xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /*
73  * There could be abnormal cpuset configurations for cpu or memory
74  * node binding, add this key to provide a quick low-cost judgement
75  * of the situation.
76  */
77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
78 
79 /* See "Frequency meter" comments, below. */
80 
81 struct fmeter {
82 	int cnt;		/* unprocessed events count */
83 	int val;		/* most recent output value */
84 	time64_t time;		/* clock (secs) when val computed */
85 	spinlock_t lock;	/* guards read or write of above */
86 };
87 
88 struct cpuset {
89 	struct cgroup_subsys_state css;
90 
91 	unsigned long flags;		/* "unsigned long" so bitops work */
92 
93 	/*
94 	 * On default hierarchy:
95 	 *
96 	 * The user-configured masks can only be changed by writing to
97 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
98 	 * parent masks.
99 	 *
100 	 * The effective masks is the real masks that apply to the tasks
101 	 * in the cpuset. They may be changed if the configured masks are
102 	 * changed or hotplug happens.
103 	 *
104 	 * effective_mask == configured_mask & parent's effective_mask,
105 	 * and if it ends up empty, it will inherit the parent's mask.
106 	 *
107 	 *
108 	 * On legacy hierarchy:
109 	 *
110 	 * The user-configured masks are always the same with effective masks.
111 	 */
112 
113 	/* user-configured CPUs and Memory Nodes allow to tasks */
114 	cpumask_var_t cpus_allowed;
115 	nodemask_t mems_allowed;
116 
117 	/* effective CPUs and Memory Nodes allow to tasks */
118 	cpumask_var_t effective_cpus;
119 	nodemask_t effective_mems;
120 
121 	/*
122 	 * CPUs allocated to child sub-partitions (default hierarchy only)
123 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
124 	 * - effective_cpus and subparts_cpus are mutually exclusive.
125 	 *
126 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
127 	 * may have offlined ones.
128 	 */
129 	cpumask_var_t subparts_cpus;
130 
131 	/*
132 	 * This is old Memory Nodes tasks took on.
133 	 *
134 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
135 	 * - A new cpuset's old_mems_allowed is initialized when some
136 	 *   task is moved into it.
137 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
138 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
139 	 *   then old_mems_allowed is updated to mems_allowed.
140 	 */
141 	nodemask_t old_mems_allowed;
142 
143 	struct fmeter fmeter;		/* memory_pressure filter */
144 
145 	/*
146 	 * Tasks are being attached to this cpuset.  Used to prevent
147 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
148 	 */
149 	int attach_in_progress;
150 
151 	/* partition number for rebuild_sched_domains() */
152 	int pn;
153 
154 	/* for custom sched domain */
155 	int relax_domain_level;
156 
157 	/* number of CPUs in subparts_cpus */
158 	int nr_subparts_cpus;
159 
160 	/* partition root state */
161 	int partition_root_state;
162 
163 	/*
164 	 * Default hierarchy only:
165 	 * use_parent_ecpus - set if using parent's effective_cpus
166 	 * child_ecpus_count - # of children with use_parent_ecpus set
167 	 */
168 	int use_parent_ecpus;
169 	int child_ecpus_count;
170 
171 	/* Handle for cpuset.cpus.partition */
172 	struct cgroup_file partition_file;
173 };
174 
175 /*
176  * Partition root states:
177  *
178  *   0 - not a partition root
179  *
180  *   1 - partition root
181  *
182  *  -1 - invalid partition root
183  *       None of the cpus in cpus_allowed can be put into the parent's
184  *       subparts_cpus. In this case, the cpuset is not a real partition
185  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
186  *       and the cpuset can be restored back to a partition root if the
187  *       parent cpuset can give more CPUs back to this child cpuset.
188  */
189 #define PRS_DISABLED		0
190 #define PRS_ENABLED		1
191 #define PRS_ERROR		-1
192 
193 /*
194  * Temporary cpumasks for working with partitions that are passed among
195  * functions to avoid memory allocation in inner functions.
196  */
197 struct tmpmasks {
198 	cpumask_var_t addmask, delmask;	/* For partition root */
199 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
200 };
201 
202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
203 {
204 	return css ? container_of(css, struct cpuset, css) : NULL;
205 }
206 
207 /* Retrieve the cpuset for a task */
208 static inline struct cpuset *task_cs(struct task_struct *task)
209 {
210 	return css_cs(task_css(task, cpuset_cgrp_id));
211 }
212 
213 static inline struct cpuset *parent_cs(struct cpuset *cs)
214 {
215 	return css_cs(cs->css.parent);
216 }
217 
218 /* bits in struct cpuset flags field */
219 typedef enum {
220 	CS_ONLINE,
221 	CS_CPU_EXCLUSIVE,
222 	CS_MEM_EXCLUSIVE,
223 	CS_MEM_HARDWALL,
224 	CS_MEMORY_MIGRATE,
225 	CS_SCHED_LOAD_BALANCE,
226 	CS_SPREAD_PAGE,
227 	CS_SPREAD_SLAB,
228 } cpuset_flagbits_t;
229 
230 /* convenient tests for these bits */
231 static inline bool is_cpuset_online(struct cpuset *cs)
232 {
233 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
234 }
235 
236 static inline int is_cpu_exclusive(const struct cpuset *cs)
237 {
238 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
239 }
240 
241 static inline int is_mem_exclusive(const struct cpuset *cs)
242 {
243 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
244 }
245 
246 static inline int is_mem_hardwall(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
249 }
250 
251 static inline int is_sched_load_balance(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
254 }
255 
256 static inline int is_memory_migrate(const struct cpuset *cs)
257 {
258 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
259 }
260 
261 static inline int is_spread_page(const struct cpuset *cs)
262 {
263 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
264 }
265 
266 static inline int is_spread_slab(const struct cpuset *cs)
267 {
268 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
269 }
270 
271 static inline int is_partition_root(const struct cpuset *cs)
272 {
273 	return cs->partition_root_state > 0;
274 }
275 
276 /*
277  * Send notification event of whenever partition_root_state changes.
278  */
279 static inline void notify_partition_change(struct cpuset *cs,
280 					   int old_prs, int new_prs)
281 {
282 	if (old_prs != new_prs)
283 		cgroup_file_notify(&cs->partition_file);
284 }
285 
286 static struct cpuset top_cpuset = {
287 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
288 		  (1 << CS_MEM_EXCLUSIVE)),
289 	.partition_root_state = PRS_ENABLED,
290 };
291 
292 /**
293  * cpuset_for_each_child - traverse online children of a cpuset
294  * @child_cs: loop cursor pointing to the current child
295  * @pos_css: used for iteration
296  * @parent_cs: target cpuset to walk children of
297  *
298  * Walk @child_cs through the online children of @parent_cs.  Must be used
299  * with RCU read locked.
300  */
301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
302 	css_for_each_child((pos_css), &(parent_cs)->css)		\
303 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
304 
305 /**
306  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
307  * @des_cs: loop cursor pointing to the current descendant
308  * @pos_css: used for iteration
309  * @root_cs: target cpuset to walk ancestor of
310  *
311  * Walk @des_cs through the online descendants of @root_cs.  Must be used
312  * with RCU read locked.  The caller may modify @pos_css by calling
313  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
314  * iteration and the first node to be visited.
315  */
316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
317 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
318 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
319 
320 /*
321  * There are two global locks guarding cpuset structures - cpuset_rwsem and
322  * callback_lock. We also require taking task_lock() when dereferencing a
323  * task's cpuset pointer. See "The task_lock() exception", at the end of this
324  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
325  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
326  * prevent change to cpuset structures.
327  *
328  * A task must hold both locks to modify cpusets.  If a task holds
329  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
330  * is the only task able to also acquire callback_lock and be able to
331  * modify cpusets.  It can perform various checks on the cpuset structure
332  * first, knowing nothing will change.  It can also allocate memory while
333  * just holding cpuset_rwsem.  While it is performing these checks, various
334  * callback routines can briefly acquire callback_lock to query cpusets.
335  * Once it is ready to make the changes, it takes callback_lock, blocking
336  * everyone else.
337  *
338  * Calls to the kernel memory allocator can not be made while holding
339  * callback_lock, as that would risk double tripping on callback_lock
340  * from one of the callbacks into the cpuset code from within
341  * __alloc_pages().
342  *
343  * If a task is only holding callback_lock, then it has read-only
344  * access to cpusets.
345  *
346  * Now, the task_struct fields mems_allowed and mempolicy may be changed
347  * by other task, we use alloc_lock in the task_struct fields to protect
348  * them.
349  *
350  * The cpuset_common_file_read() handlers only hold callback_lock across
351  * small pieces of code, such as when reading out possibly multi-word
352  * cpumasks and nodemasks.
353  *
354  * Accessing a task's cpuset should be done in accordance with the
355  * guidelines for accessing subsystem state in kernel/cgroup.c
356  */
357 
358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
359 
360 void cpuset_read_lock(void)
361 {
362 	percpu_down_read(&cpuset_rwsem);
363 }
364 
365 void cpuset_read_unlock(void)
366 {
367 	percpu_up_read(&cpuset_rwsem);
368 }
369 
370 static DEFINE_SPINLOCK(callback_lock);
371 
372 static struct workqueue_struct *cpuset_migrate_mm_wq;
373 
374 /*
375  * CPU / memory hotplug is handled asynchronously.
376  */
377 static void cpuset_hotplug_workfn(struct work_struct *work);
378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
379 
380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
381 
382 static inline void check_insane_mems_config(nodemask_t *nodes)
383 {
384 	if (!cpusets_insane_config() &&
385 		movable_only_nodes(nodes)) {
386 		static_branch_enable(&cpusets_insane_config_key);
387 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
388 			"Cpuset allocations might fail even with a lot of memory available.\n",
389 			nodemask_pr_args(nodes));
390 	}
391 }
392 
393 /*
394  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
395  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
396  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
397  * With v2 behavior, "cpus" and "mems" are always what the users have
398  * requested and won't be changed by hotplug events. Only the effective
399  * cpus or mems will be affected.
400  */
401 static inline bool is_in_v2_mode(void)
402 {
403 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
404 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
405 }
406 
407 /*
408  * Return in pmask the portion of a task's cpusets's cpus_allowed that
409  * are online and are capable of running the task.  If none are found,
410  * walk up the cpuset hierarchy until we find one that does have some
411  * appropriate cpus.
412  *
413  * One way or another, we guarantee to return some non-empty subset
414  * of cpu_online_mask.
415  *
416  * Call with callback_lock or cpuset_rwsem held.
417  */
418 static void guarantee_online_cpus(struct task_struct *tsk,
419 				  struct cpumask *pmask)
420 {
421 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
422 	struct cpuset *cs;
423 
424 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
425 		cpumask_copy(pmask, cpu_online_mask);
426 
427 	rcu_read_lock();
428 	cs = task_cs(tsk);
429 
430 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
431 		cs = parent_cs(cs);
432 		if (unlikely(!cs)) {
433 			/*
434 			 * The top cpuset doesn't have any online cpu as a
435 			 * consequence of a race between cpuset_hotplug_work
436 			 * and cpu hotplug notifier.  But we know the top
437 			 * cpuset's effective_cpus is on its way to be
438 			 * identical to cpu_online_mask.
439 			 */
440 			goto out_unlock;
441 		}
442 	}
443 	cpumask_and(pmask, pmask, cs->effective_cpus);
444 
445 out_unlock:
446 	rcu_read_unlock();
447 }
448 
449 /*
450  * Return in *pmask the portion of a cpusets's mems_allowed that
451  * are online, with memory.  If none are online with memory, walk
452  * up the cpuset hierarchy until we find one that does have some
453  * online mems.  The top cpuset always has some mems online.
454  *
455  * One way or another, we guarantee to return some non-empty subset
456  * of node_states[N_MEMORY].
457  *
458  * Call with callback_lock or cpuset_rwsem held.
459  */
460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
461 {
462 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
463 		cs = parent_cs(cs);
464 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
465 }
466 
467 /*
468  * update task's spread flag if cpuset's page/slab spread flag is set
469  *
470  * Call with callback_lock or cpuset_rwsem held.
471  */
472 static void cpuset_update_task_spread_flag(struct cpuset *cs,
473 					struct task_struct *tsk)
474 {
475 	if (is_spread_page(cs))
476 		task_set_spread_page(tsk);
477 	else
478 		task_clear_spread_page(tsk);
479 
480 	if (is_spread_slab(cs))
481 		task_set_spread_slab(tsk);
482 	else
483 		task_clear_spread_slab(tsk);
484 }
485 
486 /*
487  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
488  *
489  * One cpuset is a subset of another if all its allowed CPUs and
490  * Memory Nodes are a subset of the other, and its exclusive flags
491  * are only set if the other's are set.  Call holding cpuset_rwsem.
492  */
493 
494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
495 {
496 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
497 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
498 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
499 		is_mem_exclusive(p) <= is_mem_exclusive(q);
500 }
501 
502 /**
503  * alloc_cpumasks - allocate three cpumasks for cpuset
504  * @cs:  the cpuset that have cpumasks to be allocated.
505  * @tmp: the tmpmasks structure pointer
506  * Return: 0 if successful, -ENOMEM otherwise.
507  *
508  * Only one of the two input arguments should be non-NULL.
509  */
510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
511 {
512 	cpumask_var_t *pmask1, *pmask2, *pmask3;
513 
514 	if (cs) {
515 		pmask1 = &cs->cpus_allowed;
516 		pmask2 = &cs->effective_cpus;
517 		pmask3 = &cs->subparts_cpus;
518 	} else {
519 		pmask1 = &tmp->new_cpus;
520 		pmask2 = &tmp->addmask;
521 		pmask3 = &tmp->delmask;
522 	}
523 
524 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
525 		return -ENOMEM;
526 
527 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
528 		goto free_one;
529 
530 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
531 		goto free_two;
532 
533 	return 0;
534 
535 free_two:
536 	free_cpumask_var(*pmask2);
537 free_one:
538 	free_cpumask_var(*pmask1);
539 	return -ENOMEM;
540 }
541 
542 /**
543  * free_cpumasks - free cpumasks in a tmpmasks structure
544  * @cs:  the cpuset that have cpumasks to be free.
545  * @tmp: the tmpmasks structure pointer
546  */
547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
548 {
549 	if (cs) {
550 		free_cpumask_var(cs->cpus_allowed);
551 		free_cpumask_var(cs->effective_cpus);
552 		free_cpumask_var(cs->subparts_cpus);
553 	}
554 	if (tmp) {
555 		free_cpumask_var(tmp->new_cpus);
556 		free_cpumask_var(tmp->addmask);
557 		free_cpumask_var(tmp->delmask);
558 	}
559 }
560 
561 /**
562  * alloc_trial_cpuset - allocate a trial cpuset
563  * @cs: the cpuset that the trial cpuset duplicates
564  */
565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 	struct cpuset *trial;
568 
569 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 	if (!trial)
571 		return NULL;
572 
573 	if (alloc_cpumasks(trial, NULL)) {
574 		kfree(trial);
575 		return NULL;
576 	}
577 
578 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
580 	return trial;
581 }
582 
583 /**
584  * free_cpuset - free the cpuset
585  * @cs: the cpuset to be freed
586  */
587 static inline void free_cpuset(struct cpuset *cs)
588 {
589 	free_cpumasks(cs, NULL);
590 	kfree(cs);
591 }
592 
593 /*
594  * validate_change() - Used to validate that any proposed cpuset change
595  *		       follows the structural rules for cpusets.
596  *
597  * If we replaced the flag and mask values of the current cpuset
598  * (cur) with those values in the trial cpuset (trial), would
599  * our various subset and exclusive rules still be valid?  Presumes
600  * cpuset_rwsem held.
601  *
602  * 'cur' is the address of an actual, in-use cpuset.  Operations
603  * such as list traversal that depend on the actual address of the
604  * cpuset in the list must use cur below, not trial.
605  *
606  * 'trial' is the address of bulk structure copy of cur, with
607  * perhaps one or more of the fields cpus_allowed, mems_allowed,
608  * or flags changed to new, trial values.
609  *
610  * Return 0 if valid, -errno if not.
611  */
612 
613 static int validate_change(struct cpuset *cur, struct cpuset *trial)
614 {
615 	struct cgroup_subsys_state *css;
616 	struct cpuset *c, *par;
617 	int ret;
618 
619 	rcu_read_lock();
620 
621 	/* Each of our child cpusets must be a subset of us */
622 	ret = -EBUSY;
623 	cpuset_for_each_child(c, css, cur)
624 		if (!is_cpuset_subset(c, trial))
625 			goto out;
626 
627 	/* Remaining checks don't apply to root cpuset */
628 	ret = 0;
629 	if (cur == &top_cpuset)
630 		goto out;
631 
632 	par = parent_cs(cur);
633 
634 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
635 	ret = -EACCES;
636 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
637 		goto out;
638 
639 	/*
640 	 * If either I or some sibling (!= me) is exclusive, we can't
641 	 * overlap
642 	 */
643 	ret = -EINVAL;
644 	cpuset_for_each_child(c, css, par) {
645 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
646 		    c != cur &&
647 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
648 			goto out;
649 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
650 		    c != cur &&
651 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
652 			goto out;
653 	}
654 
655 	/*
656 	 * Cpusets with tasks - existing or newly being attached - can't
657 	 * be changed to have empty cpus_allowed or mems_allowed.
658 	 */
659 	ret = -ENOSPC;
660 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
661 		if (!cpumask_empty(cur->cpus_allowed) &&
662 		    cpumask_empty(trial->cpus_allowed))
663 			goto out;
664 		if (!nodes_empty(cur->mems_allowed) &&
665 		    nodes_empty(trial->mems_allowed))
666 			goto out;
667 	}
668 
669 	/*
670 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
671 	 * tasks.
672 	 */
673 	ret = -EBUSY;
674 	if (is_cpu_exclusive(cur) &&
675 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
676 				       trial->cpus_allowed))
677 		goto out;
678 
679 	ret = 0;
680 out:
681 	rcu_read_unlock();
682 	return ret;
683 }
684 
685 #ifdef CONFIG_SMP
686 /*
687  * Helper routine for generate_sched_domains().
688  * Do cpusets a, b have overlapping effective cpus_allowed masks?
689  */
690 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
691 {
692 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
693 }
694 
695 static void
696 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
697 {
698 	if (dattr->relax_domain_level < c->relax_domain_level)
699 		dattr->relax_domain_level = c->relax_domain_level;
700 	return;
701 }
702 
703 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
704 				    struct cpuset *root_cs)
705 {
706 	struct cpuset *cp;
707 	struct cgroup_subsys_state *pos_css;
708 
709 	rcu_read_lock();
710 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
711 		/* skip the whole subtree if @cp doesn't have any CPU */
712 		if (cpumask_empty(cp->cpus_allowed)) {
713 			pos_css = css_rightmost_descendant(pos_css);
714 			continue;
715 		}
716 
717 		if (is_sched_load_balance(cp))
718 			update_domain_attr(dattr, cp);
719 	}
720 	rcu_read_unlock();
721 }
722 
723 /* Must be called with cpuset_rwsem held.  */
724 static inline int nr_cpusets(void)
725 {
726 	/* jump label reference count + the top-level cpuset */
727 	return static_key_count(&cpusets_enabled_key.key) + 1;
728 }
729 
730 /*
731  * generate_sched_domains()
732  *
733  * This function builds a partial partition of the systems CPUs
734  * A 'partial partition' is a set of non-overlapping subsets whose
735  * union is a subset of that set.
736  * The output of this function needs to be passed to kernel/sched/core.c
737  * partition_sched_domains() routine, which will rebuild the scheduler's
738  * load balancing domains (sched domains) as specified by that partial
739  * partition.
740  *
741  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
742  * for a background explanation of this.
743  *
744  * Does not return errors, on the theory that the callers of this
745  * routine would rather not worry about failures to rebuild sched
746  * domains when operating in the severe memory shortage situations
747  * that could cause allocation failures below.
748  *
749  * Must be called with cpuset_rwsem held.
750  *
751  * The three key local variables below are:
752  *    cp - cpuset pointer, used (together with pos_css) to perform a
753  *	   top-down scan of all cpusets. For our purposes, rebuilding
754  *	   the schedulers sched domains, we can ignore !is_sched_load_
755  *	   balance cpusets.
756  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
757  *	   that need to be load balanced, for convenient iterative
758  *	   access by the subsequent code that finds the best partition,
759  *	   i.e the set of domains (subsets) of CPUs such that the
760  *	   cpus_allowed of every cpuset marked is_sched_load_balance
761  *	   is a subset of one of these domains, while there are as
762  *	   many such domains as possible, each as small as possible.
763  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
764  *	   the kernel/sched/core.c routine partition_sched_domains() in a
765  *	   convenient format, that can be easily compared to the prior
766  *	   value to determine what partition elements (sched domains)
767  *	   were changed (added or removed.)
768  *
769  * Finding the best partition (set of domains):
770  *	The triple nested loops below over i, j, k scan over the
771  *	load balanced cpusets (using the array of cpuset pointers in
772  *	csa[]) looking for pairs of cpusets that have overlapping
773  *	cpus_allowed, but which don't have the same 'pn' partition
774  *	number and gives them in the same partition number.  It keeps
775  *	looping on the 'restart' label until it can no longer find
776  *	any such pairs.
777  *
778  *	The union of the cpus_allowed masks from the set of
779  *	all cpusets having the same 'pn' value then form the one
780  *	element of the partition (one sched domain) to be passed to
781  *	partition_sched_domains().
782  */
783 static int generate_sched_domains(cpumask_var_t **domains,
784 			struct sched_domain_attr **attributes)
785 {
786 	struct cpuset *cp;	/* top-down scan of cpusets */
787 	struct cpuset **csa;	/* array of all cpuset ptrs */
788 	int csn;		/* how many cpuset ptrs in csa so far */
789 	int i, j, k;		/* indices for partition finding loops */
790 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
791 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
792 	int ndoms = 0;		/* number of sched domains in result */
793 	int nslot;		/* next empty doms[] struct cpumask slot */
794 	struct cgroup_subsys_state *pos_css;
795 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
796 
797 	doms = NULL;
798 	dattr = NULL;
799 	csa = NULL;
800 
801 	/* Special case for the 99% of systems with one, full, sched domain */
802 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
803 		ndoms = 1;
804 		doms = alloc_sched_domains(ndoms);
805 		if (!doms)
806 			goto done;
807 
808 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
809 		if (dattr) {
810 			*dattr = SD_ATTR_INIT;
811 			update_domain_attr_tree(dattr, &top_cpuset);
812 		}
813 		cpumask_and(doms[0], top_cpuset.effective_cpus,
814 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
815 
816 		goto done;
817 	}
818 
819 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
820 	if (!csa)
821 		goto done;
822 	csn = 0;
823 
824 	rcu_read_lock();
825 	if (root_load_balance)
826 		csa[csn++] = &top_cpuset;
827 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
828 		if (cp == &top_cpuset)
829 			continue;
830 		/*
831 		 * Continue traversing beyond @cp iff @cp has some CPUs and
832 		 * isn't load balancing.  The former is obvious.  The
833 		 * latter: All child cpusets contain a subset of the
834 		 * parent's cpus, so just skip them, and then we call
835 		 * update_domain_attr_tree() to calc relax_domain_level of
836 		 * the corresponding sched domain.
837 		 *
838 		 * If root is load-balancing, we can skip @cp if it
839 		 * is a subset of the root's effective_cpus.
840 		 */
841 		if (!cpumask_empty(cp->cpus_allowed) &&
842 		    !(is_sched_load_balance(cp) &&
843 		      cpumask_intersects(cp->cpus_allowed,
844 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
845 			continue;
846 
847 		if (root_load_balance &&
848 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
849 			continue;
850 
851 		if (is_sched_load_balance(cp) &&
852 		    !cpumask_empty(cp->effective_cpus))
853 			csa[csn++] = cp;
854 
855 		/* skip @cp's subtree if not a partition root */
856 		if (!is_partition_root(cp))
857 			pos_css = css_rightmost_descendant(pos_css);
858 	}
859 	rcu_read_unlock();
860 
861 	for (i = 0; i < csn; i++)
862 		csa[i]->pn = i;
863 	ndoms = csn;
864 
865 restart:
866 	/* Find the best partition (set of sched domains) */
867 	for (i = 0; i < csn; i++) {
868 		struct cpuset *a = csa[i];
869 		int apn = a->pn;
870 
871 		for (j = 0; j < csn; j++) {
872 			struct cpuset *b = csa[j];
873 			int bpn = b->pn;
874 
875 			if (apn != bpn && cpusets_overlap(a, b)) {
876 				for (k = 0; k < csn; k++) {
877 					struct cpuset *c = csa[k];
878 
879 					if (c->pn == bpn)
880 						c->pn = apn;
881 				}
882 				ndoms--;	/* one less element */
883 				goto restart;
884 			}
885 		}
886 	}
887 
888 	/*
889 	 * Now we know how many domains to create.
890 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
891 	 */
892 	doms = alloc_sched_domains(ndoms);
893 	if (!doms)
894 		goto done;
895 
896 	/*
897 	 * The rest of the code, including the scheduler, can deal with
898 	 * dattr==NULL case. No need to abort if alloc fails.
899 	 */
900 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
901 			      GFP_KERNEL);
902 
903 	for (nslot = 0, i = 0; i < csn; i++) {
904 		struct cpuset *a = csa[i];
905 		struct cpumask *dp;
906 		int apn = a->pn;
907 
908 		if (apn < 0) {
909 			/* Skip completed partitions */
910 			continue;
911 		}
912 
913 		dp = doms[nslot];
914 
915 		if (nslot == ndoms) {
916 			static int warnings = 10;
917 			if (warnings) {
918 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
919 					nslot, ndoms, csn, i, apn);
920 				warnings--;
921 			}
922 			continue;
923 		}
924 
925 		cpumask_clear(dp);
926 		if (dattr)
927 			*(dattr + nslot) = SD_ATTR_INIT;
928 		for (j = i; j < csn; j++) {
929 			struct cpuset *b = csa[j];
930 
931 			if (apn == b->pn) {
932 				cpumask_or(dp, dp, b->effective_cpus);
933 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
934 				if (dattr)
935 					update_domain_attr_tree(dattr + nslot, b);
936 
937 				/* Done with this partition */
938 				b->pn = -1;
939 			}
940 		}
941 		nslot++;
942 	}
943 	BUG_ON(nslot != ndoms);
944 
945 done:
946 	kfree(csa);
947 
948 	/*
949 	 * Fallback to the default domain if kmalloc() failed.
950 	 * See comments in partition_sched_domains().
951 	 */
952 	if (doms == NULL)
953 		ndoms = 1;
954 
955 	*domains    = doms;
956 	*attributes = dattr;
957 	return ndoms;
958 }
959 
960 static void update_tasks_root_domain(struct cpuset *cs)
961 {
962 	struct css_task_iter it;
963 	struct task_struct *task;
964 
965 	css_task_iter_start(&cs->css, 0, &it);
966 
967 	while ((task = css_task_iter_next(&it)))
968 		dl_add_task_root_domain(task);
969 
970 	css_task_iter_end(&it);
971 }
972 
973 static void rebuild_root_domains(void)
974 {
975 	struct cpuset *cs = NULL;
976 	struct cgroup_subsys_state *pos_css;
977 
978 	percpu_rwsem_assert_held(&cpuset_rwsem);
979 	lockdep_assert_cpus_held();
980 	lockdep_assert_held(&sched_domains_mutex);
981 
982 	rcu_read_lock();
983 
984 	/*
985 	 * Clear default root domain DL accounting, it will be computed again
986 	 * if a task belongs to it.
987 	 */
988 	dl_clear_root_domain(&def_root_domain);
989 
990 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
991 
992 		if (cpumask_empty(cs->effective_cpus)) {
993 			pos_css = css_rightmost_descendant(pos_css);
994 			continue;
995 		}
996 
997 		css_get(&cs->css);
998 
999 		rcu_read_unlock();
1000 
1001 		update_tasks_root_domain(cs);
1002 
1003 		rcu_read_lock();
1004 		css_put(&cs->css);
1005 	}
1006 	rcu_read_unlock();
1007 }
1008 
1009 static void
1010 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1011 				    struct sched_domain_attr *dattr_new)
1012 {
1013 	mutex_lock(&sched_domains_mutex);
1014 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1015 	rebuild_root_domains();
1016 	mutex_unlock(&sched_domains_mutex);
1017 }
1018 
1019 /*
1020  * Rebuild scheduler domains.
1021  *
1022  * If the flag 'sched_load_balance' of any cpuset with non-empty
1023  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1024  * which has that flag enabled, or if any cpuset with a non-empty
1025  * 'cpus' is removed, then call this routine to rebuild the
1026  * scheduler's dynamic sched domains.
1027  *
1028  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1029  */
1030 static void rebuild_sched_domains_locked(void)
1031 {
1032 	struct cgroup_subsys_state *pos_css;
1033 	struct sched_domain_attr *attr;
1034 	cpumask_var_t *doms;
1035 	struct cpuset *cs;
1036 	int ndoms;
1037 
1038 	lockdep_assert_cpus_held();
1039 	percpu_rwsem_assert_held(&cpuset_rwsem);
1040 
1041 	/*
1042 	 * If we have raced with CPU hotplug, return early to avoid
1043 	 * passing doms with offlined cpu to partition_sched_domains().
1044 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1045 	 *
1046 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1047 	 * should be the same as the active CPUs, so checking only top_cpuset
1048 	 * is enough to detect racing CPU offlines.
1049 	 */
1050 	if (!top_cpuset.nr_subparts_cpus &&
1051 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1052 		return;
1053 
1054 	/*
1055 	 * With subpartition CPUs, however, the effective CPUs of a partition
1056 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1057 	 * partition root could be offlined, all must be checked.
1058 	 */
1059 	if (top_cpuset.nr_subparts_cpus) {
1060 		rcu_read_lock();
1061 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1062 			if (!is_partition_root(cs)) {
1063 				pos_css = css_rightmost_descendant(pos_css);
1064 				continue;
1065 			}
1066 			if (!cpumask_subset(cs->effective_cpus,
1067 					    cpu_active_mask)) {
1068 				rcu_read_unlock();
1069 				return;
1070 			}
1071 		}
1072 		rcu_read_unlock();
1073 	}
1074 
1075 	/* Generate domain masks and attrs */
1076 	ndoms = generate_sched_domains(&doms, &attr);
1077 
1078 	/* Have scheduler rebuild the domains */
1079 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1080 }
1081 #else /* !CONFIG_SMP */
1082 static void rebuild_sched_domains_locked(void)
1083 {
1084 }
1085 #endif /* CONFIG_SMP */
1086 
1087 void rebuild_sched_domains(void)
1088 {
1089 	cpus_read_lock();
1090 	percpu_down_write(&cpuset_rwsem);
1091 	rebuild_sched_domains_locked();
1092 	percpu_up_write(&cpuset_rwsem);
1093 	cpus_read_unlock();
1094 }
1095 
1096 /**
1097  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1098  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1099  *
1100  * Iterate through each task of @cs updating its cpus_allowed to the
1101  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1102  * cpuset membership stays stable.
1103  */
1104 static void update_tasks_cpumask(struct cpuset *cs)
1105 {
1106 	struct css_task_iter it;
1107 	struct task_struct *task;
1108 
1109 	css_task_iter_start(&cs->css, 0, &it);
1110 	while ((task = css_task_iter_next(&it)))
1111 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1112 	css_task_iter_end(&it);
1113 }
1114 
1115 /**
1116  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1117  * @new_cpus: the temp variable for the new effective_cpus mask
1118  * @cs: the cpuset the need to recompute the new effective_cpus mask
1119  * @parent: the parent cpuset
1120  *
1121  * If the parent has subpartition CPUs, include them in the list of
1122  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1123  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1124  * to mask those out.
1125  */
1126 static void compute_effective_cpumask(struct cpumask *new_cpus,
1127 				      struct cpuset *cs, struct cpuset *parent)
1128 {
1129 	if (parent->nr_subparts_cpus) {
1130 		cpumask_or(new_cpus, parent->effective_cpus,
1131 			   parent->subparts_cpus);
1132 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1133 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1134 	} else {
1135 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1136 	}
1137 }
1138 
1139 /*
1140  * Commands for update_parent_subparts_cpumask
1141  */
1142 enum subparts_cmd {
1143 	partcmd_enable,		/* Enable partition root	 */
1144 	partcmd_disable,	/* Disable partition root	 */
1145 	partcmd_update,		/* Update parent's subparts_cpus */
1146 };
1147 
1148 /**
1149  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1150  * @cpuset:  The cpuset that requests change in partition root state
1151  * @cmd:     Partition root state change command
1152  * @newmask: Optional new cpumask for partcmd_update
1153  * @tmp:     Temporary addmask and delmask
1154  * Return:   0, 1 or an error code
1155  *
1156  * For partcmd_enable, the cpuset is being transformed from a non-partition
1157  * root to a partition root. The cpus_allowed mask of the given cpuset will
1158  * be put into parent's subparts_cpus and taken away from parent's
1159  * effective_cpus. The function will return 0 if all the CPUs listed in
1160  * cpus_allowed can be granted or an error code will be returned.
1161  *
1162  * For partcmd_disable, the cpuset is being transofrmed from a partition
1163  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1164  * parent's subparts_cpus will be taken away from that cpumask and put back
1165  * into parent's effective_cpus. 0 should always be returned.
1166  *
1167  * For partcmd_update, if the optional newmask is specified, the cpu
1168  * list is to be changed from cpus_allowed to newmask. Otherwise,
1169  * cpus_allowed is assumed to remain the same. The cpuset should either
1170  * be a partition root or an invalid partition root. The partition root
1171  * state may change if newmask is NULL and none of the requested CPUs can
1172  * be granted by the parent. The function will return 1 if changes to
1173  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1174  * Error code should only be returned when newmask is non-NULL.
1175  *
1176  * The partcmd_enable and partcmd_disable commands are used by
1177  * update_prstate(). The partcmd_update command is used by
1178  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1179  * newmask set.
1180  *
1181  * The checking is more strict when enabling partition root than the
1182  * other two commands.
1183  *
1184  * Because of the implicit cpu exclusive nature of a partition root,
1185  * cpumask changes that violates the cpu exclusivity rule will not be
1186  * permitted when checked by validate_change(). The validate_change()
1187  * function will also prevent any changes to the cpu list if it is not
1188  * a superset of children's cpu lists.
1189  */
1190 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1191 					  struct cpumask *newmask,
1192 					  struct tmpmasks *tmp)
1193 {
1194 	struct cpuset *parent = parent_cs(cpuset);
1195 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1196 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1197 	int old_prs, new_prs;
1198 	bool part_error = false;	/* Partition error? */
1199 
1200 	percpu_rwsem_assert_held(&cpuset_rwsem);
1201 
1202 	/*
1203 	 * The parent must be a partition root.
1204 	 * The new cpumask, if present, or the current cpus_allowed must
1205 	 * not be empty.
1206 	 */
1207 	if (!is_partition_root(parent) ||
1208 	   (newmask && cpumask_empty(newmask)) ||
1209 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1210 		return -EINVAL;
1211 
1212 	/*
1213 	 * Enabling/disabling partition root is not allowed if there are
1214 	 * online children.
1215 	 */
1216 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1217 		return -EBUSY;
1218 
1219 	/*
1220 	 * Enabling partition root is not allowed if not all the CPUs
1221 	 * can be granted from parent's effective_cpus or at least one
1222 	 * CPU will be left after that.
1223 	 */
1224 	if ((cmd == partcmd_enable) &&
1225 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1226 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1227 		return -EINVAL;
1228 
1229 	/*
1230 	 * A cpumask update cannot make parent's effective_cpus become empty.
1231 	 */
1232 	adding = deleting = false;
1233 	old_prs = new_prs = cpuset->partition_root_state;
1234 	if (cmd == partcmd_enable) {
1235 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1236 		adding = true;
1237 	} else if (cmd == partcmd_disable) {
1238 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1239 				       parent->subparts_cpus);
1240 	} else if (newmask) {
1241 		/*
1242 		 * partcmd_update with newmask:
1243 		 *
1244 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1245 		 * addmask = newmask & parent->effective_cpus
1246 		 *		     & ~parent->subparts_cpus
1247 		 */
1248 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1249 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1250 				       parent->subparts_cpus);
1251 
1252 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1253 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1254 					parent->subparts_cpus);
1255 		/*
1256 		 * Return error if the new effective_cpus could become empty.
1257 		 */
1258 		if (adding &&
1259 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1260 			if (!deleting)
1261 				return -EINVAL;
1262 			/*
1263 			 * As some of the CPUs in subparts_cpus might have
1264 			 * been offlined, we need to compute the real delmask
1265 			 * to confirm that.
1266 			 */
1267 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1268 					 cpu_active_mask))
1269 				return -EINVAL;
1270 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1271 		}
1272 	} else {
1273 		/*
1274 		 * partcmd_update w/o newmask:
1275 		 *
1276 		 * addmask = cpus_allowed & parent->effective_cpus
1277 		 *
1278 		 * Note that parent's subparts_cpus may have been
1279 		 * pre-shrunk in case there is a change in the cpu list.
1280 		 * So no deletion is needed.
1281 		 */
1282 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1283 				     parent->effective_cpus);
1284 		part_error = cpumask_equal(tmp->addmask,
1285 					   parent->effective_cpus);
1286 	}
1287 
1288 	if (cmd == partcmd_update) {
1289 		int prev_prs = cpuset->partition_root_state;
1290 
1291 		/*
1292 		 * Check for possible transition between PRS_ENABLED
1293 		 * and PRS_ERROR.
1294 		 */
1295 		switch (cpuset->partition_root_state) {
1296 		case PRS_ENABLED:
1297 			if (part_error)
1298 				new_prs = PRS_ERROR;
1299 			break;
1300 		case PRS_ERROR:
1301 			if (!part_error)
1302 				new_prs = PRS_ENABLED;
1303 			break;
1304 		}
1305 		/*
1306 		 * Set part_error if previously in invalid state.
1307 		 */
1308 		part_error = (prev_prs == PRS_ERROR);
1309 	}
1310 
1311 	if (!part_error && (new_prs == PRS_ERROR))
1312 		return 0;	/* Nothing need to be done */
1313 
1314 	if (new_prs == PRS_ERROR) {
1315 		/*
1316 		 * Remove all its cpus from parent's subparts_cpus.
1317 		 */
1318 		adding = false;
1319 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1320 				       parent->subparts_cpus);
1321 	}
1322 
1323 	if (!adding && !deleting && (new_prs == old_prs))
1324 		return 0;
1325 
1326 	/*
1327 	 * Change the parent's subparts_cpus.
1328 	 * Newly added CPUs will be removed from effective_cpus and
1329 	 * newly deleted ones will be added back to effective_cpus.
1330 	 */
1331 	spin_lock_irq(&callback_lock);
1332 	if (adding) {
1333 		cpumask_or(parent->subparts_cpus,
1334 			   parent->subparts_cpus, tmp->addmask);
1335 		cpumask_andnot(parent->effective_cpus,
1336 			       parent->effective_cpus, tmp->addmask);
1337 	}
1338 	if (deleting) {
1339 		cpumask_andnot(parent->subparts_cpus,
1340 			       parent->subparts_cpus, tmp->delmask);
1341 		/*
1342 		 * Some of the CPUs in subparts_cpus might have been offlined.
1343 		 */
1344 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1345 		cpumask_or(parent->effective_cpus,
1346 			   parent->effective_cpus, tmp->delmask);
1347 	}
1348 
1349 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1350 
1351 	if (old_prs != new_prs)
1352 		cpuset->partition_root_state = new_prs;
1353 
1354 	spin_unlock_irq(&callback_lock);
1355 	notify_partition_change(cpuset, old_prs, new_prs);
1356 
1357 	return cmd == partcmd_update;
1358 }
1359 
1360 /*
1361  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1362  * @cs:  the cpuset to consider
1363  * @tmp: temp variables for calculating effective_cpus & partition setup
1364  *
1365  * When configured cpumask is changed, the effective cpumasks of this cpuset
1366  * and all its descendants need to be updated.
1367  *
1368  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1369  *
1370  * Called with cpuset_rwsem held
1371  */
1372 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1373 {
1374 	struct cpuset *cp;
1375 	struct cgroup_subsys_state *pos_css;
1376 	bool need_rebuild_sched_domains = false;
1377 	int old_prs, new_prs;
1378 
1379 	rcu_read_lock();
1380 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1381 		struct cpuset *parent = parent_cs(cp);
1382 
1383 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1384 
1385 		/*
1386 		 * If it becomes empty, inherit the effective mask of the
1387 		 * parent, which is guaranteed to have some CPUs.
1388 		 */
1389 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1390 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1391 			if (!cp->use_parent_ecpus) {
1392 				cp->use_parent_ecpus = true;
1393 				parent->child_ecpus_count++;
1394 			}
1395 		} else if (cp->use_parent_ecpus) {
1396 			cp->use_parent_ecpus = false;
1397 			WARN_ON_ONCE(!parent->child_ecpus_count);
1398 			parent->child_ecpus_count--;
1399 		}
1400 
1401 		/*
1402 		 * Skip the whole subtree if the cpumask remains the same
1403 		 * and has no partition root state.
1404 		 */
1405 		if (!cp->partition_root_state &&
1406 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1407 			pos_css = css_rightmost_descendant(pos_css);
1408 			continue;
1409 		}
1410 
1411 		/*
1412 		 * update_parent_subparts_cpumask() should have been called
1413 		 * for cs already in update_cpumask(). We should also call
1414 		 * update_tasks_cpumask() again for tasks in the parent
1415 		 * cpuset if the parent's subparts_cpus changes.
1416 		 */
1417 		old_prs = new_prs = cp->partition_root_state;
1418 		if ((cp != cs) && old_prs) {
1419 			switch (parent->partition_root_state) {
1420 			case PRS_DISABLED:
1421 				/*
1422 				 * If parent is not a partition root or an
1423 				 * invalid partition root, clear its state
1424 				 * and its CS_CPU_EXCLUSIVE flag.
1425 				 */
1426 				WARN_ON_ONCE(cp->partition_root_state
1427 					     != PRS_ERROR);
1428 				new_prs = PRS_DISABLED;
1429 
1430 				/*
1431 				 * clear_bit() is an atomic operation and
1432 				 * readers aren't interested in the state
1433 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1434 				 * just update the flag without holding
1435 				 * the callback_lock.
1436 				 */
1437 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1438 				break;
1439 
1440 			case PRS_ENABLED:
1441 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1442 					update_tasks_cpumask(parent);
1443 				break;
1444 
1445 			case PRS_ERROR:
1446 				/*
1447 				 * When parent is invalid, it has to be too.
1448 				 */
1449 				new_prs = PRS_ERROR;
1450 				break;
1451 			}
1452 		}
1453 
1454 		if (!css_tryget_online(&cp->css))
1455 			continue;
1456 		rcu_read_unlock();
1457 
1458 		spin_lock_irq(&callback_lock);
1459 
1460 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1461 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1462 			cp->nr_subparts_cpus = 0;
1463 			cpumask_clear(cp->subparts_cpus);
1464 		} else if (cp->nr_subparts_cpus) {
1465 			/*
1466 			 * Make sure that effective_cpus & subparts_cpus
1467 			 * are mutually exclusive.
1468 			 *
1469 			 * In the unlikely event that effective_cpus
1470 			 * becomes empty. we clear cp->nr_subparts_cpus and
1471 			 * let its child partition roots to compete for
1472 			 * CPUs again.
1473 			 */
1474 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1475 				       cp->subparts_cpus);
1476 			if (cpumask_empty(cp->effective_cpus)) {
1477 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1478 				cpumask_clear(cp->subparts_cpus);
1479 				cp->nr_subparts_cpus = 0;
1480 			} else if (!cpumask_subset(cp->subparts_cpus,
1481 						   tmp->new_cpus)) {
1482 				cpumask_andnot(cp->subparts_cpus,
1483 					cp->subparts_cpus, tmp->new_cpus);
1484 				cp->nr_subparts_cpus
1485 					= cpumask_weight(cp->subparts_cpus);
1486 			}
1487 		}
1488 
1489 		if (new_prs != old_prs)
1490 			cp->partition_root_state = new_prs;
1491 
1492 		spin_unlock_irq(&callback_lock);
1493 		notify_partition_change(cp, old_prs, new_prs);
1494 
1495 		WARN_ON(!is_in_v2_mode() &&
1496 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1497 
1498 		update_tasks_cpumask(cp);
1499 
1500 		/*
1501 		 * On legacy hierarchy, if the effective cpumask of any non-
1502 		 * empty cpuset is changed, we need to rebuild sched domains.
1503 		 * On default hierarchy, the cpuset needs to be a partition
1504 		 * root as well.
1505 		 */
1506 		if (!cpumask_empty(cp->cpus_allowed) &&
1507 		    is_sched_load_balance(cp) &&
1508 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1509 		    is_partition_root(cp)))
1510 			need_rebuild_sched_domains = true;
1511 
1512 		rcu_read_lock();
1513 		css_put(&cp->css);
1514 	}
1515 	rcu_read_unlock();
1516 
1517 	if (need_rebuild_sched_domains)
1518 		rebuild_sched_domains_locked();
1519 }
1520 
1521 /**
1522  * update_sibling_cpumasks - Update siblings cpumasks
1523  * @parent:  Parent cpuset
1524  * @cs:      Current cpuset
1525  * @tmp:     Temp variables
1526  */
1527 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1528 				    struct tmpmasks *tmp)
1529 {
1530 	struct cpuset *sibling;
1531 	struct cgroup_subsys_state *pos_css;
1532 
1533 	/*
1534 	 * Check all its siblings and call update_cpumasks_hier()
1535 	 * if their use_parent_ecpus flag is set in order for them
1536 	 * to use the right effective_cpus value.
1537 	 */
1538 	rcu_read_lock();
1539 	cpuset_for_each_child(sibling, pos_css, parent) {
1540 		if (sibling == cs)
1541 			continue;
1542 		if (!sibling->use_parent_ecpus)
1543 			continue;
1544 
1545 		update_cpumasks_hier(sibling, tmp);
1546 	}
1547 	rcu_read_unlock();
1548 }
1549 
1550 /**
1551  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1552  * @cs: the cpuset to consider
1553  * @trialcs: trial cpuset
1554  * @buf: buffer of cpu numbers written to this cpuset
1555  */
1556 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1557 			  const char *buf)
1558 {
1559 	int retval;
1560 	struct tmpmasks tmp;
1561 
1562 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1563 	if (cs == &top_cpuset)
1564 		return -EACCES;
1565 
1566 	/*
1567 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1568 	 * Since cpulist_parse() fails on an empty mask, we special case
1569 	 * that parsing.  The validate_change() call ensures that cpusets
1570 	 * with tasks have cpus.
1571 	 */
1572 	if (!*buf) {
1573 		cpumask_clear(trialcs->cpus_allowed);
1574 	} else {
1575 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1576 		if (retval < 0)
1577 			return retval;
1578 
1579 		if (!cpumask_subset(trialcs->cpus_allowed,
1580 				    top_cpuset.cpus_allowed))
1581 			return -EINVAL;
1582 	}
1583 
1584 	/* Nothing to do if the cpus didn't change */
1585 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1586 		return 0;
1587 
1588 	retval = validate_change(cs, trialcs);
1589 	if (retval < 0)
1590 		return retval;
1591 
1592 #ifdef CONFIG_CPUMASK_OFFSTACK
1593 	/*
1594 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1595 	 * to allocated cpumasks.
1596 	 */
1597 	tmp.addmask  = trialcs->subparts_cpus;
1598 	tmp.delmask  = trialcs->effective_cpus;
1599 	tmp.new_cpus = trialcs->cpus_allowed;
1600 #endif
1601 
1602 	if (cs->partition_root_state) {
1603 		/* Cpumask of a partition root cannot be empty */
1604 		if (cpumask_empty(trialcs->cpus_allowed))
1605 			return -EINVAL;
1606 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1607 					trialcs->cpus_allowed, &tmp) < 0)
1608 			return -EINVAL;
1609 	}
1610 
1611 	spin_lock_irq(&callback_lock);
1612 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1613 
1614 	/*
1615 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1616 	 */
1617 	if (cs->nr_subparts_cpus) {
1618 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1619 			       cs->cpus_allowed);
1620 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1621 	}
1622 	spin_unlock_irq(&callback_lock);
1623 
1624 	update_cpumasks_hier(cs, &tmp);
1625 
1626 	if (cs->partition_root_state) {
1627 		struct cpuset *parent = parent_cs(cs);
1628 
1629 		/*
1630 		 * For partition root, update the cpumasks of sibling
1631 		 * cpusets if they use parent's effective_cpus.
1632 		 */
1633 		if (parent->child_ecpus_count)
1634 			update_sibling_cpumasks(parent, cs, &tmp);
1635 	}
1636 	return 0;
1637 }
1638 
1639 /*
1640  * Migrate memory region from one set of nodes to another.  This is
1641  * performed asynchronously as it can be called from process migration path
1642  * holding locks involved in process management.  All mm migrations are
1643  * performed in the queued order and can be waited for by flushing
1644  * cpuset_migrate_mm_wq.
1645  */
1646 
1647 struct cpuset_migrate_mm_work {
1648 	struct work_struct	work;
1649 	struct mm_struct	*mm;
1650 	nodemask_t		from;
1651 	nodemask_t		to;
1652 };
1653 
1654 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1655 {
1656 	struct cpuset_migrate_mm_work *mwork =
1657 		container_of(work, struct cpuset_migrate_mm_work, work);
1658 
1659 	/* on a wq worker, no need to worry about %current's mems_allowed */
1660 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1661 	mmput(mwork->mm);
1662 	kfree(mwork);
1663 }
1664 
1665 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1666 							const nodemask_t *to)
1667 {
1668 	struct cpuset_migrate_mm_work *mwork;
1669 
1670 	if (nodes_equal(*from, *to)) {
1671 		mmput(mm);
1672 		return;
1673 	}
1674 
1675 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1676 	if (mwork) {
1677 		mwork->mm = mm;
1678 		mwork->from = *from;
1679 		mwork->to = *to;
1680 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1681 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1682 	} else {
1683 		mmput(mm);
1684 	}
1685 }
1686 
1687 static void cpuset_post_attach(void)
1688 {
1689 	flush_workqueue(cpuset_migrate_mm_wq);
1690 }
1691 
1692 /*
1693  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1694  * @tsk: the task to change
1695  * @newmems: new nodes that the task will be set
1696  *
1697  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1698  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1699  * parallel, it might temporarily see an empty intersection, which results in
1700  * a seqlock check and retry before OOM or allocation failure.
1701  */
1702 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1703 					nodemask_t *newmems)
1704 {
1705 	task_lock(tsk);
1706 
1707 	local_irq_disable();
1708 	write_seqcount_begin(&tsk->mems_allowed_seq);
1709 
1710 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1711 	mpol_rebind_task(tsk, newmems);
1712 	tsk->mems_allowed = *newmems;
1713 
1714 	write_seqcount_end(&tsk->mems_allowed_seq);
1715 	local_irq_enable();
1716 
1717 	task_unlock(tsk);
1718 }
1719 
1720 static void *cpuset_being_rebound;
1721 
1722 /**
1723  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1724  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1725  *
1726  * Iterate through each task of @cs updating its mems_allowed to the
1727  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1728  * cpuset membership stays stable.
1729  */
1730 static void update_tasks_nodemask(struct cpuset *cs)
1731 {
1732 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1733 	struct css_task_iter it;
1734 	struct task_struct *task;
1735 
1736 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1737 
1738 	guarantee_online_mems(cs, &newmems);
1739 
1740 	/*
1741 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1742 	 * take while holding tasklist_lock.  Forks can happen - the
1743 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1744 	 * and rebind their vma mempolicies too.  Because we still hold
1745 	 * the global cpuset_rwsem, we know that no other rebind effort
1746 	 * will be contending for the global variable cpuset_being_rebound.
1747 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1748 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1749 	 */
1750 	css_task_iter_start(&cs->css, 0, &it);
1751 	while ((task = css_task_iter_next(&it))) {
1752 		struct mm_struct *mm;
1753 		bool migrate;
1754 
1755 		cpuset_change_task_nodemask(task, &newmems);
1756 
1757 		mm = get_task_mm(task);
1758 		if (!mm)
1759 			continue;
1760 
1761 		migrate = is_memory_migrate(cs);
1762 
1763 		mpol_rebind_mm(mm, &cs->mems_allowed);
1764 		if (migrate)
1765 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1766 		else
1767 			mmput(mm);
1768 	}
1769 	css_task_iter_end(&it);
1770 
1771 	/*
1772 	 * All the tasks' nodemasks have been updated, update
1773 	 * cs->old_mems_allowed.
1774 	 */
1775 	cs->old_mems_allowed = newmems;
1776 
1777 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1778 	cpuset_being_rebound = NULL;
1779 }
1780 
1781 /*
1782  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1783  * @cs: the cpuset to consider
1784  * @new_mems: a temp variable for calculating new effective_mems
1785  *
1786  * When configured nodemask is changed, the effective nodemasks of this cpuset
1787  * and all its descendants need to be updated.
1788  *
1789  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1790  *
1791  * Called with cpuset_rwsem held
1792  */
1793 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1794 {
1795 	struct cpuset *cp;
1796 	struct cgroup_subsys_state *pos_css;
1797 
1798 	rcu_read_lock();
1799 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1800 		struct cpuset *parent = parent_cs(cp);
1801 
1802 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1803 
1804 		/*
1805 		 * If it becomes empty, inherit the effective mask of the
1806 		 * parent, which is guaranteed to have some MEMs.
1807 		 */
1808 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1809 			*new_mems = parent->effective_mems;
1810 
1811 		/* Skip the whole subtree if the nodemask remains the same. */
1812 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1813 			pos_css = css_rightmost_descendant(pos_css);
1814 			continue;
1815 		}
1816 
1817 		if (!css_tryget_online(&cp->css))
1818 			continue;
1819 		rcu_read_unlock();
1820 
1821 		spin_lock_irq(&callback_lock);
1822 		cp->effective_mems = *new_mems;
1823 		spin_unlock_irq(&callback_lock);
1824 
1825 		WARN_ON(!is_in_v2_mode() &&
1826 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1827 
1828 		update_tasks_nodemask(cp);
1829 
1830 		rcu_read_lock();
1831 		css_put(&cp->css);
1832 	}
1833 	rcu_read_unlock();
1834 }
1835 
1836 /*
1837  * Handle user request to change the 'mems' memory placement
1838  * of a cpuset.  Needs to validate the request, update the
1839  * cpusets mems_allowed, and for each task in the cpuset,
1840  * update mems_allowed and rebind task's mempolicy and any vma
1841  * mempolicies and if the cpuset is marked 'memory_migrate',
1842  * migrate the tasks pages to the new memory.
1843  *
1844  * Call with cpuset_rwsem held. May take callback_lock during call.
1845  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1846  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1847  * their mempolicies to the cpusets new mems_allowed.
1848  */
1849 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1850 			   const char *buf)
1851 {
1852 	int retval;
1853 
1854 	/*
1855 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1856 	 * it's read-only
1857 	 */
1858 	if (cs == &top_cpuset) {
1859 		retval = -EACCES;
1860 		goto done;
1861 	}
1862 
1863 	/*
1864 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1865 	 * Since nodelist_parse() fails on an empty mask, we special case
1866 	 * that parsing.  The validate_change() call ensures that cpusets
1867 	 * with tasks have memory.
1868 	 */
1869 	if (!*buf) {
1870 		nodes_clear(trialcs->mems_allowed);
1871 	} else {
1872 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1873 		if (retval < 0)
1874 			goto done;
1875 
1876 		if (!nodes_subset(trialcs->mems_allowed,
1877 				  top_cpuset.mems_allowed)) {
1878 			retval = -EINVAL;
1879 			goto done;
1880 		}
1881 	}
1882 
1883 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1884 		retval = 0;		/* Too easy - nothing to do */
1885 		goto done;
1886 	}
1887 	retval = validate_change(cs, trialcs);
1888 	if (retval < 0)
1889 		goto done;
1890 
1891 	check_insane_mems_config(&trialcs->mems_allowed);
1892 
1893 	spin_lock_irq(&callback_lock);
1894 	cs->mems_allowed = trialcs->mems_allowed;
1895 	spin_unlock_irq(&callback_lock);
1896 
1897 	/* use trialcs->mems_allowed as a temp variable */
1898 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1899 done:
1900 	return retval;
1901 }
1902 
1903 bool current_cpuset_is_being_rebound(void)
1904 {
1905 	bool ret;
1906 
1907 	rcu_read_lock();
1908 	ret = task_cs(current) == cpuset_being_rebound;
1909 	rcu_read_unlock();
1910 
1911 	return ret;
1912 }
1913 
1914 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1915 {
1916 #ifdef CONFIG_SMP
1917 	if (val < -1 || val >= sched_domain_level_max)
1918 		return -EINVAL;
1919 #endif
1920 
1921 	if (val != cs->relax_domain_level) {
1922 		cs->relax_domain_level = val;
1923 		if (!cpumask_empty(cs->cpus_allowed) &&
1924 		    is_sched_load_balance(cs))
1925 			rebuild_sched_domains_locked();
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /**
1932  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1933  * @cs: the cpuset in which each task's spread flags needs to be changed
1934  *
1935  * Iterate through each task of @cs updating its spread flags.  As this
1936  * function is called with cpuset_rwsem held, cpuset membership stays
1937  * stable.
1938  */
1939 static void update_tasks_flags(struct cpuset *cs)
1940 {
1941 	struct css_task_iter it;
1942 	struct task_struct *task;
1943 
1944 	css_task_iter_start(&cs->css, 0, &it);
1945 	while ((task = css_task_iter_next(&it)))
1946 		cpuset_update_task_spread_flag(cs, task);
1947 	css_task_iter_end(&it);
1948 }
1949 
1950 /*
1951  * update_flag - read a 0 or a 1 in a file and update associated flag
1952  * bit:		the bit to update (see cpuset_flagbits_t)
1953  * cs:		the cpuset to update
1954  * turning_on: 	whether the flag is being set or cleared
1955  *
1956  * Call with cpuset_rwsem held.
1957  */
1958 
1959 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1960 		       int turning_on)
1961 {
1962 	struct cpuset *trialcs;
1963 	int balance_flag_changed;
1964 	int spread_flag_changed;
1965 	int err;
1966 
1967 	trialcs = alloc_trial_cpuset(cs);
1968 	if (!trialcs)
1969 		return -ENOMEM;
1970 
1971 	if (turning_on)
1972 		set_bit(bit, &trialcs->flags);
1973 	else
1974 		clear_bit(bit, &trialcs->flags);
1975 
1976 	err = validate_change(cs, trialcs);
1977 	if (err < 0)
1978 		goto out;
1979 
1980 	balance_flag_changed = (is_sched_load_balance(cs) !=
1981 				is_sched_load_balance(trialcs));
1982 
1983 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1984 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1985 
1986 	spin_lock_irq(&callback_lock);
1987 	cs->flags = trialcs->flags;
1988 	spin_unlock_irq(&callback_lock);
1989 
1990 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1991 		rebuild_sched_domains_locked();
1992 
1993 	if (spread_flag_changed)
1994 		update_tasks_flags(cs);
1995 out:
1996 	free_cpuset(trialcs);
1997 	return err;
1998 }
1999 
2000 /*
2001  * update_prstate - update partititon_root_state
2002  * cs: the cpuset to update
2003  * new_prs: new partition root state
2004  *
2005  * Call with cpuset_rwsem held.
2006  */
2007 static int update_prstate(struct cpuset *cs, int new_prs)
2008 {
2009 	int err, old_prs = cs->partition_root_state;
2010 	struct cpuset *parent = parent_cs(cs);
2011 	struct tmpmasks tmpmask;
2012 
2013 	if (old_prs == new_prs)
2014 		return 0;
2015 
2016 	/*
2017 	 * Cannot force a partial or invalid partition root to a full
2018 	 * partition root.
2019 	 */
2020 	if (new_prs && (old_prs == PRS_ERROR))
2021 		return -EINVAL;
2022 
2023 	if (alloc_cpumasks(NULL, &tmpmask))
2024 		return -ENOMEM;
2025 
2026 	err = -EINVAL;
2027 	if (!old_prs) {
2028 		/*
2029 		 * Turning on partition root requires setting the
2030 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2031 		 * cannot be NULL.
2032 		 */
2033 		if (cpumask_empty(cs->cpus_allowed))
2034 			goto out;
2035 
2036 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2037 		if (err)
2038 			goto out;
2039 
2040 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2041 						     NULL, &tmpmask);
2042 		if (err) {
2043 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2044 			goto out;
2045 		}
2046 	} else {
2047 		/*
2048 		 * Turning off partition root will clear the
2049 		 * CS_CPU_EXCLUSIVE bit.
2050 		 */
2051 		if (old_prs == PRS_ERROR) {
2052 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2053 			err = 0;
2054 			goto out;
2055 		}
2056 
2057 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2058 						     NULL, &tmpmask);
2059 		if (err)
2060 			goto out;
2061 
2062 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2063 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2064 	}
2065 
2066 	/*
2067 	 * Update cpumask of parent's tasks except when it is the top
2068 	 * cpuset as some system daemons cannot be mapped to other CPUs.
2069 	 */
2070 	if (parent != &top_cpuset)
2071 		update_tasks_cpumask(parent);
2072 
2073 	if (parent->child_ecpus_count)
2074 		update_sibling_cpumasks(parent, cs, &tmpmask);
2075 
2076 	rebuild_sched_domains_locked();
2077 out:
2078 	if (!err) {
2079 		spin_lock_irq(&callback_lock);
2080 		cs->partition_root_state = new_prs;
2081 		spin_unlock_irq(&callback_lock);
2082 		notify_partition_change(cs, old_prs, new_prs);
2083 	}
2084 
2085 	free_cpumasks(NULL, &tmpmask);
2086 	return err;
2087 }
2088 
2089 /*
2090  * Frequency meter - How fast is some event occurring?
2091  *
2092  * These routines manage a digitally filtered, constant time based,
2093  * event frequency meter.  There are four routines:
2094  *   fmeter_init() - initialize a frequency meter.
2095  *   fmeter_markevent() - called each time the event happens.
2096  *   fmeter_getrate() - returns the recent rate of such events.
2097  *   fmeter_update() - internal routine used to update fmeter.
2098  *
2099  * A common data structure is passed to each of these routines,
2100  * which is used to keep track of the state required to manage the
2101  * frequency meter and its digital filter.
2102  *
2103  * The filter works on the number of events marked per unit time.
2104  * The filter is single-pole low-pass recursive (IIR).  The time unit
2105  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2106  * simulate 3 decimal digits of precision (multiplied by 1000).
2107  *
2108  * With an FM_COEF of 933, and a time base of 1 second, the filter
2109  * has a half-life of 10 seconds, meaning that if the events quit
2110  * happening, then the rate returned from the fmeter_getrate()
2111  * will be cut in half each 10 seconds, until it converges to zero.
2112  *
2113  * It is not worth doing a real infinitely recursive filter.  If more
2114  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2115  * just compute FM_MAXTICKS ticks worth, by which point the level
2116  * will be stable.
2117  *
2118  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2119  * arithmetic overflow in the fmeter_update() routine.
2120  *
2121  * Given the simple 32 bit integer arithmetic used, this meter works
2122  * best for reporting rates between one per millisecond (msec) and
2123  * one per 32 (approx) seconds.  At constant rates faster than one
2124  * per msec it maxes out at values just under 1,000,000.  At constant
2125  * rates between one per msec, and one per second it will stabilize
2126  * to a value N*1000, where N is the rate of events per second.
2127  * At constant rates between one per second and one per 32 seconds,
2128  * it will be choppy, moving up on the seconds that have an event,
2129  * and then decaying until the next event.  At rates slower than
2130  * about one in 32 seconds, it decays all the way back to zero between
2131  * each event.
2132  */
2133 
2134 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2135 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2136 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2137 #define FM_SCALE 1000		/* faux fixed point scale */
2138 
2139 /* Initialize a frequency meter */
2140 static void fmeter_init(struct fmeter *fmp)
2141 {
2142 	fmp->cnt = 0;
2143 	fmp->val = 0;
2144 	fmp->time = 0;
2145 	spin_lock_init(&fmp->lock);
2146 }
2147 
2148 /* Internal meter update - process cnt events and update value */
2149 static void fmeter_update(struct fmeter *fmp)
2150 {
2151 	time64_t now;
2152 	u32 ticks;
2153 
2154 	now = ktime_get_seconds();
2155 	ticks = now - fmp->time;
2156 
2157 	if (ticks == 0)
2158 		return;
2159 
2160 	ticks = min(FM_MAXTICKS, ticks);
2161 	while (ticks-- > 0)
2162 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2163 	fmp->time = now;
2164 
2165 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2166 	fmp->cnt = 0;
2167 }
2168 
2169 /* Process any previous ticks, then bump cnt by one (times scale). */
2170 static void fmeter_markevent(struct fmeter *fmp)
2171 {
2172 	spin_lock(&fmp->lock);
2173 	fmeter_update(fmp);
2174 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2175 	spin_unlock(&fmp->lock);
2176 }
2177 
2178 /* Process any previous ticks, then return current value. */
2179 static int fmeter_getrate(struct fmeter *fmp)
2180 {
2181 	int val;
2182 
2183 	spin_lock(&fmp->lock);
2184 	fmeter_update(fmp);
2185 	val = fmp->val;
2186 	spin_unlock(&fmp->lock);
2187 	return val;
2188 }
2189 
2190 static struct cpuset *cpuset_attach_old_cs;
2191 
2192 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2193 static int cpuset_can_attach(struct cgroup_taskset *tset)
2194 {
2195 	struct cgroup_subsys_state *css;
2196 	struct cpuset *cs;
2197 	struct task_struct *task;
2198 	int ret;
2199 
2200 	/* used later by cpuset_attach() */
2201 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2202 	cs = css_cs(css);
2203 
2204 	percpu_down_write(&cpuset_rwsem);
2205 
2206 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2207 	ret = -ENOSPC;
2208 	if (!is_in_v2_mode() &&
2209 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2210 		goto out_unlock;
2211 
2212 	cgroup_taskset_for_each(task, css, tset) {
2213 		ret = task_can_attach(task, cs->cpus_allowed);
2214 		if (ret)
2215 			goto out_unlock;
2216 		ret = security_task_setscheduler(task);
2217 		if (ret)
2218 			goto out_unlock;
2219 	}
2220 
2221 	/*
2222 	 * Mark attach is in progress.  This makes validate_change() fail
2223 	 * changes which zero cpus/mems_allowed.
2224 	 */
2225 	cs->attach_in_progress++;
2226 	ret = 0;
2227 out_unlock:
2228 	percpu_up_write(&cpuset_rwsem);
2229 	return ret;
2230 }
2231 
2232 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2233 {
2234 	struct cgroup_subsys_state *css;
2235 
2236 	cgroup_taskset_first(tset, &css);
2237 
2238 	percpu_down_write(&cpuset_rwsem);
2239 	css_cs(css)->attach_in_progress--;
2240 	percpu_up_write(&cpuset_rwsem);
2241 }
2242 
2243 /*
2244  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2245  * but we can't allocate it dynamically there.  Define it global and
2246  * allocate from cpuset_init().
2247  */
2248 static cpumask_var_t cpus_attach;
2249 
2250 static void cpuset_attach(struct cgroup_taskset *tset)
2251 {
2252 	/* static buf protected by cpuset_rwsem */
2253 	static nodemask_t cpuset_attach_nodemask_to;
2254 	struct task_struct *task;
2255 	struct task_struct *leader;
2256 	struct cgroup_subsys_state *css;
2257 	struct cpuset *cs;
2258 	struct cpuset *oldcs = cpuset_attach_old_cs;
2259 
2260 	cgroup_taskset_first(tset, &css);
2261 	cs = css_cs(css);
2262 
2263 	percpu_down_write(&cpuset_rwsem);
2264 
2265 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2266 
2267 	cgroup_taskset_for_each(task, css, tset) {
2268 		if (cs != &top_cpuset)
2269 			guarantee_online_cpus(task, cpus_attach);
2270 		else
2271 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2272 		/*
2273 		 * can_attach beforehand should guarantee that this doesn't
2274 		 * fail.  TODO: have a better way to handle failure here
2275 		 */
2276 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2277 
2278 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2279 		cpuset_update_task_spread_flag(cs, task);
2280 	}
2281 
2282 	/*
2283 	 * Change mm for all threadgroup leaders. This is expensive and may
2284 	 * sleep and should be moved outside migration path proper.
2285 	 */
2286 	cpuset_attach_nodemask_to = cs->effective_mems;
2287 	cgroup_taskset_for_each_leader(leader, css, tset) {
2288 		struct mm_struct *mm = get_task_mm(leader);
2289 
2290 		if (mm) {
2291 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2292 
2293 			/*
2294 			 * old_mems_allowed is the same with mems_allowed
2295 			 * here, except if this task is being moved
2296 			 * automatically due to hotplug.  In that case
2297 			 * @mems_allowed has been updated and is empty, so
2298 			 * @old_mems_allowed is the right nodesets that we
2299 			 * migrate mm from.
2300 			 */
2301 			if (is_memory_migrate(cs))
2302 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2303 						  &cpuset_attach_nodemask_to);
2304 			else
2305 				mmput(mm);
2306 		}
2307 	}
2308 
2309 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2310 
2311 	cs->attach_in_progress--;
2312 	if (!cs->attach_in_progress)
2313 		wake_up(&cpuset_attach_wq);
2314 
2315 	percpu_up_write(&cpuset_rwsem);
2316 }
2317 
2318 /* The various types of files and directories in a cpuset file system */
2319 
2320 typedef enum {
2321 	FILE_MEMORY_MIGRATE,
2322 	FILE_CPULIST,
2323 	FILE_MEMLIST,
2324 	FILE_EFFECTIVE_CPULIST,
2325 	FILE_EFFECTIVE_MEMLIST,
2326 	FILE_SUBPARTS_CPULIST,
2327 	FILE_CPU_EXCLUSIVE,
2328 	FILE_MEM_EXCLUSIVE,
2329 	FILE_MEM_HARDWALL,
2330 	FILE_SCHED_LOAD_BALANCE,
2331 	FILE_PARTITION_ROOT,
2332 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2333 	FILE_MEMORY_PRESSURE_ENABLED,
2334 	FILE_MEMORY_PRESSURE,
2335 	FILE_SPREAD_PAGE,
2336 	FILE_SPREAD_SLAB,
2337 } cpuset_filetype_t;
2338 
2339 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2340 			    u64 val)
2341 {
2342 	struct cpuset *cs = css_cs(css);
2343 	cpuset_filetype_t type = cft->private;
2344 	int retval = 0;
2345 
2346 	cpus_read_lock();
2347 	percpu_down_write(&cpuset_rwsem);
2348 	if (!is_cpuset_online(cs)) {
2349 		retval = -ENODEV;
2350 		goto out_unlock;
2351 	}
2352 
2353 	switch (type) {
2354 	case FILE_CPU_EXCLUSIVE:
2355 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2356 		break;
2357 	case FILE_MEM_EXCLUSIVE:
2358 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2359 		break;
2360 	case FILE_MEM_HARDWALL:
2361 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2362 		break;
2363 	case FILE_SCHED_LOAD_BALANCE:
2364 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2365 		break;
2366 	case FILE_MEMORY_MIGRATE:
2367 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2368 		break;
2369 	case FILE_MEMORY_PRESSURE_ENABLED:
2370 		cpuset_memory_pressure_enabled = !!val;
2371 		break;
2372 	case FILE_SPREAD_PAGE:
2373 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2374 		break;
2375 	case FILE_SPREAD_SLAB:
2376 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2377 		break;
2378 	default:
2379 		retval = -EINVAL;
2380 		break;
2381 	}
2382 out_unlock:
2383 	percpu_up_write(&cpuset_rwsem);
2384 	cpus_read_unlock();
2385 	return retval;
2386 }
2387 
2388 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2389 			    s64 val)
2390 {
2391 	struct cpuset *cs = css_cs(css);
2392 	cpuset_filetype_t type = cft->private;
2393 	int retval = -ENODEV;
2394 
2395 	cpus_read_lock();
2396 	percpu_down_write(&cpuset_rwsem);
2397 	if (!is_cpuset_online(cs))
2398 		goto out_unlock;
2399 
2400 	switch (type) {
2401 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2402 		retval = update_relax_domain_level(cs, val);
2403 		break;
2404 	default:
2405 		retval = -EINVAL;
2406 		break;
2407 	}
2408 out_unlock:
2409 	percpu_up_write(&cpuset_rwsem);
2410 	cpus_read_unlock();
2411 	return retval;
2412 }
2413 
2414 /*
2415  * Common handling for a write to a "cpus" or "mems" file.
2416  */
2417 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2418 				    char *buf, size_t nbytes, loff_t off)
2419 {
2420 	struct cpuset *cs = css_cs(of_css(of));
2421 	struct cpuset *trialcs;
2422 	int retval = -ENODEV;
2423 
2424 	buf = strstrip(buf);
2425 
2426 	/*
2427 	 * CPU or memory hotunplug may leave @cs w/o any execution
2428 	 * resources, in which case the hotplug code asynchronously updates
2429 	 * configuration and transfers all tasks to the nearest ancestor
2430 	 * which can execute.
2431 	 *
2432 	 * As writes to "cpus" or "mems" may restore @cs's execution
2433 	 * resources, wait for the previously scheduled operations before
2434 	 * proceeding, so that we don't end up keep removing tasks added
2435 	 * after execution capability is restored.
2436 	 *
2437 	 * cpuset_hotplug_work calls back into cgroup core via
2438 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2439 	 * operation like this one can lead to a deadlock through kernfs
2440 	 * active_ref protection.  Let's break the protection.  Losing the
2441 	 * protection is okay as we check whether @cs is online after
2442 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2443 	 * hierarchies.
2444 	 */
2445 	css_get(&cs->css);
2446 	kernfs_break_active_protection(of->kn);
2447 	flush_work(&cpuset_hotplug_work);
2448 
2449 	cpus_read_lock();
2450 	percpu_down_write(&cpuset_rwsem);
2451 	if (!is_cpuset_online(cs))
2452 		goto out_unlock;
2453 
2454 	trialcs = alloc_trial_cpuset(cs);
2455 	if (!trialcs) {
2456 		retval = -ENOMEM;
2457 		goto out_unlock;
2458 	}
2459 
2460 	switch (of_cft(of)->private) {
2461 	case FILE_CPULIST:
2462 		retval = update_cpumask(cs, trialcs, buf);
2463 		break;
2464 	case FILE_MEMLIST:
2465 		retval = update_nodemask(cs, trialcs, buf);
2466 		break;
2467 	default:
2468 		retval = -EINVAL;
2469 		break;
2470 	}
2471 
2472 	free_cpuset(trialcs);
2473 out_unlock:
2474 	percpu_up_write(&cpuset_rwsem);
2475 	cpus_read_unlock();
2476 	kernfs_unbreak_active_protection(of->kn);
2477 	css_put(&cs->css);
2478 	flush_workqueue(cpuset_migrate_mm_wq);
2479 	return retval ?: nbytes;
2480 }
2481 
2482 /*
2483  * These ascii lists should be read in a single call, by using a user
2484  * buffer large enough to hold the entire map.  If read in smaller
2485  * chunks, there is no guarantee of atomicity.  Since the display format
2486  * used, list of ranges of sequential numbers, is variable length,
2487  * and since these maps can change value dynamically, one could read
2488  * gibberish by doing partial reads while a list was changing.
2489  */
2490 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2491 {
2492 	struct cpuset *cs = css_cs(seq_css(sf));
2493 	cpuset_filetype_t type = seq_cft(sf)->private;
2494 	int ret = 0;
2495 
2496 	spin_lock_irq(&callback_lock);
2497 
2498 	switch (type) {
2499 	case FILE_CPULIST:
2500 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2501 		break;
2502 	case FILE_MEMLIST:
2503 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2504 		break;
2505 	case FILE_EFFECTIVE_CPULIST:
2506 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2507 		break;
2508 	case FILE_EFFECTIVE_MEMLIST:
2509 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2510 		break;
2511 	case FILE_SUBPARTS_CPULIST:
2512 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2513 		break;
2514 	default:
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	spin_unlock_irq(&callback_lock);
2519 	return ret;
2520 }
2521 
2522 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2523 {
2524 	struct cpuset *cs = css_cs(css);
2525 	cpuset_filetype_t type = cft->private;
2526 	switch (type) {
2527 	case FILE_CPU_EXCLUSIVE:
2528 		return is_cpu_exclusive(cs);
2529 	case FILE_MEM_EXCLUSIVE:
2530 		return is_mem_exclusive(cs);
2531 	case FILE_MEM_HARDWALL:
2532 		return is_mem_hardwall(cs);
2533 	case FILE_SCHED_LOAD_BALANCE:
2534 		return is_sched_load_balance(cs);
2535 	case FILE_MEMORY_MIGRATE:
2536 		return is_memory_migrate(cs);
2537 	case FILE_MEMORY_PRESSURE_ENABLED:
2538 		return cpuset_memory_pressure_enabled;
2539 	case FILE_MEMORY_PRESSURE:
2540 		return fmeter_getrate(&cs->fmeter);
2541 	case FILE_SPREAD_PAGE:
2542 		return is_spread_page(cs);
2543 	case FILE_SPREAD_SLAB:
2544 		return is_spread_slab(cs);
2545 	default:
2546 		BUG();
2547 	}
2548 
2549 	/* Unreachable but makes gcc happy */
2550 	return 0;
2551 }
2552 
2553 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2554 {
2555 	struct cpuset *cs = css_cs(css);
2556 	cpuset_filetype_t type = cft->private;
2557 	switch (type) {
2558 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2559 		return cs->relax_domain_level;
2560 	default:
2561 		BUG();
2562 	}
2563 
2564 	/* Unreachable but makes gcc happy */
2565 	return 0;
2566 }
2567 
2568 static int sched_partition_show(struct seq_file *seq, void *v)
2569 {
2570 	struct cpuset *cs = css_cs(seq_css(seq));
2571 
2572 	switch (cs->partition_root_state) {
2573 	case PRS_ENABLED:
2574 		seq_puts(seq, "root\n");
2575 		break;
2576 	case PRS_DISABLED:
2577 		seq_puts(seq, "member\n");
2578 		break;
2579 	case PRS_ERROR:
2580 		seq_puts(seq, "root invalid\n");
2581 		break;
2582 	}
2583 	return 0;
2584 }
2585 
2586 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2587 				     size_t nbytes, loff_t off)
2588 {
2589 	struct cpuset *cs = css_cs(of_css(of));
2590 	int val;
2591 	int retval = -ENODEV;
2592 
2593 	buf = strstrip(buf);
2594 
2595 	/*
2596 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2597 	 */
2598 	if (!strcmp(buf, "root"))
2599 		val = PRS_ENABLED;
2600 	else if (!strcmp(buf, "member"))
2601 		val = PRS_DISABLED;
2602 	else
2603 		return -EINVAL;
2604 
2605 	css_get(&cs->css);
2606 	cpus_read_lock();
2607 	percpu_down_write(&cpuset_rwsem);
2608 	if (!is_cpuset_online(cs))
2609 		goto out_unlock;
2610 
2611 	retval = update_prstate(cs, val);
2612 out_unlock:
2613 	percpu_up_write(&cpuset_rwsem);
2614 	cpus_read_unlock();
2615 	css_put(&cs->css);
2616 	return retval ?: nbytes;
2617 }
2618 
2619 /*
2620  * for the common functions, 'private' gives the type of file
2621  */
2622 
2623 static struct cftype legacy_files[] = {
2624 	{
2625 		.name = "cpus",
2626 		.seq_show = cpuset_common_seq_show,
2627 		.write = cpuset_write_resmask,
2628 		.max_write_len = (100U + 6 * NR_CPUS),
2629 		.private = FILE_CPULIST,
2630 	},
2631 
2632 	{
2633 		.name = "mems",
2634 		.seq_show = cpuset_common_seq_show,
2635 		.write = cpuset_write_resmask,
2636 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2637 		.private = FILE_MEMLIST,
2638 	},
2639 
2640 	{
2641 		.name = "effective_cpus",
2642 		.seq_show = cpuset_common_seq_show,
2643 		.private = FILE_EFFECTIVE_CPULIST,
2644 	},
2645 
2646 	{
2647 		.name = "effective_mems",
2648 		.seq_show = cpuset_common_seq_show,
2649 		.private = FILE_EFFECTIVE_MEMLIST,
2650 	},
2651 
2652 	{
2653 		.name = "cpu_exclusive",
2654 		.read_u64 = cpuset_read_u64,
2655 		.write_u64 = cpuset_write_u64,
2656 		.private = FILE_CPU_EXCLUSIVE,
2657 	},
2658 
2659 	{
2660 		.name = "mem_exclusive",
2661 		.read_u64 = cpuset_read_u64,
2662 		.write_u64 = cpuset_write_u64,
2663 		.private = FILE_MEM_EXCLUSIVE,
2664 	},
2665 
2666 	{
2667 		.name = "mem_hardwall",
2668 		.read_u64 = cpuset_read_u64,
2669 		.write_u64 = cpuset_write_u64,
2670 		.private = FILE_MEM_HARDWALL,
2671 	},
2672 
2673 	{
2674 		.name = "sched_load_balance",
2675 		.read_u64 = cpuset_read_u64,
2676 		.write_u64 = cpuset_write_u64,
2677 		.private = FILE_SCHED_LOAD_BALANCE,
2678 	},
2679 
2680 	{
2681 		.name = "sched_relax_domain_level",
2682 		.read_s64 = cpuset_read_s64,
2683 		.write_s64 = cpuset_write_s64,
2684 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2685 	},
2686 
2687 	{
2688 		.name = "memory_migrate",
2689 		.read_u64 = cpuset_read_u64,
2690 		.write_u64 = cpuset_write_u64,
2691 		.private = FILE_MEMORY_MIGRATE,
2692 	},
2693 
2694 	{
2695 		.name = "memory_pressure",
2696 		.read_u64 = cpuset_read_u64,
2697 		.private = FILE_MEMORY_PRESSURE,
2698 	},
2699 
2700 	{
2701 		.name = "memory_spread_page",
2702 		.read_u64 = cpuset_read_u64,
2703 		.write_u64 = cpuset_write_u64,
2704 		.private = FILE_SPREAD_PAGE,
2705 	},
2706 
2707 	{
2708 		.name = "memory_spread_slab",
2709 		.read_u64 = cpuset_read_u64,
2710 		.write_u64 = cpuset_write_u64,
2711 		.private = FILE_SPREAD_SLAB,
2712 	},
2713 
2714 	{
2715 		.name = "memory_pressure_enabled",
2716 		.flags = CFTYPE_ONLY_ON_ROOT,
2717 		.read_u64 = cpuset_read_u64,
2718 		.write_u64 = cpuset_write_u64,
2719 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2720 	},
2721 
2722 	{ }	/* terminate */
2723 };
2724 
2725 /*
2726  * This is currently a minimal set for the default hierarchy. It can be
2727  * expanded later on by migrating more features and control files from v1.
2728  */
2729 static struct cftype dfl_files[] = {
2730 	{
2731 		.name = "cpus",
2732 		.seq_show = cpuset_common_seq_show,
2733 		.write = cpuset_write_resmask,
2734 		.max_write_len = (100U + 6 * NR_CPUS),
2735 		.private = FILE_CPULIST,
2736 		.flags = CFTYPE_NOT_ON_ROOT,
2737 	},
2738 
2739 	{
2740 		.name = "mems",
2741 		.seq_show = cpuset_common_seq_show,
2742 		.write = cpuset_write_resmask,
2743 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2744 		.private = FILE_MEMLIST,
2745 		.flags = CFTYPE_NOT_ON_ROOT,
2746 	},
2747 
2748 	{
2749 		.name = "cpus.effective",
2750 		.seq_show = cpuset_common_seq_show,
2751 		.private = FILE_EFFECTIVE_CPULIST,
2752 	},
2753 
2754 	{
2755 		.name = "mems.effective",
2756 		.seq_show = cpuset_common_seq_show,
2757 		.private = FILE_EFFECTIVE_MEMLIST,
2758 	},
2759 
2760 	{
2761 		.name = "cpus.partition",
2762 		.seq_show = sched_partition_show,
2763 		.write = sched_partition_write,
2764 		.private = FILE_PARTITION_ROOT,
2765 		.flags = CFTYPE_NOT_ON_ROOT,
2766 		.file_offset = offsetof(struct cpuset, partition_file),
2767 	},
2768 
2769 	{
2770 		.name = "cpus.subpartitions",
2771 		.seq_show = cpuset_common_seq_show,
2772 		.private = FILE_SUBPARTS_CPULIST,
2773 		.flags = CFTYPE_DEBUG,
2774 	},
2775 
2776 	{ }	/* terminate */
2777 };
2778 
2779 
2780 /*
2781  *	cpuset_css_alloc - allocate a cpuset css
2782  *	cgrp:	control group that the new cpuset will be part of
2783  */
2784 
2785 static struct cgroup_subsys_state *
2786 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2787 {
2788 	struct cpuset *cs;
2789 
2790 	if (!parent_css)
2791 		return &top_cpuset.css;
2792 
2793 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2794 	if (!cs)
2795 		return ERR_PTR(-ENOMEM);
2796 
2797 	if (alloc_cpumasks(cs, NULL)) {
2798 		kfree(cs);
2799 		return ERR_PTR(-ENOMEM);
2800 	}
2801 
2802 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2803 	nodes_clear(cs->mems_allowed);
2804 	nodes_clear(cs->effective_mems);
2805 	fmeter_init(&cs->fmeter);
2806 	cs->relax_domain_level = -1;
2807 
2808 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
2809 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2810 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2811 
2812 	return &cs->css;
2813 }
2814 
2815 static int cpuset_css_online(struct cgroup_subsys_state *css)
2816 {
2817 	struct cpuset *cs = css_cs(css);
2818 	struct cpuset *parent = parent_cs(cs);
2819 	struct cpuset *tmp_cs;
2820 	struct cgroup_subsys_state *pos_css;
2821 
2822 	if (!parent)
2823 		return 0;
2824 
2825 	cpus_read_lock();
2826 	percpu_down_write(&cpuset_rwsem);
2827 
2828 	set_bit(CS_ONLINE, &cs->flags);
2829 	if (is_spread_page(parent))
2830 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2831 	if (is_spread_slab(parent))
2832 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2833 
2834 	cpuset_inc();
2835 
2836 	spin_lock_irq(&callback_lock);
2837 	if (is_in_v2_mode()) {
2838 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2839 		cs->effective_mems = parent->effective_mems;
2840 		cs->use_parent_ecpus = true;
2841 		parent->child_ecpus_count++;
2842 	}
2843 	spin_unlock_irq(&callback_lock);
2844 
2845 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2846 		goto out_unlock;
2847 
2848 	/*
2849 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2850 	 * set.  This flag handling is implemented in cgroup core for
2851 	 * histrical reasons - the flag may be specified during mount.
2852 	 *
2853 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2854 	 * refuse to clone the configuration - thereby refusing the task to
2855 	 * be entered, and as a result refusing the sys_unshare() or
2856 	 * clone() which initiated it.  If this becomes a problem for some
2857 	 * users who wish to allow that scenario, then this could be
2858 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2859 	 * (and likewise for mems) to the new cgroup.
2860 	 */
2861 	rcu_read_lock();
2862 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2863 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2864 			rcu_read_unlock();
2865 			goto out_unlock;
2866 		}
2867 	}
2868 	rcu_read_unlock();
2869 
2870 	spin_lock_irq(&callback_lock);
2871 	cs->mems_allowed = parent->mems_allowed;
2872 	cs->effective_mems = parent->mems_allowed;
2873 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2874 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2875 	spin_unlock_irq(&callback_lock);
2876 out_unlock:
2877 	percpu_up_write(&cpuset_rwsem);
2878 	cpus_read_unlock();
2879 	return 0;
2880 }
2881 
2882 /*
2883  * If the cpuset being removed has its flag 'sched_load_balance'
2884  * enabled, then simulate turning sched_load_balance off, which
2885  * will call rebuild_sched_domains_locked(). That is not needed
2886  * in the default hierarchy where only changes in partition
2887  * will cause repartitioning.
2888  *
2889  * If the cpuset has the 'sched.partition' flag enabled, simulate
2890  * turning 'sched.partition" off.
2891  */
2892 
2893 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2894 {
2895 	struct cpuset *cs = css_cs(css);
2896 
2897 	cpus_read_lock();
2898 	percpu_down_write(&cpuset_rwsem);
2899 
2900 	if (is_partition_root(cs))
2901 		update_prstate(cs, 0);
2902 
2903 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2904 	    is_sched_load_balance(cs))
2905 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2906 
2907 	if (cs->use_parent_ecpus) {
2908 		struct cpuset *parent = parent_cs(cs);
2909 
2910 		cs->use_parent_ecpus = false;
2911 		parent->child_ecpus_count--;
2912 	}
2913 
2914 	cpuset_dec();
2915 	clear_bit(CS_ONLINE, &cs->flags);
2916 
2917 	percpu_up_write(&cpuset_rwsem);
2918 	cpus_read_unlock();
2919 }
2920 
2921 static void cpuset_css_free(struct cgroup_subsys_state *css)
2922 {
2923 	struct cpuset *cs = css_cs(css);
2924 
2925 	free_cpuset(cs);
2926 }
2927 
2928 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2929 {
2930 	percpu_down_write(&cpuset_rwsem);
2931 	spin_lock_irq(&callback_lock);
2932 
2933 	if (is_in_v2_mode()) {
2934 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2935 		top_cpuset.mems_allowed = node_possible_map;
2936 	} else {
2937 		cpumask_copy(top_cpuset.cpus_allowed,
2938 			     top_cpuset.effective_cpus);
2939 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2940 	}
2941 
2942 	spin_unlock_irq(&callback_lock);
2943 	percpu_up_write(&cpuset_rwsem);
2944 }
2945 
2946 /*
2947  * Make sure the new task conform to the current state of its parent,
2948  * which could have been changed by cpuset just after it inherits the
2949  * state from the parent and before it sits on the cgroup's task list.
2950  */
2951 static void cpuset_fork(struct task_struct *task)
2952 {
2953 	if (task_css_is_root(task, cpuset_cgrp_id))
2954 		return;
2955 
2956 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2957 	task->mems_allowed = current->mems_allowed;
2958 }
2959 
2960 struct cgroup_subsys cpuset_cgrp_subsys = {
2961 	.css_alloc	= cpuset_css_alloc,
2962 	.css_online	= cpuset_css_online,
2963 	.css_offline	= cpuset_css_offline,
2964 	.css_free	= cpuset_css_free,
2965 	.can_attach	= cpuset_can_attach,
2966 	.cancel_attach	= cpuset_cancel_attach,
2967 	.attach		= cpuset_attach,
2968 	.post_attach	= cpuset_post_attach,
2969 	.bind		= cpuset_bind,
2970 	.fork		= cpuset_fork,
2971 	.legacy_cftypes	= legacy_files,
2972 	.dfl_cftypes	= dfl_files,
2973 	.early_init	= true,
2974 	.threaded	= true,
2975 };
2976 
2977 /**
2978  * cpuset_init - initialize cpusets at system boot
2979  *
2980  * Description: Initialize top_cpuset
2981  **/
2982 
2983 int __init cpuset_init(void)
2984 {
2985 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2986 
2987 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2988 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2989 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2990 
2991 	cpumask_setall(top_cpuset.cpus_allowed);
2992 	nodes_setall(top_cpuset.mems_allowed);
2993 	cpumask_setall(top_cpuset.effective_cpus);
2994 	nodes_setall(top_cpuset.effective_mems);
2995 
2996 	fmeter_init(&top_cpuset.fmeter);
2997 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2998 	top_cpuset.relax_domain_level = -1;
2999 
3000 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3001 
3002 	return 0;
3003 }
3004 
3005 /*
3006  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3007  * or memory nodes, we need to walk over the cpuset hierarchy,
3008  * removing that CPU or node from all cpusets.  If this removes the
3009  * last CPU or node from a cpuset, then move the tasks in the empty
3010  * cpuset to its next-highest non-empty parent.
3011  */
3012 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3013 {
3014 	struct cpuset *parent;
3015 
3016 	/*
3017 	 * Find its next-highest non-empty parent, (top cpuset
3018 	 * has online cpus, so can't be empty).
3019 	 */
3020 	parent = parent_cs(cs);
3021 	while (cpumask_empty(parent->cpus_allowed) ||
3022 			nodes_empty(parent->mems_allowed))
3023 		parent = parent_cs(parent);
3024 
3025 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3026 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3027 		pr_cont_cgroup_name(cs->css.cgroup);
3028 		pr_cont("\n");
3029 	}
3030 }
3031 
3032 static void
3033 hotplug_update_tasks_legacy(struct cpuset *cs,
3034 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3035 			    bool cpus_updated, bool mems_updated)
3036 {
3037 	bool is_empty;
3038 
3039 	spin_lock_irq(&callback_lock);
3040 	cpumask_copy(cs->cpus_allowed, new_cpus);
3041 	cpumask_copy(cs->effective_cpus, new_cpus);
3042 	cs->mems_allowed = *new_mems;
3043 	cs->effective_mems = *new_mems;
3044 	spin_unlock_irq(&callback_lock);
3045 
3046 	/*
3047 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3048 	 * as the tasks will be migratecd to an ancestor.
3049 	 */
3050 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3051 		update_tasks_cpumask(cs);
3052 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3053 		update_tasks_nodemask(cs);
3054 
3055 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3056 		   nodes_empty(cs->mems_allowed);
3057 
3058 	percpu_up_write(&cpuset_rwsem);
3059 
3060 	/*
3061 	 * Move tasks to the nearest ancestor with execution resources,
3062 	 * This is full cgroup operation which will also call back into
3063 	 * cpuset. Should be done outside any lock.
3064 	 */
3065 	if (is_empty)
3066 		remove_tasks_in_empty_cpuset(cs);
3067 
3068 	percpu_down_write(&cpuset_rwsem);
3069 }
3070 
3071 static void
3072 hotplug_update_tasks(struct cpuset *cs,
3073 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3074 		     bool cpus_updated, bool mems_updated)
3075 {
3076 	if (cpumask_empty(new_cpus))
3077 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3078 	if (nodes_empty(*new_mems))
3079 		*new_mems = parent_cs(cs)->effective_mems;
3080 
3081 	spin_lock_irq(&callback_lock);
3082 	cpumask_copy(cs->effective_cpus, new_cpus);
3083 	cs->effective_mems = *new_mems;
3084 	spin_unlock_irq(&callback_lock);
3085 
3086 	if (cpus_updated)
3087 		update_tasks_cpumask(cs);
3088 	if (mems_updated)
3089 		update_tasks_nodemask(cs);
3090 }
3091 
3092 static bool force_rebuild;
3093 
3094 void cpuset_force_rebuild(void)
3095 {
3096 	force_rebuild = true;
3097 }
3098 
3099 /**
3100  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3101  * @cs: cpuset in interest
3102  * @tmp: the tmpmasks structure pointer
3103  *
3104  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3105  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3106  * all its tasks are moved to the nearest ancestor with both resources.
3107  */
3108 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3109 {
3110 	static cpumask_t new_cpus;
3111 	static nodemask_t new_mems;
3112 	bool cpus_updated;
3113 	bool mems_updated;
3114 	struct cpuset *parent;
3115 retry:
3116 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3117 
3118 	percpu_down_write(&cpuset_rwsem);
3119 
3120 	/*
3121 	 * We have raced with task attaching. We wait until attaching
3122 	 * is finished, so we won't attach a task to an empty cpuset.
3123 	 */
3124 	if (cs->attach_in_progress) {
3125 		percpu_up_write(&cpuset_rwsem);
3126 		goto retry;
3127 	}
3128 
3129 	parent = parent_cs(cs);
3130 	compute_effective_cpumask(&new_cpus, cs, parent);
3131 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3132 
3133 	if (cs->nr_subparts_cpus)
3134 		/*
3135 		 * Make sure that CPUs allocated to child partitions
3136 		 * do not show up in effective_cpus.
3137 		 */
3138 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3139 
3140 	if (!tmp || !cs->partition_root_state)
3141 		goto update_tasks;
3142 
3143 	/*
3144 	 * In the unlikely event that a partition root has empty
3145 	 * effective_cpus or its parent becomes erroneous, we have to
3146 	 * transition it to the erroneous state.
3147 	 */
3148 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3149 	   (parent->partition_root_state == PRS_ERROR))) {
3150 		if (cs->nr_subparts_cpus) {
3151 			spin_lock_irq(&callback_lock);
3152 			cs->nr_subparts_cpus = 0;
3153 			cpumask_clear(cs->subparts_cpus);
3154 			spin_unlock_irq(&callback_lock);
3155 			compute_effective_cpumask(&new_cpus, cs, parent);
3156 		}
3157 
3158 		/*
3159 		 * If the effective_cpus is empty because the child
3160 		 * partitions take away all the CPUs, we can keep
3161 		 * the current partition and let the child partitions
3162 		 * fight for available CPUs.
3163 		 */
3164 		if ((parent->partition_root_state == PRS_ERROR) ||
3165 		     cpumask_empty(&new_cpus)) {
3166 			int old_prs;
3167 
3168 			update_parent_subparts_cpumask(cs, partcmd_disable,
3169 						       NULL, tmp);
3170 			old_prs = cs->partition_root_state;
3171 			if (old_prs != PRS_ERROR) {
3172 				spin_lock_irq(&callback_lock);
3173 				cs->partition_root_state = PRS_ERROR;
3174 				spin_unlock_irq(&callback_lock);
3175 				notify_partition_change(cs, old_prs, PRS_ERROR);
3176 			}
3177 		}
3178 		cpuset_force_rebuild();
3179 	}
3180 
3181 	/*
3182 	 * On the other hand, an erroneous partition root may be transitioned
3183 	 * back to a regular one or a partition root with no CPU allocated
3184 	 * from the parent may change to erroneous.
3185 	 */
3186 	if (is_partition_root(parent) &&
3187 	   ((cs->partition_root_state == PRS_ERROR) ||
3188 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3189 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3190 		cpuset_force_rebuild();
3191 
3192 update_tasks:
3193 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3194 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3195 
3196 	if (mems_updated)
3197 		check_insane_mems_config(&new_mems);
3198 
3199 	if (is_in_v2_mode())
3200 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3201 				     cpus_updated, mems_updated);
3202 	else
3203 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3204 					    cpus_updated, mems_updated);
3205 
3206 	percpu_up_write(&cpuset_rwsem);
3207 }
3208 
3209 /**
3210  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3211  *
3212  * This function is called after either CPU or memory configuration has
3213  * changed and updates cpuset accordingly.  The top_cpuset is always
3214  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3215  * order to make cpusets transparent (of no affect) on systems that are
3216  * actively using CPU hotplug but making no active use of cpusets.
3217  *
3218  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3219  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3220  * all descendants.
3221  *
3222  * Note that CPU offlining during suspend is ignored.  We don't modify
3223  * cpusets across suspend/resume cycles at all.
3224  */
3225 static void cpuset_hotplug_workfn(struct work_struct *work)
3226 {
3227 	static cpumask_t new_cpus;
3228 	static nodemask_t new_mems;
3229 	bool cpus_updated, mems_updated;
3230 	bool on_dfl = is_in_v2_mode();
3231 	struct tmpmasks tmp, *ptmp = NULL;
3232 
3233 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3234 		ptmp = &tmp;
3235 
3236 	percpu_down_write(&cpuset_rwsem);
3237 
3238 	/* fetch the available cpus/mems and find out which changed how */
3239 	cpumask_copy(&new_cpus, cpu_active_mask);
3240 	new_mems = node_states[N_MEMORY];
3241 
3242 	/*
3243 	 * If subparts_cpus is populated, it is likely that the check below
3244 	 * will produce a false positive on cpus_updated when the cpu list
3245 	 * isn't changed. It is extra work, but it is better to be safe.
3246 	 */
3247 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3248 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3249 
3250 	/*
3251 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3252 	 * we assumed that cpus are updated.
3253 	 */
3254 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3255 		cpus_updated = true;
3256 
3257 	/* synchronize cpus_allowed to cpu_active_mask */
3258 	if (cpus_updated) {
3259 		spin_lock_irq(&callback_lock);
3260 		if (!on_dfl)
3261 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3262 		/*
3263 		 * Make sure that CPUs allocated to child partitions
3264 		 * do not show up in effective_cpus. If no CPU is left,
3265 		 * we clear the subparts_cpus & let the child partitions
3266 		 * fight for the CPUs again.
3267 		 */
3268 		if (top_cpuset.nr_subparts_cpus) {
3269 			if (cpumask_subset(&new_cpus,
3270 					   top_cpuset.subparts_cpus)) {
3271 				top_cpuset.nr_subparts_cpus = 0;
3272 				cpumask_clear(top_cpuset.subparts_cpus);
3273 			} else {
3274 				cpumask_andnot(&new_cpus, &new_cpus,
3275 					       top_cpuset.subparts_cpus);
3276 			}
3277 		}
3278 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3279 		spin_unlock_irq(&callback_lock);
3280 		/* we don't mess with cpumasks of tasks in top_cpuset */
3281 	}
3282 
3283 	/* synchronize mems_allowed to N_MEMORY */
3284 	if (mems_updated) {
3285 		spin_lock_irq(&callback_lock);
3286 		if (!on_dfl)
3287 			top_cpuset.mems_allowed = new_mems;
3288 		top_cpuset.effective_mems = new_mems;
3289 		spin_unlock_irq(&callback_lock);
3290 		update_tasks_nodemask(&top_cpuset);
3291 	}
3292 
3293 	percpu_up_write(&cpuset_rwsem);
3294 
3295 	/* if cpus or mems changed, we need to propagate to descendants */
3296 	if (cpus_updated || mems_updated) {
3297 		struct cpuset *cs;
3298 		struct cgroup_subsys_state *pos_css;
3299 
3300 		rcu_read_lock();
3301 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3302 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3303 				continue;
3304 			rcu_read_unlock();
3305 
3306 			cpuset_hotplug_update_tasks(cs, ptmp);
3307 
3308 			rcu_read_lock();
3309 			css_put(&cs->css);
3310 		}
3311 		rcu_read_unlock();
3312 	}
3313 
3314 	/* rebuild sched domains if cpus_allowed has changed */
3315 	if (cpus_updated || force_rebuild) {
3316 		force_rebuild = false;
3317 		rebuild_sched_domains();
3318 	}
3319 
3320 	free_cpumasks(NULL, ptmp);
3321 }
3322 
3323 void cpuset_update_active_cpus(void)
3324 {
3325 	/*
3326 	 * We're inside cpu hotplug critical region which usually nests
3327 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3328 	 * to a work item to avoid reverse locking order.
3329 	 */
3330 	schedule_work(&cpuset_hotplug_work);
3331 }
3332 
3333 void cpuset_wait_for_hotplug(void)
3334 {
3335 	flush_work(&cpuset_hotplug_work);
3336 }
3337 
3338 /*
3339  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3340  * Call this routine anytime after node_states[N_MEMORY] changes.
3341  * See cpuset_update_active_cpus() for CPU hotplug handling.
3342  */
3343 static int cpuset_track_online_nodes(struct notifier_block *self,
3344 				unsigned long action, void *arg)
3345 {
3346 	schedule_work(&cpuset_hotplug_work);
3347 	return NOTIFY_OK;
3348 }
3349 
3350 static struct notifier_block cpuset_track_online_nodes_nb = {
3351 	.notifier_call = cpuset_track_online_nodes,
3352 	.priority = 10,		/* ??! */
3353 };
3354 
3355 /**
3356  * cpuset_init_smp - initialize cpus_allowed
3357  *
3358  * Description: Finish top cpuset after cpu, node maps are initialized
3359  */
3360 void __init cpuset_init_smp(void)
3361 {
3362 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3363 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3364 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3365 
3366 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3367 	top_cpuset.effective_mems = node_states[N_MEMORY];
3368 
3369 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3370 
3371 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3372 	BUG_ON(!cpuset_migrate_mm_wq);
3373 }
3374 
3375 /**
3376  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3377  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3378  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3379  *
3380  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3381  * attached to the specified @tsk.  Guaranteed to return some non-empty
3382  * subset of cpu_online_mask, even if this means going outside the
3383  * tasks cpuset.
3384  **/
3385 
3386 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3387 {
3388 	unsigned long flags;
3389 
3390 	spin_lock_irqsave(&callback_lock, flags);
3391 	guarantee_online_cpus(tsk, pmask);
3392 	spin_unlock_irqrestore(&callback_lock, flags);
3393 }
3394 
3395 /**
3396  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3397  * @tsk: pointer to task_struct with which the scheduler is struggling
3398  *
3399  * Description: In the case that the scheduler cannot find an allowed cpu in
3400  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3401  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3402  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3403  * This is the absolute last resort for the scheduler and it is only used if
3404  * _every_ other avenue has been traveled.
3405  *
3406  * Returns true if the affinity of @tsk was changed, false otherwise.
3407  **/
3408 
3409 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3410 {
3411 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3412 	const struct cpumask *cs_mask;
3413 	bool changed = false;
3414 
3415 	rcu_read_lock();
3416 	cs_mask = task_cs(tsk)->cpus_allowed;
3417 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3418 		do_set_cpus_allowed(tsk, cs_mask);
3419 		changed = true;
3420 	}
3421 	rcu_read_unlock();
3422 
3423 	/*
3424 	 * We own tsk->cpus_allowed, nobody can change it under us.
3425 	 *
3426 	 * But we used cs && cs->cpus_allowed lockless and thus can
3427 	 * race with cgroup_attach_task() or update_cpumask() and get
3428 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3429 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3430 	 * which takes task_rq_lock().
3431 	 *
3432 	 * If we are called after it dropped the lock we must see all
3433 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3434 	 * set any mask even if it is not right from task_cs() pov,
3435 	 * the pending set_cpus_allowed_ptr() will fix things.
3436 	 *
3437 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3438 	 * if required.
3439 	 */
3440 	return changed;
3441 }
3442 
3443 void __init cpuset_init_current_mems_allowed(void)
3444 {
3445 	nodes_setall(current->mems_allowed);
3446 }
3447 
3448 /**
3449  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3450  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3451  *
3452  * Description: Returns the nodemask_t mems_allowed of the cpuset
3453  * attached to the specified @tsk.  Guaranteed to return some non-empty
3454  * subset of node_states[N_MEMORY], even if this means going outside the
3455  * tasks cpuset.
3456  **/
3457 
3458 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3459 {
3460 	nodemask_t mask;
3461 	unsigned long flags;
3462 
3463 	spin_lock_irqsave(&callback_lock, flags);
3464 	rcu_read_lock();
3465 	guarantee_online_mems(task_cs(tsk), &mask);
3466 	rcu_read_unlock();
3467 	spin_unlock_irqrestore(&callback_lock, flags);
3468 
3469 	return mask;
3470 }
3471 
3472 /**
3473  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3474  * @nodemask: the nodemask to be checked
3475  *
3476  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3477  */
3478 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3479 {
3480 	return nodes_intersects(*nodemask, current->mems_allowed);
3481 }
3482 
3483 /*
3484  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3485  * mem_hardwall ancestor to the specified cpuset.  Call holding
3486  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3487  * (an unusual configuration), then returns the root cpuset.
3488  */
3489 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3490 {
3491 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3492 		cs = parent_cs(cs);
3493 	return cs;
3494 }
3495 
3496 /**
3497  * cpuset_node_allowed - Can we allocate on a memory node?
3498  * @node: is this an allowed node?
3499  * @gfp_mask: memory allocation flags
3500  *
3501  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3502  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3503  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3504  * yes.  If current has access to memory reserves as an oom victim, yes.
3505  * Otherwise, no.
3506  *
3507  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3508  * and do not allow allocations outside the current tasks cpuset
3509  * unless the task has been OOM killed.
3510  * GFP_KERNEL allocations are not so marked, so can escape to the
3511  * nearest enclosing hardwalled ancestor cpuset.
3512  *
3513  * Scanning up parent cpusets requires callback_lock.  The
3514  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3515  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3516  * current tasks mems_allowed came up empty on the first pass over
3517  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3518  * cpuset are short of memory, might require taking the callback_lock.
3519  *
3520  * The first call here from mm/page_alloc:get_page_from_freelist()
3521  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3522  * so no allocation on a node outside the cpuset is allowed (unless
3523  * in interrupt, of course).
3524  *
3525  * The second pass through get_page_from_freelist() doesn't even call
3526  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3527  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3528  * in alloc_flags.  That logic and the checks below have the combined
3529  * affect that:
3530  *	in_interrupt - any node ok (current task context irrelevant)
3531  *	GFP_ATOMIC   - any node ok
3532  *	tsk_is_oom_victim   - any node ok
3533  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3534  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3535  */
3536 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3537 {
3538 	struct cpuset *cs;		/* current cpuset ancestors */
3539 	int allowed;			/* is allocation in zone z allowed? */
3540 	unsigned long flags;
3541 
3542 	if (in_interrupt())
3543 		return true;
3544 	if (node_isset(node, current->mems_allowed))
3545 		return true;
3546 	/*
3547 	 * Allow tasks that have access to memory reserves because they have
3548 	 * been OOM killed to get memory anywhere.
3549 	 */
3550 	if (unlikely(tsk_is_oom_victim(current)))
3551 		return true;
3552 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3553 		return false;
3554 
3555 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3556 		return true;
3557 
3558 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3559 	spin_lock_irqsave(&callback_lock, flags);
3560 
3561 	rcu_read_lock();
3562 	cs = nearest_hardwall_ancestor(task_cs(current));
3563 	allowed = node_isset(node, cs->mems_allowed);
3564 	rcu_read_unlock();
3565 
3566 	spin_unlock_irqrestore(&callback_lock, flags);
3567 	return allowed;
3568 }
3569 
3570 /**
3571  * cpuset_mem_spread_node() - On which node to begin search for a file page
3572  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3573  *
3574  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3575  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3576  * and if the memory allocation used cpuset_mem_spread_node()
3577  * to determine on which node to start looking, as it will for
3578  * certain page cache or slab cache pages such as used for file
3579  * system buffers and inode caches, then instead of starting on the
3580  * local node to look for a free page, rather spread the starting
3581  * node around the tasks mems_allowed nodes.
3582  *
3583  * We don't have to worry about the returned node being offline
3584  * because "it can't happen", and even if it did, it would be ok.
3585  *
3586  * The routines calling guarantee_online_mems() are careful to
3587  * only set nodes in task->mems_allowed that are online.  So it
3588  * should not be possible for the following code to return an
3589  * offline node.  But if it did, that would be ok, as this routine
3590  * is not returning the node where the allocation must be, only
3591  * the node where the search should start.  The zonelist passed to
3592  * __alloc_pages() will include all nodes.  If the slab allocator
3593  * is passed an offline node, it will fall back to the local node.
3594  * See kmem_cache_alloc_node().
3595  */
3596 
3597 static int cpuset_spread_node(int *rotor)
3598 {
3599 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3600 }
3601 
3602 int cpuset_mem_spread_node(void)
3603 {
3604 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3605 		current->cpuset_mem_spread_rotor =
3606 			node_random(&current->mems_allowed);
3607 
3608 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3609 }
3610 
3611 int cpuset_slab_spread_node(void)
3612 {
3613 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3614 		current->cpuset_slab_spread_rotor =
3615 			node_random(&current->mems_allowed);
3616 
3617 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3618 }
3619 
3620 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3621 
3622 /**
3623  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3624  * @tsk1: pointer to task_struct of some task.
3625  * @tsk2: pointer to task_struct of some other task.
3626  *
3627  * Description: Return true if @tsk1's mems_allowed intersects the
3628  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3629  * one of the task's memory usage might impact the memory available
3630  * to the other.
3631  **/
3632 
3633 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3634 				   const struct task_struct *tsk2)
3635 {
3636 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3637 }
3638 
3639 /**
3640  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3641  *
3642  * Description: Prints current's name, cpuset name, and cached copy of its
3643  * mems_allowed to the kernel log.
3644  */
3645 void cpuset_print_current_mems_allowed(void)
3646 {
3647 	struct cgroup *cgrp;
3648 
3649 	rcu_read_lock();
3650 
3651 	cgrp = task_cs(current)->css.cgroup;
3652 	pr_cont(",cpuset=");
3653 	pr_cont_cgroup_name(cgrp);
3654 	pr_cont(",mems_allowed=%*pbl",
3655 		nodemask_pr_args(&current->mems_allowed));
3656 
3657 	rcu_read_unlock();
3658 }
3659 
3660 /*
3661  * Collection of memory_pressure is suppressed unless
3662  * this flag is enabled by writing "1" to the special
3663  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3664  */
3665 
3666 int cpuset_memory_pressure_enabled __read_mostly;
3667 
3668 /**
3669  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3670  *
3671  * Keep a running average of the rate of synchronous (direct)
3672  * page reclaim efforts initiated by tasks in each cpuset.
3673  *
3674  * This represents the rate at which some task in the cpuset
3675  * ran low on memory on all nodes it was allowed to use, and
3676  * had to enter the kernels page reclaim code in an effort to
3677  * create more free memory by tossing clean pages or swapping
3678  * or writing dirty pages.
3679  *
3680  * Display to user space in the per-cpuset read-only file
3681  * "memory_pressure".  Value displayed is an integer
3682  * representing the recent rate of entry into the synchronous
3683  * (direct) page reclaim by any task attached to the cpuset.
3684  **/
3685 
3686 void __cpuset_memory_pressure_bump(void)
3687 {
3688 	rcu_read_lock();
3689 	fmeter_markevent(&task_cs(current)->fmeter);
3690 	rcu_read_unlock();
3691 }
3692 
3693 #ifdef CONFIG_PROC_PID_CPUSET
3694 /*
3695  * proc_cpuset_show()
3696  *  - Print tasks cpuset path into seq_file.
3697  *  - Used for /proc/<pid>/cpuset.
3698  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3699  *    doesn't really matter if tsk->cpuset changes after we read it,
3700  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3701  *    anyway.
3702  */
3703 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3704 		     struct pid *pid, struct task_struct *tsk)
3705 {
3706 	char *buf;
3707 	struct cgroup_subsys_state *css;
3708 	int retval;
3709 
3710 	retval = -ENOMEM;
3711 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3712 	if (!buf)
3713 		goto out;
3714 
3715 	css = task_get_css(tsk, cpuset_cgrp_id);
3716 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3717 				current->nsproxy->cgroup_ns);
3718 	css_put(css);
3719 	if (retval >= PATH_MAX)
3720 		retval = -ENAMETOOLONG;
3721 	if (retval < 0)
3722 		goto out_free;
3723 	seq_puts(m, buf);
3724 	seq_putc(m, '\n');
3725 	retval = 0;
3726 out_free:
3727 	kfree(buf);
3728 out:
3729 	return retval;
3730 }
3731 #endif /* CONFIG_PROC_PID_CPUSET */
3732 
3733 /* Display task mems_allowed in /proc/<pid>/status file. */
3734 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3735 {
3736 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3737 		   nodemask_pr_args(&task->mems_allowed));
3738 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3739 		   nodemask_pr_args(&task->mems_allowed));
3740 }
3741