xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision c4c3c32d)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/mempolicy.h>
32 #include <linux/mm.h>
33 #include <linux/memory.h>
34 #include <linux/export.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/sched/deadline.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/task.h>
40 #include <linux/security.h>
41 #include <linux/spinlock.h>
42 #include <linux/oom.h>
43 #include <linux/sched/isolation.h>
44 #include <linux/cgroup.h>
45 #include <linux/wait.h>
46 
47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
49 
50 /*
51  * There could be abnormal cpuset configurations for cpu or memory
52  * node binding, add this key to provide a quick low-cost judgment
53  * of the situation.
54  */
55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
56 
57 /* See "Frequency meter" comments, below. */
58 
59 struct fmeter {
60 	int cnt;		/* unprocessed events count */
61 	int val;		/* most recent output value */
62 	time64_t time;		/* clock (secs) when val computed */
63 	spinlock_t lock;	/* guards read or write of above */
64 };
65 
66 /*
67  * Invalid partition error code
68  */
69 enum prs_errcode {
70 	PERR_NONE = 0,
71 	PERR_INVCPUS,
72 	PERR_INVPARENT,
73 	PERR_NOTPART,
74 	PERR_NOTEXCL,
75 	PERR_NOCPUS,
76 	PERR_HOTPLUG,
77 	PERR_CPUSEMPTY,
78 };
79 
80 static const char * const perr_strings[] = {
81 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
82 	[PERR_INVPARENT] = "Parent is an invalid partition root",
83 	[PERR_NOTPART]   = "Parent is not a partition root",
84 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
85 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
86 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
87 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
88 };
89 
90 struct cpuset {
91 	struct cgroup_subsys_state css;
92 
93 	unsigned long flags;		/* "unsigned long" so bitops work */
94 
95 	/*
96 	 * On default hierarchy:
97 	 *
98 	 * The user-configured masks can only be changed by writing to
99 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
100 	 * parent masks.
101 	 *
102 	 * The effective masks is the real masks that apply to the tasks
103 	 * in the cpuset. They may be changed if the configured masks are
104 	 * changed or hotplug happens.
105 	 *
106 	 * effective_mask == configured_mask & parent's effective_mask,
107 	 * and if it ends up empty, it will inherit the parent's mask.
108 	 *
109 	 *
110 	 * On legacy hierarchy:
111 	 *
112 	 * The user-configured masks are always the same with effective masks.
113 	 */
114 
115 	/* user-configured CPUs and Memory Nodes allow to tasks */
116 	cpumask_var_t cpus_allowed;
117 	nodemask_t mems_allowed;
118 
119 	/* effective CPUs and Memory Nodes allow to tasks */
120 	cpumask_var_t effective_cpus;
121 	nodemask_t effective_mems;
122 
123 	/*
124 	 * CPUs allocated to child sub-partitions (default hierarchy only)
125 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
126 	 * - effective_cpus and subparts_cpus are mutually exclusive.
127 	 *
128 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
129 	 * may have offlined ones.
130 	 */
131 	cpumask_var_t subparts_cpus;
132 
133 	/*
134 	 * This is old Memory Nodes tasks took on.
135 	 *
136 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
137 	 * - A new cpuset's old_mems_allowed is initialized when some
138 	 *   task is moved into it.
139 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
140 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
141 	 *   then old_mems_allowed is updated to mems_allowed.
142 	 */
143 	nodemask_t old_mems_allowed;
144 
145 	struct fmeter fmeter;		/* memory_pressure filter */
146 
147 	/*
148 	 * Tasks are being attached to this cpuset.  Used to prevent
149 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
150 	 */
151 	int attach_in_progress;
152 
153 	/* partition number for rebuild_sched_domains() */
154 	int pn;
155 
156 	/* for custom sched domain */
157 	int relax_domain_level;
158 
159 	/* number of CPUs in subparts_cpus */
160 	int nr_subparts_cpus;
161 
162 	/* partition root state */
163 	int partition_root_state;
164 
165 	/*
166 	 * Default hierarchy only:
167 	 * use_parent_ecpus - set if using parent's effective_cpus
168 	 * child_ecpus_count - # of children with use_parent_ecpus set
169 	 */
170 	int use_parent_ecpus;
171 	int child_ecpus_count;
172 
173 	/*
174 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
175 	 * know when to rebuild associated root domain bandwidth information.
176 	 */
177 	int nr_deadline_tasks;
178 	int nr_migrate_dl_tasks;
179 	u64 sum_migrate_dl_bw;
180 
181 	/* Invalid partition error code, not lock protected */
182 	enum prs_errcode prs_err;
183 
184 	/* Handle for cpuset.cpus.partition */
185 	struct cgroup_file partition_file;
186 };
187 
188 /*
189  * Partition root states:
190  *
191  *   0 - member (not a partition root)
192  *   1 - partition root
193  *   2 - partition root without load balancing (isolated)
194  *  -1 - invalid partition root
195  *  -2 - invalid isolated partition root
196  */
197 #define PRS_MEMBER		0
198 #define PRS_ROOT		1
199 #define PRS_ISOLATED		2
200 #define PRS_INVALID_ROOT	-1
201 #define PRS_INVALID_ISOLATED	-2
202 
203 static inline bool is_prs_invalid(int prs_state)
204 {
205 	return prs_state < 0;
206 }
207 
208 /*
209  * Temporary cpumasks for working with partitions that are passed among
210  * functions to avoid memory allocation in inner functions.
211  */
212 struct tmpmasks {
213 	cpumask_var_t addmask, delmask;	/* For partition root */
214 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
215 };
216 
217 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
218 {
219 	return css ? container_of(css, struct cpuset, css) : NULL;
220 }
221 
222 /* Retrieve the cpuset for a task */
223 static inline struct cpuset *task_cs(struct task_struct *task)
224 {
225 	return css_cs(task_css(task, cpuset_cgrp_id));
226 }
227 
228 static inline struct cpuset *parent_cs(struct cpuset *cs)
229 {
230 	return css_cs(cs->css.parent);
231 }
232 
233 void inc_dl_tasks_cs(struct task_struct *p)
234 {
235 	struct cpuset *cs = task_cs(p);
236 
237 	cs->nr_deadline_tasks++;
238 }
239 
240 void dec_dl_tasks_cs(struct task_struct *p)
241 {
242 	struct cpuset *cs = task_cs(p);
243 
244 	cs->nr_deadline_tasks--;
245 }
246 
247 /* bits in struct cpuset flags field */
248 typedef enum {
249 	CS_ONLINE,
250 	CS_CPU_EXCLUSIVE,
251 	CS_MEM_EXCLUSIVE,
252 	CS_MEM_HARDWALL,
253 	CS_MEMORY_MIGRATE,
254 	CS_SCHED_LOAD_BALANCE,
255 	CS_SPREAD_PAGE,
256 	CS_SPREAD_SLAB,
257 } cpuset_flagbits_t;
258 
259 /* convenient tests for these bits */
260 static inline bool is_cpuset_online(struct cpuset *cs)
261 {
262 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
263 }
264 
265 static inline int is_cpu_exclusive(const struct cpuset *cs)
266 {
267 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
268 }
269 
270 static inline int is_mem_exclusive(const struct cpuset *cs)
271 {
272 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
273 }
274 
275 static inline int is_mem_hardwall(const struct cpuset *cs)
276 {
277 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
278 }
279 
280 static inline int is_sched_load_balance(const struct cpuset *cs)
281 {
282 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
283 }
284 
285 static inline int is_memory_migrate(const struct cpuset *cs)
286 {
287 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
288 }
289 
290 static inline int is_spread_page(const struct cpuset *cs)
291 {
292 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
293 }
294 
295 static inline int is_spread_slab(const struct cpuset *cs)
296 {
297 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
298 }
299 
300 static inline int is_partition_valid(const struct cpuset *cs)
301 {
302 	return cs->partition_root_state > 0;
303 }
304 
305 static inline int is_partition_invalid(const struct cpuset *cs)
306 {
307 	return cs->partition_root_state < 0;
308 }
309 
310 /*
311  * Callers should hold callback_lock to modify partition_root_state.
312  */
313 static inline void make_partition_invalid(struct cpuset *cs)
314 {
315 	if (is_partition_valid(cs))
316 		cs->partition_root_state = -cs->partition_root_state;
317 }
318 
319 /*
320  * Send notification event of whenever partition_root_state changes.
321  */
322 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
323 {
324 	if (old_prs == cs->partition_root_state)
325 		return;
326 	cgroup_file_notify(&cs->partition_file);
327 
328 	/* Reset prs_err if not invalid */
329 	if (is_partition_valid(cs))
330 		WRITE_ONCE(cs->prs_err, PERR_NONE);
331 }
332 
333 static struct cpuset top_cpuset = {
334 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
335 		  (1 << CS_MEM_EXCLUSIVE)),
336 	.partition_root_state = PRS_ROOT,
337 };
338 
339 /**
340  * cpuset_for_each_child - traverse online children of a cpuset
341  * @child_cs: loop cursor pointing to the current child
342  * @pos_css: used for iteration
343  * @parent_cs: target cpuset to walk children of
344  *
345  * Walk @child_cs through the online children of @parent_cs.  Must be used
346  * with RCU read locked.
347  */
348 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
349 	css_for_each_child((pos_css), &(parent_cs)->css)		\
350 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
351 
352 /**
353  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
354  * @des_cs: loop cursor pointing to the current descendant
355  * @pos_css: used for iteration
356  * @root_cs: target cpuset to walk ancestor of
357  *
358  * Walk @des_cs through the online descendants of @root_cs.  Must be used
359  * with RCU read locked.  The caller may modify @pos_css by calling
360  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
361  * iteration and the first node to be visited.
362  */
363 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
364 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
365 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
366 
367 /*
368  * There are two global locks guarding cpuset structures - cpuset_mutex and
369  * callback_lock. We also require taking task_lock() when dereferencing a
370  * task's cpuset pointer. See "The task_lock() exception", at the end of this
371  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
372  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
373  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
374  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
375  * correctness.
376  *
377  * A task must hold both locks to modify cpusets.  If a task holds
378  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
379  * also acquire callback_lock and be able to modify cpusets.  It can perform
380  * various checks on the cpuset structure first, knowing nothing will change.
381  * It can also allocate memory while just holding cpuset_mutex.  While it is
382  * performing these checks, various callback routines can briefly acquire
383  * callback_lock to query cpusets.  Once it is ready to make the changes, it
384  * takes callback_lock, blocking everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 static DEFINE_MUTEX(cpuset_mutex);
407 
408 void cpuset_lock(void)
409 {
410 	mutex_lock(&cpuset_mutex);
411 }
412 
413 void cpuset_unlock(void)
414 {
415 	mutex_unlock(&cpuset_mutex);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_mutex held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_mutex held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_mutex held. The check can be skipped
554  * if on default hierarchy.
555  */
556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_mutex.
579  */
580 
581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_mutex held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_mutex held.  */
833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_mutex held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
1069 static void dl_update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	if (cs->nr_deadline_tasks == 0)
1075 		return;
1076 
1077 	css_task_iter_start(&cs->css, 0, &it);
1078 
1079 	while ((task = css_task_iter_next(&it)))
1080 		dl_add_task_root_domain(task);
1081 
1082 	css_task_iter_end(&it);
1083 }
1084 
1085 static void dl_rebuild_rd_accounting(void)
1086 {
1087 	struct cpuset *cs = NULL;
1088 	struct cgroup_subsys_state *pos_css;
1089 
1090 	lockdep_assert_held(&cpuset_mutex);
1091 	lockdep_assert_cpus_held();
1092 	lockdep_assert_held(&sched_domains_mutex);
1093 
1094 	rcu_read_lock();
1095 
1096 	/*
1097 	 * Clear default root domain DL accounting, it will be computed again
1098 	 * if a task belongs to it.
1099 	 */
1100 	dl_clear_root_domain(&def_root_domain);
1101 
1102 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1103 
1104 		if (cpumask_empty(cs->effective_cpus)) {
1105 			pos_css = css_rightmost_descendant(pos_css);
1106 			continue;
1107 		}
1108 
1109 		css_get(&cs->css);
1110 
1111 		rcu_read_unlock();
1112 
1113 		dl_update_tasks_root_domain(cs);
1114 
1115 		rcu_read_lock();
1116 		css_put(&cs->css);
1117 	}
1118 	rcu_read_unlock();
1119 }
1120 
1121 static void
1122 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1123 				    struct sched_domain_attr *dattr_new)
1124 {
1125 	mutex_lock(&sched_domains_mutex);
1126 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1127 	dl_rebuild_rd_accounting();
1128 	mutex_unlock(&sched_domains_mutex);
1129 }
1130 
1131 /*
1132  * Rebuild scheduler domains.
1133  *
1134  * If the flag 'sched_load_balance' of any cpuset with non-empty
1135  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1136  * which has that flag enabled, or if any cpuset with a non-empty
1137  * 'cpus' is removed, then call this routine to rebuild the
1138  * scheduler's dynamic sched domains.
1139  *
1140  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1141  */
1142 static void rebuild_sched_domains_locked(void)
1143 {
1144 	struct cgroup_subsys_state *pos_css;
1145 	struct sched_domain_attr *attr;
1146 	cpumask_var_t *doms;
1147 	struct cpuset *cs;
1148 	int ndoms;
1149 
1150 	lockdep_assert_cpus_held();
1151 	lockdep_assert_held(&cpuset_mutex);
1152 
1153 	/*
1154 	 * If we have raced with CPU hotplug, return early to avoid
1155 	 * passing doms with offlined cpu to partition_sched_domains().
1156 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1157 	 *
1158 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1159 	 * should be the same as the active CPUs, so checking only top_cpuset
1160 	 * is enough to detect racing CPU offlines.
1161 	 */
1162 	if (!top_cpuset.nr_subparts_cpus &&
1163 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1164 		return;
1165 
1166 	/*
1167 	 * With subpartition CPUs, however, the effective CPUs of a partition
1168 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1169 	 * partition root could be offlined, all must be checked.
1170 	 */
1171 	if (top_cpuset.nr_subparts_cpus) {
1172 		rcu_read_lock();
1173 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1174 			if (!is_partition_valid(cs)) {
1175 				pos_css = css_rightmost_descendant(pos_css);
1176 				continue;
1177 			}
1178 			if (!cpumask_subset(cs->effective_cpus,
1179 					    cpu_active_mask)) {
1180 				rcu_read_unlock();
1181 				return;
1182 			}
1183 		}
1184 		rcu_read_unlock();
1185 	}
1186 
1187 	/* Generate domain masks and attrs */
1188 	ndoms = generate_sched_domains(&doms, &attr);
1189 
1190 	/* Have scheduler rebuild the domains */
1191 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1192 }
1193 #else /* !CONFIG_SMP */
1194 static void rebuild_sched_domains_locked(void)
1195 {
1196 }
1197 #endif /* CONFIG_SMP */
1198 
1199 void rebuild_sched_domains(void)
1200 {
1201 	cpus_read_lock();
1202 	mutex_lock(&cpuset_mutex);
1203 	rebuild_sched_domains_locked();
1204 	mutex_unlock(&cpuset_mutex);
1205 	cpus_read_unlock();
1206 }
1207 
1208 /**
1209  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1210  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1211  * @new_cpus: the temp variable for the new effective_cpus mask
1212  *
1213  * Iterate through each task of @cs updating its cpus_allowed to the
1214  * effective cpuset's.  As this function is called with cpuset_mutex held,
1215  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1216  * is used instead of effective_cpus to make sure all offline CPUs are also
1217  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1218  */
1219 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1220 {
1221 	struct css_task_iter it;
1222 	struct task_struct *task;
1223 	bool top_cs = cs == &top_cpuset;
1224 
1225 	css_task_iter_start(&cs->css, 0, &it);
1226 	while ((task = css_task_iter_next(&it))) {
1227 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1228 
1229 		if (top_cs) {
1230 			/*
1231 			 * Percpu kthreads in top_cpuset are ignored
1232 			 */
1233 			if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task))
1234 				continue;
1235 			cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
1236 		} else {
1237 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1238 		}
1239 		set_cpus_allowed_ptr(task, new_cpus);
1240 	}
1241 	css_task_iter_end(&it);
1242 }
1243 
1244 /**
1245  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1246  * @new_cpus: the temp variable for the new effective_cpus mask
1247  * @cs: the cpuset the need to recompute the new effective_cpus mask
1248  * @parent: the parent cpuset
1249  *
1250  * If the parent has subpartition CPUs, include them in the list of
1251  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1252  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1253  * to mask those out.
1254  */
1255 static void compute_effective_cpumask(struct cpumask *new_cpus,
1256 				      struct cpuset *cs, struct cpuset *parent)
1257 {
1258 	if (parent->nr_subparts_cpus) {
1259 		cpumask_or(new_cpus, parent->effective_cpus,
1260 			   parent->subparts_cpus);
1261 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1262 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1263 	} else {
1264 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1265 	}
1266 }
1267 
1268 /*
1269  * Commands for update_parent_subparts_cpumask
1270  */
1271 enum subparts_cmd {
1272 	partcmd_enable,		/* Enable partition root	 */
1273 	partcmd_disable,	/* Disable partition root	 */
1274 	partcmd_update,		/* Update parent's subparts_cpus */
1275 	partcmd_invalidate,	/* Make partition invalid	 */
1276 };
1277 
1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1279 		       int turning_on);
1280 /**
1281  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1282  * @cs:      The cpuset that requests change in partition root state
1283  * @cmd:     Partition root state change command
1284  * @newmask: Optional new cpumask for partcmd_update
1285  * @tmp:     Temporary addmask and delmask
1286  * Return:   0 or a partition root state error code
1287  *
1288  * For partcmd_enable, the cpuset is being transformed from a non-partition
1289  * root to a partition root. The cpus_allowed mask of the given cpuset will
1290  * be put into parent's subparts_cpus and taken away from parent's
1291  * effective_cpus. The function will return 0 if all the CPUs listed in
1292  * cpus_allowed can be granted or an error code will be returned.
1293  *
1294  * For partcmd_disable, the cpuset is being transformed from a partition
1295  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1296  * parent's subparts_cpus will be taken away from that cpumask and put back
1297  * into parent's effective_cpus. 0 will always be returned.
1298  *
1299  * For partcmd_update, if the optional newmask is specified, the cpu list is
1300  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1301  * assumed to remain the same. The cpuset should either be a valid or invalid
1302  * partition root. The partition root state may change from valid to invalid
1303  * or vice versa. An error code will only be returned if transitioning from
1304  * invalid to valid violates the exclusivity rule.
1305  *
1306  * For partcmd_invalidate, the current partition will be made invalid.
1307  *
1308  * The partcmd_enable and partcmd_disable commands are used by
1309  * update_prstate(). An error code may be returned and the caller will check
1310  * for error.
1311  *
1312  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1313  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1314  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1315  * check for error and so partition_root_state and prs_error will be updated
1316  * directly.
1317  */
1318 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1319 					  struct cpumask *newmask,
1320 					  struct tmpmasks *tmp)
1321 {
1322 	struct cpuset *parent = parent_cs(cs);
1323 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1324 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1325 	int old_prs, new_prs;
1326 	int part_error = PERR_NONE;	/* Partition error? */
1327 
1328 	lockdep_assert_held(&cpuset_mutex);
1329 
1330 	/*
1331 	 * The parent must be a partition root.
1332 	 * The new cpumask, if present, or the current cpus_allowed must
1333 	 * not be empty.
1334 	 */
1335 	if (!is_partition_valid(parent)) {
1336 		return is_partition_invalid(parent)
1337 		       ? PERR_INVPARENT : PERR_NOTPART;
1338 	}
1339 	if ((newmask && cpumask_empty(newmask)) ||
1340 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1341 		return PERR_CPUSEMPTY;
1342 
1343 	/*
1344 	 * new_prs will only be changed for the partcmd_update and
1345 	 * partcmd_invalidate commands.
1346 	 */
1347 	adding = deleting = false;
1348 	old_prs = new_prs = cs->partition_root_state;
1349 	if (cmd == partcmd_enable) {
1350 		/*
1351 		 * Enabling partition root is not allowed if cpus_allowed
1352 		 * doesn't overlap parent's cpus_allowed.
1353 		 */
1354 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1355 			return PERR_INVCPUS;
1356 
1357 		/*
1358 		 * A parent can be left with no CPU as long as there is no
1359 		 * task directly associated with the parent partition.
1360 		 */
1361 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1362 		    partition_is_populated(parent, cs))
1363 			return PERR_NOCPUS;
1364 
1365 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1366 		adding = true;
1367 	} else if (cmd == partcmd_disable) {
1368 		/*
1369 		 * Need to remove cpus from parent's subparts_cpus for valid
1370 		 * partition root.
1371 		 */
1372 		deleting = !is_prs_invalid(old_prs) &&
1373 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1374 				       parent->subparts_cpus);
1375 	} else if (cmd == partcmd_invalidate) {
1376 		if (is_prs_invalid(old_prs))
1377 			return 0;
1378 
1379 		/*
1380 		 * Make the current partition invalid. It is assumed that
1381 		 * invalidation is caused by violating cpu exclusivity rule.
1382 		 */
1383 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1384 				       parent->subparts_cpus);
1385 		if (old_prs > 0) {
1386 			new_prs = -old_prs;
1387 			part_error = PERR_NOTEXCL;
1388 		}
1389 	} else if (newmask) {
1390 		/*
1391 		 * partcmd_update with newmask:
1392 		 *
1393 		 * Compute add/delete mask to/from subparts_cpus
1394 		 *
1395 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1396 		 * addmask = newmask & parent->cpus_allowed
1397 		 *		     & ~parent->subparts_cpus
1398 		 */
1399 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1400 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1401 				       parent->subparts_cpus);
1402 
1403 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1404 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1405 					parent->subparts_cpus);
1406 		/*
1407 		 * Make partition invalid if parent's effective_cpus could
1408 		 * become empty and there are tasks in the parent.
1409 		 */
1410 		if (adding &&
1411 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1412 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1413 		    partition_is_populated(parent, cs)) {
1414 			part_error = PERR_NOCPUS;
1415 			adding = false;
1416 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1417 					       parent->subparts_cpus);
1418 		}
1419 	} else {
1420 		/*
1421 		 * partcmd_update w/o newmask:
1422 		 *
1423 		 * delmask = cpus_allowed & parent->subparts_cpus
1424 		 * addmask = cpus_allowed & parent->cpus_allowed
1425 		 *			  & ~parent->subparts_cpus
1426 		 *
1427 		 * This gets invoked either due to a hotplug event or from
1428 		 * update_cpumasks_hier(). This can cause the state of a
1429 		 * partition root to transition from valid to invalid or vice
1430 		 * versa. So we still need to compute the addmask and delmask.
1431 
1432 		 * A partition error happens when:
1433 		 * 1) Cpuset is valid partition, but parent does not distribute
1434 		 *    out any CPUs.
1435 		 * 2) Parent has tasks and all its effective CPUs will have
1436 		 *    to be distributed out.
1437 		 */
1438 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1439 					  parent->cpus_allowed);
1440 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1441 					parent->subparts_cpus);
1442 
1443 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1444 		    (adding &&
1445 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1446 		     partition_is_populated(parent, cs))) {
1447 			part_error = PERR_NOCPUS;
1448 			adding = false;
1449 		}
1450 
1451 		if (part_error && is_partition_valid(cs) &&
1452 		    parent->nr_subparts_cpus)
1453 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1454 					       parent->subparts_cpus);
1455 	}
1456 	if (part_error)
1457 		WRITE_ONCE(cs->prs_err, part_error);
1458 
1459 	if (cmd == partcmd_update) {
1460 		/*
1461 		 * Check for possible transition between valid and invalid
1462 		 * partition root.
1463 		 */
1464 		switch (cs->partition_root_state) {
1465 		case PRS_ROOT:
1466 		case PRS_ISOLATED:
1467 			if (part_error)
1468 				new_prs = -old_prs;
1469 			break;
1470 		case PRS_INVALID_ROOT:
1471 		case PRS_INVALID_ISOLATED:
1472 			if (!part_error)
1473 				new_prs = -old_prs;
1474 			break;
1475 		}
1476 	}
1477 
1478 	if (!adding && !deleting && (new_prs == old_prs))
1479 		return 0;
1480 
1481 	/*
1482 	 * Transitioning between invalid to valid or vice versa may require
1483 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1484 	 */
1485 	if (old_prs != new_prs) {
1486 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1487 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1488 			return PERR_NOTEXCL;
1489 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1490 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1491 	}
1492 
1493 	/*
1494 	 * Change the parent's subparts_cpus.
1495 	 * Newly added CPUs will be removed from effective_cpus and
1496 	 * newly deleted ones will be added back to effective_cpus.
1497 	 */
1498 	spin_lock_irq(&callback_lock);
1499 	if (adding) {
1500 		cpumask_or(parent->subparts_cpus,
1501 			   parent->subparts_cpus, tmp->addmask);
1502 		cpumask_andnot(parent->effective_cpus,
1503 			       parent->effective_cpus, tmp->addmask);
1504 	}
1505 	if (deleting) {
1506 		cpumask_andnot(parent->subparts_cpus,
1507 			       parent->subparts_cpus, tmp->delmask);
1508 		/*
1509 		 * Some of the CPUs in subparts_cpus might have been offlined.
1510 		 */
1511 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1512 		cpumask_or(parent->effective_cpus,
1513 			   parent->effective_cpus, tmp->delmask);
1514 	}
1515 
1516 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1517 
1518 	if (old_prs != new_prs)
1519 		cs->partition_root_state = new_prs;
1520 
1521 	spin_unlock_irq(&callback_lock);
1522 
1523 	if (adding || deleting)
1524 		update_tasks_cpumask(parent, tmp->addmask);
1525 
1526 	/*
1527 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1528 	 * rebuild_sched_domains_locked() may be called.
1529 	 */
1530 	if (old_prs != new_prs) {
1531 		if (old_prs == PRS_ISOLATED)
1532 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1533 		else if (new_prs == PRS_ISOLATED)
1534 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1535 	}
1536 	notify_partition_change(cs, old_prs);
1537 	return 0;
1538 }
1539 
1540 /*
1541  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1542  * @cs:  the cpuset to consider
1543  * @tmp: temp variables for calculating effective_cpus & partition setup
1544  * @force: don't skip any descendant cpusets if set
1545  *
1546  * When configured cpumask is changed, the effective cpumasks of this cpuset
1547  * and all its descendants need to be updated.
1548  *
1549  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1550  *
1551  * Called with cpuset_mutex held
1552  */
1553 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1554 				 bool force)
1555 {
1556 	struct cpuset *cp;
1557 	struct cgroup_subsys_state *pos_css;
1558 	bool need_rebuild_sched_domains = false;
1559 	int old_prs, new_prs;
1560 
1561 	rcu_read_lock();
1562 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1563 		struct cpuset *parent = parent_cs(cp);
1564 		bool update_parent = false;
1565 
1566 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1567 
1568 		/*
1569 		 * If it becomes empty, inherit the effective mask of the
1570 		 * parent, which is guaranteed to have some CPUs unless
1571 		 * it is a partition root that has explicitly distributed
1572 		 * out all its CPUs.
1573 		 */
1574 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1575 			if (is_partition_valid(cp) &&
1576 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1577 				goto update_parent_subparts;
1578 
1579 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1580 			if (!cp->use_parent_ecpus) {
1581 				cp->use_parent_ecpus = true;
1582 				parent->child_ecpus_count++;
1583 			}
1584 		} else if (cp->use_parent_ecpus) {
1585 			cp->use_parent_ecpus = false;
1586 			WARN_ON_ONCE(!parent->child_ecpus_count);
1587 			parent->child_ecpus_count--;
1588 		}
1589 
1590 		/*
1591 		 * Skip the whole subtree if the cpumask remains the same
1592 		 * and has no partition root state and force flag not set.
1593 		 */
1594 		if (!cp->partition_root_state && !force &&
1595 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1596 			pos_css = css_rightmost_descendant(pos_css);
1597 			continue;
1598 		}
1599 
1600 update_parent_subparts:
1601 		/*
1602 		 * update_parent_subparts_cpumask() should have been called
1603 		 * for cs already in update_cpumask(). We should also call
1604 		 * update_tasks_cpumask() again for tasks in the parent
1605 		 * cpuset if the parent's subparts_cpus changes.
1606 		 */
1607 		old_prs = new_prs = cp->partition_root_state;
1608 		if ((cp != cs) && old_prs) {
1609 			switch (parent->partition_root_state) {
1610 			case PRS_ROOT:
1611 			case PRS_ISOLATED:
1612 				update_parent = true;
1613 				break;
1614 
1615 			default:
1616 				/*
1617 				 * When parent is not a partition root or is
1618 				 * invalid, child partition roots become
1619 				 * invalid too.
1620 				 */
1621 				if (is_partition_valid(cp))
1622 					new_prs = -cp->partition_root_state;
1623 				WRITE_ONCE(cp->prs_err,
1624 					   is_partition_invalid(parent)
1625 					   ? PERR_INVPARENT : PERR_NOTPART);
1626 				break;
1627 			}
1628 		}
1629 
1630 		if (!css_tryget_online(&cp->css))
1631 			continue;
1632 		rcu_read_unlock();
1633 
1634 		if (update_parent) {
1635 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1636 						       tmp);
1637 			/*
1638 			 * The cpuset partition_root_state may become
1639 			 * invalid. Capture it.
1640 			 */
1641 			new_prs = cp->partition_root_state;
1642 		}
1643 
1644 		spin_lock_irq(&callback_lock);
1645 
1646 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1647 			/*
1648 			 * Put all active subparts_cpus back to effective_cpus.
1649 			 */
1650 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1651 				   cp->subparts_cpus);
1652 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1653 				   cpu_active_mask);
1654 			cp->nr_subparts_cpus = 0;
1655 			cpumask_clear(cp->subparts_cpus);
1656 		}
1657 
1658 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1659 		if (cp->nr_subparts_cpus) {
1660 			/*
1661 			 * Make sure that effective_cpus & subparts_cpus
1662 			 * are mutually exclusive.
1663 			 */
1664 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1665 				       cp->subparts_cpus);
1666 		}
1667 
1668 		cp->partition_root_state = new_prs;
1669 		spin_unlock_irq(&callback_lock);
1670 
1671 		notify_partition_change(cp, old_prs);
1672 
1673 		WARN_ON(!is_in_v2_mode() &&
1674 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1675 
1676 		update_tasks_cpumask(cp, tmp->new_cpus);
1677 
1678 		/*
1679 		 * On legacy hierarchy, if the effective cpumask of any non-
1680 		 * empty cpuset is changed, we need to rebuild sched domains.
1681 		 * On default hierarchy, the cpuset needs to be a partition
1682 		 * root as well.
1683 		 */
1684 		if (!cpumask_empty(cp->cpus_allowed) &&
1685 		    is_sched_load_balance(cp) &&
1686 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1687 		    is_partition_valid(cp)))
1688 			need_rebuild_sched_domains = true;
1689 
1690 		rcu_read_lock();
1691 		css_put(&cp->css);
1692 	}
1693 	rcu_read_unlock();
1694 
1695 	if (need_rebuild_sched_domains)
1696 		rebuild_sched_domains_locked();
1697 }
1698 
1699 /**
1700  * update_sibling_cpumasks - Update siblings cpumasks
1701  * @parent:  Parent cpuset
1702  * @cs:      Current cpuset
1703  * @tmp:     Temp variables
1704  */
1705 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1706 				    struct tmpmasks *tmp)
1707 {
1708 	struct cpuset *sibling;
1709 	struct cgroup_subsys_state *pos_css;
1710 
1711 	lockdep_assert_held(&cpuset_mutex);
1712 
1713 	/*
1714 	 * Check all its siblings and call update_cpumasks_hier()
1715 	 * if their use_parent_ecpus flag is set in order for them
1716 	 * to use the right effective_cpus value.
1717 	 *
1718 	 * The update_cpumasks_hier() function may sleep. So we have to
1719 	 * release the RCU read lock before calling it.
1720 	 */
1721 	rcu_read_lock();
1722 	cpuset_for_each_child(sibling, pos_css, parent) {
1723 		if (sibling == cs)
1724 			continue;
1725 		if (!sibling->use_parent_ecpus)
1726 			continue;
1727 		if (!css_tryget_online(&sibling->css))
1728 			continue;
1729 
1730 		rcu_read_unlock();
1731 		update_cpumasks_hier(sibling, tmp, false);
1732 		rcu_read_lock();
1733 		css_put(&sibling->css);
1734 	}
1735 	rcu_read_unlock();
1736 }
1737 
1738 /**
1739  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1740  * @cs: the cpuset to consider
1741  * @trialcs: trial cpuset
1742  * @buf: buffer of cpu numbers written to this cpuset
1743  */
1744 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1745 			  const char *buf)
1746 {
1747 	int retval;
1748 	struct tmpmasks tmp;
1749 	bool invalidate = false;
1750 
1751 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1752 	if (cs == &top_cpuset)
1753 		return -EACCES;
1754 
1755 	/*
1756 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1757 	 * Since cpulist_parse() fails on an empty mask, we special case
1758 	 * that parsing.  The validate_change() call ensures that cpusets
1759 	 * with tasks have cpus.
1760 	 */
1761 	if (!*buf) {
1762 		cpumask_clear(trialcs->cpus_allowed);
1763 	} else {
1764 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1765 		if (retval < 0)
1766 			return retval;
1767 
1768 		if (!cpumask_subset(trialcs->cpus_allowed,
1769 				    top_cpuset.cpus_allowed))
1770 			return -EINVAL;
1771 	}
1772 
1773 	/* Nothing to do if the cpus didn't change */
1774 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1775 		return 0;
1776 
1777 #ifdef CONFIG_CPUMASK_OFFSTACK
1778 	/*
1779 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1780 	 * to allocated cpumasks.
1781 	 *
1782 	 * Note that update_parent_subparts_cpumask() uses only addmask &
1783 	 * delmask, but not new_cpus.
1784 	 */
1785 	tmp.addmask  = trialcs->subparts_cpus;
1786 	tmp.delmask  = trialcs->effective_cpus;
1787 	tmp.new_cpus = NULL;
1788 #endif
1789 
1790 	retval = validate_change(cs, trialcs);
1791 
1792 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1793 		struct cpuset *cp, *parent;
1794 		struct cgroup_subsys_state *css;
1795 
1796 		/*
1797 		 * The -EINVAL error code indicates that partition sibling
1798 		 * CPU exclusivity rule has been violated. We still allow
1799 		 * the cpumask change to proceed while invalidating the
1800 		 * partition. However, any conflicting sibling partitions
1801 		 * have to be marked as invalid too.
1802 		 */
1803 		invalidate = true;
1804 		rcu_read_lock();
1805 		parent = parent_cs(cs);
1806 		cpuset_for_each_child(cp, css, parent)
1807 			if (is_partition_valid(cp) &&
1808 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1809 				rcu_read_unlock();
1810 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1811 				rcu_read_lock();
1812 			}
1813 		rcu_read_unlock();
1814 		retval = 0;
1815 	}
1816 	if (retval < 0)
1817 		return retval;
1818 
1819 	if (cs->partition_root_state) {
1820 		if (invalidate)
1821 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1822 						       NULL, &tmp);
1823 		else
1824 			update_parent_subparts_cpumask(cs, partcmd_update,
1825 						trialcs->cpus_allowed, &tmp);
1826 	}
1827 
1828 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1829 				  parent_cs(cs));
1830 	spin_lock_irq(&callback_lock);
1831 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1832 
1833 	/*
1834 	 * Make sure that subparts_cpus, if not empty, is a subset of
1835 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1836 	 * empty effective cpus with tasks.
1837 	 */
1838 	if (cs->nr_subparts_cpus) {
1839 		if (!is_partition_valid(cs) ||
1840 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1841 		    partition_is_populated(cs, NULL))) {
1842 			cs->nr_subparts_cpus = 0;
1843 			cpumask_clear(cs->subparts_cpus);
1844 		} else {
1845 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1846 				    cs->cpus_allowed);
1847 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1848 		}
1849 	}
1850 	spin_unlock_irq(&callback_lock);
1851 
1852 #ifdef CONFIG_CPUMASK_OFFSTACK
1853 	/* Now trialcs->cpus_allowed is available */
1854 	tmp.new_cpus = trialcs->cpus_allowed;
1855 #endif
1856 
1857 	/* effective_cpus will be updated here */
1858 	update_cpumasks_hier(cs, &tmp, false);
1859 
1860 	if (cs->partition_root_state) {
1861 		struct cpuset *parent = parent_cs(cs);
1862 
1863 		/*
1864 		 * For partition root, update the cpumasks of sibling
1865 		 * cpusets if they use parent's effective_cpus.
1866 		 */
1867 		if (parent->child_ecpus_count)
1868 			update_sibling_cpumasks(parent, cs, &tmp);
1869 	}
1870 	return 0;
1871 }
1872 
1873 /*
1874  * Migrate memory region from one set of nodes to another.  This is
1875  * performed asynchronously as it can be called from process migration path
1876  * holding locks involved in process management.  All mm migrations are
1877  * performed in the queued order and can be waited for by flushing
1878  * cpuset_migrate_mm_wq.
1879  */
1880 
1881 struct cpuset_migrate_mm_work {
1882 	struct work_struct	work;
1883 	struct mm_struct	*mm;
1884 	nodemask_t		from;
1885 	nodemask_t		to;
1886 };
1887 
1888 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1889 {
1890 	struct cpuset_migrate_mm_work *mwork =
1891 		container_of(work, struct cpuset_migrate_mm_work, work);
1892 
1893 	/* on a wq worker, no need to worry about %current's mems_allowed */
1894 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1895 	mmput(mwork->mm);
1896 	kfree(mwork);
1897 }
1898 
1899 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1900 							const nodemask_t *to)
1901 {
1902 	struct cpuset_migrate_mm_work *mwork;
1903 
1904 	if (nodes_equal(*from, *to)) {
1905 		mmput(mm);
1906 		return;
1907 	}
1908 
1909 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1910 	if (mwork) {
1911 		mwork->mm = mm;
1912 		mwork->from = *from;
1913 		mwork->to = *to;
1914 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1915 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1916 	} else {
1917 		mmput(mm);
1918 	}
1919 }
1920 
1921 static void cpuset_post_attach(void)
1922 {
1923 	flush_workqueue(cpuset_migrate_mm_wq);
1924 }
1925 
1926 /*
1927  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1928  * @tsk: the task to change
1929  * @newmems: new nodes that the task will be set
1930  *
1931  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1932  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1933  * parallel, it might temporarily see an empty intersection, which results in
1934  * a seqlock check and retry before OOM or allocation failure.
1935  */
1936 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1937 					nodemask_t *newmems)
1938 {
1939 	task_lock(tsk);
1940 
1941 	local_irq_disable();
1942 	write_seqcount_begin(&tsk->mems_allowed_seq);
1943 
1944 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1945 	mpol_rebind_task(tsk, newmems);
1946 	tsk->mems_allowed = *newmems;
1947 
1948 	write_seqcount_end(&tsk->mems_allowed_seq);
1949 	local_irq_enable();
1950 
1951 	task_unlock(tsk);
1952 }
1953 
1954 static void *cpuset_being_rebound;
1955 
1956 /**
1957  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1958  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1959  *
1960  * Iterate through each task of @cs updating its mems_allowed to the
1961  * effective cpuset's.  As this function is called with cpuset_mutex held,
1962  * cpuset membership stays stable.
1963  */
1964 static void update_tasks_nodemask(struct cpuset *cs)
1965 {
1966 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1967 	struct css_task_iter it;
1968 	struct task_struct *task;
1969 
1970 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1971 
1972 	guarantee_online_mems(cs, &newmems);
1973 
1974 	/*
1975 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1976 	 * take while holding tasklist_lock.  Forks can happen - the
1977 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1978 	 * and rebind their vma mempolicies too.  Because we still hold
1979 	 * the global cpuset_mutex, we know that no other rebind effort
1980 	 * will be contending for the global variable cpuset_being_rebound.
1981 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1982 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1983 	 */
1984 	css_task_iter_start(&cs->css, 0, &it);
1985 	while ((task = css_task_iter_next(&it))) {
1986 		struct mm_struct *mm;
1987 		bool migrate;
1988 
1989 		cpuset_change_task_nodemask(task, &newmems);
1990 
1991 		mm = get_task_mm(task);
1992 		if (!mm)
1993 			continue;
1994 
1995 		migrate = is_memory_migrate(cs);
1996 
1997 		mpol_rebind_mm(mm, &cs->mems_allowed);
1998 		if (migrate)
1999 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2000 		else
2001 			mmput(mm);
2002 	}
2003 	css_task_iter_end(&it);
2004 
2005 	/*
2006 	 * All the tasks' nodemasks have been updated, update
2007 	 * cs->old_mems_allowed.
2008 	 */
2009 	cs->old_mems_allowed = newmems;
2010 
2011 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2012 	cpuset_being_rebound = NULL;
2013 }
2014 
2015 /*
2016  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2017  * @cs: the cpuset to consider
2018  * @new_mems: a temp variable for calculating new effective_mems
2019  *
2020  * When configured nodemask is changed, the effective nodemasks of this cpuset
2021  * and all its descendants need to be updated.
2022  *
2023  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2024  *
2025  * Called with cpuset_mutex held
2026  */
2027 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2028 {
2029 	struct cpuset *cp;
2030 	struct cgroup_subsys_state *pos_css;
2031 
2032 	rcu_read_lock();
2033 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2034 		struct cpuset *parent = parent_cs(cp);
2035 
2036 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2037 
2038 		/*
2039 		 * If it becomes empty, inherit the effective mask of the
2040 		 * parent, which is guaranteed to have some MEMs.
2041 		 */
2042 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2043 			*new_mems = parent->effective_mems;
2044 
2045 		/* Skip the whole subtree if the nodemask remains the same. */
2046 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2047 			pos_css = css_rightmost_descendant(pos_css);
2048 			continue;
2049 		}
2050 
2051 		if (!css_tryget_online(&cp->css))
2052 			continue;
2053 		rcu_read_unlock();
2054 
2055 		spin_lock_irq(&callback_lock);
2056 		cp->effective_mems = *new_mems;
2057 		spin_unlock_irq(&callback_lock);
2058 
2059 		WARN_ON(!is_in_v2_mode() &&
2060 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2061 
2062 		update_tasks_nodemask(cp);
2063 
2064 		rcu_read_lock();
2065 		css_put(&cp->css);
2066 	}
2067 	rcu_read_unlock();
2068 }
2069 
2070 /*
2071  * Handle user request to change the 'mems' memory placement
2072  * of a cpuset.  Needs to validate the request, update the
2073  * cpusets mems_allowed, and for each task in the cpuset,
2074  * update mems_allowed and rebind task's mempolicy and any vma
2075  * mempolicies and if the cpuset is marked 'memory_migrate',
2076  * migrate the tasks pages to the new memory.
2077  *
2078  * Call with cpuset_mutex held. May take callback_lock during call.
2079  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2080  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2081  * their mempolicies to the cpusets new mems_allowed.
2082  */
2083 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2084 			   const char *buf)
2085 {
2086 	int retval;
2087 
2088 	/*
2089 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2090 	 * it's read-only
2091 	 */
2092 	if (cs == &top_cpuset) {
2093 		retval = -EACCES;
2094 		goto done;
2095 	}
2096 
2097 	/*
2098 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2099 	 * Since nodelist_parse() fails on an empty mask, we special case
2100 	 * that parsing.  The validate_change() call ensures that cpusets
2101 	 * with tasks have memory.
2102 	 */
2103 	if (!*buf) {
2104 		nodes_clear(trialcs->mems_allowed);
2105 	} else {
2106 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2107 		if (retval < 0)
2108 			goto done;
2109 
2110 		if (!nodes_subset(trialcs->mems_allowed,
2111 				  top_cpuset.mems_allowed)) {
2112 			retval = -EINVAL;
2113 			goto done;
2114 		}
2115 	}
2116 
2117 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2118 		retval = 0;		/* Too easy - nothing to do */
2119 		goto done;
2120 	}
2121 	retval = validate_change(cs, trialcs);
2122 	if (retval < 0)
2123 		goto done;
2124 
2125 	check_insane_mems_config(&trialcs->mems_allowed);
2126 
2127 	spin_lock_irq(&callback_lock);
2128 	cs->mems_allowed = trialcs->mems_allowed;
2129 	spin_unlock_irq(&callback_lock);
2130 
2131 	/* use trialcs->mems_allowed as a temp variable */
2132 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2133 done:
2134 	return retval;
2135 }
2136 
2137 bool current_cpuset_is_being_rebound(void)
2138 {
2139 	bool ret;
2140 
2141 	rcu_read_lock();
2142 	ret = task_cs(current) == cpuset_being_rebound;
2143 	rcu_read_unlock();
2144 
2145 	return ret;
2146 }
2147 
2148 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2149 {
2150 #ifdef CONFIG_SMP
2151 	if (val < -1 || val >= sched_domain_level_max)
2152 		return -EINVAL;
2153 #endif
2154 
2155 	if (val != cs->relax_domain_level) {
2156 		cs->relax_domain_level = val;
2157 		if (!cpumask_empty(cs->cpus_allowed) &&
2158 		    is_sched_load_balance(cs))
2159 			rebuild_sched_domains_locked();
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 /**
2166  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2167  * @cs: the cpuset in which each task's spread flags needs to be changed
2168  *
2169  * Iterate through each task of @cs updating its spread flags.  As this
2170  * function is called with cpuset_mutex held, cpuset membership stays
2171  * stable.
2172  */
2173 static void update_tasks_flags(struct cpuset *cs)
2174 {
2175 	struct css_task_iter it;
2176 	struct task_struct *task;
2177 
2178 	css_task_iter_start(&cs->css, 0, &it);
2179 	while ((task = css_task_iter_next(&it)))
2180 		cpuset_update_task_spread_flags(cs, task);
2181 	css_task_iter_end(&it);
2182 }
2183 
2184 /*
2185  * update_flag - read a 0 or a 1 in a file and update associated flag
2186  * bit:		the bit to update (see cpuset_flagbits_t)
2187  * cs:		the cpuset to update
2188  * turning_on: 	whether the flag is being set or cleared
2189  *
2190  * Call with cpuset_mutex held.
2191  */
2192 
2193 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2194 		       int turning_on)
2195 {
2196 	struct cpuset *trialcs;
2197 	int balance_flag_changed;
2198 	int spread_flag_changed;
2199 	int err;
2200 
2201 	trialcs = alloc_trial_cpuset(cs);
2202 	if (!trialcs)
2203 		return -ENOMEM;
2204 
2205 	if (turning_on)
2206 		set_bit(bit, &trialcs->flags);
2207 	else
2208 		clear_bit(bit, &trialcs->flags);
2209 
2210 	err = validate_change(cs, trialcs);
2211 	if (err < 0)
2212 		goto out;
2213 
2214 	balance_flag_changed = (is_sched_load_balance(cs) !=
2215 				is_sched_load_balance(trialcs));
2216 
2217 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2218 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2219 
2220 	spin_lock_irq(&callback_lock);
2221 	cs->flags = trialcs->flags;
2222 	spin_unlock_irq(&callback_lock);
2223 
2224 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2225 		rebuild_sched_domains_locked();
2226 
2227 	if (spread_flag_changed)
2228 		update_tasks_flags(cs);
2229 out:
2230 	free_cpuset(trialcs);
2231 	return err;
2232 }
2233 
2234 /**
2235  * update_prstate - update partition_root_state
2236  * @cs: the cpuset to update
2237  * @new_prs: new partition root state
2238  * Return: 0 if successful, != 0 if error
2239  *
2240  * Call with cpuset_mutex held.
2241  */
2242 static int update_prstate(struct cpuset *cs, int new_prs)
2243 {
2244 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2245 	bool sched_domain_rebuilt = false;
2246 	struct cpuset *parent = parent_cs(cs);
2247 	struct tmpmasks tmpmask;
2248 
2249 	if (old_prs == new_prs)
2250 		return 0;
2251 
2252 	/*
2253 	 * For a previously invalid partition root, leave it at being
2254 	 * invalid if new_prs is not "member".
2255 	 */
2256 	if (new_prs && is_prs_invalid(old_prs)) {
2257 		cs->partition_root_state = -new_prs;
2258 		return 0;
2259 	}
2260 
2261 	if (alloc_cpumasks(NULL, &tmpmask))
2262 		return -ENOMEM;
2263 
2264 	if (!old_prs) {
2265 		/*
2266 		 * Turning on partition root requires setting the
2267 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2268 		 * cannot be empty.
2269 		 */
2270 		if (cpumask_empty(cs->cpus_allowed)) {
2271 			err = PERR_CPUSEMPTY;
2272 			goto out;
2273 		}
2274 
2275 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2276 		if (err) {
2277 			err = PERR_NOTEXCL;
2278 			goto out;
2279 		}
2280 
2281 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2282 						     NULL, &tmpmask);
2283 		if (err) {
2284 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2285 			goto out;
2286 		}
2287 
2288 		if (new_prs == PRS_ISOLATED) {
2289 			/*
2290 			 * Disable the load balance flag should not return an
2291 			 * error unless the system is running out of memory.
2292 			 */
2293 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2294 			sched_domain_rebuilt = true;
2295 		}
2296 	} else if (old_prs && new_prs) {
2297 		/*
2298 		 * A change in load balance state only, no change in cpumasks.
2299 		 */
2300 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2301 		sched_domain_rebuilt = true;
2302 		goto out;	/* Sched domain is rebuilt in update_flag() */
2303 	} else {
2304 		/*
2305 		 * Switching back to member is always allowed even if it
2306 		 * disables child partitions.
2307 		 */
2308 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2309 					       &tmpmask);
2310 
2311 		/*
2312 		 * If there are child partitions, they will all become invalid.
2313 		 */
2314 		if (unlikely(cs->nr_subparts_cpus)) {
2315 			spin_lock_irq(&callback_lock);
2316 			cs->nr_subparts_cpus = 0;
2317 			cpumask_clear(cs->subparts_cpus);
2318 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2319 			spin_unlock_irq(&callback_lock);
2320 		}
2321 
2322 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2323 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2324 
2325 		if (!is_sched_load_balance(cs)) {
2326 			/* Make sure load balance is on */
2327 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2328 			sched_domain_rebuilt = true;
2329 		}
2330 	}
2331 
2332 	update_tasks_cpumask(parent, tmpmask.new_cpus);
2333 
2334 	if (parent->child_ecpus_count)
2335 		update_sibling_cpumasks(parent, cs, &tmpmask);
2336 
2337 	if (!sched_domain_rebuilt)
2338 		rebuild_sched_domains_locked();
2339 out:
2340 	/*
2341 	 * Make partition invalid if an error happen
2342 	 */
2343 	if (err)
2344 		new_prs = -new_prs;
2345 	spin_lock_irq(&callback_lock);
2346 	cs->partition_root_state = new_prs;
2347 	WRITE_ONCE(cs->prs_err, err);
2348 	spin_unlock_irq(&callback_lock);
2349 	/*
2350 	 * Update child cpusets, if present.
2351 	 * Force update if switching back to member.
2352 	 */
2353 	if (!list_empty(&cs->css.children))
2354 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2355 
2356 	notify_partition_change(cs, old_prs);
2357 	free_cpumasks(NULL, &tmpmask);
2358 	return 0;
2359 }
2360 
2361 /*
2362  * Frequency meter - How fast is some event occurring?
2363  *
2364  * These routines manage a digitally filtered, constant time based,
2365  * event frequency meter.  There are four routines:
2366  *   fmeter_init() - initialize a frequency meter.
2367  *   fmeter_markevent() - called each time the event happens.
2368  *   fmeter_getrate() - returns the recent rate of such events.
2369  *   fmeter_update() - internal routine used to update fmeter.
2370  *
2371  * A common data structure is passed to each of these routines,
2372  * which is used to keep track of the state required to manage the
2373  * frequency meter and its digital filter.
2374  *
2375  * The filter works on the number of events marked per unit time.
2376  * The filter is single-pole low-pass recursive (IIR).  The time unit
2377  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2378  * simulate 3 decimal digits of precision (multiplied by 1000).
2379  *
2380  * With an FM_COEF of 933, and a time base of 1 second, the filter
2381  * has a half-life of 10 seconds, meaning that if the events quit
2382  * happening, then the rate returned from the fmeter_getrate()
2383  * will be cut in half each 10 seconds, until it converges to zero.
2384  *
2385  * It is not worth doing a real infinitely recursive filter.  If more
2386  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2387  * just compute FM_MAXTICKS ticks worth, by which point the level
2388  * will be stable.
2389  *
2390  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2391  * arithmetic overflow in the fmeter_update() routine.
2392  *
2393  * Given the simple 32 bit integer arithmetic used, this meter works
2394  * best for reporting rates between one per millisecond (msec) and
2395  * one per 32 (approx) seconds.  At constant rates faster than one
2396  * per msec it maxes out at values just under 1,000,000.  At constant
2397  * rates between one per msec, and one per second it will stabilize
2398  * to a value N*1000, where N is the rate of events per second.
2399  * At constant rates between one per second and one per 32 seconds,
2400  * it will be choppy, moving up on the seconds that have an event,
2401  * and then decaying until the next event.  At rates slower than
2402  * about one in 32 seconds, it decays all the way back to zero between
2403  * each event.
2404  */
2405 
2406 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2407 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2408 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2409 #define FM_SCALE 1000		/* faux fixed point scale */
2410 
2411 /* Initialize a frequency meter */
2412 static void fmeter_init(struct fmeter *fmp)
2413 {
2414 	fmp->cnt = 0;
2415 	fmp->val = 0;
2416 	fmp->time = 0;
2417 	spin_lock_init(&fmp->lock);
2418 }
2419 
2420 /* Internal meter update - process cnt events and update value */
2421 static void fmeter_update(struct fmeter *fmp)
2422 {
2423 	time64_t now;
2424 	u32 ticks;
2425 
2426 	now = ktime_get_seconds();
2427 	ticks = now - fmp->time;
2428 
2429 	if (ticks == 0)
2430 		return;
2431 
2432 	ticks = min(FM_MAXTICKS, ticks);
2433 	while (ticks-- > 0)
2434 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2435 	fmp->time = now;
2436 
2437 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2438 	fmp->cnt = 0;
2439 }
2440 
2441 /* Process any previous ticks, then bump cnt by one (times scale). */
2442 static void fmeter_markevent(struct fmeter *fmp)
2443 {
2444 	spin_lock(&fmp->lock);
2445 	fmeter_update(fmp);
2446 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2447 	spin_unlock(&fmp->lock);
2448 }
2449 
2450 /* Process any previous ticks, then return current value. */
2451 static int fmeter_getrate(struct fmeter *fmp)
2452 {
2453 	int val;
2454 
2455 	spin_lock(&fmp->lock);
2456 	fmeter_update(fmp);
2457 	val = fmp->val;
2458 	spin_unlock(&fmp->lock);
2459 	return val;
2460 }
2461 
2462 static struct cpuset *cpuset_attach_old_cs;
2463 
2464 /*
2465  * Check to see if a cpuset can accept a new task
2466  * For v1, cpus_allowed and mems_allowed can't be empty.
2467  * For v2, effective_cpus can't be empty.
2468  * Note that in v1, effective_cpus = cpus_allowed.
2469  */
2470 static int cpuset_can_attach_check(struct cpuset *cs)
2471 {
2472 	if (cpumask_empty(cs->effective_cpus) ||
2473 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2474 		return -ENOSPC;
2475 	return 0;
2476 }
2477 
2478 static void reset_migrate_dl_data(struct cpuset *cs)
2479 {
2480 	cs->nr_migrate_dl_tasks = 0;
2481 	cs->sum_migrate_dl_bw = 0;
2482 }
2483 
2484 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2485 static int cpuset_can_attach(struct cgroup_taskset *tset)
2486 {
2487 	struct cgroup_subsys_state *css;
2488 	struct cpuset *cs, *oldcs;
2489 	struct task_struct *task;
2490 	int ret;
2491 
2492 	/* used later by cpuset_attach() */
2493 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2494 	oldcs = cpuset_attach_old_cs;
2495 	cs = css_cs(css);
2496 
2497 	mutex_lock(&cpuset_mutex);
2498 
2499 	/* Check to see if task is allowed in the cpuset */
2500 	ret = cpuset_can_attach_check(cs);
2501 	if (ret)
2502 		goto out_unlock;
2503 
2504 	cgroup_taskset_for_each(task, css, tset) {
2505 		ret = task_can_attach(task);
2506 		if (ret)
2507 			goto out_unlock;
2508 		ret = security_task_setscheduler(task);
2509 		if (ret)
2510 			goto out_unlock;
2511 
2512 		if (dl_task(task)) {
2513 			cs->nr_migrate_dl_tasks++;
2514 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2515 		}
2516 	}
2517 
2518 	if (!cs->nr_migrate_dl_tasks)
2519 		goto out_success;
2520 
2521 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2522 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2523 
2524 		if (unlikely(cpu >= nr_cpu_ids)) {
2525 			reset_migrate_dl_data(cs);
2526 			ret = -EINVAL;
2527 			goto out_unlock;
2528 		}
2529 
2530 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2531 		if (ret) {
2532 			reset_migrate_dl_data(cs);
2533 			goto out_unlock;
2534 		}
2535 	}
2536 
2537 out_success:
2538 	/*
2539 	 * Mark attach is in progress.  This makes validate_change() fail
2540 	 * changes which zero cpus/mems_allowed.
2541 	 */
2542 	cs->attach_in_progress++;
2543 out_unlock:
2544 	mutex_unlock(&cpuset_mutex);
2545 	return ret;
2546 }
2547 
2548 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2549 {
2550 	struct cgroup_subsys_state *css;
2551 	struct cpuset *cs;
2552 
2553 	cgroup_taskset_first(tset, &css);
2554 	cs = css_cs(css);
2555 
2556 	mutex_lock(&cpuset_mutex);
2557 	cs->attach_in_progress--;
2558 	if (!cs->attach_in_progress)
2559 		wake_up(&cpuset_attach_wq);
2560 
2561 	if (cs->nr_migrate_dl_tasks) {
2562 		int cpu = cpumask_any(cs->effective_cpus);
2563 
2564 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2565 		reset_migrate_dl_data(cs);
2566 	}
2567 
2568 	mutex_unlock(&cpuset_mutex);
2569 }
2570 
2571 /*
2572  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
2573  * but we can't allocate it dynamically there.  Define it global and
2574  * allocate from cpuset_init().
2575  */
2576 static cpumask_var_t cpus_attach;
2577 static nodemask_t cpuset_attach_nodemask_to;
2578 
2579 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2580 {
2581 	lockdep_assert_held(&cpuset_mutex);
2582 
2583 	if (cs != &top_cpuset)
2584 		guarantee_online_cpus(task, cpus_attach);
2585 	else
2586 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2587 			       cs->subparts_cpus);
2588 	/*
2589 	 * can_attach beforehand should guarantee that this doesn't
2590 	 * fail.  TODO: have a better way to handle failure here
2591 	 */
2592 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2593 
2594 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2595 	cpuset_update_task_spread_flags(cs, task);
2596 }
2597 
2598 static void cpuset_attach(struct cgroup_taskset *tset)
2599 {
2600 	struct task_struct *task;
2601 	struct task_struct *leader;
2602 	struct cgroup_subsys_state *css;
2603 	struct cpuset *cs;
2604 	struct cpuset *oldcs = cpuset_attach_old_cs;
2605 	bool cpus_updated, mems_updated;
2606 
2607 	cgroup_taskset_first(tset, &css);
2608 	cs = css_cs(css);
2609 
2610 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2611 	mutex_lock(&cpuset_mutex);
2612 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2613 				      oldcs->effective_cpus);
2614 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2615 
2616 	/*
2617 	 * In the default hierarchy, enabling cpuset in the child cgroups
2618 	 * will trigger a number of cpuset_attach() calls with no change
2619 	 * in effective cpus and mems. In that case, we can optimize out
2620 	 * by skipping the task iteration and update.
2621 	 */
2622 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2623 	    !cpus_updated && !mems_updated) {
2624 		cpuset_attach_nodemask_to = cs->effective_mems;
2625 		goto out;
2626 	}
2627 
2628 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2629 
2630 	cgroup_taskset_for_each(task, css, tset)
2631 		cpuset_attach_task(cs, task);
2632 
2633 	/*
2634 	 * Change mm for all threadgroup leaders. This is expensive and may
2635 	 * sleep and should be moved outside migration path proper. Skip it
2636 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2637 	 * not set.
2638 	 */
2639 	cpuset_attach_nodemask_to = cs->effective_mems;
2640 	if (!is_memory_migrate(cs) && !mems_updated)
2641 		goto out;
2642 
2643 	cgroup_taskset_for_each_leader(leader, css, tset) {
2644 		struct mm_struct *mm = get_task_mm(leader);
2645 
2646 		if (mm) {
2647 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2648 
2649 			/*
2650 			 * old_mems_allowed is the same with mems_allowed
2651 			 * here, except if this task is being moved
2652 			 * automatically due to hotplug.  In that case
2653 			 * @mems_allowed has been updated and is empty, so
2654 			 * @old_mems_allowed is the right nodesets that we
2655 			 * migrate mm from.
2656 			 */
2657 			if (is_memory_migrate(cs))
2658 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2659 						  &cpuset_attach_nodemask_to);
2660 			else
2661 				mmput(mm);
2662 		}
2663 	}
2664 
2665 out:
2666 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2667 
2668 	if (cs->nr_migrate_dl_tasks) {
2669 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2670 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2671 		reset_migrate_dl_data(cs);
2672 	}
2673 
2674 	cs->attach_in_progress--;
2675 	if (!cs->attach_in_progress)
2676 		wake_up(&cpuset_attach_wq);
2677 
2678 	mutex_unlock(&cpuset_mutex);
2679 }
2680 
2681 /* The various types of files and directories in a cpuset file system */
2682 
2683 typedef enum {
2684 	FILE_MEMORY_MIGRATE,
2685 	FILE_CPULIST,
2686 	FILE_MEMLIST,
2687 	FILE_EFFECTIVE_CPULIST,
2688 	FILE_EFFECTIVE_MEMLIST,
2689 	FILE_SUBPARTS_CPULIST,
2690 	FILE_CPU_EXCLUSIVE,
2691 	FILE_MEM_EXCLUSIVE,
2692 	FILE_MEM_HARDWALL,
2693 	FILE_SCHED_LOAD_BALANCE,
2694 	FILE_PARTITION_ROOT,
2695 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2696 	FILE_MEMORY_PRESSURE_ENABLED,
2697 	FILE_MEMORY_PRESSURE,
2698 	FILE_SPREAD_PAGE,
2699 	FILE_SPREAD_SLAB,
2700 } cpuset_filetype_t;
2701 
2702 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2703 			    u64 val)
2704 {
2705 	struct cpuset *cs = css_cs(css);
2706 	cpuset_filetype_t type = cft->private;
2707 	int retval = 0;
2708 
2709 	cpus_read_lock();
2710 	mutex_lock(&cpuset_mutex);
2711 	if (!is_cpuset_online(cs)) {
2712 		retval = -ENODEV;
2713 		goto out_unlock;
2714 	}
2715 
2716 	switch (type) {
2717 	case FILE_CPU_EXCLUSIVE:
2718 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2719 		break;
2720 	case FILE_MEM_EXCLUSIVE:
2721 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2722 		break;
2723 	case FILE_MEM_HARDWALL:
2724 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2725 		break;
2726 	case FILE_SCHED_LOAD_BALANCE:
2727 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2728 		break;
2729 	case FILE_MEMORY_MIGRATE:
2730 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2731 		break;
2732 	case FILE_MEMORY_PRESSURE_ENABLED:
2733 		cpuset_memory_pressure_enabled = !!val;
2734 		break;
2735 	case FILE_SPREAD_PAGE:
2736 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2737 		break;
2738 	case FILE_SPREAD_SLAB:
2739 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2740 		break;
2741 	default:
2742 		retval = -EINVAL;
2743 		break;
2744 	}
2745 out_unlock:
2746 	mutex_unlock(&cpuset_mutex);
2747 	cpus_read_unlock();
2748 	return retval;
2749 }
2750 
2751 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2752 			    s64 val)
2753 {
2754 	struct cpuset *cs = css_cs(css);
2755 	cpuset_filetype_t type = cft->private;
2756 	int retval = -ENODEV;
2757 
2758 	cpus_read_lock();
2759 	mutex_lock(&cpuset_mutex);
2760 	if (!is_cpuset_online(cs))
2761 		goto out_unlock;
2762 
2763 	switch (type) {
2764 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2765 		retval = update_relax_domain_level(cs, val);
2766 		break;
2767 	default:
2768 		retval = -EINVAL;
2769 		break;
2770 	}
2771 out_unlock:
2772 	mutex_unlock(&cpuset_mutex);
2773 	cpus_read_unlock();
2774 	return retval;
2775 }
2776 
2777 /*
2778  * Common handling for a write to a "cpus" or "mems" file.
2779  */
2780 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2781 				    char *buf, size_t nbytes, loff_t off)
2782 {
2783 	struct cpuset *cs = css_cs(of_css(of));
2784 	struct cpuset *trialcs;
2785 	int retval = -ENODEV;
2786 
2787 	buf = strstrip(buf);
2788 
2789 	/*
2790 	 * CPU or memory hotunplug may leave @cs w/o any execution
2791 	 * resources, in which case the hotplug code asynchronously updates
2792 	 * configuration and transfers all tasks to the nearest ancestor
2793 	 * which can execute.
2794 	 *
2795 	 * As writes to "cpus" or "mems" may restore @cs's execution
2796 	 * resources, wait for the previously scheduled operations before
2797 	 * proceeding, so that we don't end up keep removing tasks added
2798 	 * after execution capability is restored.
2799 	 *
2800 	 * cpuset_hotplug_work calls back into cgroup core via
2801 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2802 	 * operation like this one can lead to a deadlock through kernfs
2803 	 * active_ref protection.  Let's break the protection.  Losing the
2804 	 * protection is okay as we check whether @cs is online after
2805 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2806 	 * hierarchies.
2807 	 */
2808 	css_get(&cs->css);
2809 	kernfs_break_active_protection(of->kn);
2810 	flush_work(&cpuset_hotplug_work);
2811 
2812 	cpus_read_lock();
2813 	mutex_lock(&cpuset_mutex);
2814 	if (!is_cpuset_online(cs))
2815 		goto out_unlock;
2816 
2817 	trialcs = alloc_trial_cpuset(cs);
2818 	if (!trialcs) {
2819 		retval = -ENOMEM;
2820 		goto out_unlock;
2821 	}
2822 
2823 	switch (of_cft(of)->private) {
2824 	case FILE_CPULIST:
2825 		retval = update_cpumask(cs, trialcs, buf);
2826 		break;
2827 	case FILE_MEMLIST:
2828 		retval = update_nodemask(cs, trialcs, buf);
2829 		break;
2830 	default:
2831 		retval = -EINVAL;
2832 		break;
2833 	}
2834 
2835 	free_cpuset(trialcs);
2836 out_unlock:
2837 	mutex_unlock(&cpuset_mutex);
2838 	cpus_read_unlock();
2839 	kernfs_unbreak_active_protection(of->kn);
2840 	css_put(&cs->css);
2841 	flush_workqueue(cpuset_migrate_mm_wq);
2842 	return retval ?: nbytes;
2843 }
2844 
2845 /*
2846  * These ascii lists should be read in a single call, by using a user
2847  * buffer large enough to hold the entire map.  If read in smaller
2848  * chunks, there is no guarantee of atomicity.  Since the display format
2849  * used, list of ranges of sequential numbers, is variable length,
2850  * and since these maps can change value dynamically, one could read
2851  * gibberish by doing partial reads while a list was changing.
2852  */
2853 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2854 {
2855 	struct cpuset *cs = css_cs(seq_css(sf));
2856 	cpuset_filetype_t type = seq_cft(sf)->private;
2857 	int ret = 0;
2858 
2859 	spin_lock_irq(&callback_lock);
2860 
2861 	switch (type) {
2862 	case FILE_CPULIST:
2863 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2864 		break;
2865 	case FILE_MEMLIST:
2866 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2867 		break;
2868 	case FILE_EFFECTIVE_CPULIST:
2869 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2870 		break;
2871 	case FILE_EFFECTIVE_MEMLIST:
2872 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2873 		break;
2874 	case FILE_SUBPARTS_CPULIST:
2875 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2876 		break;
2877 	default:
2878 		ret = -EINVAL;
2879 	}
2880 
2881 	spin_unlock_irq(&callback_lock);
2882 	return ret;
2883 }
2884 
2885 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2886 {
2887 	struct cpuset *cs = css_cs(css);
2888 	cpuset_filetype_t type = cft->private;
2889 	switch (type) {
2890 	case FILE_CPU_EXCLUSIVE:
2891 		return is_cpu_exclusive(cs);
2892 	case FILE_MEM_EXCLUSIVE:
2893 		return is_mem_exclusive(cs);
2894 	case FILE_MEM_HARDWALL:
2895 		return is_mem_hardwall(cs);
2896 	case FILE_SCHED_LOAD_BALANCE:
2897 		return is_sched_load_balance(cs);
2898 	case FILE_MEMORY_MIGRATE:
2899 		return is_memory_migrate(cs);
2900 	case FILE_MEMORY_PRESSURE_ENABLED:
2901 		return cpuset_memory_pressure_enabled;
2902 	case FILE_MEMORY_PRESSURE:
2903 		return fmeter_getrate(&cs->fmeter);
2904 	case FILE_SPREAD_PAGE:
2905 		return is_spread_page(cs);
2906 	case FILE_SPREAD_SLAB:
2907 		return is_spread_slab(cs);
2908 	default:
2909 		BUG();
2910 	}
2911 
2912 	/* Unreachable but makes gcc happy */
2913 	return 0;
2914 }
2915 
2916 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2917 {
2918 	struct cpuset *cs = css_cs(css);
2919 	cpuset_filetype_t type = cft->private;
2920 	switch (type) {
2921 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2922 		return cs->relax_domain_level;
2923 	default:
2924 		BUG();
2925 	}
2926 
2927 	/* Unreachable but makes gcc happy */
2928 	return 0;
2929 }
2930 
2931 static int sched_partition_show(struct seq_file *seq, void *v)
2932 {
2933 	struct cpuset *cs = css_cs(seq_css(seq));
2934 	const char *err, *type = NULL;
2935 
2936 	switch (cs->partition_root_state) {
2937 	case PRS_ROOT:
2938 		seq_puts(seq, "root\n");
2939 		break;
2940 	case PRS_ISOLATED:
2941 		seq_puts(seq, "isolated\n");
2942 		break;
2943 	case PRS_MEMBER:
2944 		seq_puts(seq, "member\n");
2945 		break;
2946 	case PRS_INVALID_ROOT:
2947 		type = "root";
2948 		fallthrough;
2949 	case PRS_INVALID_ISOLATED:
2950 		if (!type)
2951 			type = "isolated";
2952 		err = perr_strings[READ_ONCE(cs->prs_err)];
2953 		if (err)
2954 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2955 		else
2956 			seq_printf(seq, "%s invalid\n", type);
2957 		break;
2958 	}
2959 	return 0;
2960 }
2961 
2962 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2963 				     size_t nbytes, loff_t off)
2964 {
2965 	struct cpuset *cs = css_cs(of_css(of));
2966 	int val;
2967 	int retval = -ENODEV;
2968 
2969 	buf = strstrip(buf);
2970 
2971 	/*
2972 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2973 	 */
2974 	if (!strcmp(buf, "root"))
2975 		val = PRS_ROOT;
2976 	else if (!strcmp(buf, "member"))
2977 		val = PRS_MEMBER;
2978 	else if (!strcmp(buf, "isolated"))
2979 		val = PRS_ISOLATED;
2980 	else
2981 		return -EINVAL;
2982 
2983 	css_get(&cs->css);
2984 	cpus_read_lock();
2985 	mutex_lock(&cpuset_mutex);
2986 	if (!is_cpuset_online(cs))
2987 		goto out_unlock;
2988 
2989 	retval = update_prstate(cs, val);
2990 out_unlock:
2991 	mutex_unlock(&cpuset_mutex);
2992 	cpus_read_unlock();
2993 	css_put(&cs->css);
2994 	return retval ?: nbytes;
2995 }
2996 
2997 /*
2998  * for the common functions, 'private' gives the type of file
2999  */
3000 
3001 static struct cftype legacy_files[] = {
3002 	{
3003 		.name = "cpus",
3004 		.seq_show = cpuset_common_seq_show,
3005 		.write = cpuset_write_resmask,
3006 		.max_write_len = (100U + 6 * NR_CPUS),
3007 		.private = FILE_CPULIST,
3008 	},
3009 
3010 	{
3011 		.name = "mems",
3012 		.seq_show = cpuset_common_seq_show,
3013 		.write = cpuset_write_resmask,
3014 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3015 		.private = FILE_MEMLIST,
3016 	},
3017 
3018 	{
3019 		.name = "effective_cpus",
3020 		.seq_show = cpuset_common_seq_show,
3021 		.private = FILE_EFFECTIVE_CPULIST,
3022 	},
3023 
3024 	{
3025 		.name = "effective_mems",
3026 		.seq_show = cpuset_common_seq_show,
3027 		.private = FILE_EFFECTIVE_MEMLIST,
3028 	},
3029 
3030 	{
3031 		.name = "cpu_exclusive",
3032 		.read_u64 = cpuset_read_u64,
3033 		.write_u64 = cpuset_write_u64,
3034 		.private = FILE_CPU_EXCLUSIVE,
3035 	},
3036 
3037 	{
3038 		.name = "mem_exclusive",
3039 		.read_u64 = cpuset_read_u64,
3040 		.write_u64 = cpuset_write_u64,
3041 		.private = FILE_MEM_EXCLUSIVE,
3042 	},
3043 
3044 	{
3045 		.name = "mem_hardwall",
3046 		.read_u64 = cpuset_read_u64,
3047 		.write_u64 = cpuset_write_u64,
3048 		.private = FILE_MEM_HARDWALL,
3049 	},
3050 
3051 	{
3052 		.name = "sched_load_balance",
3053 		.read_u64 = cpuset_read_u64,
3054 		.write_u64 = cpuset_write_u64,
3055 		.private = FILE_SCHED_LOAD_BALANCE,
3056 	},
3057 
3058 	{
3059 		.name = "sched_relax_domain_level",
3060 		.read_s64 = cpuset_read_s64,
3061 		.write_s64 = cpuset_write_s64,
3062 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3063 	},
3064 
3065 	{
3066 		.name = "memory_migrate",
3067 		.read_u64 = cpuset_read_u64,
3068 		.write_u64 = cpuset_write_u64,
3069 		.private = FILE_MEMORY_MIGRATE,
3070 	},
3071 
3072 	{
3073 		.name = "memory_pressure",
3074 		.read_u64 = cpuset_read_u64,
3075 		.private = FILE_MEMORY_PRESSURE,
3076 	},
3077 
3078 	{
3079 		.name = "memory_spread_page",
3080 		.read_u64 = cpuset_read_u64,
3081 		.write_u64 = cpuset_write_u64,
3082 		.private = FILE_SPREAD_PAGE,
3083 	},
3084 
3085 	{
3086 		.name = "memory_spread_slab",
3087 		.read_u64 = cpuset_read_u64,
3088 		.write_u64 = cpuset_write_u64,
3089 		.private = FILE_SPREAD_SLAB,
3090 	},
3091 
3092 	{
3093 		.name = "memory_pressure_enabled",
3094 		.flags = CFTYPE_ONLY_ON_ROOT,
3095 		.read_u64 = cpuset_read_u64,
3096 		.write_u64 = cpuset_write_u64,
3097 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3098 	},
3099 
3100 	{ }	/* terminate */
3101 };
3102 
3103 /*
3104  * This is currently a minimal set for the default hierarchy. It can be
3105  * expanded later on by migrating more features and control files from v1.
3106  */
3107 static struct cftype dfl_files[] = {
3108 	{
3109 		.name = "cpus",
3110 		.seq_show = cpuset_common_seq_show,
3111 		.write = cpuset_write_resmask,
3112 		.max_write_len = (100U + 6 * NR_CPUS),
3113 		.private = FILE_CPULIST,
3114 		.flags = CFTYPE_NOT_ON_ROOT,
3115 	},
3116 
3117 	{
3118 		.name = "mems",
3119 		.seq_show = cpuset_common_seq_show,
3120 		.write = cpuset_write_resmask,
3121 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3122 		.private = FILE_MEMLIST,
3123 		.flags = CFTYPE_NOT_ON_ROOT,
3124 	},
3125 
3126 	{
3127 		.name = "cpus.effective",
3128 		.seq_show = cpuset_common_seq_show,
3129 		.private = FILE_EFFECTIVE_CPULIST,
3130 	},
3131 
3132 	{
3133 		.name = "mems.effective",
3134 		.seq_show = cpuset_common_seq_show,
3135 		.private = FILE_EFFECTIVE_MEMLIST,
3136 	},
3137 
3138 	{
3139 		.name = "cpus.partition",
3140 		.seq_show = sched_partition_show,
3141 		.write = sched_partition_write,
3142 		.private = FILE_PARTITION_ROOT,
3143 		.flags = CFTYPE_NOT_ON_ROOT,
3144 		.file_offset = offsetof(struct cpuset, partition_file),
3145 	},
3146 
3147 	{
3148 		.name = "cpus.subpartitions",
3149 		.seq_show = cpuset_common_seq_show,
3150 		.private = FILE_SUBPARTS_CPULIST,
3151 		.flags = CFTYPE_DEBUG,
3152 	},
3153 
3154 	{ }	/* terminate */
3155 };
3156 
3157 
3158 /**
3159  * cpuset_css_alloc - Allocate a cpuset css
3160  * @parent_css: Parent css of the control group that the new cpuset will be
3161  *              part of
3162  * Return: cpuset css on success, -ENOMEM on failure.
3163  *
3164  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3165  * top cpuset css otherwise.
3166  */
3167 static struct cgroup_subsys_state *
3168 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3169 {
3170 	struct cpuset *cs;
3171 
3172 	if (!parent_css)
3173 		return &top_cpuset.css;
3174 
3175 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3176 	if (!cs)
3177 		return ERR_PTR(-ENOMEM);
3178 
3179 	if (alloc_cpumasks(cs, NULL)) {
3180 		kfree(cs);
3181 		return ERR_PTR(-ENOMEM);
3182 	}
3183 
3184 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3185 	nodes_clear(cs->mems_allowed);
3186 	nodes_clear(cs->effective_mems);
3187 	fmeter_init(&cs->fmeter);
3188 	cs->relax_domain_level = -1;
3189 
3190 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3191 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3192 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3193 
3194 	return &cs->css;
3195 }
3196 
3197 static int cpuset_css_online(struct cgroup_subsys_state *css)
3198 {
3199 	struct cpuset *cs = css_cs(css);
3200 	struct cpuset *parent = parent_cs(cs);
3201 	struct cpuset *tmp_cs;
3202 	struct cgroup_subsys_state *pos_css;
3203 
3204 	if (!parent)
3205 		return 0;
3206 
3207 	cpus_read_lock();
3208 	mutex_lock(&cpuset_mutex);
3209 
3210 	set_bit(CS_ONLINE, &cs->flags);
3211 	if (is_spread_page(parent))
3212 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3213 	if (is_spread_slab(parent))
3214 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3215 
3216 	cpuset_inc();
3217 
3218 	spin_lock_irq(&callback_lock);
3219 	if (is_in_v2_mode()) {
3220 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3221 		cs->effective_mems = parent->effective_mems;
3222 		cs->use_parent_ecpus = true;
3223 		parent->child_ecpus_count++;
3224 	}
3225 	spin_unlock_irq(&callback_lock);
3226 
3227 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3228 		goto out_unlock;
3229 
3230 	/*
3231 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3232 	 * set.  This flag handling is implemented in cgroup core for
3233 	 * historical reasons - the flag may be specified during mount.
3234 	 *
3235 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3236 	 * refuse to clone the configuration - thereby refusing the task to
3237 	 * be entered, and as a result refusing the sys_unshare() or
3238 	 * clone() which initiated it.  If this becomes a problem for some
3239 	 * users who wish to allow that scenario, then this could be
3240 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3241 	 * (and likewise for mems) to the new cgroup.
3242 	 */
3243 	rcu_read_lock();
3244 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3245 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3246 			rcu_read_unlock();
3247 			goto out_unlock;
3248 		}
3249 	}
3250 	rcu_read_unlock();
3251 
3252 	spin_lock_irq(&callback_lock);
3253 	cs->mems_allowed = parent->mems_allowed;
3254 	cs->effective_mems = parent->mems_allowed;
3255 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3256 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3257 	spin_unlock_irq(&callback_lock);
3258 out_unlock:
3259 	mutex_unlock(&cpuset_mutex);
3260 	cpus_read_unlock();
3261 	return 0;
3262 }
3263 
3264 /*
3265  * If the cpuset being removed has its flag 'sched_load_balance'
3266  * enabled, then simulate turning sched_load_balance off, which
3267  * will call rebuild_sched_domains_locked(). That is not needed
3268  * in the default hierarchy where only changes in partition
3269  * will cause repartitioning.
3270  *
3271  * If the cpuset has the 'sched.partition' flag enabled, simulate
3272  * turning 'sched.partition" off.
3273  */
3274 
3275 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3276 {
3277 	struct cpuset *cs = css_cs(css);
3278 
3279 	cpus_read_lock();
3280 	mutex_lock(&cpuset_mutex);
3281 
3282 	if (is_partition_valid(cs))
3283 		update_prstate(cs, 0);
3284 
3285 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3286 	    is_sched_load_balance(cs))
3287 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3288 
3289 	if (cs->use_parent_ecpus) {
3290 		struct cpuset *parent = parent_cs(cs);
3291 
3292 		cs->use_parent_ecpus = false;
3293 		parent->child_ecpus_count--;
3294 	}
3295 
3296 	cpuset_dec();
3297 	clear_bit(CS_ONLINE, &cs->flags);
3298 
3299 	mutex_unlock(&cpuset_mutex);
3300 	cpus_read_unlock();
3301 }
3302 
3303 static void cpuset_css_free(struct cgroup_subsys_state *css)
3304 {
3305 	struct cpuset *cs = css_cs(css);
3306 
3307 	free_cpuset(cs);
3308 }
3309 
3310 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3311 {
3312 	mutex_lock(&cpuset_mutex);
3313 	spin_lock_irq(&callback_lock);
3314 
3315 	if (is_in_v2_mode()) {
3316 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3317 		top_cpuset.mems_allowed = node_possible_map;
3318 	} else {
3319 		cpumask_copy(top_cpuset.cpus_allowed,
3320 			     top_cpuset.effective_cpus);
3321 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3322 	}
3323 
3324 	spin_unlock_irq(&callback_lock);
3325 	mutex_unlock(&cpuset_mutex);
3326 }
3327 
3328 /*
3329  * In case the child is cloned into a cpuset different from its parent,
3330  * additional checks are done to see if the move is allowed.
3331  */
3332 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3333 {
3334 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3335 	bool same_cs;
3336 	int ret;
3337 
3338 	rcu_read_lock();
3339 	same_cs = (cs == task_cs(current));
3340 	rcu_read_unlock();
3341 
3342 	if (same_cs)
3343 		return 0;
3344 
3345 	lockdep_assert_held(&cgroup_mutex);
3346 	mutex_lock(&cpuset_mutex);
3347 
3348 	/* Check to see if task is allowed in the cpuset */
3349 	ret = cpuset_can_attach_check(cs);
3350 	if (ret)
3351 		goto out_unlock;
3352 
3353 	ret = task_can_attach(task);
3354 	if (ret)
3355 		goto out_unlock;
3356 
3357 	ret = security_task_setscheduler(task);
3358 	if (ret)
3359 		goto out_unlock;
3360 
3361 	/*
3362 	 * Mark attach is in progress.  This makes validate_change() fail
3363 	 * changes which zero cpus/mems_allowed.
3364 	 */
3365 	cs->attach_in_progress++;
3366 out_unlock:
3367 	mutex_unlock(&cpuset_mutex);
3368 	return ret;
3369 }
3370 
3371 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3372 {
3373 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3374 	bool same_cs;
3375 
3376 	rcu_read_lock();
3377 	same_cs = (cs == task_cs(current));
3378 	rcu_read_unlock();
3379 
3380 	if (same_cs)
3381 		return;
3382 
3383 	mutex_lock(&cpuset_mutex);
3384 	cs->attach_in_progress--;
3385 	if (!cs->attach_in_progress)
3386 		wake_up(&cpuset_attach_wq);
3387 	mutex_unlock(&cpuset_mutex);
3388 }
3389 
3390 /*
3391  * Make sure the new task conform to the current state of its parent,
3392  * which could have been changed by cpuset just after it inherits the
3393  * state from the parent and before it sits on the cgroup's task list.
3394  */
3395 static void cpuset_fork(struct task_struct *task)
3396 {
3397 	struct cpuset *cs;
3398 	bool same_cs;
3399 
3400 	rcu_read_lock();
3401 	cs = task_cs(task);
3402 	same_cs = (cs == task_cs(current));
3403 	rcu_read_unlock();
3404 
3405 	if (same_cs) {
3406 		if (cs == &top_cpuset)
3407 			return;
3408 
3409 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3410 		task->mems_allowed = current->mems_allowed;
3411 		return;
3412 	}
3413 
3414 	/* CLONE_INTO_CGROUP */
3415 	mutex_lock(&cpuset_mutex);
3416 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3417 	cpuset_attach_task(cs, task);
3418 
3419 	cs->attach_in_progress--;
3420 	if (!cs->attach_in_progress)
3421 		wake_up(&cpuset_attach_wq);
3422 
3423 	mutex_unlock(&cpuset_mutex);
3424 }
3425 
3426 struct cgroup_subsys cpuset_cgrp_subsys = {
3427 	.css_alloc	= cpuset_css_alloc,
3428 	.css_online	= cpuset_css_online,
3429 	.css_offline	= cpuset_css_offline,
3430 	.css_free	= cpuset_css_free,
3431 	.can_attach	= cpuset_can_attach,
3432 	.cancel_attach	= cpuset_cancel_attach,
3433 	.attach		= cpuset_attach,
3434 	.post_attach	= cpuset_post_attach,
3435 	.bind		= cpuset_bind,
3436 	.can_fork	= cpuset_can_fork,
3437 	.cancel_fork	= cpuset_cancel_fork,
3438 	.fork		= cpuset_fork,
3439 	.legacy_cftypes	= legacy_files,
3440 	.dfl_cftypes	= dfl_files,
3441 	.early_init	= true,
3442 	.threaded	= true,
3443 };
3444 
3445 /**
3446  * cpuset_init - initialize cpusets at system boot
3447  *
3448  * Description: Initialize top_cpuset
3449  **/
3450 
3451 int __init cpuset_init(void)
3452 {
3453 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3454 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3455 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3456 
3457 	cpumask_setall(top_cpuset.cpus_allowed);
3458 	nodes_setall(top_cpuset.mems_allowed);
3459 	cpumask_setall(top_cpuset.effective_cpus);
3460 	nodes_setall(top_cpuset.effective_mems);
3461 
3462 	fmeter_init(&top_cpuset.fmeter);
3463 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3464 	top_cpuset.relax_domain_level = -1;
3465 
3466 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3467 
3468 	return 0;
3469 }
3470 
3471 /*
3472  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3473  * or memory nodes, we need to walk over the cpuset hierarchy,
3474  * removing that CPU or node from all cpusets.  If this removes the
3475  * last CPU or node from a cpuset, then move the tasks in the empty
3476  * cpuset to its next-highest non-empty parent.
3477  */
3478 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3479 {
3480 	struct cpuset *parent;
3481 
3482 	/*
3483 	 * Find its next-highest non-empty parent, (top cpuset
3484 	 * has online cpus, so can't be empty).
3485 	 */
3486 	parent = parent_cs(cs);
3487 	while (cpumask_empty(parent->cpus_allowed) ||
3488 			nodes_empty(parent->mems_allowed))
3489 		parent = parent_cs(parent);
3490 
3491 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3492 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3493 		pr_cont_cgroup_name(cs->css.cgroup);
3494 		pr_cont("\n");
3495 	}
3496 }
3497 
3498 static void
3499 hotplug_update_tasks_legacy(struct cpuset *cs,
3500 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3501 			    bool cpus_updated, bool mems_updated)
3502 {
3503 	bool is_empty;
3504 
3505 	spin_lock_irq(&callback_lock);
3506 	cpumask_copy(cs->cpus_allowed, new_cpus);
3507 	cpumask_copy(cs->effective_cpus, new_cpus);
3508 	cs->mems_allowed = *new_mems;
3509 	cs->effective_mems = *new_mems;
3510 	spin_unlock_irq(&callback_lock);
3511 
3512 	/*
3513 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3514 	 * as the tasks will be migrated to an ancestor.
3515 	 */
3516 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3517 		update_tasks_cpumask(cs, new_cpus);
3518 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3519 		update_tasks_nodemask(cs);
3520 
3521 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3522 		   nodes_empty(cs->mems_allowed);
3523 
3524 	mutex_unlock(&cpuset_mutex);
3525 
3526 	/*
3527 	 * Move tasks to the nearest ancestor with execution resources,
3528 	 * This is full cgroup operation which will also call back into
3529 	 * cpuset. Should be done outside any lock.
3530 	 */
3531 	if (is_empty)
3532 		remove_tasks_in_empty_cpuset(cs);
3533 
3534 	mutex_lock(&cpuset_mutex);
3535 }
3536 
3537 static void
3538 hotplug_update_tasks(struct cpuset *cs,
3539 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3540 		     bool cpus_updated, bool mems_updated)
3541 {
3542 	/* A partition root is allowed to have empty effective cpus */
3543 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3544 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3545 	if (nodes_empty(*new_mems))
3546 		*new_mems = parent_cs(cs)->effective_mems;
3547 
3548 	spin_lock_irq(&callback_lock);
3549 	cpumask_copy(cs->effective_cpus, new_cpus);
3550 	cs->effective_mems = *new_mems;
3551 	spin_unlock_irq(&callback_lock);
3552 
3553 	if (cpus_updated)
3554 		update_tasks_cpumask(cs, new_cpus);
3555 	if (mems_updated)
3556 		update_tasks_nodemask(cs);
3557 }
3558 
3559 static bool force_rebuild;
3560 
3561 void cpuset_force_rebuild(void)
3562 {
3563 	force_rebuild = true;
3564 }
3565 
3566 /**
3567  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3568  * @cs: cpuset in interest
3569  * @tmp: the tmpmasks structure pointer
3570  *
3571  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3572  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3573  * all its tasks are moved to the nearest ancestor with both resources.
3574  */
3575 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3576 {
3577 	static cpumask_t new_cpus;
3578 	static nodemask_t new_mems;
3579 	bool cpus_updated;
3580 	bool mems_updated;
3581 	struct cpuset *parent;
3582 retry:
3583 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3584 
3585 	mutex_lock(&cpuset_mutex);
3586 
3587 	/*
3588 	 * We have raced with task attaching. We wait until attaching
3589 	 * is finished, so we won't attach a task to an empty cpuset.
3590 	 */
3591 	if (cs->attach_in_progress) {
3592 		mutex_unlock(&cpuset_mutex);
3593 		goto retry;
3594 	}
3595 
3596 	parent = parent_cs(cs);
3597 	compute_effective_cpumask(&new_cpus, cs, parent);
3598 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3599 
3600 	if (cs->nr_subparts_cpus)
3601 		/*
3602 		 * Make sure that CPUs allocated to child partitions
3603 		 * do not show up in effective_cpus.
3604 		 */
3605 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3606 
3607 	if (!tmp || !cs->partition_root_state)
3608 		goto update_tasks;
3609 
3610 	/*
3611 	 * In the unlikely event that a partition root has empty
3612 	 * effective_cpus with tasks, we will have to invalidate child
3613 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3614 	 * reclaim their cpus.
3615 	 */
3616 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3617 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3618 		spin_lock_irq(&callback_lock);
3619 		cs->nr_subparts_cpus = 0;
3620 		cpumask_clear(cs->subparts_cpus);
3621 		spin_unlock_irq(&callback_lock);
3622 		compute_effective_cpumask(&new_cpus, cs, parent);
3623 	}
3624 
3625 	/*
3626 	 * Force the partition to become invalid if either one of
3627 	 * the following conditions hold:
3628 	 * 1) empty effective cpus but not valid empty partition.
3629 	 * 2) parent is invalid or doesn't grant any cpus to child
3630 	 *    partitions.
3631 	 */
3632 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3633 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3634 		int old_prs, parent_prs;
3635 
3636 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3637 		if (cs->nr_subparts_cpus) {
3638 			spin_lock_irq(&callback_lock);
3639 			cs->nr_subparts_cpus = 0;
3640 			cpumask_clear(cs->subparts_cpus);
3641 			spin_unlock_irq(&callback_lock);
3642 			compute_effective_cpumask(&new_cpus, cs, parent);
3643 		}
3644 
3645 		old_prs = cs->partition_root_state;
3646 		parent_prs = parent->partition_root_state;
3647 		if (is_partition_valid(cs)) {
3648 			spin_lock_irq(&callback_lock);
3649 			make_partition_invalid(cs);
3650 			spin_unlock_irq(&callback_lock);
3651 			if (is_prs_invalid(parent_prs))
3652 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3653 			else if (!parent_prs)
3654 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3655 			else
3656 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3657 			notify_partition_change(cs, old_prs);
3658 		}
3659 		cpuset_force_rebuild();
3660 	}
3661 
3662 	/*
3663 	 * On the other hand, an invalid partition root may be transitioned
3664 	 * back to a regular one.
3665 	 */
3666 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3667 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3668 		if (is_partition_valid(cs))
3669 			cpuset_force_rebuild();
3670 	}
3671 
3672 update_tasks:
3673 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3674 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3675 	if (!cpus_updated && !mems_updated)
3676 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3677 
3678 	if (mems_updated)
3679 		check_insane_mems_config(&new_mems);
3680 
3681 	if (is_in_v2_mode())
3682 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3683 				     cpus_updated, mems_updated);
3684 	else
3685 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3686 					    cpus_updated, mems_updated);
3687 
3688 unlock:
3689 	mutex_unlock(&cpuset_mutex);
3690 }
3691 
3692 /**
3693  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3694  *
3695  * This function is called after either CPU or memory configuration has
3696  * changed and updates cpuset accordingly.  The top_cpuset is always
3697  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3698  * order to make cpusets transparent (of no affect) on systems that are
3699  * actively using CPU hotplug but making no active use of cpusets.
3700  *
3701  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3702  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3703  * all descendants.
3704  *
3705  * Note that CPU offlining during suspend is ignored.  We don't modify
3706  * cpusets across suspend/resume cycles at all.
3707  */
3708 static void cpuset_hotplug_workfn(struct work_struct *work)
3709 {
3710 	static cpumask_t new_cpus;
3711 	static nodemask_t new_mems;
3712 	bool cpus_updated, mems_updated;
3713 	bool on_dfl = is_in_v2_mode();
3714 	struct tmpmasks tmp, *ptmp = NULL;
3715 
3716 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3717 		ptmp = &tmp;
3718 
3719 	mutex_lock(&cpuset_mutex);
3720 
3721 	/* fetch the available cpus/mems and find out which changed how */
3722 	cpumask_copy(&new_cpus, cpu_active_mask);
3723 	new_mems = node_states[N_MEMORY];
3724 
3725 	/*
3726 	 * If subparts_cpus is populated, it is likely that the check below
3727 	 * will produce a false positive on cpus_updated when the cpu list
3728 	 * isn't changed. It is extra work, but it is better to be safe.
3729 	 */
3730 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3731 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3732 
3733 	/*
3734 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3735 	 * we assumed that cpus are updated.
3736 	 */
3737 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3738 		cpus_updated = true;
3739 
3740 	/* synchronize cpus_allowed to cpu_active_mask */
3741 	if (cpus_updated) {
3742 		spin_lock_irq(&callback_lock);
3743 		if (!on_dfl)
3744 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3745 		/*
3746 		 * Make sure that CPUs allocated to child partitions
3747 		 * do not show up in effective_cpus. If no CPU is left,
3748 		 * we clear the subparts_cpus & let the child partitions
3749 		 * fight for the CPUs again.
3750 		 */
3751 		if (top_cpuset.nr_subparts_cpus) {
3752 			if (cpumask_subset(&new_cpus,
3753 					   top_cpuset.subparts_cpus)) {
3754 				top_cpuset.nr_subparts_cpus = 0;
3755 				cpumask_clear(top_cpuset.subparts_cpus);
3756 			} else {
3757 				cpumask_andnot(&new_cpus, &new_cpus,
3758 					       top_cpuset.subparts_cpus);
3759 			}
3760 		}
3761 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3762 		spin_unlock_irq(&callback_lock);
3763 		/* we don't mess with cpumasks of tasks in top_cpuset */
3764 	}
3765 
3766 	/* synchronize mems_allowed to N_MEMORY */
3767 	if (mems_updated) {
3768 		spin_lock_irq(&callback_lock);
3769 		if (!on_dfl)
3770 			top_cpuset.mems_allowed = new_mems;
3771 		top_cpuset.effective_mems = new_mems;
3772 		spin_unlock_irq(&callback_lock);
3773 		update_tasks_nodemask(&top_cpuset);
3774 	}
3775 
3776 	mutex_unlock(&cpuset_mutex);
3777 
3778 	/* if cpus or mems changed, we need to propagate to descendants */
3779 	if (cpus_updated || mems_updated) {
3780 		struct cpuset *cs;
3781 		struct cgroup_subsys_state *pos_css;
3782 
3783 		rcu_read_lock();
3784 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3785 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3786 				continue;
3787 			rcu_read_unlock();
3788 
3789 			cpuset_hotplug_update_tasks(cs, ptmp);
3790 
3791 			rcu_read_lock();
3792 			css_put(&cs->css);
3793 		}
3794 		rcu_read_unlock();
3795 	}
3796 
3797 	/* rebuild sched domains if cpus_allowed has changed */
3798 	if (cpus_updated || force_rebuild) {
3799 		force_rebuild = false;
3800 		rebuild_sched_domains();
3801 	}
3802 
3803 	free_cpumasks(NULL, ptmp);
3804 }
3805 
3806 void cpuset_update_active_cpus(void)
3807 {
3808 	/*
3809 	 * We're inside cpu hotplug critical region which usually nests
3810 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3811 	 * to a work item to avoid reverse locking order.
3812 	 */
3813 	schedule_work(&cpuset_hotplug_work);
3814 }
3815 
3816 void cpuset_wait_for_hotplug(void)
3817 {
3818 	flush_work(&cpuset_hotplug_work);
3819 }
3820 
3821 /*
3822  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3823  * Call this routine anytime after node_states[N_MEMORY] changes.
3824  * See cpuset_update_active_cpus() for CPU hotplug handling.
3825  */
3826 static int cpuset_track_online_nodes(struct notifier_block *self,
3827 				unsigned long action, void *arg)
3828 {
3829 	schedule_work(&cpuset_hotplug_work);
3830 	return NOTIFY_OK;
3831 }
3832 
3833 /**
3834  * cpuset_init_smp - initialize cpus_allowed
3835  *
3836  * Description: Finish top cpuset after cpu, node maps are initialized
3837  */
3838 void __init cpuset_init_smp(void)
3839 {
3840 	/*
3841 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3842 	 * cpuset_bind() call will be reset to v1 values in another
3843 	 * cpuset_bind() call when v1 cpuset is mounted.
3844 	 */
3845 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3846 
3847 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3848 	top_cpuset.effective_mems = node_states[N_MEMORY];
3849 
3850 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3851 
3852 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3853 	BUG_ON(!cpuset_migrate_mm_wq);
3854 }
3855 
3856 /**
3857  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3858  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3859  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3860  *
3861  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3862  * attached to the specified @tsk.  Guaranteed to return some non-empty
3863  * subset of cpu_online_mask, even if this means going outside the
3864  * tasks cpuset, except when the task is in the top cpuset.
3865  **/
3866 
3867 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3868 {
3869 	unsigned long flags;
3870 	struct cpuset *cs;
3871 
3872 	spin_lock_irqsave(&callback_lock, flags);
3873 	rcu_read_lock();
3874 
3875 	cs = task_cs(tsk);
3876 	if (cs != &top_cpuset)
3877 		guarantee_online_cpus(tsk, pmask);
3878 	/*
3879 	 * Tasks in the top cpuset won't get update to their cpumasks
3880 	 * when a hotplug online/offline event happens. So we include all
3881 	 * offline cpus in the allowed cpu list.
3882 	 */
3883 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3884 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3885 
3886 		/*
3887 		 * We first exclude cpus allocated to partitions. If there is no
3888 		 * allowable online cpu left, we fall back to all possible cpus.
3889 		 */
3890 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3891 		if (!cpumask_intersects(pmask, cpu_online_mask))
3892 			cpumask_copy(pmask, possible_mask);
3893 	}
3894 
3895 	rcu_read_unlock();
3896 	spin_unlock_irqrestore(&callback_lock, flags);
3897 }
3898 
3899 /**
3900  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3901  * @tsk: pointer to task_struct with which the scheduler is struggling
3902  *
3903  * Description: In the case that the scheduler cannot find an allowed cpu in
3904  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3905  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3906  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3907  * This is the absolute last resort for the scheduler and it is only used if
3908  * _every_ other avenue has been traveled.
3909  *
3910  * Returns true if the affinity of @tsk was changed, false otherwise.
3911  **/
3912 
3913 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3914 {
3915 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3916 	const struct cpumask *cs_mask;
3917 	bool changed = false;
3918 
3919 	rcu_read_lock();
3920 	cs_mask = task_cs(tsk)->cpus_allowed;
3921 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3922 		do_set_cpus_allowed(tsk, cs_mask);
3923 		changed = true;
3924 	}
3925 	rcu_read_unlock();
3926 
3927 	/*
3928 	 * We own tsk->cpus_allowed, nobody can change it under us.
3929 	 *
3930 	 * But we used cs && cs->cpus_allowed lockless and thus can
3931 	 * race with cgroup_attach_task() or update_cpumask() and get
3932 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3933 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3934 	 * which takes task_rq_lock().
3935 	 *
3936 	 * If we are called after it dropped the lock we must see all
3937 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3938 	 * set any mask even if it is not right from task_cs() pov,
3939 	 * the pending set_cpus_allowed_ptr() will fix things.
3940 	 *
3941 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3942 	 * if required.
3943 	 */
3944 	return changed;
3945 }
3946 
3947 void __init cpuset_init_current_mems_allowed(void)
3948 {
3949 	nodes_setall(current->mems_allowed);
3950 }
3951 
3952 /**
3953  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3954  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3955  *
3956  * Description: Returns the nodemask_t mems_allowed of the cpuset
3957  * attached to the specified @tsk.  Guaranteed to return some non-empty
3958  * subset of node_states[N_MEMORY], even if this means going outside the
3959  * tasks cpuset.
3960  **/
3961 
3962 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3963 {
3964 	nodemask_t mask;
3965 	unsigned long flags;
3966 
3967 	spin_lock_irqsave(&callback_lock, flags);
3968 	rcu_read_lock();
3969 	guarantee_online_mems(task_cs(tsk), &mask);
3970 	rcu_read_unlock();
3971 	spin_unlock_irqrestore(&callback_lock, flags);
3972 
3973 	return mask;
3974 }
3975 
3976 /**
3977  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3978  * @nodemask: the nodemask to be checked
3979  *
3980  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3981  */
3982 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3983 {
3984 	return nodes_intersects(*nodemask, current->mems_allowed);
3985 }
3986 
3987 /*
3988  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3989  * mem_hardwall ancestor to the specified cpuset.  Call holding
3990  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3991  * (an unusual configuration), then returns the root cpuset.
3992  */
3993 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3994 {
3995 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3996 		cs = parent_cs(cs);
3997 	return cs;
3998 }
3999 
4000 /*
4001  * cpuset_node_allowed - Can we allocate on a memory node?
4002  * @node: is this an allowed node?
4003  * @gfp_mask: memory allocation flags
4004  *
4005  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4006  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4007  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4008  * yes.  If current has access to memory reserves as an oom victim, yes.
4009  * Otherwise, no.
4010  *
4011  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4012  * and do not allow allocations outside the current tasks cpuset
4013  * unless the task has been OOM killed.
4014  * GFP_KERNEL allocations are not so marked, so can escape to the
4015  * nearest enclosing hardwalled ancestor cpuset.
4016  *
4017  * Scanning up parent cpusets requires callback_lock.  The
4018  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4019  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4020  * current tasks mems_allowed came up empty on the first pass over
4021  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4022  * cpuset are short of memory, might require taking the callback_lock.
4023  *
4024  * The first call here from mm/page_alloc:get_page_from_freelist()
4025  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4026  * so no allocation on a node outside the cpuset is allowed (unless
4027  * in interrupt, of course).
4028  *
4029  * The second pass through get_page_from_freelist() doesn't even call
4030  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4031  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4032  * in alloc_flags.  That logic and the checks below have the combined
4033  * affect that:
4034  *	in_interrupt - any node ok (current task context irrelevant)
4035  *	GFP_ATOMIC   - any node ok
4036  *	tsk_is_oom_victim   - any node ok
4037  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4038  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4039  */
4040 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4041 {
4042 	struct cpuset *cs;		/* current cpuset ancestors */
4043 	bool allowed;			/* is allocation in zone z allowed? */
4044 	unsigned long flags;
4045 
4046 	if (in_interrupt())
4047 		return true;
4048 	if (node_isset(node, current->mems_allowed))
4049 		return true;
4050 	/*
4051 	 * Allow tasks that have access to memory reserves because they have
4052 	 * been OOM killed to get memory anywhere.
4053 	 */
4054 	if (unlikely(tsk_is_oom_victim(current)))
4055 		return true;
4056 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4057 		return false;
4058 
4059 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4060 		return true;
4061 
4062 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4063 	spin_lock_irqsave(&callback_lock, flags);
4064 
4065 	rcu_read_lock();
4066 	cs = nearest_hardwall_ancestor(task_cs(current));
4067 	allowed = node_isset(node, cs->mems_allowed);
4068 	rcu_read_unlock();
4069 
4070 	spin_unlock_irqrestore(&callback_lock, flags);
4071 	return allowed;
4072 }
4073 
4074 /**
4075  * cpuset_spread_node() - On which node to begin search for a page
4076  *
4077  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4078  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4079  * and if the memory allocation used cpuset_mem_spread_node()
4080  * to determine on which node to start looking, as it will for
4081  * certain page cache or slab cache pages such as used for file
4082  * system buffers and inode caches, then instead of starting on the
4083  * local node to look for a free page, rather spread the starting
4084  * node around the tasks mems_allowed nodes.
4085  *
4086  * We don't have to worry about the returned node being offline
4087  * because "it can't happen", and even if it did, it would be ok.
4088  *
4089  * The routines calling guarantee_online_mems() are careful to
4090  * only set nodes in task->mems_allowed that are online.  So it
4091  * should not be possible for the following code to return an
4092  * offline node.  But if it did, that would be ok, as this routine
4093  * is not returning the node where the allocation must be, only
4094  * the node where the search should start.  The zonelist passed to
4095  * __alloc_pages() will include all nodes.  If the slab allocator
4096  * is passed an offline node, it will fall back to the local node.
4097  * See kmem_cache_alloc_node().
4098  */
4099 static int cpuset_spread_node(int *rotor)
4100 {
4101 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4102 }
4103 
4104 /**
4105  * cpuset_mem_spread_node() - On which node to begin search for a file page
4106  */
4107 int cpuset_mem_spread_node(void)
4108 {
4109 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4110 		current->cpuset_mem_spread_rotor =
4111 			node_random(&current->mems_allowed);
4112 
4113 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4114 }
4115 
4116 /**
4117  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4118  */
4119 int cpuset_slab_spread_node(void)
4120 {
4121 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4122 		current->cpuset_slab_spread_rotor =
4123 			node_random(&current->mems_allowed);
4124 
4125 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4126 }
4127 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4128 
4129 /**
4130  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4131  * @tsk1: pointer to task_struct of some task.
4132  * @tsk2: pointer to task_struct of some other task.
4133  *
4134  * Description: Return true if @tsk1's mems_allowed intersects the
4135  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4136  * one of the task's memory usage might impact the memory available
4137  * to the other.
4138  **/
4139 
4140 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4141 				   const struct task_struct *tsk2)
4142 {
4143 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4144 }
4145 
4146 /**
4147  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4148  *
4149  * Description: Prints current's name, cpuset name, and cached copy of its
4150  * mems_allowed to the kernel log.
4151  */
4152 void cpuset_print_current_mems_allowed(void)
4153 {
4154 	struct cgroup *cgrp;
4155 
4156 	rcu_read_lock();
4157 
4158 	cgrp = task_cs(current)->css.cgroup;
4159 	pr_cont(",cpuset=");
4160 	pr_cont_cgroup_name(cgrp);
4161 	pr_cont(",mems_allowed=%*pbl",
4162 		nodemask_pr_args(&current->mems_allowed));
4163 
4164 	rcu_read_unlock();
4165 }
4166 
4167 /*
4168  * Collection of memory_pressure is suppressed unless
4169  * this flag is enabled by writing "1" to the special
4170  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4171  */
4172 
4173 int cpuset_memory_pressure_enabled __read_mostly;
4174 
4175 /*
4176  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4177  *
4178  * Keep a running average of the rate of synchronous (direct)
4179  * page reclaim efforts initiated by tasks in each cpuset.
4180  *
4181  * This represents the rate at which some task in the cpuset
4182  * ran low on memory on all nodes it was allowed to use, and
4183  * had to enter the kernels page reclaim code in an effort to
4184  * create more free memory by tossing clean pages or swapping
4185  * or writing dirty pages.
4186  *
4187  * Display to user space in the per-cpuset read-only file
4188  * "memory_pressure".  Value displayed is an integer
4189  * representing the recent rate of entry into the synchronous
4190  * (direct) page reclaim by any task attached to the cpuset.
4191  */
4192 
4193 void __cpuset_memory_pressure_bump(void)
4194 {
4195 	rcu_read_lock();
4196 	fmeter_markevent(&task_cs(current)->fmeter);
4197 	rcu_read_unlock();
4198 }
4199 
4200 #ifdef CONFIG_PROC_PID_CPUSET
4201 /*
4202  * proc_cpuset_show()
4203  *  - Print tasks cpuset path into seq_file.
4204  *  - Used for /proc/<pid>/cpuset.
4205  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4206  *    doesn't really matter if tsk->cpuset changes after we read it,
4207  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4208  *    anyway.
4209  */
4210 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4211 		     struct pid *pid, struct task_struct *tsk)
4212 {
4213 	char *buf;
4214 	struct cgroup_subsys_state *css;
4215 	int retval;
4216 
4217 	retval = -ENOMEM;
4218 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4219 	if (!buf)
4220 		goto out;
4221 
4222 	css = task_get_css(tsk, cpuset_cgrp_id);
4223 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4224 				current->nsproxy->cgroup_ns);
4225 	css_put(css);
4226 	if (retval >= PATH_MAX)
4227 		retval = -ENAMETOOLONG;
4228 	if (retval < 0)
4229 		goto out_free;
4230 	seq_puts(m, buf);
4231 	seq_putc(m, '\n');
4232 	retval = 0;
4233 out_free:
4234 	kfree(buf);
4235 out:
4236 	return retval;
4237 }
4238 #endif /* CONFIG_PROC_PID_CPUSET */
4239 
4240 /* Display task mems_allowed in /proc/<pid>/status file. */
4241 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4242 {
4243 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4244 		   nodemask_pr_args(&task->mems_allowed));
4245 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4246 		   nodemask_pr_args(&task->mems_allowed));
4247 }
4248