376  */
377 static void cpuset_hotplug_workfn(struct work_struct *work);
378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
379 
380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
381 
382 static inline void check_insane_mems_config(nodemask_t *nodes)
383 {
384 	if (!cpusets_insane_config() &&
385 		movable_only_nodes(nodes)) {
386 		static_branch_enable(&cpusets_insane_config_key);
387 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
388 			"Cpuset allocations might fail even with a lot of memory available.\n",
389 			nodemask_pr_args(nodes));
390 	}
391 }
392 
393 /*
394  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
395  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
396  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
397  * With v2 behavior, "cpus" and "mems" are always what the users have
398  * requested and won't be changed by hotplug events. Only the effective
399  * cpus or mems will be affected.
400  */
401 static inline bool is_in_v2_mode(void)
402 {
403 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
404 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
405 }
406 
407 /*
408  * Return in pmask the portion of a task's cpusets's cpus_allowed that
409  * are online and are capable of running the task.  If none are found,
410  * walk up the cpuset hierarchy until we find one that does have some
411  * appropriate cpus.
412  *
413  * One way or another, we guarantee to return some non-empty subset
414  * of cpu_online_mask.
415  *
416  * Call with callback_lock or cpuset_rwsem held.
417  */
418 static void guarantee_online_cpus(struct task_struct *tsk,
419 				  struct cpumask *pmask)
420 {
421 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
422 	struct cpuset *cs;
423 
424 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
425 		cpumask_copy(pmask, cpu_online_mask);
426 
427 	rcu_read_lock();
428 	cs = task_cs(tsk);
429 
430 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
431 		cs = parent_cs(cs);
432 		if (unlikely(!cs)) {
433 			/*
434 			 * The top cpuset doesn't have any online cpu as a
435 			 * consequence of a race between cpuset_hotplug_work
436 			 * and cpu hotplug notifier.  But we know the top
437 			 * cpuset's effective_cpus is on its way to be
438 			 * identical to cpu_online_mask.
439 			 */
440 			goto out_unlock;
441 		}
442 	}
443 	cpumask_and(pmask, pmask, cs->effective_cpus);
444 
445 out_unlock:
446 	rcu_read_unlock();
447 }
448 
449 /*
450  * Return in *pmask the portion of a cpusets's mems_allowed that
451  * are online, with memory.  If none are online with memory, walk
452  * up the cpuset hierarchy until we find one that does have some
453  * online mems.  The top cpuset always has some mems online.
454  *
455  * One way or another, we guarantee to return some non-empty subset
456  * of node_states[N_MEMORY].
457  *
458  * Call with callback_lock or cpuset_rwsem held.
459  */
460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
461 {
462 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
463 		cs = parent_cs(cs);
464 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
465 }
466 
467 /*
468  * update task's spread flag if cpuset's page/slab spread flag is set
469  *
470  * Call with callback_lock or cpuset_rwsem held.
471  */
472 static void cpuset_update_task_spread_flag(struct cpuset *cs,
473 					struct task_struct *tsk)
474 {
475 	if (is_spread_page(cs))
476 		task_set_spread_page(tsk);
477 	else
478 		task_clear_spread_page(tsk);
479 
480 	if (is_spread_slab(cs))
481 		task_set_spread_slab(tsk);
482 	else
483 		task_clear_spread_slab(tsk);
484 }
485 
486 /*
487  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
488  *
489  * One cpuset is a subset of another if all its allowed CPUs and
490  * Memory Nodes are a subset of the other, and its exclusive flags
491  * are only set if the other's are set.  Call holding cpuset_rwsem.
492  */
493 
494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
495 {
496 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
497 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
498 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
499 		is_mem_exclusive(p) <= is_mem_exclusive(q);
500 }
501 
502 /**
503  * alloc_cpumasks - allocate three cpumasks for cpuset
504  * @cs:  the cpuset that have cpumasks to be allocated.
505  * @tmp: the tmpmasks structure pointer
506  * Return: 0 if successful, -ENOMEM otherwise.
507  *
508  * Only one of the two input arguments should be non-NULL.
509  */
510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
511 {
512 	cpumask_var_t *pmask1, *pmask2, *pmask3;
513 
514 	if (cs) {
515 		pmask1 = &cs->cpus_allowed;
516 		pmask2 = &cs->effective_cpus;
517 		pmask3 = &cs->subparts_cpus;
518 	} else {
519 		pmask1 = &tmp->new_cpus;
520 		pmask2 = &tmp->addmask;
521 		pmask3 = &tmp->delmask;
522 	}
523 
524 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
525 		return -ENOMEM;
526 
527 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
528 		goto free_one;
529 
530 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
531 		goto free_two;
532 
533 	return 0;
534 
535 free_two:
536 	free_cpumask_var(*pmask2);
537 free_one:
538 	free_cpumask_var(*pmask1);
539 	return -ENOMEM;
540 }
541 
542 /**
543  * free_cpumasks - free cpumasks in a tmpmasks structure
544  * @cs:  the cpuset that have cpumasks to be free.
545  * @tmp: the tmpmasks structure pointer
546  */
547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
548 {
549 	if (cs) {
550 		free_cpumask_var(cs->cpus_allowed);
551 		free_cpumask_var(cs->effective_cpus);
552 		free_cpumask_var(cs->subparts_cpus);
553 	}
554 	if (tmp) {
555 		free_cpumask_var(tmp->new_cpus);
556 		free_cpumask_var(tmp->addmask);
557 		free_cpumask_var(tmp->delmask);
558 	}
559 }
560 
561 /**
562  * alloc_trial_cpuset - allocate a trial cpuset
563  * @cs: the cpuset that the trial cpuset duplicates
564  */
565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 	struct cpuset *trial;
568 
569 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 	if (!trial)
571 		return NULL;
572 
573 	if (alloc_cpumasks(trial, NULL)) {
574 		kfree(trial);
575 		return NULL;
576 	}
577 
578 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
580 	return trial;
581 }
582 
583 /**
584  * free_cpuset - free the cpuset
585  * @cs: the cpuset to be freed
586  */
587 static inline void free_cpuset(struct cpuset *cs)
588 {
589 	free_cpumasks(cs, NULL);
590 	kfree(cs);
591 }
592 
593 /*
594  * validate_change() - Used to validate that any proposed cpuset change
595  *		       follows the structural rules for cpusets.
596  *
597  * If we replaced the flag and mask values of the current cpuset
598  * (cur) with those values in the trial cpuset (trial), would
599  * our various subset and exclusive rules still be valid?  Presumes
600  * cpuset_rwsem held.
601  *
602  * 'cur' is the address of an actual, in-use cpuset.  Operations
603  * such as list traversal that depend on the actual address of the
604  * cpuset in the list must use cur below, not trial.
605  *
606  * 'trial' is the address of bulk structure copy of cur, with
607  * perhaps one or more of the fields cpus_allowed, mems_allowed,
608  * or flags changed to new, trial values.
609  *
610  * Return 0 if valid, -errno if not.
611  */
612 
613 static int validate_change(struct cpuset *cur, struct cpuset *trial)
614 {
615 	struct cgroup_subsys_state *css;
616 	struct cpuset *c, *par;
617 	int ret;
618 
619 	/* The checks don't apply to root cpuset */
620 	if (cur == &top_cpuset)
621 		return 0;
622 
623 	rcu_read_lock();
624 	par = parent_cs(cur);
625 
626 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
627 	ret = -EACCES;
628 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
629 		goto out;
630 
631 	/*
632 	 * If either I or some sibling (!= me) is exclusive, we can't
633 	 * overlap
634 	 */
635 	ret = -EINVAL;
636 	cpuset_for_each_child(c, css, par) {
637 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
638 		    c != cur &&
639 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
640 			goto out;
641 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
642 		    c != cur &&
643 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
644 			goto out;
645 	}
646 
647 	/*
648 	 * Cpusets with tasks - existing or newly being attached - can't
649 	 * be changed to have empty cpus_allowed or mems_allowed.
650 	 */
651 	ret = -ENOSPC;
652 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
653 		if (!cpumask_empty(cur->cpus_allowed) &&
654 		    cpumask_empty(trial->cpus_allowed))
655 			goto out;
656 		if (!nodes_empty(cur->mems_allowed) &&
657 		    nodes_empty(trial->mems_allowed))
658 			goto out;
659 	}
660 
661 	/*
662 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
663 	 * tasks.
664 	 */
665 	ret = -EBUSY;
666 	if (is_cpu_exclusive(cur) &&
667 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
668 				       trial->cpus_allowed))
669 		goto out;
670 
671 	ret = 0;
672 out:
673 	rcu_read_unlock();
674 	return ret;
675 }
676 
677 #ifdef CONFIG_SMP
678 /*
679  * Helper routine for generate_sched_domains().
680  * Do cpusets a, b have overlapping effective cpus_allowed masks?
681  */
682 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
683 {
684 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
685 }
686 
687 static void
688 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
689 {
690 	if (dattr->relax_domain_level < c->relax_domain_level)
691 		dattr->relax_domain_level = c->relax_domain_level;
692 	return;
693 }
694 
695 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
696 				    struct cpuset *root_cs)
697 {
698 	struct cpuset *cp;
699 	struct cgroup_subsys_state *pos_css;
700 
701 	rcu_read_lock();
702 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
703 		/* skip the whole subtree if @cp doesn't have any CPU */
704 		if (cpumask_empty(cp->cpus_allowed)) {
705 			pos_css = css_rightmost_descendant(pos_css);
706 			continue;
707 		}
708 
709 		if (is_sched_load_balance(cp))
710 			update_domain_attr(dattr, cp);
711 	}
712 	rcu_read_unlock();
713 }
714 
715 /* Must be called with cpuset_rwsem held.  */
716 static inline int nr_cpusets(void)
717 {
718 	/* jump label reference count + the top-level cpuset */
719 	return static_key_count(&cpusets_enabled_key.key) + 1;
720 }
721 
722 /*
723  * generate_sched_domains()
724  *
725  * This function builds a partial partition of the systems CPUs
726  * A 'partial partition' is a set of non-overlapping subsets whose
727  * union is a subset of that set.
728  * The output of this function needs to be passed to kernel/sched/core.c
729  * partition_sched_domains() routine, which will rebuild the scheduler's
730  * load balancing domains (sched domains) as specified by that partial
731  * partition.
732  *
733  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
734  * for a background explanation of this.
735  *
736  * Does not return errors, on the theory that the callers of this
737  * routine would rather not worry about failures to rebuild sched
738  * domains when operating in the severe memory shortage situations
739  * that could cause allocation failures below.
740  *
741  * Must be called with cpuset_rwsem held.
742  *
743  * The three key local variables below are:
744  *    cp - cpuset pointer, used (together with pos_css) to perform a
745  *	   top-down scan of all cpusets. For our purposes, rebuilding
746  *	   the schedulers sched domains, we can ignore !is_sched_load_
747  *	   balance cpusets.
748  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
749  *	   that need to be load balanced, for convenient iterative
750  *	   access by the subsequent code that finds the best partition,
751  *	   i.e the set of domains (subsets) of CPUs such that the
752  *	   cpus_allowed of every cpuset marked is_sched_load_balance
753  *	   is a subset of one of these domains, while there are as
754  *	   many such domains as possible, each as small as possible.
755  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
756  *	   the kernel/sched/core.c routine partition_sched_domains() in a
757  *	   convenient format, that can be easily compared to the prior
758  *	   value to determine what partition elements (sched domains)
759  *	   were changed (added or removed.)
760  *
761  * Finding the best partition (set of domains):
762  *	The triple nested loops below over i, j, k scan over the
763  *	load balanced cpusets (using the array of cpuset pointers in
764  *	csa[]) looking for pairs of cpusets that have overlapping
765  *	cpus_allowed, but which don't have the same 'pn' partition
766  *	number and gives them in the same partition number.  It keeps
767  *	looping on the 'restart' label until it can no longer find
768  *	any such pairs.
769  *
770  *	The union of the cpus_allowed masks from the set of
771  *	all cpusets having the same 'pn' value then form the one
772  *	element of the partition (one sched domain) to be passed to
773  *	partition_sched_domains().
774  */
775 static int generate_sched_domains(cpumask_var_t **domains,
776 			struct sched_domain_attr **attributes)
777 {
778 	struct cpuset *cp;	/* top-down scan of cpusets */
779 	struct cpuset **csa;	/* array of all cpuset ptrs */
780 	int csn;		/* how many cpuset ptrs in csa so far */
781 	int i, j, k;		/* indices for partition finding loops */
782 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
783 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
784 	int ndoms = 0;		/* number of sched domains in result */
785 	int nslot;		/* next empty doms[] struct cpumask slot */
786 	struct cgroup_subsys_state *pos_css;
787 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
788 
789 	doms = NULL;
790 	dattr = NULL;
791 	csa = NULL;
792 
793 	/* Special case for the 99% of systems with one, full, sched domain */
794 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
795 		ndoms = 1;
796 		doms = alloc_sched_domains(ndoms);
797 		if (!doms)
798 			goto done;
799 
800 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
801 		if (dattr) {
802 			*dattr = SD_ATTR_INIT;
803 			update_domain_attr_tree(dattr, &top_cpuset);
804 		}
805 		cpumask_and(doms[0], top_cpuset.effective_cpus,
806 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
807 
808 		goto done;
809 	}
810 
811 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
812 	if (!csa)
813 		goto done;
814 	csn = 0;
815 
816 	rcu_read_lock();
817 	if (root_load_balance)
818 		csa[csn++] = &top_cpuset;
819 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
820 		if (cp == &top_cpuset)
821 			continue;
822 		/*
823 		 * Continue traversing beyond @cp iff @cp has some CPUs and
824 		 * isn't load balancing.  The former is obvious.  The
825 		 * latter: All child cpusets contain a subset of the
826 		 * parent's cpus, so just skip them, and then we call
827 		 * update_domain_attr_tree() to calc relax_domain_level of
828 		 * the corresponding sched domain.
829 		 *
830 		 * If root is load-balancing, we can skip @cp if it
831 		 * is a subset of the root's effective_cpus.
832 		 */
833 		if (!cpumask_empty(cp->cpus_allowed) &&
834 		    !(is_sched_load_balance(cp) &&
835 		      cpumask_intersects(cp->cpus_allowed,
836 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
837 			continue;
838 
839 		if (root_load_balance &&
840 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
841 			continue;
842 
843 		if (is_sched_load_balance(cp) &&
844 		    !cpumask_empty(cp->effective_cpus))
845 			csa[csn++] = cp;
846 
847 		/* skip @cp's subtree if not a partition root */
848 		if (!is_partition_root(cp))
849 			pos_css = css_rightmost_descendant(pos_css);
850 	}
851 	rcu_read_unlock();
852 
853 	for (i = 0; i < csn; i++)
854 		csa[i]->pn = i;
855 	ndoms = csn;
856 
857 restart:
858 	/* Find the best partition (set of sched domains) */
859 	for (i = 0; i < csn; i++) {
860 		struct cpuset *a = csa[i];
861 		int apn = a->pn;
862 
863 		for (j = 0; j < csn; j++) {
864 			struct cpuset *b = csa[j];
865 			int bpn = b->pn;
866 
867 			if (apn != bpn && cpusets_overlap(a, b)) {
868 				for (k = 0; k < csn; k++) {
869 					struct cpuset *c = csa[k];
870 
871 					if (c->pn == bpn)
872 						c->pn = apn;
873 				}
874 				ndoms--;	/* one less element */
875 				goto restart;
876 			}
877 		}
878 	}
879 
880 	/*
881 	 * Now we know how many domains to create.
882 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
883 	 */
884 	doms = alloc_sched_domains(ndoms);
885 	if (!doms)
886 		goto done;
887 
888 	/*
889 	 * The rest of the code, including the scheduler, can deal with
890 	 * dattr==NULL case. No need to abort if alloc fails.
891 	 */
892 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
893 			      GFP_KERNEL);
894 
895 	for (nslot = 0, i = 0; i < csn; i++) {
896 		struct cpuset *a = csa[i];
897 		struct cpumask *dp;
898 		int apn = a->pn;
899 
900 		if (apn < 0) {
901 			/* Skip completed partitions */
902 			continue;
903 		}
904 
905 		dp = doms[nslot];
906 
907 		if (nslot == ndoms) {
908 			static int warnings = 10;
909 			if (warnings) {
910 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
911 					nslot, ndoms, csn, i, apn);
912 				warnings--;
913 			}
914 			continue;
915 		}
916 
917 		cpumask_clear(dp);
918 		if (dattr)
919 			*(dattr + nslot) = SD_ATTR_INIT;
920 		for (j = i; j < csn; j++) {
921 			struct cpuset *b = csa[j];
922 
923 			if (apn == b->pn) {
924 				cpumask_or(dp, dp, b->effective_cpus);
925 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
926 				if (dattr)
927 					update_domain_attr_tree(dattr + nslot, b);
928 
929 				/* Done with this partition */
930 				b->pn = -1;
931 			}
932 		}
933 		nslot++;
934 	}
935 	BUG_ON(nslot != ndoms);
936 
937 done:
938 	kfree(csa);
939 
940 	/*
941 	 * Fallback to the default domain if kmalloc() failed.
942 	 * See comments in partition_sched_domains().
943 	 */
944 	if (doms == NULL)
945 		ndoms = 1;
946 
947 	*domains    = doms;
948 	*attributes = dattr;
949 	return ndoms;
950 }
951 
952 static void update_tasks_root_domain(struct cpuset *cs)
953 {
954 	struct css_task_iter it;
955 	struct task_struct *task;
956 
957 	css_task_iter_start(&cs->css, 0, &it);
958 
959 	while ((task = css_task_iter_next(&it)))
960 		dl_add_task_root_domain(task);
961 
962 	css_task_iter_end(&it);
963 }
964 
965 static void rebuild_root_domains(void)
966 {
967 	struct cpuset *cs = NULL;
968 	struct cgroup_subsys_state *pos_css;
969 
970 	percpu_rwsem_assert_held(&cpuset_rwsem);
971 	lockdep_assert_cpus_held();
972 	lockdep_assert_held(&sched_domains_mutex);
973 
974 	rcu_read_lock();
975 
976 	/*
977 	 * Clear default root domain DL accounting, it will be computed again
978 	 * if a task belongs to it.
979 	 */
980 	dl_clear_root_domain(&def_root_domain);
981 
982 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
983 
984 		if (cpumask_empty(cs->effective_cpus)) {
985 			pos_css = css_rightmost_descendant(pos_css);
986 			continue;
987 		}
988 
989 		css_get(&cs->css);
990 
991 		rcu_read_unlock();
992 
993 		update_tasks_root_domain(cs);
994 
995 		rcu_read_lock();
996 		css_put(&cs->css);
997 	}
998 	rcu_read_unlock();
999 }
1000 
1001 static void
1002 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003 				    struct sched_domain_attr *dattr_new)
1004 {
1005 	mutex_lock(&sched_domains_mutex);
1006 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1007 	rebuild_root_domains();
1008 	mutex_unlock(&sched_domains_mutex);
1009 }
1010 
1011 /*
1012  * Rebuild scheduler domains.
1013  *
1014  * If the flag 'sched_load_balance' of any cpuset with non-empty
1015  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1016  * which has that flag enabled, or if any cpuset with a non-empty
1017  * 'cpus' is removed, then call this routine to rebuild the
1018  * scheduler's dynamic sched domains.
1019  *
1020  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1021  */
1022 static void rebuild_sched_domains_locked(void)
1023 {
1024 	struct cgroup_subsys_state *pos_css;
1025 	struct sched_domain_attr *attr;
1026 	cpumask_var_t *doms;
1027 	struct cpuset *cs;
1028 	int ndoms;
1029 
1030 	lockdep_assert_cpus_held();
1031 	percpu_rwsem_assert_held(&cpuset_rwsem);
1032 
1033 	/*
1034 	 * If we have raced with CPU hotplug, return early to avoid
1035 	 * passing doms with offlined cpu to partition_sched_domains().
1036 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1037 	 *
1038 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1039 	 * should be the same as the active CPUs, so checking only top_cpuset
1040 	 * is enough to detect racing CPU offlines.
1041 	 */
1042 	if (!top_cpuset.nr_subparts_cpus &&
1043 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1044 		return;
1045 
1046 	/*
1047 	 * With subpartition CPUs, however, the effective CPUs of a partition
1048 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1049 	 * partition root could be offlined, all must be checked.
1050 	 */
1051 	if (top_cpuset.nr_subparts_cpus) {
1052 		rcu_read_lock();
1053 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1054 			if (!is_partition_root(cs)) {
1055 				pos_css = css_rightmost_descendant(pos_css);
1056 				continue;
1057 			}
1058 			if (!cpumask_subset(cs->effective_cpus,
1059 					    cpu_active_mask)) {
1060 				rcu_read_unlock();
1061 				return;
1062 			}
1063 		}
1064 		rcu_read_unlock();
1065 	}
1066 
1067 	/* Generate domain masks and attrs */
1068 	ndoms = generate_sched_domains(&doms, &attr);
1069 
1070 	/* Have scheduler rebuild the domains */
1071 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1072 }
1073 #else /* !CONFIG_SMP */
1074 static void rebuild_sched_domains_locked(void)
1075 {
1076 }
1077 #endif /* CONFIG_SMP */
1078 
1079 void rebuild_sched_domains(void)
1080 {
1081 	cpus_read_lock();
1082 	percpu_down_write(&cpuset_rwsem);
1083 	rebuild_sched_domains_locked();
1084 	percpu_up_write(&cpuset_rwsem);
1085 	cpus_read_unlock();
1086 }
1087 
1088 /**
1089  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1090  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1091  *
1092  * Iterate through each task of @cs updating its cpus_allowed to the
1093  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1094  * cpuset membership stays stable.
1095  */
1096 static void update_tasks_cpumask(struct cpuset *cs)
1097 {
1098 	struct css_task_iter it;
1099 	struct task_struct *task;
1100 
1101 	css_task_iter_start(&cs->css, 0, &it);
1102 	while ((task = css_task_iter_next(&it)))
1103 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1104 	css_task_iter_end(&it);
1105 }
1106 
1107 /**
1108  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1109  * @new_cpus: the temp variable for the new effective_cpus mask
1110  * @cs: the cpuset the need to recompute the new effective_cpus mask
1111  * @parent: the parent cpuset
1112  *
1113  * If the parent has subpartition CPUs, include them in the list of
1114  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1115  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1116  * to mask those out.
1117  */
1118 static void compute_effective_cpumask(struct cpumask *new_cpus,
1119 				      struct cpuset *cs, struct cpuset *parent)
1120 {
1121 	if (parent->nr_subparts_cpus) {
1122 		cpumask_or(new_cpus, parent->effective_cpus,
1123 			   parent->subparts_cpus);
1124 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1125 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1126 	} else {
1127 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1128 	}
1129 }
1130 
1131 /*
1132  * Commands for update_parent_subparts_cpumask
1133  */
1134 enum subparts_cmd {
1135 	partcmd_enable,		/* Enable partition root	 */
1136 	partcmd_disable,	/* Disable partition root	 */
1137 	partcmd_update,		/* Update parent's subparts_cpus */
1138 };
1139 
1140 /**
1141  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1142  * @cpuset:  The cpuset that requests change in partition root state
1143  * @cmd:     Partition root state change command
1144  * @newmask: Optional new cpumask for partcmd_update
1145  * @tmp:     Temporary addmask and delmask
1146  * Return:   0, 1 or an error code
1147  *
1148  * For partcmd_enable, the cpuset is being transformed from a non-partition
1149  * root to a partition root. The cpus_allowed mask of the given cpuset will
1150  * be put into parent's subparts_cpus and taken away from parent's
1151  * effective_cpus. The function will return 0 if all the CPUs listed in
1152  * cpus_allowed can be granted or an error code will be returned.
1153  *
1154  * For partcmd_disable, the cpuset is being transofrmed from a partition
1155  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1156  * parent's subparts_cpus will be taken away from that cpumask and put back
1157  * into parent's effective_cpus. 0 should always be returned.
1158  *
1159  * For partcmd_update, if the optional newmask is specified, the cpu
1160  * list is to be changed from cpus_allowed to newmask. Otherwise,
1161  * cpus_allowed is assumed to remain the same. The cpuset should either
1162  * be a partition root or an invalid partition root. The partition root
1163  * state may change if newmask is NULL and none of the requested CPUs can
1164  * be granted by the parent. The function will return 1 if changes to
1165  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1166  * Error code should only be returned when newmask is non-NULL.
1167  *
1168  * The partcmd_enable and partcmd_disable commands are used by
1169  * update_prstate(). The partcmd_update command is used by
1170  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1171  * newmask set.
1172  *
1173  * The checking is more strict when enabling partition root than the
1174  * other two commands.
1175  *
1176  * Because of the implicit cpu exclusive nature of a partition root,
1177  * cpumask changes that violates the cpu exclusivity rule will not be
1178  * permitted when checked by validate_change(). The validate_change()
1179  * function will also prevent any changes to the cpu list if it is not
1180  * a superset of children's cpu lists.
1181  */
1182 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1183 					  struct cpumask *newmask,
1184 					  struct tmpmasks *tmp)
1185 {
1186 	struct cpuset *parent = parent_cs(cpuset);
1187 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1188 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1189 	int old_prs, new_prs;
1190 	bool part_error = false;	/* Partition error? */
1191 
1192 	percpu_rwsem_assert_held(&cpuset_rwsem);
1193 
1194 	/*
1195 	 * The parent must be a partition root.
1196 	 * The new cpumask, if present, or the current cpus_allowed must
1197 	 * not be empty.
1198 	 */
1199 	if (!is_partition_root(parent) ||
1200 	   (newmask && cpumask_empty(newmask)) ||
1201 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1202 		return -EINVAL;
1203 
1204 	/*
1205 	 * Enabling/disabling partition root is not allowed if there are
1206 	 * online children.
1207 	 */
1208 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1209 		return -EBUSY;
1210 
1211 	/*
1212 	 * Enabling partition root is not allowed if not all the CPUs
1213 	 * can be granted from parent's effective_cpus or at least one
1214 	 * CPU will be left after that.
1215 	 */
1216 	if ((cmd == partcmd_enable) &&
1217 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1218 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1219 		return -EINVAL;
1220 
1221 	/*
1222 	 * A cpumask update cannot make parent's effective_cpus become empty.
1223 	 */
1224 	adding = deleting = false;
1225 	old_prs = new_prs = cpuset->partition_root_state;
1226 	if (cmd == partcmd_enable) {
1227 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1228 		adding = true;
1229 	} else if (cmd == partcmd_disable) {
1230 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1231 				       parent->subparts_cpus);
1232 	} else if (newmask) {
1233 		/*
1234 		 * partcmd_update with newmask:
1235 		 *
1236 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1237 		 * addmask = newmask & parent->effective_cpus
1238 		 *		     & ~parent->subparts_cpus
1239 		 */
1240 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1241 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1242 				       parent->subparts_cpus);
1243 
1244 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1245 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1246 					parent->subparts_cpus);
1247 		/*
1248 		 * Return error if the new effective_cpus could become empty.
1249 		 */
1250 		if (adding &&
1251 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1252 			if (!deleting)
1253 				return -EINVAL;
1254 			/*
1255 			 * As some of the CPUs in subparts_cpus might have
1256 			 * been offlined, we need to compute the real delmask
1257 			 * to confirm that.
1258 			 */
1259 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1260 					 cpu_active_mask))
1261 				return -EINVAL;
1262 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1263 		}
1264 	} else {
1265 		/*
1266 		 * partcmd_update w/o newmask:
1267 		 *
1268 		 * addmask = cpus_allowed & parent->effective_cpus
1269 		 *
1270 		 * Note that parent's subparts_cpus may have been
1271 		 * pre-shrunk in case there is a change in the cpu list.
1272 		 * So no deletion is needed.
1273 		 */
1274 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1275 				     parent->effective_cpus);
1276 		part_error = cpumask_equal(tmp->addmask,
1277 					   parent->effective_cpus);
1278 	}
1279 
1280 	if (cmd == partcmd_update) {
1281 		int prev_prs = cpuset->partition_root_state;
1282 
1283 		/*
1284 		 * Check for possible transition between PRS_ENABLED
1285 		 * and PRS_ERROR.
1286 		 */
1287 		switch (cpuset->partition_root_state) {
1288 		case PRS_ENABLED:
1289 			if (part_error)
1290 				new_prs = PRS_ERROR;
1291 			break;
1292 		case PRS_ERROR:
1293 			if (!part_error)
1294 				new_prs = PRS_ENABLED;
1295 			break;
1296 		}
1297 		/*
1298 		 * Set part_error if previously in invalid state.
1299 		 */
1300 		part_error = (prev_prs == PRS_ERROR);
1301 	}
1302 
1303 	if (!part_error && (new_prs == PRS_ERROR))
1304 		return 0;	/* Nothing need to be done */
1305 
1306 	if (new_prs == PRS_ERROR) {
1307 		/*
1308 		 * Remove all its cpus from parent's subparts_cpus.
1309 		 */
1310 		adding = false;
1311 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1312 				       parent->subparts_cpus);
1313 	}
1314 
1315 	if (!adding && !deleting && (new_prs == old_prs))
1316 		return 0;
1317 
1318 	/*
1319 	 * Change the parent's subparts_cpus.
1320 	 * Newly added CPUs will be removed from effective_cpus and
1321 	 * newly deleted ones will be added back to effective_cpus.
1322 	 */
1323 	spin_lock_irq(&callback_lock);
1324 	if (adding) {
1325 		cpumask_or(parent->subparts_cpus,
1326 			   parent->subparts_cpus, tmp->addmask);
1327 		cpumask_andnot(parent->effective_cpus,
1328 			       parent->effective_cpus, tmp->addmask);
1329 	}
1330 	if (deleting) {
1331 		cpumask_andnot(parent->subparts_cpus,
1332 			       parent->subparts_cpus, tmp->delmask);
1333 		/*
1334 		 * Some of the CPUs in subparts_cpus might have been offlined.
1335 		 */
1336 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1337 		cpumask_or(parent->effective_cpus,
1338 			   parent->effective_cpus, tmp->delmask);
1339 	}
1340 
1341 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1342 
1343 	if (old_prs != new_prs)
1344 		cpuset->partition_root_state = new_prs;
1345 
1346 	spin_unlock_irq(&callback_lock);
1347 	notify_partition_change(cpuset, old_prs, new_prs);
1348 
1349 	return cmd == partcmd_update;
1350 }
1351 
1352 /*
1353  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1354  * @cs:  the cpuset to consider
1355  * @tmp: temp variables for calculating effective_cpus & partition setup
1356  *
1357  * When configured cpumask is changed, the effective cpumasks of this cpuset
1358  * and all its descendants need to be updated.
1359  *
1360  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1361  *
1362  * Called with cpuset_rwsem held
1363  */
1364 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1365 {
1366 	struct cpuset *cp;
1367 	struct cgroup_subsys_state *pos_css;
1368 	bool need_rebuild_sched_domains = false;
1369 	int old_prs, new_prs;
1370 
1371 	rcu_read_lock();
1372 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1373 		struct cpuset *parent = parent_cs(cp);
1374 
1375 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1376 
1377 		/*
1378 		 * If it becomes empty, inherit the effective mask of the
1379 		 * parent, which is guaranteed to have some CPUs.
1380 		 */
1381 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1382 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1383 			if (!cp->use_parent_ecpus) {
1384 				cp->use_parent_ecpus = true;
1385 				parent->child_ecpus_count++;
1386 			}
1387 		} else if (cp->use_parent_ecpus) {
1388 			cp->use_parent_ecpus = false;
1389 			WARN_ON_ONCE(!parent->child_ecpus_count);
1390 			parent->child_ecpus_count--;
1391 		}
1392 
1393 		/*
1394 		 * Skip the whole subtree if the cpumask remains the same
1395 		 * and has no partition root state.
1396 		 */
1397 		if (!cp->partition_root_state &&
1398 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1399 			pos_css = css_rightmost_descendant(pos_css);
1400 			continue;
1401 		}
1402 
1403 		/*
1404 		 * update_parent_subparts_cpumask() should have been called
1405 		 * for cs already in update_cpumask(). We should also call
1406 		 * update_tasks_cpumask() again for tasks in the parent
1407 		 * cpuset if the parent's subparts_cpus changes.
1408 		 */
1409 		old_prs = new_prs = cp->partition_root_state;
1410 		if ((cp != cs) && old_prs) {
1411 			switch (parent->partition_root_state) {
1412 			case PRS_DISABLED:
1413 				/*
1414 				 * If parent is not a partition root or an
1415 				 * invalid partition root, clear its state
1416 				 * and its CS_CPU_EXCLUSIVE flag.
1417 				 */
1418 				WARN_ON_ONCE(cp->partition_root_state
1419 					     != PRS_ERROR);
1420 				new_prs = PRS_DISABLED;
1421 
1422 				/*
1423 				 * clear_bit() is an atomic operation and
1424 				 * readers aren't interested in the state
1425 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1426 				 * just update the flag without holding
1427 				 * the callback_lock.
1428 				 */
1429 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1430 				break;
1431 
1432 			case PRS_ENABLED:
1433 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1434 					update_tasks_cpumask(parent);
1435 				break;
1436 
1437 			case PRS_ERROR:
1438 				/*
1439 				 * When parent is invalid, it has to be too.
1440 				 */
1441 				new_prs = PRS_ERROR;
1442 				break;
1443 			}
1444 		}
1445 
1446 		if (!css_tryget_online(&cp->css))
1447 			continue;
1448 		rcu_read_unlock();
1449 
1450 		spin_lock_irq(&callback_lock);
1451 
1452 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1453 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1454 			cp->nr_subparts_cpus = 0;
1455 			cpumask_clear(cp->subparts_cpus);
1456 		} else if (cp->nr_subparts_cpus) {
1457 			/*
1458 			 * Make sure that effective_cpus & subparts_cpus
1459 			 * are mutually exclusive.
1460 			 *
1461 			 * In the unlikely event that effective_cpus
1462 			 * becomes empty. we clear cp->nr_subparts_cpus and
1463 			 * let its child partition roots to compete for
1464 			 * CPUs again.
1465 			 */
1466 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1467 				       cp->subparts_cpus);
1468 			if (cpumask_empty(cp->effective_cpus)) {
1469 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1470 				cpumask_clear(cp->subparts_cpus);
1471 				cp->nr_subparts_cpus = 0;
1472 			} else if (!cpumask_subset(cp->subparts_cpus,
1473 						   tmp->new_cpus)) {
1474 				cpumask_andnot(cp->subparts_cpus,
1475 					cp->subparts_cpus, tmp->new_cpus);
1476 				cp->nr_subparts_cpus
1477 					= cpumask_weight(cp->subparts_cpus);
1478 			}
1479 		}
1480 
1481 		if (new_prs != old_prs)
1482 			cp->partition_root_state = new_prs;
1483 
1484 		spin_unlock_irq(&callback_lock);
1485 		notify_partition_change(cp, old_prs, new_prs);
1486 
1487 		WARN_ON(!is_in_v2_mode() &&
1488 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1489 
1490 		update_tasks_cpumask(cp);
1491 
1492 		/*
1493 		 * On legacy hierarchy, if the effective cpumask of any non-
1494 		 * empty cpuset is changed, we need to rebuild sched domains.
1495 		 * On default hierarchy, the cpuset needs to be a partition
1496 		 * root as well.
1497 		 */
1498 		if (!cpumask_empty(cp->cpus_allowed) &&
1499 		    is_sched_load_balance(cp) &&
1500 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1501 		    is_partition_root(cp)))
1502 			need_rebuild_sched_domains = true;
1503 
1504 		rcu_read_lock();
1505 		css_put(&cp->css);
1506 	}
1507 	rcu_read_unlock();
1508 
1509 	if (need_rebuild_sched_domains)
1510 		rebuild_sched_domains_locked();
1511 }
1512 
1513 /**
1514  * update_sibling_cpumasks - Update siblings cpumasks
1515  * @parent:  Parent cpuset
1516  * @cs:      Current cpuset
1517  * @tmp:     Temp variables
1518  */
1519 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1520 				    struct tmpmasks *tmp)
1521 {
1522 	struct cpuset *sibling;
1523 	struct cgroup_subsys_state *pos_css;
1524 
1525 	/*
1526 	 * Check all its siblings and call update_cpumasks_hier()
1527 	 * if their use_parent_ecpus flag is set in order for them
1528 	 * to use the right effective_cpus value.
1529 	 */
1530 	rcu_read_lock();
1531 	cpuset_for_each_child(sibling, pos_css, parent) {
1532 		if (sibling == cs)
1533 			continue;
1534 		if (!sibling->use_parent_ecpus)
1535 			continue;
1536 
1537 		update_cpumasks_hier(sibling, tmp);
1538 	}
1539 	rcu_read_unlock();
1540 }
1541 
1542 /**
1543  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1544  * @cs: the cpuset to consider
1545  * @trialcs: trial cpuset
1546  * @buf: buffer of cpu numbers written to this cpuset
1547  */
1548 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1549 			  const char *buf)
1550 {
1551 	int retval;
1552 	struct tmpmasks tmp;
1553 
1554 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1555 	if (cs == &top_cpuset)
1556 		return -EACCES;
1557 
1558 	/*
1559 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1560 	 * Since cpulist_parse() fails on an empty mask, we special case
1561 	 * that parsing.  The validate_change() call ensures that cpusets
1562 	 * with tasks have cpus.
1563 	 */
1564 	if (!*buf) {
1565 		cpumask_clear(trialcs->cpus_allowed);
1566 	} else {
1567 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1568 		if (retval < 0)
1569 			return retval;
1570 
1571 		if (!cpumask_subset(trialcs->cpus_allowed,
1572 				    top_cpuset.cpus_allowed))
1573 			return -EINVAL;
1574 	}
1575 
1576 	/* Nothing to do if the cpus didn't change */
1577 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1578 		return 0;
1579 
1580 	retval = validate_change(cs, trialcs);
1581 	if (retval < 0)
1582 		return retval;
1583 
1584 #ifdef CONFIG_CPUMASK_OFFSTACK
1585 	/*
1586 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1587 	 * to allocated cpumasks.
1588 	 */
1589 	tmp.addmask  = trialcs->subparts_cpus;
1590 	tmp.delmask  = trialcs->effective_cpus;
1591 	tmp.new_cpus = trialcs->cpus_allowed;
1592 #endif
1593 
1594 	if (cs->partition_root_state) {
1595 		/* Cpumask of a partition root cannot be empty */
1596 		if (cpumask_empty(trialcs->cpus_allowed))
1597 			return -EINVAL;
1598 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1599 					trialcs->cpus_allowed, &tmp) < 0)
1600 			return -EINVAL;
1601 	}
1602 
1603 	spin_lock_irq(&callback_lock);
1604 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1605 
1606 	/*
1607 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1608 	 */
1609 	if (cs->nr_subparts_cpus) {
1610 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1611 			       cs->cpus_allowed);
1612 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1613 	}
1614 	spin_unlock_irq(&callback_lock);
1615 
1616 	update_cpumasks_hier(cs, &tmp);
1617 
1618 	if (cs->partition_root_state) {
1619 		struct cpuset *parent = parent_cs(cs);
1620 
1621 		/*
1622 		 * For partition root, update the cpumasks of sibling
1623 		 * cpusets if they use parent's effective_cpus.
1624 		 */
1625 		if (parent->child_ecpus_count)
1626 			update_sibling_cpumasks(parent, cs, &tmp);
1627 	}
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Migrate memory region from one set of nodes to another.  This is
1633  * performed asynchronously as it can be called from process migration path
1634  * holding locks involved in process management.  All mm migrations are
1635  * performed in the queued order and can be waited for by flushing
1636  * cpuset_migrate_mm_wq.
1637  */
1638 
1639 struct cpuset_migrate_mm_work {
1640 	struct work_struct	work;
1641 	struct mm_struct	*mm;
1642 	nodemask_t		from;
1643 	nodemask_t		to;
1644 };
1645 
1646 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1647 {
1648 	struct cpuset_migrate_mm_work *mwork =
1649 		container_of(work, struct cpuset_migrate_mm_work, work);
1650 
1651 	/* on a wq worker, no need to worry about %current's mems_allowed */
1652 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1653 	mmput(mwork->mm);
1654 	kfree(mwork);
1655 }
1656 
1657 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1658 							const nodemask_t *to)
1659 {
1660 	struct cpuset_migrate_mm_work *mwork;
1661 
1662 	if (nodes_equal(*from, *to)) {
1663 		mmput(mm);
1664 		return;
1665 	}
1666 
1667 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1668 	if (mwork) {
1669 		mwork->mm = mm;
1670 		mwork->from = *from;
1671 		mwork->to = *to;
1672 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1673 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1674 	} else {
1675 		mmput(mm);
1676 	}
1677 }
1678 
1679 static void cpuset_post_attach(void)
1680 {
1681 	flush_workqueue(cpuset_migrate_mm_wq);
1682 }
1683 
1684 /*
1685  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1686  * @tsk: the task to change
1687  * @newmems: new nodes that the task will be set
1688  *
1689  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1690  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1691  * parallel, it might temporarily see an empty intersection, which results in
1692  * a seqlock check and retry before OOM or allocation failure.
1693  */
1694 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1695 					nodemask_t *newmems)
1696 {
1697 	task_lock(tsk);
1698 
1699 	local_irq_disable();
1700 	write_seqcount_begin(&tsk->mems_allowed_seq);
1701 
1702 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1703 	mpol_rebind_task(tsk, newmems);
1704 	tsk->mems_allowed = *newmems;
1705 
1706 	write_seqcount_end(&tsk->mems_allowed_seq);
1707 	local_irq_enable();
1708 
1709 	task_unlock(tsk);
1710 }
1711 
1712 static void *cpuset_being_rebound;
1713 
1714 /**
1715  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1716  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1717  *
1718  * Iterate through each task of @cs updating its mems_allowed to the
1719  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1720  * cpuset membership stays stable.
1721  */
1722 static void update_tasks_nodemask(struct cpuset *cs)
1723 {
1724 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1725 	struct css_task_iter it;
1726 	struct task_struct *task;
1727 
1728 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1729 
1730 	guarantee_online_mems(cs, &newmems);
1731 
1732 	/*
1733 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1734 	 * take while holding tasklist_lock.  Forks can happen - the
1735 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1736 	 * and rebind their vma mempolicies too.  Because we still hold
1737 	 * the global cpuset_rwsem, we know that no other rebind effort
1738 	 * will be contending for the global variable cpuset_being_rebound.
1739 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1740 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1741 	 */
1742 	css_task_iter_start(&cs->css, 0, &it);
1743 	while ((task = css_task_iter_next(&it))) {
1744 		struct mm_struct *mm;
1745 		bool migrate;
1746 
1747 		cpuset_change_task_nodemask(task, &newmems);
1748 
1749 		mm = get_task_mm(task);
1750 		if (!mm)
1751 			continue;
1752 
1753 		migrate = is_memory_migrate(cs);
1754 
1755 		mpol_rebind_mm(mm, &cs->mems_allowed);
1756 		if (migrate)
1757 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1758 		else
1759 			mmput(mm);
1760 	}
1761 	css_task_iter_end(&it);
1762 
1763 	/*
1764 	 * All the tasks' nodemasks have been updated, update
1765 	 * cs->old_mems_allowed.
1766 	 */
1767 	cs->old_mems_allowed = newmems;
1768 
1769 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1770 	cpuset_being_rebound = NULL;
1771 }
1772 
1773 /*
1774  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1775  * @cs: the cpuset to consider
1776  * @new_mems: a temp variable for calculating new effective_mems
1777  *
1778  * When configured nodemask is changed, the effective nodemasks of this cpuset
1779  * and all its descendants need to be updated.
1780  *
1781  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1782  *
1783  * Called with cpuset_rwsem held
1784  */
1785 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1786 {
1787 	struct cpuset *cp;
1788 	struct cgroup_subsys_state *pos_css;
1789 
1790 	rcu_read_lock();
1791 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1792 		struct cpuset *parent = parent_cs(cp);
1793 
1794 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1795 
1796 		/*
1797 		 * If it becomes empty, inherit the effective mask of the
1798 		 * parent, which is guaranteed to have some MEMs.
1799 		 */
1800 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1801 			*new_mems = parent->effective_mems;
1802 
1803 		/* Skip the whole subtree if the nodemask remains the same. */
1804 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1805 			pos_css = css_rightmost_descendant(pos_css);
1806 			continue;
1807 		}
1808 
1809 		if (!css_tryget_online(&cp->css))
1810 			continue;
1811 		rcu_read_unlock();
1812 
1813 		spin_lock_irq(&callback_lock);
1814 		cp->effective_mems = *new_mems;
1815 		spin_unlock_irq(&callback_lock);
1816 
1817 		WARN_ON(!is_in_v2_mode() &&
1818 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1819 
1820 		update_tasks_nodemask(cp);
1821 
1822 		rcu_read_lock();
1823 		css_put(&cp->css);
1824 	}
1825 	rcu_read_unlock();
1826 }
1827 
1828 /*
1829  * Handle user request to change the 'mems' memory placement
1830  * of a cpuset.  Needs to validate the request, update the
1831  * cpusets mems_allowed, and for each task in the cpuset,
1832  * update mems_allowed and rebind task's mempolicy and any vma
1833  * mempolicies and if the cpuset is marked 'memory_migrate',
1834  * migrate the tasks pages to the new memory.
1835  *
1836  * Call with cpuset_rwsem held. May take callback_lock during call.
1837  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1838  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1839  * their mempolicies to the cpusets new mems_allowed.
1840  */
1841 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1842 			   const char *buf)
1843 {
1844 	int retval;
1845 
1846 	/*
1847 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1848 	 * it's read-only
1849 	 */
1850 	if (cs == &top_cpuset) {
1851 		retval = -EACCES;
1852 		goto done;
1853 	}
1854 
1855 	/*
1856 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1857 	 * Since nodelist_parse() fails on an empty mask, we special case
1858 	 * that parsing.  The validate_change() call ensures that cpusets
1859 	 * with tasks have memory.
1860 	 */
1861 	if (!*buf) {
1862 		nodes_clear(trialcs->mems_allowed);
1863 	} else {
1864 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1865 		if (retval < 0)
1866 			goto done;
1867 
1868 		if (!nodes_subset(trialcs->mems_allowed,
1869 				  top_cpuset.mems_allowed)) {
1870 			retval = -EINVAL;
1871 			goto done;
1872 		}
1873 	}
1874 
1875 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1876 		retval = 0;		/* Too easy - nothing to do */
1877 		goto done;
1878 	}
1879 	retval = validate_change(cs, trialcs);
1880 	if (retval < 0)
1881 		goto done;
1882 
1883 	check_insane_mems_config(&trialcs->mems_allowed);
1884 
1885 	spin_lock_irq(&callback_lock);
1886 	cs->mems_allowed = trialcs->mems_allowed;
1887 	spin_unlock_irq(&callback_lock);
1888 
1889 	/* use trialcs->mems_allowed as a temp variable */
1890 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1891 done:
1892 	return retval;
1893 }
1894 
1895 bool current_cpuset_is_being_rebound(void)
1896 {
1897 	bool ret;
1898 
1899 	rcu_read_lock();
1900 	ret = task_cs(current) == cpuset_being_rebound;
1901 	rcu_read_unlock();
1902 
1903 	return ret;
1904 }
1905 
1906 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1907 {
1908 #ifdef CONFIG_SMP
1909 	if (val < -1 || val >= sched_domain_level_max)
1910 		return -EINVAL;
1911 #endif
1912 
1913 	if (val != cs->relax_domain_level) {
1914 		cs->relax_domain_level = val;
1915 		if (!cpumask_empty(cs->cpus_allowed) &&
1916 		    is_sched_load_balance(cs))
1917 			rebuild_sched_domains_locked();
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 /**
1924  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1925  * @cs: the cpuset in which each task's spread flags needs to be changed
1926  *
1927  * Iterate through each task of @cs updating its spread flags.  As this
1928  * function is called with cpuset_rwsem held, cpuset membership stays
1929  * stable.
1930  */
1931 static void update_tasks_flags(struct cpuset *cs)
1932 {
1933 	struct css_task_iter it;
1934 	struct task_struct *task;
1935 
1936 	css_task_iter_start(&cs->css, 0, &it);
1937 	while ((task = css_task_iter_next(&it)))
1938 		cpuset_update_task_spread_flag(cs, task);
1939 	css_task_iter_end(&it);
1940 }
1941 
1942 /*
1943  * update_flag - read a 0 or a 1 in a file and update associated flag
1944  * bit:		the bit to update (see cpuset_flagbits_t)
1945  * cs:		the cpuset to update
1946  * turning_on: 	whether the flag is being set or cleared
1947  *
1948  * Call with cpuset_rwsem held.
1949  */
1950 
1951 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1952 		       int turning_on)
1953 {
1954 	struct cpuset *trialcs;
1955 	int balance_flag_changed;
1956 	int spread_flag_changed;
1957 	int err;
1958 
1959 	trialcs = alloc_trial_cpuset(cs);
1960 	if (!trialcs)
1961 		return -ENOMEM;
1962 
1963 	if (turning_on)
1964 		set_bit(bit, &trialcs->flags);
1965 	else
1966 		clear_bit(bit, &trialcs->flags);
1967 
1968 	err = validate_change(cs, trialcs);
1969 	if (err < 0)
1970 		goto out;
1971 
1972 	balance_flag_changed = (is_sched_load_balance(cs) !=
1973 				is_sched_load_balance(trialcs));
1974 
1975 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1976 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1977 
1978 	spin_lock_irq(&callback_lock);
1979 	cs->flags = trialcs->flags;
1980 	spin_unlock_irq(&callback_lock);
1981 
1982 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1983 		rebuild_sched_domains_locked();
1984 
1985 	if (spread_flag_changed)
1986 		update_tasks_flags(cs);
1987 out:
1988 	free_cpuset(trialcs);
1989 	return err;
1990 }
1991 
1992 /*
1993  * update_prstate - update partititon_root_state
1994  * cs: the cpuset to update
1995  * new_prs: new partition root state
1996  *
1997  * Call with cpuset_rwsem held.
1998  */
1999 static int update_prstate(struct cpuset *cs, int new_prs)
2000 {
2001 	int err, old_prs = cs->partition_root_state;
2002 	struct cpuset *parent = parent_cs(cs);
2003 	struct tmpmasks tmpmask;
2004 
2005 	if (old_prs == new_prs)
2006 		return 0;
2007 
2008 	/*
2009 	 * Cannot force a partial or invalid partition root to a full
2010 	 * partition root.
2011 	 */
2012 	if (new_prs && (old_prs == PRS_ERROR))
2013 		return -EINVAL;
2014 
2015 	if (alloc_cpumasks(NULL, &tmpmask))
2016 		return -ENOMEM;
2017 
2018 	err = -EINVAL;
2019 	if (!old_prs) {
2020 		/*
2021 		 * Turning on partition root requires setting the
2022 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2023 		 * cannot be NULL.
2024 		 */
2025 		if (cpumask_empty(cs->cpus_allowed))
2026 			goto out;
2027 
2028 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2029 		if (err)
2030 			goto out;
2031 
2032 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2033 						     NULL, &tmpmask);
2034 		if (err) {
2035 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2036 			goto out;
2037 		}
2038 	} else {
2039 		/*
2040 		 * Turning off partition root will clear the
2041 		 * CS_CPU_EXCLUSIVE bit.
2042 		 */
2043 		if (old_prs == PRS_ERROR) {
2044 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2045 			err = 0;
2046 			goto out;
2047 		}
2048 
2049 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2050 						     NULL, &tmpmask);
2051 		if (err)
2052 			goto out;
2053 
2054 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2055 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2056 	}
2057 
2058 	/*
2059 	 * Update cpumask of parent's tasks except when it is the top
2060 	 * cpuset as some system daemons cannot be mapped to other CPUs.
2061 	 */
2062 	if (parent != &top_cpuset)
2063 		update_tasks_cpumask(parent);
2064 
2065 	if (parent->child_ecpus_count)
2066 		update_sibling_cpumasks(parent, cs, &tmpmask);
2067 
2068 	rebuild_sched_domains_locked();
2069 out:
2070 	if (!err) {
2071 		spin_lock_irq(&callback_lock);
2072 		cs->partition_root_state = new_prs;
2073 		spin_unlock_irq(&callback_lock);
2074 		notify_partition_change(cs, old_prs, new_prs);
2075 	}
2076 
2077 	free_cpumasks(NULL, &tmpmask);
2078 	return err;
2079 }
2080 
2081 /*
2082  * Frequency meter - How fast is some event occurring?
2083  *
2084  * These routines manage a digitally filtered, constant time based,
2085  * event frequency meter.  There are four routines:
2086  *   fmeter_init() - initialize a frequency meter.
2087  *   fmeter_markevent() - called each time the event happens.
2088  *   fmeter_getrate() - returns the recent rate of such events.
2089  *   fmeter_update() - internal routine used to update fmeter.
2090  *
2091  * A common data structure is passed to each of these routines,
2092  * which is used to keep track of the state required to manage the
2093  * frequency meter and its digital filter.
2094  *
2095  * The filter works on the number of events marked per unit time.
2096  * The filter is single-pole low-pass recursive (IIR).  The time unit
2097  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2098  * simulate 3 decimal digits of precision (multiplied by 1000).
2099  *
2100  * With an FM_COEF of 933, and a time base of 1 second, the filter
2101  * has a half-life of 10 seconds, meaning that if the events quit
2102  * happening, then the rate returned from the fmeter_getrate()
2103  * will be cut in half each 10 seconds, until it converges to zero.
2104  *
2105  * It is not worth doing a real infinitely recursive filter.  If more
2106  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2107  * just compute FM_MAXTICKS ticks worth, by which point the level
2108  * will be stable.
2109  *
2110  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2111  * arithmetic overflow in the fmeter_update() routine.
2112  *
2113  * Given the simple 32 bit integer arithmetic used, this meter works
2114  * best for reporting rates between one per millisecond (msec) and
2115  * one per 32 (approx) seconds.  At constant rates faster than one
2116  * per msec it maxes out at values just under 1,000,000.  At constant
2117  * rates between one per msec, and one per second it will stabilize
2118  * to a value N*1000, where N is the rate of events per second.
2119  * At constant rates between one per second and one per 32 seconds,
2120  * it will be choppy, moving up on the seconds that have an event,
2121  * and then decaying until the next event.  At rates slower than
2122  * about one in 32 seconds, it decays all the way back to zero between
2123  * each event.
2124  */
2125 
2126 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2127 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2128 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2129 #define FM_SCALE 1000		/* faux fixed point scale */
2130 
2131 /* Initialize a frequency meter */
2132 static void fmeter_init(struct fmeter *fmp)
2133 {
2134 	fmp->cnt = 0;
2135 	fmp->val = 0;
2136 	fmp->time = 0;
2137 	spin_lock_init(&fmp->lock);
2138 }
2139 
2140 /* Internal meter update - process cnt events and update value */
2141 static void fmeter_update(struct fmeter *fmp)
2142 {
2143 	time64_t now;
2144 	u32 ticks;
2145 
2146 	now = ktime_get_seconds();
2147 	ticks = now - fmp->time;
2148 
2149 	if (ticks == 0)
2150 		return;
2151 
2152 	ticks = min(FM_MAXTICKS, ticks);
2153 	while (ticks-- > 0)
2154 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2155 	fmp->time = now;
2156 
2157 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2158 	fmp->cnt = 0;
2159 }
2160 
2161 /* Process any previous ticks, then bump cnt by one (times scale). */
2162 static void fmeter_markevent(struct fmeter *fmp)
2163 {
2164 	spin_lock(&fmp->lock);
2165 	fmeter_update(fmp);
2166 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2167 	spin_unlock(&fmp->lock);
2168 }
2169 
2170 /* Process any previous ticks, then return current value. */
2171 static int fmeter_getrate(struct fmeter *fmp)
2172 {
2173 	int val;
2174 
2175 	spin_lock(&fmp->lock);
2176 	fmeter_update(fmp);
2177 	val = fmp->val;
2178 	spin_unlock(&fmp->lock);
2179 	return val;
2180 }
2181 
2182 static struct cpuset *cpuset_attach_old_cs;
2183 
2184 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2185 static int cpuset_can_attach(struct cgroup_taskset *tset)
2186 {
2187 	struct cgroup_subsys_state *css;
2188 	struct cpuset *cs;
2189 	struct task_struct *task;
2190 	int ret;
2191 
2192 	/* used later by cpuset_attach() */
2193 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2194 	cs = css_cs(css);
2195 
2196 	percpu_down_write(&cpuset_rwsem);
2197 
2198 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2199 	ret = -ENOSPC;
2200 	if (!is_in_v2_mode() &&
2201 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2202 		goto out_unlock;
2203 
2204 	cgroup_taskset_for_each(task, css, tset) {
2205 		ret = task_can_attach(task, cs->cpus_allowed);
2206 		if (ret)
2207 			goto out_unlock;
2208 		ret = security_task_setscheduler(task);
2209 		if (ret)
2210 			goto out_unlock;
2211 	}
2212 
2213 	/*
2214 	 * Mark attach is in progress.  This makes validate_change() fail
2215 	 * changes which zero cpus/mems_allowed.
2216 	 */
2217 	cs->attach_in_progress++;
2218 	ret = 0;
2219 out_unlock:
2220 	percpu_up_write(&cpuset_rwsem);
2221 	return ret;
2222 }
2223 
2224 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2225 {
2226 	struct cgroup_subsys_state *css;
2227 
2228 	cgroup_taskset_first(tset, &css);
2229 
2230 	percpu_down_write(&cpuset_rwsem);
2231 	css_cs(css)->attach_in_progress--;
2232 	percpu_up_write(&cpuset_rwsem);
2233 }
2234 
2235 /*
2236  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2237  * but we can't allocate it dynamically there.  Define it global and
2238  * allocate from cpuset_init().
2239  */
2240 static cpumask_var_t cpus_attach;
2241 
2242 static void cpuset_attach(struct cgroup_taskset *tset)
2243 {
2244 	/* static buf protected by cpuset_rwsem */
2245 	static nodemask_t cpuset_attach_nodemask_to;
2246 	struct task_struct *task;
2247 	struct task_struct *leader;
2248 	struct cgroup_subsys_state *css;
2249 	struct cpuset *cs;
2250 	struct cpuset *oldcs = cpuset_attach_old_cs;
2251 
2252 	cgroup_taskset_first(tset, &css);
2253 	cs = css_cs(css);
2254 
2255 	percpu_down_write(&cpuset_rwsem);
2256 
2257 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2258 
2259 	cgroup_taskset_for_each(task, css, tset) {
2260 		if (cs != &top_cpuset)
2261 			guarantee_online_cpus(task, cpus_attach);
2262 		else
2263 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2264 		/*
2265 		 * can_attach beforehand should guarantee that this doesn't
2266 		 * fail.  TODO: have a better way to handle failure here
2267 		 */
2268 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2269 
2270 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2271 		cpuset_update_task_spread_flag(cs, task);
2272 	}
2273 
2274 	/*
2275 	 * Change mm for all threadgroup leaders. This is expensive and may
2276 	 * sleep and should be moved outside migration path proper.
2277 	 */
2278 	cpuset_attach_nodemask_to = cs->effective_mems;
2279 	cgroup_taskset_for_each_leader(leader, css, tset) {
2280 		struct mm_struct *mm = get_task_mm(leader);
2281 
2282 		if (mm) {
2283 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2284 
2285 			/*
2286 			 * old_mems_allowed is the same with mems_allowed
2287 			 * here, except if this task is being moved
2288 			 * automatically due to hotplug.  In that case
2289 			 * @mems_allowed has been updated and is empty, so
2290 			 * @old_mems_allowed is the right nodesets that we
2291 			 * migrate mm from.
2292 			 */
2293 			if (is_memory_migrate(cs))
2294 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2295 						  &cpuset_attach_nodemask_to);
2296 			else
2297 				mmput(mm);
2298 		}
2299 	}
2300 
2301 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2302 
2303 	cs->attach_in_progress--;
2304 	if (!cs->attach_in_progress)
2305 		wake_up(&cpuset_attach_wq);
2306 
2307 	percpu_up_write(&cpuset_rwsem);
2308 }
2309 
2310 /* The various types of files and directories in a cpuset file system */
2311 
2312 typedef enum {
2313 	FILE_MEMORY_MIGRATE,
2314 	FILE_CPULIST,
2315 	FILE_MEMLIST,
2316 	FILE_EFFECTIVE_CPULIST,
2317 	FILE_EFFECTIVE_MEMLIST,
2318 	FILE_SUBPARTS_CPULIST,
2319 	FILE_CPU_EXCLUSIVE,
2320 	FILE_MEM_EXCLUSIVE,
2321 	FILE_MEM_HARDWALL,
2322 	FILE_SCHED_LOAD_BALANCE,
2323 	FILE_PARTITION_ROOT,
2324 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2325 	FILE_MEMORY_PRESSURE_ENABLED,
2326 	FILE_MEMORY_PRESSURE,
2327 	FILE_SPREAD_PAGE,
2328 	FILE_SPREAD_SLAB,
2329 } cpuset_filetype_t;
2330 
2331 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2332 			    u64 val)
2333 {
2334 	struct cpuset *cs = css_cs(css);
2335 	cpuset_filetype_t type = cft->private;
2336 	int retval = 0;
2337 
2338 	cpus_read_lock();
2339 	percpu_down_write(&cpuset_rwsem);
2340 	if (!is_cpuset_online(cs)) {
2341 		retval = -ENODEV;
2342 		goto out_unlock;
2343 	}
2344 
2345 	switch (type) {
2346 	case FILE_CPU_EXCLUSIVE:
2347 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2348 		break;
2349 	case FILE_MEM_EXCLUSIVE:
2350 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2351 		break;
2352 	case FILE_MEM_HARDWALL:
2353 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2354 		break;
2355 	case FILE_SCHED_LOAD_BALANCE:
2356 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2357 		break;
2358 	case FILE_MEMORY_MIGRATE:
2359 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2360 		break;
2361 	case FILE_MEMORY_PRESSURE_ENABLED:
2362 		cpuset_memory_pressure_enabled = !!val;
2363 		break;
2364 	case FILE_SPREAD_PAGE:
2365 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2366 		break;
2367 	case FILE_SPREAD_SLAB:
2368 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2369 		break;
2370 	default:
2371 		retval = -EINVAL;
2372 		break;
2373 	}
2374 out_unlock:
2375 	percpu_up_write(&cpuset_rwsem);
2376 	cpus_read_unlock();
2377 	return retval;
2378 }
2379 
2380 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2381 			    s64 val)
2382 {
2383 	struct cpuset *cs = css_cs(css);
2384 	cpuset_filetype_t type = cft->private;
2385 	int retval = -ENODEV;
2386 
2387 	cpus_read_lock();
2388 	percpu_down_write(&cpuset_rwsem);
2389 	if (!is_cpuset_online(cs))
2390 		goto out_unlock;
2391 
2392 	switch (type) {
2393 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2394 		retval = update_relax_domain_level(cs, val);
2395 		break;
2396 	default:
2397 		retval = -EINVAL;
2398 		break;
2399 	}
2400 out_unlock:
2401 	percpu_up_write(&cpuset_rwsem);
2402 	cpus_read_unlock();
2403 	return retval;
2404 }
2405 
2406 /*
2407  * Common handling for a write to a "cpus" or "mems" file.
2408  */
2409 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2410 				    char *buf, size_t nbytes, loff_t off)
2411 {
2412 	struct cpuset *cs = css_cs(of_css(of));
2413 	struct cpuset *trialcs;
2414 	int retval = -ENODEV;
2415 
2416 	buf = strstrip(buf);
2417 
2418 	/*
2419 	 * CPU or memory hotunplug may leave @cs w/o any execution
2420 	 * resources, in which case the hotplug code asynchronously updates
2421 	 * configuration and transfers all tasks to the nearest ancestor
2422 	 * which can execute.
2423 	 *
2424 	 * As writes to "cpus" or "mems" may restore @cs's execution
2425 	 * resources, wait for the previously scheduled operations before
2426 	 * proceeding, so that we don't end up keep removing tasks added
2427 	 * after execution capability is restored.
2428 	 *
2429 	 * cpuset_hotplug_work calls back into cgroup core via
2430 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2431 	 * operation like this one can lead to a deadlock through kernfs
2432 	 * active_ref protection.  Let's break the protection.  Losing the
2433 	 * protection is okay as we check whether @cs is online after
2434 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2435 	 * hierarchies.
2436 	 */
2437 	css_get(&cs->css);
2438 	kernfs_break_active_protection(of->kn);
2439 	flush_work(&cpuset_hotplug_work);
2440 
2441 	cpus_read_lock();
2442 	percpu_down_write(&cpuset_rwsem);
2443 	if (!is_cpuset_online(cs))
2444 		goto out_unlock;
2445 
2446 	trialcs = alloc_trial_cpuset(cs);
2447 	if (!trialcs) {
2448 		retval = -ENOMEM;
2449 		goto out_unlock;
2450 	}
2451 
2452 	switch (of_cft(of)->private) {
2453 	case FILE_CPULIST:
2454 		retval = update_cpumask(cs, trialcs, buf);
2455 		break;
2456 	case FILE_MEMLIST:
2457 		retval = update_nodemask(cs, trialcs, buf);
2458 		break;
2459 	default:
2460 		retval = -EINVAL;
2461 		break;
2462 	}
2463 
2464 	free_cpuset(trialcs);
2465 out_unlock:
2466 	percpu_up_write(&cpuset_rwsem);
2467 	cpus_read_unlock();
2468 	kernfs_unbreak_active_protection(of->kn);
2469 	css_put(&cs->css);
2470 	flush_workqueue(cpuset_migrate_mm_wq);
2471 	return retval ?: nbytes;
2472 }
2473 
2474 /*
2475  * These ascii lists should be read in a single call, by using a user
2476  * buffer large enough to hold the entire map.  If read in smaller
2477  * chunks, there is no guarantee of atomicity.  Since the display format
2478  * used, list of ranges of sequential numbers, is variable length,
2479  * and since these maps can change value dynamically, one could read
2480  * gibberish by doing partial reads while a list was changing.
2481  */
2482 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2483 {
2484 	struct cpuset *cs = css_cs(seq_css(sf));
2485 	cpuset_filetype_t type = seq_cft(sf)->private;
2486 	int ret = 0;
2487 
2488 	spin_lock_irq(&callback_lock);
2489 
2490 	switch (type) {
2491 	case FILE_CPULIST:
2492 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2493 		break;
2494 	case FILE_MEMLIST:
2495 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2496 		break;
2497 	case FILE_EFFECTIVE_CPULIST:
2498 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2499 		break;
2500 	case FILE_EFFECTIVE_MEMLIST:
2501 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2502 		break;
2503 	case FILE_SUBPARTS_CPULIST:
2504 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2505 		break;
2506 	default:
2507 		ret = -EINVAL;
2508 	}
2509 
2510 	spin_unlock_irq(&callback_lock);
2511 	return ret;
2512 }
2513 
2514 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2515 {
2516 	struct cpuset *cs = css_cs(css);
2517 	cpuset_filetype_t type = cft->private;
2518 	switch (type) {
2519 	case FILE_CPU_EXCLUSIVE:
2520 		return is_cpu_exclusive(cs);
2521 	case FILE_MEM_EXCLUSIVE:
2522 		return is_mem_exclusive(cs);
2523 	case FILE_MEM_HARDWALL:
2524 		return is_mem_hardwall(cs);
2525 	case FILE_SCHED_LOAD_BALANCE:
2526 		return is_sched_load_balance(cs);
2527 	case FILE_MEMORY_MIGRATE:
2528 		return is_memory_migrate(cs);
2529 	case FILE_MEMORY_PRESSURE_ENABLED:
2530 		return cpuset_memory_pressure_enabled;
2531 	case FILE_MEMORY_PRESSURE:
2532 		return fmeter_getrate(&cs->fmeter);
2533 	case FILE_SPREAD_PAGE:
2534 		return is_spread_page(cs);
2535 	case FILE_SPREAD_SLAB:
2536 		return is_spread_slab(cs);
2537 	default:
2538 		BUG();
2539 	}
2540 
2541 	/* Unreachable but makes gcc happy */
2542 	return 0;
2543 }
2544 
2545 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2546 {
2547 	struct cpuset *cs = css_cs(css);
2548 	cpuset_filetype_t type = cft->private;
2549 	switch (type) {
2550 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2551 		return cs->relax_domain_level;
2552 	default:
2553 		BUG();
2554 	}
2555 
2556 	/* Unreachable but makes gcc happy */
2557 	return 0;
2558 }
2559 
2560 static int sched_partition_show(struct seq_file *seq, void *v)
2561 {
2562 	struct cpuset *cs = css_cs(seq_css(seq));
2563 
2564 	switch (cs->partition_root_state) {
2565 	case PRS_ENABLED:
2566 		seq_puts(seq, "root\n");
2567 		break;
2568 	case PRS_DISABLED:
2569 		seq_puts(seq, "member\n");
2570 		break;
2571 	case PRS_ERROR:
2572 		seq_puts(seq, "root invalid\n");
2573 		break;
2574 	}
2575 	return 0;
2576 }
2577 
2578 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2579 				     size_t nbytes, loff_t off)
2580 {
2581 	struct cpuset *cs = css_cs(of_css(of));
2582 	int val;
2583 	int retval = -ENODEV;
2584 
2585 	buf = strstrip(buf);
2586 
2587 	/*
2588 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2589 	 */
2590 	if (!strcmp(buf, "root"))
2591 		val = PRS_ENABLED;
2592 	else if (!strcmp(buf, "member"))
2593 		val = PRS_DISABLED;
2594 	else
2595 		return -EINVAL;
2596 
2597 	css_get(&cs->css);
2598 	cpus_read_lock();
2599 	percpu_down_write(&cpuset_rwsem);
2600 	if (!is_cpuset_online(cs))
2601 		goto out_unlock;
2602 
2603 	retval = update_prstate(cs, val);
2604 out_unlock:
2605 	percpu_up_write(&cpuset_rwsem);
2606 	cpus_read_unlock();
2607 	css_put(&cs->css);
2608 	return retval ?: nbytes;
2609 }
2610 
2611 /*
2612  * for the common functions, 'private' gives the type of file
2613  */
2614 
2615 static struct cftype legacy_files[] = {
2616 	{
2617 		.name = "cpus",
2618 		.seq_show = cpuset_common_seq_show,
2619 		.write = cpuset_write_resmask,
2620 		.max_write_len = (100U + 6 * NR_CPUS),
2621 		.private = FILE_CPULIST,
2622 	},
2623 
2624 	{
2625 		.name = "mems",
2626 		.seq_show = cpuset_common_seq_show,
2627 		.write = cpuset_write_resmask,
2628 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2629 		.private = FILE_MEMLIST,
2630 	},
2631 
2632 	{
2633 		.name = "effective_cpus",
2634 		.seq_show = cpuset_common_seq_show,
2635 		.private = FILE_EFFECTIVE_CPULIST,
2636 	},
2637 
2638 	{
2639 		.name = "effective_mems",
2640 		.seq_show = cpuset_common_seq_show,
2641 		.private = FILE_EFFECTIVE_MEMLIST,
2642 	},
2643 
2644 	{
2645 		.name = "cpu_exclusive",
2646 		.read_u64 = cpuset_read_u64,
2647 		.write_u64 = cpuset_write_u64,
2648 		.private = FILE_CPU_EXCLUSIVE,
2649 	},
2650 
2651 	{
2652 		.name = "mem_exclusive",
2653 		.read_u64 = cpuset_read_u64,
2654 		.write_u64 = cpuset_write_u64,
2655 		.private = FILE_MEM_EXCLUSIVE,
2656 	},
2657 
2658 	{
2659 		.name = "mem_hardwall",
2660 		.read_u64 = cpuset_read_u64,
2661 		.write_u64 = cpuset_write_u64,
2662 		.private = FILE_MEM_HARDWALL,
2663 	},
2664 
2665 	{
2666 		.name = "sched_load_balance",
2667 		.read_u64 = cpuset_read_u64,
2668 		.write_u64 = cpuset_write_u64,
2669 		.private = FILE_SCHED_LOAD_BALANCE,
2670 	},
2671 
2672 	{
2673 		.name = "sched_relax_domain_level",
2674 		.read_s64 = cpuset_read_s64,
2675 		.write_s64 = cpuset_write_s64,
2676 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2677 	},
2678 
2679 	{
2680 		.name = "memory_migrate",
2681 		.read_u64 = cpuset_read_u64,
2682 		.write_u64 = cpuset_write_u64,
2683 		.private = FILE_MEMORY_MIGRATE,
2684 	},
2685 
2686 	{
2687 		.name = "memory_pressure",
2688 		.read_u64 = cpuset_read_u64,
2689 		.private = FILE_MEMORY_PRESSURE,
2690 	},
2691 
2692 	{
2693 		.name = "memory_spread_page",
2694 		.read_u64 = cpuset_read_u64,
2695 		.write_u64 = cpuset_write_u64,
2696 		.private = FILE_SPREAD_PAGE,
2697 	},
2698 
2699 	{
2700 		.name = "memory_spread_slab",
2701 		.read_u64 = cpuset_read_u64,
2702 		.write_u64 = cpuset_write_u64,
2703 		.private = FILE_SPREAD_SLAB,
2704 	},
2705 
2706 	{
2707 		.name = "memory_pressure_enabled",
2708 		.flags = CFTYPE_ONLY_ON_ROOT,
2709 		.read_u64 = cpuset_read_u64,
2710 		.write_u64 = cpuset_write_u64,
2711 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2712 	},
2713 
2714 	{ }	/* terminate */
2715 };
2716 
2717 /*
2718  * This is currently a minimal set for the default hierarchy. It can be
2719  * expanded later on by migrating more features and control files from v1.
2720  */
2721 static struct cftype dfl_files[] = {
2722 	{
2723 		.name = "cpus",
2724 		.seq_show = cpuset_common_seq_show,
2725 		.write = cpuset_write_resmask,
2726 		.max_write_len = (100U + 6 * NR_CPUS),
2727 		.private = FILE_CPULIST,
2728 		.flags = CFTYPE_NOT_ON_ROOT,
2729 	},
2730 
2731 	{
2732 		.name = "mems",
2733 		.seq_show = cpuset_common_seq_show,
2734 		.write = cpuset_write_resmask,
2735 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2736 		.private = FILE_MEMLIST,
2737 		.flags = CFTYPE_NOT_ON_ROOT,
2738 	},
2739 
2740 	{
2741 		.name = "cpus.effective",
2742 		.seq_show = cpuset_common_seq_show,
2743 		.private = FILE_EFFECTIVE_CPULIST,
2744 	},
2745 
2746 	{
2747 		.name = "mems.effective",
2748 		.seq_show = cpuset_common_seq_show,
2749 		.private = FILE_EFFECTIVE_MEMLIST,
2750 	},
2751 
2752 	{
2753 		.name = "cpus.partition",
2754 		.seq_show = sched_partition_show,
2755 		.write = sched_partition_write,
2756 		.private = FILE_PARTITION_ROOT,
2757 		.flags = CFTYPE_NOT_ON_ROOT,
2758 		.file_offset = offsetof(struct cpuset, partition_file),
2759 	},
2760 
2761 	{
2762 		.name = "cpus.subpartitions",
2763 		.seq_show = cpuset_common_seq_show,
2764 		.private = FILE_SUBPARTS_CPULIST,
2765 		.flags = CFTYPE_DEBUG,
2766 	},
2767 
2768 	{ }	/* terminate */
2769 };
2770 
2771 
2772 /*
2773  *	cpuset_css_alloc - allocate a cpuset css
2774  *	cgrp:	control group that the new cpuset will be part of
2775  */
2776 
2777 static struct cgroup_subsys_state *
2778 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2779 {
2780 	struct cpuset *cs;
2781 
2782 	if (!parent_css)
2783 		return &top_cpuset.css;
2784 
2785 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2786 	if (!cs)
2787 		return ERR_PTR(-ENOMEM);
2788 
2789 	if (alloc_cpumasks(cs, NULL)) {
2790 		kfree(cs);
2791 		return ERR_PTR(-ENOMEM);
2792 	}
2793 
2794 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2795 	nodes_clear(cs->mems_allowed);
2796 	nodes_clear(cs->effective_mems);
2797 	fmeter_init(&cs->fmeter);
2798 	cs->relax_domain_level = -1;
2799 
2800 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
2801 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2802 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2803 
2804 	return &cs->css;
2805 }
2806 
2807 static int cpuset_css_online(struct cgroup_subsys_state *css)
2808 {
2809 	struct cpuset *cs = css_cs(css);
2810 	struct cpuset *parent = parent_cs(cs);
2811 	struct cpuset *tmp_cs;
2812 	struct cgroup_subsys_state *pos_css;
2813 
2814 	if (!parent)
2815 		return 0;
2816 
2817 	cpus_read_lock();
2818 	percpu_down_write(&cpuset_rwsem);
2819 
2820 	set_bit(CS_ONLINE, &cs->flags);
2821 	if (is_spread_page(parent))
2822 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2823 	if (is_spread_slab(parent))
2824 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2825 
2826 	cpuset_inc();
2827 
2828 	spin_lock_irq(&callback_lock);
2829 	if (is_in_v2_mode()) {
2830 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2831 		cs->effective_mems = parent->effective_mems;
2832 		cs->use_parent_ecpus = true;
2833 		parent->child_ecpus_count++;
2834 	}
2835 	spin_unlock_irq(&callback_lock);
2836 
2837 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2838 		goto out_unlock;
2839 
2840 	/*
2841 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2842 	 * set.  This flag handling is implemented in cgroup core for
2843 	 * histrical reasons - the flag may be specified during mount.
2844 	 *
2845 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2846 	 * refuse to clone the configuration - thereby refusing the task to
2847 	 * be entered, and as a result refusing the sys_unshare() or
2848 	 * clone() which initiated it.  If this becomes a problem for some
2849 	 * users who wish to allow that scenario, then this could be
2850 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2851 	 * (and likewise for mems) to the new cgroup.
2852 	 */
2853 	rcu_read_lock();
2854 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2855 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2856 			rcu_read_unlock();
2857 			goto out_unlock;
2858 		}
2859 	}
2860 	rcu_read_unlock();
2861 
2862 	spin_lock_irq(&callback_lock);
2863 	cs->mems_allowed = parent->mems_allowed;
2864 	cs->effective_mems = parent->mems_allowed;
2865 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2866 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2867 	spin_unlock_irq(&callback_lock);
2868 out_unlock:
2869 	percpu_up_write(&cpuset_rwsem);
2870 	cpus_read_unlock();
2871 	return 0;
2872 }
2873 
2874 /*
2875  * If the cpuset being removed has its flag 'sched_load_balance'
2876  * enabled, then simulate turning sched_load_balance off, which
2877  * will call rebuild_sched_domains_locked(). That is not needed
2878  * in the default hierarchy where only changes in partition
2879  * will cause repartitioning.
2880  *
2881  * If the cpuset has the 'sched.partition' flag enabled, simulate
2882  * turning 'sched.partition" off.
2883  */
2884 
2885 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2886 {
2887 	struct cpuset *cs = css_cs(css);
2888 
2889 	cpus_read_lock();
2890 	percpu_down_write(&cpuset_rwsem);
2891 
2892 	if (is_partition_root(cs))
2893 		update_prstate(cs, 0);
2894 
2895 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2896 	    is_sched_load_balance(cs))
2897 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2898 
2899 	if (cs->use_parent_ecpus) {
2900 		struct cpuset *parent = parent_cs(cs);
2901 
2902 		cs->use_parent_ecpus = false;
2903 		parent->child_ecpus_count--;
2904 	}
2905 
2906 	cpuset_dec();
2907 	clear_bit(CS_ONLINE, &cs->flags);
2908 
2909 	percpu_up_write(&cpuset_rwsem);
2910 	cpus_read_unlock();
2911 }
2912 
2913 static void cpuset_css_free(struct cgroup_subsys_state *css)
2914 {
2915 	struct cpuset *cs = css_cs(css);
2916 
2917 	free_cpuset(cs);
2918 }
2919 
2920 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2921 {
2922 	percpu_down_write(&cpuset_rwsem);
2923 	spin_lock_irq(&callback_lock);
2924 
2925 	if (is_in_v2_mode()) {
2926 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2927 		top_cpuset.mems_allowed = node_possible_map;
2928 	} else {
2929 		cpumask_copy(top_cpuset.cpus_allowed,
2930 			     top_cpuset.effective_cpus);
2931 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2932 	}
2933 
2934 	spin_unlock_irq(&callback_lock);
2935 	percpu_up_write(&cpuset_rwsem);
2936 }
2937 
2938 /*
2939  * Make sure the new task conform to the current state of its parent,
2940  * which could have been changed by cpuset just after it inherits the
2941  * state from the parent and before it sits on the cgroup's task list.
2942  */
2943 static void cpuset_fork(struct task_struct *task)
2944 {
2945 	if (task_css_is_root(task, cpuset_cgrp_id))
2946 		return;
2947 
2948 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2949 	task->mems_allowed = current->mems_allowed;
2950 }
2951 
2952 struct cgroup_subsys cpuset_cgrp_subsys = {
2953 	.css_alloc	= cpuset_css_alloc,
2954 	.css_online	= cpuset_css_online,
2955 	.css_offline	= cpuset_css_offline,
2956 	.css_free	= cpuset_css_free,
2957 	.can_attach	= cpuset_can_attach,
2958 	.cancel_attach	= cpuset_cancel_attach,
2959 	.attach		= cpuset_attach,
2960 	.post_attach	= cpuset_post_attach,
2961 	.bind		= cpuset_bind,
2962 	.fork		= cpuset_fork,
2963 	.legacy_cftypes	= legacy_files,
2964 	.dfl_cftypes	= dfl_files,
2965 	.early_init	= true,
2966 	.threaded	= true,
2967 };
2968 
2969 /**
2970  * cpuset_init - initialize cpusets at system boot
2971  *
2972  * Description: Initialize top_cpuset
2973  **/
2974 
2975 int __init cpuset_init(void)
2976 {
2977 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2978 
2979 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2980 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2981 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2982 
2983 	cpumask_setall(top_cpuset.cpus_allowed);
2984 	nodes_setall(top_cpuset.mems_allowed);
2985 	cpumask_setall(top_cpuset.effective_cpus);
2986 	nodes_setall(top_cpuset.effective_mems);
2987 
2988 	fmeter_init(&top_cpuset.fmeter);
2989 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2990 	top_cpuset.relax_domain_level = -1;
2991 
2992 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2993 
2994 	return 0;
2995 }
2996 
2997 /*
2998  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2999  * or memory nodes, we need to walk over the cpuset hierarchy,
3000  * removing that CPU or node from all cpusets.  If this removes the
3001  * last CPU or node from a cpuset, then move the tasks in the empty
3002  * cpuset to its next-highest non-empty parent.
3003  */
3004 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3005 {
3006 	struct cpuset *parent;
3007 
3008 	/*
3009 	 * Find its next-highest non-empty parent, (top cpuset
3010 	 * has online cpus, so can't be empty).
3011 	 */
3012 	parent = parent_cs(cs);
3013 	while (cpumask_empty(parent->cpus_allowed) ||
3014 			nodes_empty(parent->mems_allowed))
3015 		parent = parent_cs(parent);
3016 
3017 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3018 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3019 		pr_cont_cgroup_name(cs->css.cgroup);
3020 		pr_cont("\n");
3021 	}
3022 }
3023 
3024 static void
3025 hotplug_update_tasks_legacy(struct cpuset *cs,
3026 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3027 			    bool cpus_updated, bool mems_updated)
3028 {
3029 	bool is_empty;
3030 
3031 	spin_lock_irq(&callback_lock);
3032 	cpumask_copy(cs->cpus_allowed, new_cpus);
3033 	cpumask_copy(cs->effective_cpus, new_cpus);
3034 	cs->mems_allowed = *new_mems;
3035 	cs->effective_mems = *new_mems;
3036 	spin_unlock_irq(&callback_lock);
3037 
3038 	/*
3039 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3040 	 * as the tasks will be migratecd to an ancestor.
3041 	 */
3042 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3043 		update_tasks_cpumask(cs);
3044 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3045 		update_tasks_nodemask(cs);
3046 
3047 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3048 		   nodes_empty(cs->mems_allowed);
3049 
3050 	percpu_up_write(&cpuset_rwsem);
3051 
3052 	/*
3053 	 * Move tasks to the nearest ancestor with execution resources,
3054 	 * This is full cgroup operation which will also call back into
3055 	 * cpuset. Should be done outside any lock.
3056 	 */
3057 	if (is_empty)
3058 		remove_tasks_in_empty_cpuset(cs);
3059 
3060 	percpu_down_write(&cpuset_rwsem);
3061 }
3062 
3063 static void
3064 hotplug_update_tasks(struct cpuset *cs,
3065 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3066 		     bool cpus_updated, bool mems_updated)
3067 {
3068 	if (cpumask_empty(new_cpus))
3069 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3070 	if (nodes_empty(*new_mems))
3071 		*new_mems = parent_cs(cs)->effective_mems;
3072 
3073 	spin_lock_irq(&callback_lock);
3074 	cpumask_copy(cs->effective_cpus, new_cpus);
3075 	cs->effective_mems = *new_mems;
3076 	spin_unlock_irq(&callback_lock);
3077 
3078 	if (cpus_updated)
3079 		update_tasks_cpumask(cs);
3080 	if (mems_updated)
3081 		update_tasks_nodemask(cs);
3082 }
3083 
3084 static bool force_rebuild;
3085 
3086 void cpuset_force_rebuild(void)
3087 {
3088 	force_rebuild = true;
3089 }
3090 
3091 /**
3092  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3093  * @cs: cpuset in interest
3094  * @tmp: the tmpmasks structure pointer
3095  *
3096  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3097  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3098  * all its tasks are moved to the nearest ancestor with both resources.
3099  */
3100 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3101 {
3102 	static cpumask_t new_cpus;
3103 	static nodemask_t new_mems;
3104 	bool cpus_updated;
3105 	bool mems_updated;
3106 	struct cpuset *parent;
3107 retry:
3108 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3109 
3110 	percpu_down_write(&cpuset_rwsem);
3111 
3112 	/*
3113 	 * We have raced with task attaching. We wait until attaching
3114 	 * is finished, so we won't attach a task to an empty cpuset.
3115 	 */
3116 	if (cs->attach_in_progress) {
3117 		percpu_up_write(&cpuset_rwsem);
3118 		goto retry;
3119 	}
3120 
3121 	parent = parent_cs(cs);
3122 	compute_effective_cpumask(&new_cpus, cs, parent);
3123 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3124 
3125 	if (cs->nr_subparts_cpus)
3126 		/*
3127 		 * Make sure that CPUs allocated to child partitions
3128 		 * do not show up in effective_cpus.
3129 		 */
3130 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3131 
3132 	if (!tmp || !cs->partition_root_state)
3133 		goto update_tasks;
3134 
3135 	/*
3136 	 * In the unlikely event that a partition root has empty
3137 	 * effective_cpus or its parent becomes erroneous, we have to
3138 	 * transition it to the erroneous state.
3139 	 */
3140 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3141 	   (parent->partition_root_state == PRS_ERROR))) {
3142 		if (cs->nr_subparts_cpus) {
3143 			spin_lock_irq(&callback_lock);
3144 			cs->nr_subparts_cpus = 0;
3145 			cpumask_clear(cs->subparts_cpus);
3146 			spin_unlock_irq(&callback_lock);
3147 			compute_effective_cpumask(&new_cpus, cs, parent);
3148 		}
3149 
3150 		/*
3151 		 * If the effective_cpus is empty because the child
3152 		 * partitions take away all the CPUs, we can keep
3153 		 * the current partition and let the child partitions
3154 		 * fight for available CPUs.
3155 		 */
3156 		if ((parent->partition_root_state == PRS_ERROR) ||
3157 		     cpumask_empty(&new_cpus)) {
3158 			int old_prs;
3159 
3160 			update_parent_subparts_cpumask(cs, partcmd_disable,
3161 						       NULL, tmp);
3162 			old_prs = cs->partition_root_state;
3163 			if (old_prs != PRS_ERROR) {
3164 				spin_lock_irq(&callback_lock);
3165 				cs->partition_root_state = PRS_ERROR;
3166 				spin_unlock_irq(&callback_lock);
3167 				notify_partition_change(cs, old_prs, PRS_ERROR);
3168 			}
3169 		}
3170 		cpuset_force_rebuild();
3171 	}
3172 
3173 	/*
3174 	 * On the other hand, an erroneous partition root may be transitioned
3175 	 * back to a regular one or a partition root with no CPU allocated
3176 	 * from the parent may change to erroneous.
3177 	 */
3178 	if (is_partition_root(parent) &&
3179 	   ((cs->partition_root_state == PRS_ERROR) ||
3180 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3181 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3182 		cpuset_force_rebuild();
3183 
3184 update_tasks:
3185 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3186 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3187 
3188 	if (mems_updated)
3189 		check_insane_mems_config(&new_mems);
3190 
3191 	if (is_in_v2_mode())
3192 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3193 				     cpus_updated, mems_updated);
3194 	else
3195 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3196 					    cpus_updated, mems_updated);
3197 
3198 	percpu_up_write(&cpuset_rwsem);
3199 }
3200 
3201 /**
3202  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3203  *
3204  * This function is called after either CPU or memory configuration has
3205  * changed and updates cpuset accordingly.  The top_cpuset is always
3206  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3207  * order to make cpusets transparent (of no affect) on systems that are
3208  * actively using CPU hotplug but making no active use of cpusets.
3209  *
3210  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3211  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3212  * all descendants.
3213  *
3214  * Note that CPU offlining during suspend is ignored.  We don't modify
3215  * cpusets across suspend/resume cycles at all.
3216  */
3217 static void cpuset_hotplug_workfn(struct work_struct *work)
3218 {
3219 	static cpumask_t new_cpus;
3220 	static nodemask_t new_mems;
3221 	bool cpus_updated, mems_updated;
3222 	bool on_dfl = is_in_v2_mode();
3223 	struct tmpmasks tmp, *ptmp = NULL;
3224 
3225 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3226 		ptmp = &tmp;
3227 
3228 	percpu_down_write(&cpuset_rwsem);
3229 
3230 	/* fetch the available cpus/mems and find out which changed how */
3231 	cpumask_copy(&new_cpus, cpu_active_mask);
3232 	new_mems = node_states[N_MEMORY];
3233 
3234 	/*
3235 	 * If subparts_cpus is populated, it is likely that the check below
3236 	 * will produce a false positive on cpus_updated when the cpu list
3237 	 * isn't changed. It is extra work, but it is better to be safe.
3238 	 */
3239 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3240 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3241 
3242 	/*
3243 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3244 	 * we assumed that cpus are updated.
3245 	 */
3246 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3247 		cpus_updated = true;
3248 
3249 	/* synchronize cpus_allowed to cpu_active_mask */
3250 	if (cpus_updated) {
3251 		spin_lock_irq(&callback_lock);
3252 		if (!on_dfl)
3253 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3254 		/*
3255 		 * Make sure that CPUs allocated to child partitions
3256 		 * do not show up in effective_cpus. If no CPU is left,
3257 		 * we clear the subparts_cpus & let the child partitions
3258 		 * fight for the CPUs again.
3259 		 */
3260 		if (top_cpuset.nr_subparts_cpus) {
3261 			if (cpumask_subset(&new_cpus,
3262 					   top_cpuset.subparts_cpus)) {
3263 				top_cpuset.nr_subparts_cpus = 0;
3264 				cpumask_clear(top_cpuset.subparts_cpus);
3265 			} else {
3266 				cpumask_andnot(&new_cpus, &new_cpus,
3267 					       top_cpuset.subparts_cpus);
3268 			}
3269 		}
3270 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3271 		spin_unlock_irq(&callback_lock);
3272 		/* we don't mess with cpumasks of tasks in top_cpuset */
3273 	}
3274 
3275 	/* synchronize mems_allowed to N_MEMORY */
3276 	if (mems_updated) {
3277 		spin_lock_irq(&callback_lock);
3278 		if (!on_dfl)
3279 			top_cpuset.mems_allowed = new_mems;
3280 		top_cpuset.effective_mems = new_mems;
3281 		spin_unlock_irq(&callback_lock);
3282 		update_tasks_nodemask(&top_cpuset);
3283 	}
3284 
3285 	percpu_up_write(&cpuset_rwsem);
3286 
3287 	/* if cpus or mems changed, we need to propagate to descendants */
3288 	if (cpus_updated || mems_updated) {
3289 		struct cpuset *cs;
3290 		struct cgroup_subsys_state *pos_css;
3291 
3292 		rcu_read_lock();
3293 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3294 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3295 				continue;
3296 			rcu_read_unlock();
3297 
3298 			cpuset_hotplug_update_tasks(cs, ptmp);
3299 
3300 			rcu_read_lock();
3301 			css_put(&cs->css);
3302 		}
3303 		rcu_read_unlock();
3304 	}
3305 
3306 	/* rebuild sched domains if cpus_allowed has changed */
3307 	if (cpus_updated || force_rebuild) {
3308 		force_rebuild = false;
3309 		rebuild_sched_domains();
3310 	}
3311 
3312 	free_cpumasks(NULL, ptmp);
3313 }
3314 
3315 void cpuset_update_active_cpus(void)
3316 {
3317 	/*
3318 	 * We're inside cpu hotplug critical region which usually nests
3319 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3320 	 * to a work item to avoid reverse locking order.
3321 	 */
3322 	schedule_work(&cpuset_hotplug_work);
3323 }
3324 
3325 void cpuset_wait_for_hotplug(void)
3326 {
3327 	flush_work(&cpuset_hotplug_work);
3328 }
3329 
3330 /*
3331  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3332  * Call this routine anytime after node_states[N_MEMORY] changes.
3333  * See cpuset_update_active_cpus() for CPU hotplug handling.
3334  */
3335 static int cpuset_track_online_nodes(struct notifier_block *self,
3336 				unsigned long action, void *arg)
3337 {
3338 	schedule_work(&cpuset_hotplug_work);
3339 	return NOTIFY_OK;
3340 }
3341 
3342 static struct notifier_block cpuset_track_online_nodes_nb = {
3343 	.notifier_call = cpuset_track_online_nodes,
3344 	.priority = 10,		/* ??! */
3345 };
3346 
3347 /**
3348  * cpuset_init_smp - initialize cpus_allowed
3349  *
3350  * Description: Finish top cpuset after cpu, node maps are initialized
3351  */
3352 void __init cpuset_init_smp(void)
3353 {
3354 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3355 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3356 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3357 
3358 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3359 	top_cpuset.effective_mems = node_states[N_MEMORY];
3360 
3361 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3362 
3363 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3364 	BUG_ON(!cpuset_migrate_mm_wq);
3365 }
3366 
3367 /**
3368  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3369  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3370  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3371  *
3372  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3373  * attached to the specified @tsk.  Guaranteed to return some non-empty
3374  * subset of cpu_online_mask, even if this means going outside the
3375  * tasks cpuset.
3376  **/
3377 
3378 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3379 {
3380 	unsigned long flags;
3381 
3382 	spin_lock_irqsave(&callback_lock, flags);
3383 	guarantee_online_cpus(tsk, pmask);
3384 	spin_unlock_irqrestore(&callback_lock, flags);
3385 }
3386 
3387 /**
3388  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3389  * @tsk: pointer to task_struct with which the scheduler is struggling
3390  *
3391  * Description: In the case that the scheduler cannot find an allowed cpu in
3392  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3393  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3394  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3395  * This is the absolute last resort for the scheduler and it is only used if
3396  * _every_ other avenue has been traveled.
3397  *
3398  * Returns true if the affinity of @tsk was changed, false otherwise.
3399  **/
3400 
3401 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3402 {
3403 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3404 	const struct cpumask *cs_mask;
3405 	bool changed = false;
3406 
3407 	rcu_read_lock();
3408 	cs_mask = task_cs(tsk)->cpus_allowed;
3409 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3410 		do_set_cpus_allowed(tsk, cs_mask);
3411 		changed = true;
3412 	}
3413 	rcu_read_unlock();
3414 
3415 	/*
3416 	 * We own tsk->cpus_allowed, nobody can change it under us.
3417 	 *
3418 	 * But we used cs && cs->cpus_allowed lockless and thus can
3419 	 * race with cgroup_attach_task() or update_cpumask() and get
3420 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3421 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3422 	 * which takes task_rq_lock().
3423 	 *
3424 	 * If we are called after it dropped the lock we must see all
3425 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3426 	 * set any mask even if it is not right from task_cs() pov,
3427 	 * the pending set_cpus_allowed_ptr() will fix things.
3428 	 *
3429 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3430 	 * if required.
3431 	 */
3432 	return changed;
3433 }
3434 
3435 void __init cpuset_init_current_mems_allowed(void)
3436 {
3437 	nodes_setall(current->mems_allowed);
3438 }
3439 
3440 /**
3441  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3442  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3443  *
3444  * Description: Returns the nodemask_t mems_allowed of the cpuset
3445  * attached to the specified @tsk.  Guaranteed to return some non-empty
3446  * subset of node_states[N_MEMORY], even if this means going outside the
3447  * tasks cpuset.
3448  **/
3449 
3450 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3451 {
3452 	nodemask_t mask;
3453 	unsigned long flags;
3454 
3455 	spin_lock_irqsave(&callback_lock, flags);
3456 	rcu_read_lock();
3457 	guarantee_online_mems(task_cs(tsk), &mask);
3458 	rcu_read_unlock();
3459 	spin_unlock_irqrestore(&callback_lock, flags);
3460 
3461 	return mask;
3462 }
3463 
3464 /**
3465  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3466  * @nodemask: the nodemask to be checked
3467  *
3468  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3469  */
3470 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3471 {
3472 	return nodes_intersects(*nodemask, current->mems_allowed);
3473 }
3474 
3475 /*
3476  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3477  * mem_hardwall ancestor to the specified cpuset.  Call holding
3478  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3479  * (an unusual configuration), then returns the root cpuset.
3480  */
3481 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3482 {
3483 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3484 		cs = parent_cs(cs);
3485 	return cs;
3486 }
3487 
3488 /**
3489  * cpuset_node_allowed - Can we allocate on a memory node?
3490  * @node: is this an allowed node?
3491  * @gfp_mask: memory allocation flags
3492  *
3493  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3494  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3495  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3496  * yes.  If current has access to memory reserves as an oom victim, yes.
3497  * Otherwise, no.
3498  *
3499  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3500  * and do not allow allocations outside the current tasks cpuset
3501  * unless the task has been OOM killed.
3502  * GFP_KERNEL allocations are not so marked, so can escape to the
3503  * nearest enclosing hardwalled ancestor cpuset.
3504  *
3505  * Scanning up parent cpusets requires callback_lock.  The
3506  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3507  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3508  * current tasks mems_allowed came up empty on the first pass over
3509  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3510  * cpuset are short of memory, might require taking the callback_lock.
3511  *
3512  * The first call here from mm/page_alloc:get_page_from_freelist()
3513  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3514  * so no allocation on a node outside the cpuset is allowed (unless
3515  * in interrupt, of course).
3516  *
3517  * The second pass through get_page_from_freelist() doesn't even call
3518  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3519  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3520  * in alloc_flags.  That logic and the checks below have the combined
3521  * affect that:
3522  *	in_interrupt - any node ok (current task context irrelevant)
3523  *	GFP_ATOMIC   - any node ok
3524  *	tsk_is_oom_victim   - any node ok
3525  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3526  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3527  */
3528 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3529 {
3530 	struct cpuset *cs;		/* current cpuset ancestors */
3531 	bool allowed;			/* is allocation in zone z allowed? */
3532 	unsigned long flags;
3533 
3534 	if (in_interrupt())
3535 		return true;
3536 	if (node_isset(node, current->mems_allowed))
3537 		return true;
3538 	/*
3539 	 * Allow tasks that have access to memory reserves because they have
3540 	 * been OOM killed to get memory anywhere.
3541 	 */
3542 	if (unlikely(tsk_is_oom_victim(current)))
3543 		return true;
3544 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3545 		return false;
3546 
3547 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3548 		return true;
3549 
3550 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3551 	spin_lock_irqsave(&callback_lock, flags);
3552 
3553 	rcu_read_lock();
3554 	cs = nearest_hardwall_ancestor(task_cs(current));
3555 	allowed = node_isset(node, cs->mems_allowed);
3556 	rcu_read_unlock();
3557 
3558 	spin_unlock_irqrestore(&callback_lock, flags);
3559 	return allowed;
3560 }
3561 
3562 /**
3563  * cpuset_mem_spread_node() - On which node to begin search for a file page
3564  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3565  *
3566  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3567  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3568  * and if the memory allocation used cpuset_mem_spread_node()
3569  * to determine on which node to start looking, as it will for
3570  * certain page cache or slab cache pages such as used for file
3571  * system buffers and inode caches, then instead of starting on the
3572  * local node to look for a free page, rather spread the starting
3573  * node around the tasks mems_allowed nodes.
3574  *
3575  * We don't have to worry about the returned node being offline
3576  * because "it can't happen", and even if it did, it would be ok.
3577  *
3578  * The routines calling guarantee_online_mems() are careful to
3579  * only set nodes in task->mems_allowed that are online.  So it
3580  * should not be possible for the following code to return an
3581  * offline node.  But if it did, that would be ok, as this routine
3582  * is not returning the node where the allocation must be, only
3583  * the node where the search should start.  The zonelist passed to
3584  * __alloc_pages() will include all nodes.  If the slab allocator
3585  * is passed an offline node, it will fall back to the local node.
3586  * See kmem_cache_alloc_node().
3587  */
3588 
3589 static int cpuset_spread_node(int *rotor)
3590 {
3591 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3592 }
3593 
3594 int cpuset_mem_spread_node(void)
3595 {
3596 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3597 		current->cpuset_mem_spread_rotor =
3598 			node_random(&current->mems_allowed);
3599 
3600 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3601 }
3602 
3603 int cpuset_slab_spread_node(void)
3604 {
3605 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3606 		current->cpuset_slab_spread_rotor =
3607 			node_random(&current->mems_allowed);
3608 
3609 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3610 }
3611 
3612 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3613 
3614 /**
3615  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3616  * @tsk1: pointer to task_struct of some task.
3617  * @tsk2: pointer to task_struct of some other task.
3618  *
3619  * Description: Return true if @tsk1's mems_allowed intersects the
3620  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3621  * one of the task's memory usage might impact the memory available
3622  * to the other.
3623  **/
3624 
3625 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3626 				   const struct task_struct *tsk2)
3627 {
3628 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3629 }
3630 
3631 /**
3632  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3633  *
3634  * Description: Prints current's name, cpuset name, and cached copy of its
3635  * mems_allowed to the kernel log.
3636  */
3637 void cpuset_print_current_mems_allowed(void)
3638 {
3639 	struct cgroup *cgrp;
3640 
3641 	rcu_read_lock();
3642 
3643 	cgrp = task_cs(current)->css.cgroup;
3644 	pr_cont(",cpuset=");
3645 	pr_cont_cgroup_name(cgrp);
3646 	pr_cont(",mems_allowed=%*pbl",
3647 		nodemask_pr_args(&current->mems_allowed));
3648 
3649 	rcu_read_unlock();
3650 }
3651 
3652 /*
3653  * Collection of memory_pressure is suppressed unless
3654  * this flag is enabled by writing "1" to the special
3655  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3656  */
3657 
3658 int cpuset_memory_pressure_enabled __read_mostly;
3659 
3660 /**
3661  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3662  *
3663  * Keep a running average of the rate of synchronous (direct)
3664  * page reclaim efforts initiated by tasks in each cpuset.
3665  *
3666  * This represents the rate at which some task in the cpuset
3667  * ran low on memory on all nodes it was allowed to use, and
3668  * had to enter the kernels page reclaim code in an effort to
3669  * create more free memory by tossing clean pages or swapping
3670  * or writing dirty pages.
3671  *
3672  * Display to user space in the per-cpuset read-only file
3673  * "memory_pressure".  Value displayed is an integer
3674  * representing the recent rate of entry into the synchronous
3675  * (direct) page reclaim by any task attached to the cpuset.
3676  **/
3677 
3678 void __cpuset_memory_pressure_bump(void)
3679 {
3680 	rcu_read_lock();
3681 	fmeter_markevent(&task_cs(current)->fmeter);
3682 	rcu_read_unlock();
3683 }
3684 
3685 #ifdef CONFIG_PROC_PID_CPUSET
3686 /*
3687  * proc_cpuset_show()
3688  *  - Print tasks cpuset path into seq_file.
3689  *  - Used for /proc/<pid>/cpuset.
3690  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3691  *    doesn't really matter if tsk->cpuset changes after we read it,
3692  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3693  *    anyway.
3694  */
3695 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3696 		     struct pid *pid, struct task_struct *tsk)
3697 {
3698 	char *buf;
3699 	struct cgroup_subsys_state *css;
3700 	int retval;
3701 
3702 	retval = -ENOMEM;
3703 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3704 	if (!buf)
3705 		goto out;
3706 
3707 	css = task_get_css(tsk, cpuset_cgrp_id);
3708 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3709 				current->nsproxy->cgroup_ns);
3710 	css_put(css);
3711 	if (retval >= PATH_MAX)
3712 		retval = -ENAMETOOLONG;
3713 	if (retval < 0)
3714 		goto out_free;
3715 	seq_puts(m, buf);
3716 	seq_putc(m, '\n');
3717 	retval = 0;
3718 out_free:
3719 	kfree(buf);
3720 out:
3721 	return retval;
3722 }
3723 #endif /* CONFIG_PROC_PID_CPUSET */
3724 
3725 /* Display task mems_allowed in /proc/<pid>/status file. */
3726 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3727 {
3728 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3729 		   nodemask_pr_args(&task->mems_allowed));
3730 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3731 		   nodemask_pr_args(&task->mems_allowed));
3732 }
3733