1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/kernel.h> 31 #include <linux/mempolicy.h> 32 #include <linux/mm.h> 33 #include <linux/memory.h> 34 #include <linux/export.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched.h> 37 #include <linux/sched/deadline.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/task.h> 40 #include <linux/security.h> 41 #include <linux/spinlock.h> 42 #include <linux/oom.h> 43 #include <linux/sched/isolation.h> 44 #include <linux/cgroup.h> 45 #include <linux/wait.h> 46 47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 49 50 /* 51 * There could be abnormal cpuset configurations for cpu or memory 52 * node binding, add this key to provide a quick low-cost judgment 53 * of the situation. 54 */ 55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 56 57 /* See "Frequency meter" comments, below. */ 58 59 struct fmeter { 60 int cnt; /* unprocessed events count */ 61 int val; /* most recent output value */ 62 time64_t time; /* clock (secs) when val computed */ 63 spinlock_t lock; /* guards read or write of above */ 64 }; 65 66 /* 67 * Invalid partition error code 68 */ 69 enum prs_errcode { 70 PERR_NONE = 0, 71 PERR_INVCPUS, 72 PERR_INVPARENT, 73 PERR_NOTPART, 74 PERR_NOTEXCL, 75 PERR_NOCPUS, 76 PERR_HOTPLUG, 77 PERR_CPUSEMPTY, 78 }; 79 80 static const char * const perr_strings[] = { 81 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 82 [PERR_INVPARENT] = "Parent is an invalid partition root", 83 [PERR_NOTPART] = "Parent is not a partition root", 84 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 85 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 86 [PERR_HOTPLUG] = "No cpu available due to hotplug", 87 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 88 }; 89 90 struct cpuset { 91 struct cgroup_subsys_state css; 92 93 unsigned long flags; /* "unsigned long" so bitops work */ 94 95 /* 96 * On default hierarchy: 97 * 98 * The user-configured masks can only be changed by writing to 99 * cpuset.cpus and cpuset.mems, and won't be limited by the 100 * parent masks. 101 * 102 * The effective masks is the real masks that apply to the tasks 103 * in the cpuset. They may be changed if the configured masks are 104 * changed or hotplug happens. 105 * 106 * effective_mask == configured_mask & parent's effective_mask, 107 * and if it ends up empty, it will inherit the parent's mask. 108 * 109 * 110 * On legacy hierarchy: 111 * 112 * The user-configured masks are always the same with effective masks. 113 */ 114 115 /* user-configured CPUs and Memory Nodes allow to tasks */ 116 cpumask_var_t cpus_allowed; 117 nodemask_t mems_allowed; 118 119 /* effective CPUs and Memory Nodes allow to tasks */ 120 cpumask_var_t effective_cpus; 121 nodemask_t effective_mems; 122 123 /* 124 * CPUs allocated to child sub-partitions (default hierarchy only) 125 * - CPUs granted by the parent = effective_cpus U subparts_cpus 126 * - effective_cpus and subparts_cpus are mutually exclusive. 127 * 128 * effective_cpus contains only onlined CPUs, but subparts_cpus 129 * may have offlined ones. 130 */ 131 cpumask_var_t subparts_cpus; 132 133 /* 134 * This is old Memory Nodes tasks took on. 135 * 136 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 137 * - A new cpuset's old_mems_allowed is initialized when some 138 * task is moved into it. 139 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 140 * cpuset.mems_allowed and have tasks' nodemask updated, and 141 * then old_mems_allowed is updated to mems_allowed. 142 */ 143 nodemask_t old_mems_allowed; 144 145 struct fmeter fmeter; /* memory_pressure filter */ 146 147 /* 148 * Tasks are being attached to this cpuset. Used to prevent 149 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 150 */ 151 int attach_in_progress; 152 153 /* partition number for rebuild_sched_domains() */ 154 int pn; 155 156 /* for custom sched domain */ 157 int relax_domain_level; 158 159 /* number of CPUs in subparts_cpus */ 160 int nr_subparts_cpus; 161 162 /* partition root state */ 163 int partition_root_state; 164 165 /* 166 * Default hierarchy only: 167 * use_parent_ecpus - set if using parent's effective_cpus 168 * child_ecpus_count - # of children with use_parent_ecpus set 169 */ 170 int use_parent_ecpus; 171 int child_ecpus_count; 172 173 /* 174 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we 175 * know when to rebuild associated root domain bandwidth information. 176 */ 177 int nr_deadline_tasks; 178 int nr_migrate_dl_tasks; 179 u64 sum_migrate_dl_bw; 180 181 /* Invalid partition error code, not lock protected */ 182 enum prs_errcode prs_err; 183 184 /* Handle for cpuset.cpus.partition */ 185 struct cgroup_file partition_file; 186 }; 187 188 /* 189 * Partition root states: 190 * 191 * 0 - member (not a partition root) 192 * 1 - partition root 193 * 2 - partition root without load balancing (isolated) 194 * -1 - invalid partition root 195 * -2 - invalid isolated partition root 196 */ 197 #define PRS_MEMBER 0 198 #define PRS_ROOT 1 199 #define PRS_ISOLATED 2 200 #define PRS_INVALID_ROOT -1 201 #define PRS_INVALID_ISOLATED -2 202 203 static inline bool is_prs_invalid(int prs_state) 204 { 205 return prs_state < 0; 206 } 207 208 /* 209 * Temporary cpumasks for working with partitions that are passed among 210 * functions to avoid memory allocation in inner functions. 211 */ 212 struct tmpmasks { 213 cpumask_var_t addmask, delmask; /* For partition root */ 214 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 215 }; 216 217 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 218 { 219 return css ? container_of(css, struct cpuset, css) : NULL; 220 } 221 222 /* Retrieve the cpuset for a task */ 223 static inline struct cpuset *task_cs(struct task_struct *task) 224 { 225 return css_cs(task_css(task, cpuset_cgrp_id)); 226 } 227 228 static inline struct cpuset *parent_cs(struct cpuset *cs) 229 { 230 return css_cs(cs->css.parent); 231 } 232 233 void inc_dl_tasks_cs(struct task_struct *p) 234 { 235 struct cpuset *cs = task_cs(p); 236 237 cs->nr_deadline_tasks++; 238 } 239 240 void dec_dl_tasks_cs(struct task_struct *p) 241 { 242 struct cpuset *cs = task_cs(p); 243 244 cs->nr_deadline_tasks--; 245 } 246 247 /* bits in struct cpuset flags field */ 248 typedef enum { 249 CS_ONLINE, 250 CS_CPU_EXCLUSIVE, 251 CS_MEM_EXCLUSIVE, 252 CS_MEM_HARDWALL, 253 CS_MEMORY_MIGRATE, 254 CS_SCHED_LOAD_BALANCE, 255 CS_SPREAD_PAGE, 256 CS_SPREAD_SLAB, 257 } cpuset_flagbits_t; 258 259 /* convenient tests for these bits */ 260 static inline bool is_cpuset_online(struct cpuset *cs) 261 { 262 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 263 } 264 265 static inline int is_cpu_exclusive(const struct cpuset *cs) 266 { 267 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 268 } 269 270 static inline int is_mem_exclusive(const struct cpuset *cs) 271 { 272 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 273 } 274 275 static inline int is_mem_hardwall(const struct cpuset *cs) 276 { 277 return test_bit(CS_MEM_HARDWALL, &cs->flags); 278 } 279 280 static inline int is_sched_load_balance(const struct cpuset *cs) 281 { 282 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 283 } 284 285 static inline int is_memory_migrate(const struct cpuset *cs) 286 { 287 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 288 } 289 290 static inline int is_spread_page(const struct cpuset *cs) 291 { 292 return test_bit(CS_SPREAD_PAGE, &cs->flags); 293 } 294 295 static inline int is_spread_slab(const struct cpuset *cs) 296 { 297 return test_bit(CS_SPREAD_SLAB, &cs->flags); 298 } 299 300 static inline int is_partition_valid(const struct cpuset *cs) 301 { 302 return cs->partition_root_state > 0; 303 } 304 305 static inline int is_partition_invalid(const struct cpuset *cs) 306 { 307 return cs->partition_root_state < 0; 308 } 309 310 /* 311 * Callers should hold callback_lock to modify partition_root_state. 312 */ 313 static inline void make_partition_invalid(struct cpuset *cs) 314 { 315 if (is_partition_valid(cs)) 316 cs->partition_root_state = -cs->partition_root_state; 317 } 318 319 /* 320 * Send notification event of whenever partition_root_state changes. 321 */ 322 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 323 { 324 if (old_prs == cs->partition_root_state) 325 return; 326 cgroup_file_notify(&cs->partition_file); 327 328 /* Reset prs_err if not invalid */ 329 if (is_partition_valid(cs)) 330 WRITE_ONCE(cs->prs_err, PERR_NONE); 331 } 332 333 static struct cpuset top_cpuset = { 334 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 335 (1 << CS_MEM_EXCLUSIVE)), 336 .partition_root_state = PRS_ROOT, 337 }; 338 339 /** 340 * cpuset_for_each_child - traverse online children of a cpuset 341 * @child_cs: loop cursor pointing to the current child 342 * @pos_css: used for iteration 343 * @parent_cs: target cpuset to walk children of 344 * 345 * Walk @child_cs through the online children of @parent_cs. Must be used 346 * with RCU read locked. 347 */ 348 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 349 css_for_each_child((pos_css), &(parent_cs)->css) \ 350 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 351 352 /** 353 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 354 * @des_cs: loop cursor pointing to the current descendant 355 * @pos_css: used for iteration 356 * @root_cs: target cpuset to walk ancestor of 357 * 358 * Walk @des_cs through the online descendants of @root_cs. Must be used 359 * with RCU read locked. The caller may modify @pos_css by calling 360 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 361 * iteration and the first node to be visited. 362 */ 363 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 364 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 365 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 366 367 /* 368 * There are two global locks guarding cpuset structures - cpuset_mutex and 369 * callback_lock. We also require taking task_lock() when dereferencing a 370 * task's cpuset pointer. See "The task_lock() exception", at the end of this 371 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 372 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 373 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 374 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 375 * correctness. 376 * 377 * A task must hold both locks to modify cpusets. If a task holds 378 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 379 * also acquire callback_lock and be able to modify cpusets. It can perform 380 * various checks on the cpuset structure first, knowing nothing will change. 381 * It can also allocate memory while just holding cpuset_mutex. While it is 382 * performing these checks, various callback routines can briefly acquire 383 * callback_lock to query cpusets. Once it is ready to make the changes, it 384 * takes callback_lock, blocking everyone else. 385 * 386 * Calls to the kernel memory allocator can not be made while holding 387 * callback_lock, as that would risk double tripping on callback_lock 388 * from one of the callbacks into the cpuset code from within 389 * __alloc_pages(). 390 * 391 * If a task is only holding callback_lock, then it has read-only 392 * access to cpusets. 393 * 394 * Now, the task_struct fields mems_allowed and mempolicy may be changed 395 * by other task, we use alloc_lock in the task_struct fields to protect 396 * them. 397 * 398 * The cpuset_common_file_read() handlers only hold callback_lock across 399 * small pieces of code, such as when reading out possibly multi-word 400 * cpumasks and nodemasks. 401 * 402 * Accessing a task's cpuset should be done in accordance with the 403 * guidelines for accessing subsystem state in kernel/cgroup.c 404 */ 405 406 static DEFINE_MUTEX(cpuset_mutex); 407 408 void cpuset_lock(void) 409 { 410 mutex_lock(&cpuset_mutex); 411 } 412 413 void cpuset_unlock(void) 414 { 415 mutex_unlock(&cpuset_mutex); 416 } 417 418 static DEFINE_SPINLOCK(callback_lock); 419 420 static struct workqueue_struct *cpuset_migrate_mm_wq; 421 422 /* 423 * CPU / memory hotplug is handled asynchronously. 424 */ 425 static void cpuset_hotplug_workfn(struct work_struct *work); 426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 427 428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 429 430 static inline void check_insane_mems_config(nodemask_t *nodes) 431 { 432 if (!cpusets_insane_config() && 433 movable_only_nodes(nodes)) { 434 static_branch_enable(&cpusets_insane_config_key); 435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 436 "Cpuset allocations might fail even with a lot of memory available.\n", 437 nodemask_pr_args(nodes)); 438 } 439 } 440 441 /* 442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 445 * With v2 behavior, "cpus" and "mems" are always what the users have 446 * requested and won't be changed by hotplug events. Only the effective 447 * cpus or mems will be affected. 448 */ 449 static inline bool is_in_v2_mode(void) 450 { 451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 453 } 454 455 /** 456 * partition_is_populated - check if partition has tasks 457 * @cs: partition root to be checked 458 * @excluded_child: a child cpuset to be excluded in task checking 459 * Return: true if there are tasks, false otherwise 460 * 461 * It is assumed that @cs is a valid partition root. @excluded_child should 462 * be non-NULL when this cpuset is going to become a partition itself. 463 */ 464 static inline bool partition_is_populated(struct cpuset *cs, 465 struct cpuset *excluded_child) 466 { 467 struct cgroup_subsys_state *css; 468 struct cpuset *child; 469 470 if (cs->css.cgroup->nr_populated_csets) 471 return true; 472 if (!excluded_child && !cs->nr_subparts_cpus) 473 return cgroup_is_populated(cs->css.cgroup); 474 475 rcu_read_lock(); 476 cpuset_for_each_child(child, css, cs) { 477 if (child == excluded_child) 478 continue; 479 if (is_partition_valid(child)) 480 continue; 481 if (cgroup_is_populated(child->css.cgroup)) { 482 rcu_read_unlock(); 483 return true; 484 } 485 } 486 rcu_read_unlock(); 487 return false; 488 } 489 490 /* 491 * Return in pmask the portion of a task's cpusets's cpus_allowed that 492 * are online and are capable of running the task. If none are found, 493 * walk up the cpuset hierarchy until we find one that does have some 494 * appropriate cpus. 495 * 496 * One way or another, we guarantee to return some non-empty subset 497 * of cpu_online_mask. 498 * 499 * Call with callback_lock or cpuset_mutex held. 500 */ 501 static void guarantee_online_cpus(struct task_struct *tsk, 502 struct cpumask *pmask) 503 { 504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 505 struct cpuset *cs; 506 507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 508 cpumask_copy(pmask, cpu_online_mask); 509 510 rcu_read_lock(); 511 cs = task_cs(tsk); 512 513 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 514 cs = parent_cs(cs); 515 if (unlikely(!cs)) { 516 /* 517 * The top cpuset doesn't have any online cpu as a 518 * consequence of a race between cpuset_hotplug_work 519 * and cpu hotplug notifier. But we know the top 520 * cpuset's effective_cpus is on its way to be 521 * identical to cpu_online_mask. 522 */ 523 goto out_unlock; 524 } 525 } 526 cpumask_and(pmask, pmask, cs->effective_cpus); 527 528 out_unlock: 529 rcu_read_unlock(); 530 } 531 532 /* 533 * Return in *pmask the portion of a cpusets's mems_allowed that 534 * are online, with memory. If none are online with memory, walk 535 * up the cpuset hierarchy until we find one that does have some 536 * online mems. The top cpuset always has some mems online. 537 * 538 * One way or another, we guarantee to return some non-empty subset 539 * of node_states[N_MEMORY]. 540 * 541 * Call with callback_lock or cpuset_mutex held. 542 */ 543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 544 { 545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 546 cs = parent_cs(cs); 547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 548 } 549 550 /* 551 * update task's spread flag if cpuset's page/slab spread flag is set 552 * 553 * Call with callback_lock or cpuset_mutex held. The check can be skipped 554 * if on default hierarchy. 555 */ 556 static void cpuset_update_task_spread_flags(struct cpuset *cs, 557 struct task_struct *tsk) 558 { 559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 560 return; 561 562 if (is_spread_page(cs)) 563 task_set_spread_page(tsk); 564 else 565 task_clear_spread_page(tsk); 566 567 if (is_spread_slab(cs)) 568 task_set_spread_slab(tsk); 569 else 570 task_clear_spread_slab(tsk); 571 } 572 573 /* 574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 575 * 576 * One cpuset is a subset of another if all its allowed CPUs and 577 * Memory Nodes are a subset of the other, and its exclusive flags 578 * are only set if the other's are set. Call holding cpuset_mutex. 579 */ 580 581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 582 { 583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 584 nodes_subset(p->mems_allowed, q->mems_allowed) && 585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 586 is_mem_exclusive(p) <= is_mem_exclusive(q); 587 } 588 589 /** 590 * alloc_cpumasks - allocate three cpumasks for cpuset 591 * @cs: the cpuset that have cpumasks to be allocated. 592 * @tmp: the tmpmasks structure pointer 593 * Return: 0 if successful, -ENOMEM otherwise. 594 * 595 * Only one of the two input arguments should be non-NULL. 596 */ 597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 598 { 599 cpumask_var_t *pmask1, *pmask2, *pmask3; 600 601 if (cs) { 602 pmask1 = &cs->cpus_allowed; 603 pmask2 = &cs->effective_cpus; 604 pmask3 = &cs->subparts_cpus; 605 } else { 606 pmask1 = &tmp->new_cpus; 607 pmask2 = &tmp->addmask; 608 pmask3 = &tmp->delmask; 609 } 610 611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 612 return -ENOMEM; 613 614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 615 goto free_one; 616 617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 618 goto free_two; 619 620 return 0; 621 622 free_two: 623 free_cpumask_var(*pmask2); 624 free_one: 625 free_cpumask_var(*pmask1); 626 return -ENOMEM; 627 } 628 629 /** 630 * free_cpumasks - free cpumasks in a tmpmasks structure 631 * @cs: the cpuset that have cpumasks to be free. 632 * @tmp: the tmpmasks structure pointer 633 */ 634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 635 { 636 if (cs) { 637 free_cpumask_var(cs->cpus_allowed); 638 free_cpumask_var(cs->effective_cpus); 639 free_cpumask_var(cs->subparts_cpus); 640 } 641 if (tmp) { 642 free_cpumask_var(tmp->new_cpus); 643 free_cpumask_var(tmp->addmask); 644 free_cpumask_var(tmp->delmask); 645 } 646 } 647 648 /** 649 * alloc_trial_cpuset - allocate a trial cpuset 650 * @cs: the cpuset that the trial cpuset duplicates 651 */ 652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 653 { 654 struct cpuset *trial; 655 656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 657 if (!trial) 658 return NULL; 659 660 if (alloc_cpumasks(trial, NULL)) { 661 kfree(trial); 662 return NULL; 663 } 664 665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 666 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 667 return trial; 668 } 669 670 /** 671 * free_cpuset - free the cpuset 672 * @cs: the cpuset to be freed 673 */ 674 static inline void free_cpuset(struct cpuset *cs) 675 { 676 free_cpumasks(cs, NULL); 677 kfree(cs); 678 } 679 680 /* 681 * validate_change_legacy() - Validate conditions specific to legacy (v1) 682 * behavior. 683 */ 684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 685 { 686 struct cgroup_subsys_state *css; 687 struct cpuset *c, *par; 688 int ret; 689 690 WARN_ON_ONCE(!rcu_read_lock_held()); 691 692 /* Each of our child cpusets must be a subset of us */ 693 ret = -EBUSY; 694 cpuset_for_each_child(c, css, cur) 695 if (!is_cpuset_subset(c, trial)) 696 goto out; 697 698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 699 ret = -EACCES; 700 par = parent_cs(cur); 701 if (par && !is_cpuset_subset(trial, par)) 702 goto out; 703 704 ret = 0; 705 out: 706 return ret; 707 } 708 709 /* 710 * validate_change() - Used to validate that any proposed cpuset change 711 * follows the structural rules for cpusets. 712 * 713 * If we replaced the flag and mask values of the current cpuset 714 * (cur) with those values in the trial cpuset (trial), would 715 * our various subset and exclusive rules still be valid? Presumes 716 * cpuset_mutex held. 717 * 718 * 'cur' is the address of an actual, in-use cpuset. Operations 719 * such as list traversal that depend on the actual address of the 720 * cpuset in the list must use cur below, not trial. 721 * 722 * 'trial' is the address of bulk structure copy of cur, with 723 * perhaps one or more of the fields cpus_allowed, mems_allowed, 724 * or flags changed to new, trial values. 725 * 726 * Return 0 if valid, -errno if not. 727 */ 728 729 static int validate_change(struct cpuset *cur, struct cpuset *trial) 730 { 731 struct cgroup_subsys_state *css; 732 struct cpuset *c, *par; 733 int ret = 0; 734 735 rcu_read_lock(); 736 737 if (!is_in_v2_mode()) 738 ret = validate_change_legacy(cur, trial); 739 if (ret) 740 goto out; 741 742 /* Remaining checks don't apply to root cpuset */ 743 if (cur == &top_cpuset) 744 goto out; 745 746 par = parent_cs(cur); 747 748 /* 749 * Cpusets with tasks - existing or newly being attached - can't 750 * be changed to have empty cpus_allowed or mems_allowed. 751 */ 752 ret = -ENOSPC; 753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 754 if (!cpumask_empty(cur->cpus_allowed) && 755 cpumask_empty(trial->cpus_allowed)) 756 goto out; 757 if (!nodes_empty(cur->mems_allowed) && 758 nodes_empty(trial->mems_allowed)) 759 goto out; 760 } 761 762 /* 763 * We can't shrink if we won't have enough room for SCHED_DEADLINE 764 * tasks. 765 */ 766 ret = -EBUSY; 767 if (is_cpu_exclusive(cur) && 768 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 769 trial->cpus_allowed)) 770 goto out; 771 772 /* 773 * If either I or some sibling (!= me) is exclusive, we can't 774 * overlap 775 */ 776 ret = -EINVAL; 777 cpuset_for_each_child(c, css, par) { 778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 779 c != cur && 780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 781 goto out; 782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 783 c != cur && 784 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 785 goto out; 786 } 787 788 ret = 0; 789 out: 790 rcu_read_unlock(); 791 return ret; 792 } 793 794 #ifdef CONFIG_SMP 795 /* 796 * Helper routine for generate_sched_domains(). 797 * Do cpusets a, b have overlapping effective cpus_allowed masks? 798 */ 799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 800 { 801 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 802 } 803 804 static void 805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 806 { 807 if (dattr->relax_domain_level < c->relax_domain_level) 808 dattr->relax_domain_level = c->relax_domain_level; 809 return; 810 } 811 812 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 813 struct cpuset *root_cs) 814 { 815 struct cpuset *cp; 816 struct cgroup_subsys_state *pos_css; 817 818 rcu_read_lock(); 819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 820 /* skip the whole subtree if @cp doesn't have any CPU */ 821 if (cpumask_empty(cp->cpus_allowed)) { 822 pos_css = css_rightmost_descendant(pos_css); 823 continue; 824 } 825 826 if (is_sched_load_balance(cp)) 827 update_domain_attr(dattr, cp); 828 } 829 rcu_read_unlock(); 830 } 831 832 /* Must be called with cpuset_mutex held. */ 833 static inline int nr_cpusets(void) 834 { 835 /* jump label reference count + the top-level cpuset */ 836 return static_key_count(&cpusets_enabled_key.key) + 1; 837 } 838 839 /* 840 * generate_sched_domains() 841 * 842 * This function builds a partial partition of the systems CPUs 843 * A 'partial partition' is a set of non-overlapping subsets whose 844 * union is a subset of that set. 845 * The output of this function needs to be passed to kernel/sched/core.c 846 * partition_sched_domains() routine, which will rebuild the scheduler's 847 * load balancing domains (sched domains) as specified by that partial 848 * partition. 849 * 850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 851 * for a background explanation of this. 852 * 853 * Does not return errors, on the theory that the callers of this 854 * routine would rather not worry about failures to rebuild sched 855 * domains when operating in the severe memory shortage situations 856 * that could cause allocation failures below. 857 * 858 * Must be called with cpuset_mutex held. 859 * 860 * The three key local variables below are: 861 * cp - cpuset pointer, used (together with pos_css) to perform a 862 * top-down scan of all cpusets. For our purposes, rebuilding 863 * the schedulers sched domains, we can ignore !is_sched_load_ 864 * balance cpusets. 865 * csa - (for CpuSet Array) Array of pointers to all the cpusets 866 * that need to be load balanced, for convenient iterative 867 * access by the subsequent code that finds the best partition, 868 * i.e the set of domains (subsets) of CPUs such that the 869 * cpus_allowed of every cpuset marked is_sched_load_balance 870 * is a subset of one of these domains, while there are as 871 * many such domains as possible, each as small as possible. 872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 873 * the kernel/sched/core.c routine partition_sched_domains() in a 874 * convenient format, that can be easily compared to the prior 875 * value to determine what partition elements (sched domains) 876 * were changed (added or removed.) 877 * 878 * Finding the best partition (set of domains): 879 * The triple nested loops below over i, j, k scan over the 880 * load balanced cpusets (using the array of cpuset pointers in 881 * csa[]) looking for pairs of cpusets that have overlapping 882 * cpus_allowed, but which don't have the same 'pn' partition 883 * number and gives them in the same partition number. It keeps 884 * looping on the 'restart' label until it can no longer find 885 * any such pairs. 886 * 887 * The union of the cpus_allowed masks from the set of 888 * all cpusets having the same 'pn' value then form the one 889 * element of the partition (one sched domain) to be passed to 890 * partition_sched_domains(). 891 */ 892 static int generate_sched_domains(cpumask_var_t **domains, 893 struct sched_domain_attr **attributes) 894 { 895 struct cpuset *cp; /* top-down scan of cpusets */ 896 struct cpuset **csa; /* array of all cpuset ptrs */ 897 int csn; /* how many cpuset ptrs in csa so far */ 898 int i, j, k; /* indices for partition finding loops */ 899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 900 struct sched_domain_attr *dattr; /* attributes for custom domains */ 901 int ndoms = 0; /* number of sched domains in result */ 902 int nslot; /* next empty doms[] struct cpumask slot */ 903 struct cgroup_subsys_state *pos_css; 904 bool root_load_balance = is_sched_load_balance(&top_cpuset); 905 906 doms = NULL; 907 dattr = NULL; 908 csa = NULL; 909 910 /* Special case for the 99% of systems with one, full, sched domain */ 911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 912 ndoms = 1; 913 doms = alloc_sched_domains(ndoms); 914 if (!doms) 915 goto done; 916 917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 918 if (dattr) { 919 *dattr = SD_ATTR_INIT; 920 update_domain_attr_tree(dattr, &top_cpuset); 921 } 922 cpumask_and(doms[0], top_cpuset.effective_cpus, 923 housekeeping_cpumask(HK_TYPE_DOMAIN)); 924 925 goto done; 926 } 927 928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 929 if (!csa) 930 goto done; 931 csn = 0; 932 933 rcu_read_lock(); 934 if (root_load_balance) 935 csa[csn++] = &top_cpuset; 936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 937 if (cp == &top_cpuset) 938 continue; 939 /* 940 * Continue traversing beyond @cp iff @cp has some CPUs and 941 * isn't load balancing. The former is obvious. The 942 * latter: All child cpusets contain a subset of the 943 * parent's cpus, so just skip them, and then we call 944 * update_domain_attr_tree() to calc relax_domain_level of 945 * the corresponding sched domain. 946 * 947 * If root is load-balancing, we can skip @cp if it 948 * is a subset of the root's effective_cpus. 949 */ 950 if (!cpumask_empty(cp->cpus_allowed) && 951 !(is_sched_load_balance(cp) && 952 cpumask_intersects(cp->cpus_allowed, 953 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 954 continue; 955 956 if (root_load_balance && 957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 958 continue; 959 960 if (is_sched_load_balance(cp) && 961 !cpumask_empty(cp->effective_cpus)) 962 csa[csn++] = cp; 963 964 /* skip @cp's subtree if not a partition root */ 965 if (!is_partition_valid(cp)) 966 pos_css = css_rightmost_descendant(pos_css); 967 } 968 rcu_read_unlock(); 969 970 for (i = 0; i < csn; i++) 971 csa[i]->pn = i; 972 ndoms = csn; 973 974 restart: 975 /* Find the best partition (set of sched domains) */ 976 for (i = 0; i < csn; i++) { 977 struct cpuset *a = csa[i]; 978 int apn = a->pn; 979 980 for (j = 0; j < csn; j++) { 981 struct cpuset *b = csa[j]; 982 int bpn = b->pn; 983 984 if (apn != bpn && cpusets_overlap(a, b)) { 985 for (k = 0; k < csn; k++) { 986 struct cpuset *c = csa[k]; 987 988 if (c->pn == bpn) 989 c->pn = apn; 990 } 991 ndoms--; /* one less element */ 992 goto restart; 993 } 994 } 995 } 996 997 /* 998 * Now we know how many domains to create. 999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1000 */ 1001 doms = alloc_sched_domains(ndoms); 1002 if (!doms) 1003 goto done; 1004 1005 /* 1006 * The rest of the code, including the scheduler, can deal with 1007 * dattr==NULL case. No need to abort if alloc fails. 1008 */ 1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1010 GFP_KERNEL); 1011 1012 for (nslot = 0, i = 0; i < csn; i++) { 1013 struct cpuset *a = csa[i]; 1014 struct cpumask *dp; 1015 int apn = a->pn; 1016 1017 if (apn < 0) { 1018 /* Skip completed partitions */ 1019 continue; 1020 } 1021 1022 dp = doms[nslot]; 1023 1024 if (nslot == ndoms) { 1025 static int warnings = 10; 1026 if (warnings) { 1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1028 nslot, ndoms, csn, i, apn); 1029 warnings--; 1030 } 1031 continue; 1032 } 1033 1034 cpumask_clear(dp); 1035 if (dattr) 1036 *(dattr + nslot) = SD_ATTR_INIT; 1037 for (j = i; j < csn; j++) { 1038 struct cpuset *b = csa[j]; 1039 1040 if (apn == b->pn) { 1041 cpumask_or(dp, dp, b->effective_cpus); 1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1043 if (dattr) 1044 update_domain_attr_tree(dattr + nslot, b); 1045 1046 /* Done with this partition */ 1047 b->pn = -1; 1048 } 1049 } 1050 nslot++; 1051 } 1052 BUG_ON(nslot != ndoms); 1053 1054 done: 1055 kfree(csa); 1056 1057 /* 1058 * Fallback to the default domain if kmalloc() failed. 1059 * See comments in partition_sched_domains(). 1060 */ 1061 if (doms == NULL) 1062 ndoms = 1; 1063 1064 *domains = doms; 1065 *attributes = dattr; 1066 return ndoms; 1067 } 1068 1069 static void dl_update_tasks_root_domain(struct cpuset *cs) 1070 { 1071 struct css_task_iter it; 1072 struct task_struct *task; 1073 1074 if (cs->nr_deadline_tasks == 0) 1075 return; 1076 1077 css_task_iter_start(&cs->css, 0, &it); 1078 1079 while ((task = css_task_iter_next(&it))) 1080 dl_add_task_root_domain(task); 1081 1082 css_task_iter_end(&it); 1083 } 1084 1085 static void dl_rebuild_rd_accounting(void) 1086 { 1087 struct cpuset *cs = NULL; 1088 struct cgroup_subsys_state *pos_css; 1089 1090 lockdep_assert_held(&cpuset_mutex); 1091 lockdep_assert_cpus_held(); 1092 lockdep_assert_held(&sched_domains_mutex); 1093 1094 rcu_read_lock(); 1095 1096 /* 1097 * Clear default root domain DL accounting, it will be computed again 1098 * if a task belongs to it. 1099 */ 1100 dl_clear_root_domain(&def_root_domain); 1101 1102 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1103 1104 if (cpumask_empty(cs->effective_cpus)) { 1105 pos_css = css_rightmost_descendant(pos_css); 1106 continue; 1107 } 1108 1109 css_get(&cs->css); 1110 1111 rcu_read_unlock(); 1112 1113 dl_update_tasks_root_domain(cs); 1114 1115 rcu_read_lock(); 1116 css_put(&cs->css); 1117 } 1118 rcu_read_unlock(); 1119 } 1120 1121 static void 1122 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1123 struct sched_domain_attr *dattr_new) 1124 { 1125 mutex_lock(&sched_domains_mutex); 1126 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1127 dl_rebuild_rd_accounting(); 1128 mutex_unlock(&sched_domains_mutex); 1129 } 1130 1131 /* 1132 * Rebuild scheduler domains. 1133 * 1134 * If the flag 'sched_load_balance' of any cpuset with non-empty 1135 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1136 * which has that flag enabled, or if any cpuset with a non-empty 1137 * 'cpus' is removed, then call this routine to rebuild the 1138 * scheduler's dynamic sched domains. 1139 * 1140 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1141 */ 1142 static void rebuild_sched_domains_locked(void) 1143 { 1144 struct cgroup_subsys_state *pos_css; 1145 struct sched_domain_attr *attr; 1146 cpumask_var_t *doms; 1147 struct cpuset *cs; 1148 int ndoms; 1149 1150 lockdep_assert_cpus_held(); 1151 lockdep_assert_held(&cpuset_mutex); 1152 1153 /* 1154 * If we have raced with CPU hotplug, return early to avoid 1155 * passing doms with offlined cpu to partition_sched_domains(). 1156 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1157 * 1158 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1159 * should be the same as the active CPUs, so checking only top_cpuset 1160 * is enough to detect racing CPU offlines. 1161 */ 1162 if (!top_cpuset.nr_subparts_cpus && 1163 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1164 return; 1165 1166 /* 1167 * With subpartition CPUs, however, the effective CPUs of a partition 1168 * root should be only a subset of the active CPUs. Since a CPU in any 1169 * partition root could be offlined, all must be checked. 1170 */ 1171 if (top_cpuset.nr_subparts_cpus) { 1172 rcu_read_lock(); 1173 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1174 if (!is_partition_valid(cs)) { 1175 pos_css = css_rightmost_descendant(pos_css); 1176 continue; 1177 } 1178 if (!cpumask_subset(cs->effective_cpus, 1179 cpu_active_mask)) { 1180 rcu_read_unlock(); 1181 return; 1182 } 1183 } 1184 rcu_read_unlock(); 1185 } 1186 1187 /* Generate domain masks and attrs */ 1188 ndoms = generate_sched_domains(&doms, &attr); 1189 1190 /* Have scheduler rebuild the domains */ 1191 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1192 } 1193 #else /* !CONFIG_SMP */ 1194 static void rebuild_sched_domains_locked(void) 1195 { 1196 } 1197 #endif /* CONFIG_SMP */ 1198 1199 void rebuild_sched_domains(void) 1200 { 1201 cpus_read_lock(); 1202 mutex_lock(&cpuset_mutex); 1203 rebuild_sched_domains_locked(); 1204 mutex_unlock(&cpuset_mutex); 1205 cpus_read_unlock(); 1206 } 1207 1208 /** 1209 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1210 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1211 * @new_cpus: the temp variable for the new effective_cpus mask 1212 * 1213 * Iterate through each task of @cs updating its cpus_allowed to the 1214 * effective cpuset's. As this function is called with cpuset_mutex held, 1215 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1216 * is used instead of effective_cpus to make sure all offline CPUs are also 1217 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1218 */ 1219 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1220 { 1221 struct css_task_iter it; 1222 struct task_struct *task; 1223 bool top_cs = cs == &top_cpuset; 1224 1225 css_task_iter_start(&cs->css, 0, &it); 1226 while ((task = css_task_iter_next(&it))) { 1227 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1228 1229 if (top_cs) { 1230 /* 1231 * Percpu kthreads in top_cpuset are ignored 1232 */ 1233 if (kthread_is_per_cpu(task)) 1234 continue; 1235 cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); 1236 } else { 1237 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1238 } 1239 set_cpus_allowed_ptr(task, new_cpus); 1240 } 1241 css_task_iter_end(&it); 1242 } 1243 1244 /** 1245 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1246 * @new_cpus: the temp variable for the new effective_cpus mask 1247 * @cs: the cpuset the need to recompute the new effective_cpus mask 1248 * @parent: the parent cpuset 1249 * 1250 * If the parent has subpartition CPUs, include them in the list of 1251 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1252 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1253 * to mask those out. 1254 */ 1255 static void compute_effective_cpumask(struct cpumask *new_cpus, 1256 struct cpuset *cs, struct cpuset *parent) 1257 { 1258 if (parent->nr_subparts_cpus && is_partition_valid(cs)) { 1259 cpumask_or(new_cpus, parent->effective_cpus, 1260 parent->subparts_cpus); 1261 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1262 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1263 } else { 1264 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1265 } 1266 } 1267 1268 /* 1269 * Commands for update_parent_subparts_cpumask 1270 */ 1271 enum subparts_cmd { 1272 partcmd_enable, /* Enable partition root */ 1273 partcmd_disable, /* Disable partition root */ 1274 partcmd_update, /* Update parent's subparts_cpus */ 1275 partcmd_invalidate, /* Make partition invalid */ 1276 }; 1277 1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1279 int turning_on); 1280 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1281 struct tmpmasks *tmp); 1282 1283 /* 1284 * Update partition exclusive flag 1285 * 1286 * Return: 0 if successful, an error code otherwise 1287 */ 1288 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1289 { 1290 bool exclusive = (new_prs > 0); 1291 1292 if (exclusive && !is_cpu_exclusive(cs)) { 1293 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1294 return PERR_NOTEXCL; 1295 } else if (!exclusive && is_cpu_exclusive(cs)) { 1296 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1297 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1298 } 1299 return 0; 1300 } 1301 1302 /* 1303 * Update partition load balance flag and/or rebuild sched domain 1304 * 1305 * Changing load balance flag will automatically call 1306 * rebuild_sched_domains_locked(). 1307 * This function is for cgroup v2 only. 1308 */ 1309 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1310 { 1311 int new_prs = cs->partition_root_state; 1312 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1313 bool new_lb; 1314 1315 /* 1316 * If cs is not a valid partition root, the load balance state 1317 * will follow its parent. 1318 */ 1319 if (new_prs > 0) { 1320 new_lb = (new_prs != PRS_ISOLATED); 1321 } else { 1322 new_lb = is_sched_load_balance(parent_cs(cs)); 1323 } 1324 if (new_lb != !!is_sched_load_balance(cs)) { 1325 rebuild_domains = true; 1326 if (new_lb) 1327 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1328 else 1329 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1330 } 1331 1332 if (rebuild_domains) 1333 rebuild_sched_domains_locked(); 1334 } 1335 1336 /** 1337 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1338 * @cs: The cpuset that requests change in partition root state 1339 * @cmd: Partition root state change command 1340 * @newmask: Optional new cpumask for partcmd_update 1341 * @tmp: Temporary addmask and delmask 1342 * Return: 0 or a partition root state error code 1343 * 1344 * For partcmd_enable, the cpuset is being transformed from a non-partition 1345 * root to a partition root. The cpus_allowed mask of the given cpuset will 1346 * be put into parent's subparts_cpus and taken away from parent's 1347 * effective_cpus. The function will return 0 if all the CPUs listed in 1348 * cpus_allowed can be granted or an error code will be returned. 1349 * 1350 * For partcmd_disable, the cpuset is being transformed from a partition 1351 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1352 * parent's subparts_cpus will be taken away from that cpumask and put back 1353 * into parent's effective_cpus. 0 will always be returned. 1354 * 1355 * For partcmd_update, if the optional newmask is specified, the cpu list is 1356 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1357 * assumed to remain the same. The cpuset should either be a valid or invalid 1358 * partition root. The partition root state may change from valid to invalid 1359 * or vice versa. An error code will only be returned if transitioning from 1360 * invalid to valid violates the exclusivity rule. 1361 * 1362 * For partcmd_invalidate, the current partition will be made invalid. 1363 * 1364 * The partcmd_enable and partcmd_disable commands are used by 1365 * update_prstate(). An error code may be returned and the caller will check 1366 * for error. 1367 * 1368 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1369 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1370 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1371 * check for error and so partition_root_state and prs_error will be updated 1372 * directly. 1373 */ 1374 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1375 struct cpumask *newmask, 1376 struct tmpmasks *tmp) 1377 { 1378 struct cpuset *parent = parent_cs(cs); 1379 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1380 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1381 int old_prs, new_prs; 1382 int part_error = PERR_NONE; /* Partition error? */ 1383 1384 lockdep_assert_held(&cpuset_mutex); 1385 1386 /* 1387 * The parent must be a partition root. 1388 * The new cpumask, if present, or the current cpus_allowed must 1389 * not be empty. 1390 */ 1391 if (!is_partition_valid(parent)) { 1392 return is_partition_invalid(parent) 1393 ? PERR_INVPARENT : PERR_NOTPART; 1394 } 1395 if (!newmask && cpumask_empty(cs->cpus_allowed)) 1396 return PERR_CPUSEMPTY; 1397 1398 /* 1399 * new_prs will only be changed for the partcmd_update and 1400 * partcmd_invalidate commands. 1401 */ 1402 adding = deleting = false; 1403 old_prs = new_prs = cs->partition_root_state; 1404 if (cmd == partcmd_enable) { 1405 /* 1406 * Enabling partition root is not allowed if cpus_allowed 1407 * doesn't overlap parent's cpus_allowed. 1408 */ 1409 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1410 return PERR_INVCPUS; 1411 1412 /* 1413 * A parent can be left with no CPU as long as there is no 1414 * task directly associated with the parent partition. 1415 */ 1416 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1417 partition_is_populated(parent, cs)) 1418 return PERR_NOCPUS; 1419 1420 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1421 adding = true; 1422 } else if (cmd == partcmd_disable) { 1423 /* 1424 * Need to remove cpus from parent's subparts_cpus for valid 1425 * partition root. 1426 */ 1427 deleting = !is_prs_invalid(old_prs) && 1428 cpumask_and(tmp->delmask, cs->cpus_allowed, 1429 parent->subparts_cpus); 1430 } else if (cmd == partcmd_invalidate) { 1431 if (is_prs_invalid(old_prs)) 1432 return 0; 1433 1434 /* 1435 * Make the current partition invalid. It is assumed that 1436 * invalidation is caused by violating cpu exclusivity rule. 1437 */ 1438 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1439 parent->subparts_cpus); 1440 if (old_prs > 0) { 1441 new_prs = -old_prs; 1442 part_error = PERR_NOTEXCL; 1443 } 1444 } else if (newmask) { 1445 /* 1446 * partcmd_update with newmask: 1447 * 1448 * Compute add/delete mask to/from subparts_cpus 1449 * 1450 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1451 * addmask = newmask & parent->cpus_allowed 1452 * & ~parent->subparts_cpus 1453 */ 1454 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1455 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1456 parent->subparts_cpus); 1457 1458 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1459 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1460 parent->subparts_cpus); 1461 /* 1462 * Empty cpumask is not allowed 1463 */ 1464 if (cpumask_empty(newmask)) { 1465 part_error = PERR_CPUSEMPTY; 1466 /* 1467 * Make partition invalid if parent's effective_cpus could 1468 * become empty and there are tasks in the parent. 1469 */ 1470 } else if (adding && 1471 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1472 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1473 partition_is_populated(parent, cs)) { 1474 part_error = PERR_NOCPUS; 1475 adding = false; 1476 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1477 parent->subparts_cpus); 1478 } 1479 } else { 1480 /* 1481 * partcmd_update w/o newmask: 1482 * 1483 * delmask = cpus_allowed & parent->subparts_cpus 1484 * addmask = cpus_allowed & parent->cpus_allowed 1485 * & ~parent->subparts_cpus 1486 * 1487 * This gets invoked either due to a hotplug event or from 1488 * update_cpumasks_hier(). This can cause the state of a 1489 * partition root to transition from valid to invalid or vice 1490 * versa. So we still need to compute the addmask and delmask. 1491 1492 * A partition error happens when: 1493 * 1) Cpuset is valid partition, but parent does not distribute 1494 * out any CPUs. 1495 * 2) Parent has tasks and all its effective CPUs will have 1496 * to be distributed out. 1497 */ 1498 cpumask_and(tmp->addmask, cs->cpus_allowed, 1499 parent->cpus_allowed); 1500 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1501 parent->subparts_cpus); 1502 1503 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1504 (adding && 1505 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1506 partition_is_populated(parent, cs))) { 1507 part_error = PERR_NOCPUS; 1508 adding = false; 1509 } 1510 1511 if (part_error && is_partition_valid(cs) && 1512 parent->nr_subparts_cpus) 1513 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1514 parent->subparts_cpus); 1515 } 1516 if (part_error) 1517 WRITE_ONCE(cs->prs_err, part_error); 1518 1519 if (cmd == partcmd_update) { 1520 /* 1521 * Check for possible transition between valid and invalid 1522 * partition root. 1523 */ 1524 switch (cs->partition_root_state) { 1525 case PRS_ROOT: 1526 case PRS_ISOLATED: 1527 if (part_error) 1528 new_prs = -old_prs; 1529 break; 1530 case PRS_INVALID_ROOT: 1531 case PRS_INVALID_ISOLATED: 1532 if (!part_error) 1533 new_prs = -old_prs; 1534 break; 1535 } 1536 } 1537 1538 if (!adding && !deleting && (new_prs == old_prs)) 1539 return 0; 1540 1541 /* 1542 * Transitioning between invalid to valid or vice versa may require 1543 * changing CS_CPU_EXCLUSIVE. 1544 */ 1545 if (old_prs != new_prs) { 1546 int err = update_partition_exclusive(cs, new_prs); 1547 1548 if (err) 1549 return err; 1550 } 1551 1552 /* 1553 * Change the parent's subparts_cpus. 1554 * Newly added CPUs will be removed from effective_cpus and 1555 * newly deleted ones will be added back to effective_cpus. 1556 */ 1557 spin_lock_irq(&callback_lock); 1558 if (adding) { 1559 cpumask_or(parent->subparts_cpus, 1560 parent->subparts_cpus, tmp->addmask); 1561 cpumask_andnot(parent->effective_cpus, 1562 parent->effective_cpus, tmp->addmask); 1563 } 1564 if (deleting) { 1565 cpumask_andnot(parent->subparts_cpus, 1566 parent->subparts_cpus, tmp->delmask); 1567 /* 1568 * Some of the CPUs in subparts_cpus might have been offlined. 1569 */ 1570 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1571 cpumask_or(parent->effective_cpus, 1572 parent->effective_cpus, tmp->delmask); 1573 } 1574 1575 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1576 1577 if (old_prs != new_prs) 1578 cs->partition_root_state = new_prs; 1579 1580 spin_unlock_irq(&callback_lock); 1581 1582 if (adding || deleting) { 1583 update_tasks_cpumask(parent, tmp->addmask); 1584 if (parent->child_ecpus_count) 1585 update_sibling_cpumasks(parent, cs, tmp); 1586 } 1587 1588 /* 1589 * For partcmd_update without newmask, it is being called from 1590 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken. 1591 * Update the load balance flag and scheduling domain if 1592 * cpus_read_trylock() is successful. 1593 */ 1594 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) { 1595 update_partition_sd_lb(cs, old_prs); 1596 cpus_read_unlock(); 1597 } 1598 1599 notify_partition_change(cs, old_prs); 1600 return 0; 1601 } 1602 1603 /* 1604 * update_cpumasks_hier() flags 1605 */ 1606 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 1607 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 1608 1609 /* 1610 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1611 * @cs: the cpuset to consider 1612 * @tmp: temp variables for calculating effective_cpus & partition setup 1613 * @force: don't skip any descendant cpusets if set 1614 * 1615 * When configured cpumask is changed, the effective cpumasks of this cpuset 1616 * and all its descendants need to be updated. 1617 * 1618 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1619 * 1620 * Called with cpuset_mutex held 1621 */ 1622 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1623 int flags) 1624 { 1625 struct cpuset *cp; 1626 struct cgroup_subsys_state *pos_css; 1627 bool need_rebuild_sched_domains = false; 1628 int old_prs, new_prs; 1629 1630 rcu_read_lock(); 1631 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1632 struct cpuset *parent = parent_cs(cp); 1633 bool update_parent = false; 1634 1635 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1636 1637 /* 1638 * If it becomes empty, inherit the effective mask of the 1639 * parent, which is guaranteed to have some CPUs unless 1640 * it is a partition root that has explicitly distributed 1641 * out all its CPUs. 1642 */ 1643 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1644 if (is_partition_valid(cp) && 1645 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1646 goto update_parent_subparts; 1647 1648 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1649 if (!cp->use_parent_ecpus) { 1650 cp->use_parent_ecpus = true; 1651 parent->child_ecpus_count++; 1652 } 1653 } else if (cp->use_parent_ecpus) { 1654 cp->use_parent_ecpus = false; 1655 WARN_ON_ONCE(!parent->child_ecpus_count); 1656 parent->child_ecpus_count--; 1657 } 1658 1659 /* 1660 * Skip the whole subtree if 1661 * 1) the cpumask remains the same, 1662 * 2) has no partition root state, 1663 * 3) HIER_CHECKALL flag not set, and 1664 * 4) for v2 load balance state same as its parent. 1665 */ 1666 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 1667 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 1668 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1669 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 1670 pos_css = css_rightmost_descendant(pos_css); 1671 continue; 1672 } 1673 1674 update_parent_subparts: 1675 /* 1676 * update_parent_subparts_cpumask() should have been called 1677 * for cs already in update_cpumask(). We should also call 1678 * update_tasks_cpumask() again for tasks in the parent 1679 * cpuset if the parent's subparts_cpus changes. 1680 */ 1681 old_prs = new_prs = cp->partition_root_state; 1682 if ((cp != cs) && old_prs) { 1683 switch (parent->partition_root_state) { 1684 case PRS_ROOT: 1685 case PRS_ISOLATED: 1686 update_parent = true; 1687 break; 1688 1689 default: 1690 /* 1691 * When parent is not a partition root or is 1692 * invalid, child partition roots become 1693 * invalid too. 1694 */ 1695 if (is_partition_valid(cp)) 1696 new_prs = -cp->partition_root_state; 1697 WRITE_ONCE(cp->prs_err, 1698 is_partition_invalid(parent) 1699 ? PERR_INVPARENT : PERR_NOTPART); 1700 break; 1701 } 1702 } 1703 1704 if (!css_tryget_online(&cp->css)) 1705 continue; 1706 rcu_read_unlock(); 1707 1708 if (update_parent) { 1709 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1710 tmp); 1711 /* 1712 * The cpuset partition_root_state may become 1713 * invalid. Capture it. 1714 */ 1715 new_prs = cp->partition_root_state; 1716 } 1717 1718 spin_lock_irq(&callback_lock); 1719 1720 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1721 /* 1722 * Put all active subparts_cpus back to effective_cpus. 1723 */ 1724 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1725 cp->subparts_cpus); 1726 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1727 cpu_active_mask); 1728 cp->nr_subparts_cpus = 0; 1729 cpumask_clear(cp->subparts_cpus); 1730 } 1731 1732 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1733 if (cp->nr_subparts_cpus) { 1734 /* 1735 * Make sure that effective_cpus & subparts_cpus 1736 * are mutually exclusive. 1737 */ 1738 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1739 cp->subparts_cpus); 1740 } 1741 1742 cp->partition_root_state = new_prs; 1743 spin_unlock_irq(&callback_lock); 1744 1745 notify_partition_change(cp, old_prs); 1746 1747 WARN_ON(!is_in_v2_mode() && 1748 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1749 1750 update_tasks_cpumask(cp, tmp->new_cpus); 1751 1752 /* 1753 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 1754 * from parent if current cpuset isn't a valid partition root 1755 * and their load balance states differ. 1756 */ 1757 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1758 !is_partition_valid(cp) && 1759 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 1760 if (is_sched_load_balance(parent)) 1761 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1762 else 1763 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1764 } 1765 1766 /* 1767 * On legacy hierarchy, if the effective cpumask of any non- 1768 * empty cpuset is changed, we need to rebuild sched domains. 1769 * On default hierarchy, the cpuset needs to be a partition 1770 * root as well. 1771 */ 1772 if (!cpumask_empty(cp->cpus_allowed) && 1773 is_sched_load_balance(cp) && 1774 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1775 is_partition_valid(cp))) 1776 need_rebuild_sched_domains = true; 1777 1778 rcu_read_lock(); 1779 css_put(&cp->css); 1780 } 1781 rcu_read_unlock(); 1782 1783 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) 1784 rebuild_sched_domains_locked(); 1785 } 1786 1787 /** 1788 * update_sibling_cpumasks - Update siblings cpumasks 1789 * @parent: Parent cpuset 1790 * @cs: Current cpuset 1791 * @tmp: Temp variables 1792 */ 1793 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1794 struct tmpmasks *tmp) 1795 { 1796 struct cpuset *sibling; 1797 struct cgroup_subsys_state *pos_css; 1798 1799 lockdep_assert_held(&cpuset_mutex); 1800 1801 /* 1802 * Check all its siblings and call update_cpumasks_hier() 1803 * if their use_parent_ecpus flag is set in order for them 1804 * to use the right effective_cpus value. 1805 * 1806 * The update_cpumasks_hier() function may sleep. So we have to 1807 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 1808 * flag is used to suppress rebuild of sched domains as the callers 1809 * will take care of that. 1810 */ 1811 rcu_read_lock(); 1812 cpuset_for_each_child(sibling, pos_css, parent) { 1813 if (sibling == cs) 1814 continue; 1815 if (!sibling->use_parent_ecpus) 1816 continue; 1817 if (!css_tryget_online(&sibling->css)) 1818 continue; 1819 1820 rcu_read_unlock(); 1821 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 1822 rcu_read_lock(); 1823 css_put(&sibling->css); 1824 } 1825 rcu_read_unlock(); 1826 } 1827 1828 /** 1829 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1830 * @cs: the cpuset to consider 1831 * @trialcs: trial cpuset 1832 * @buf: buffer of cpu numbers written to this cpuset 1833 */ 1834 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1835 const char *buf) 1836 { 1837 int retval; 1838 struct tmpmasks tmp; 1839 bool invalidate = false; 1840 int old_prs = cs->partition_root_state; 1841 1842 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1843 if (cs == &top_cpuset) 1844 return -EACCES; 1845 1846 /* 1847 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1848 * Since cpulist_parse() fails on an empty mask, we special case 1849 * that parsing. The validate_change() call ensures that cpusets 1850 * with tasks have cpus. 1851 */ 1852 if (!*buf) { 1853 cpumask_clear(trialcs->cpus_allowed); 1854 } else { 1855 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1856 if (retval < 0) 1857 return retval; 1858 1859 if (!cpumask_subset(trialcs->cpus_allowed, 1860 top_cpuset.cpus_allowed)) 1861 return -EINVAL; 1862 } 1863 1864 /* Nothing to do if the cpus didn't change */ 1865 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1866 return 0; 1867 1868 if (alloc_cpumasks(NULL, &tmp)) 1869 return -ENOMEM; 1870 1871 retval = validate_change(cs, trialcs); 1872 1873 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1874 struct cpuset *cp, *parent; 1875 struct cgroup_subsys_state *css; 1876 1877 /* 1878 * The -EINVAL error code indicates that partition sibling 1879 * CPU exclusivity rule has been violated. We still allow 1880 * the cpumask change to proceed while invalidating the 1881 * partition. However, any conflicting sibling partitions 1882 * have to be marked as invalid too. 1883 */ 1884 invalidate = true; 1885 rcu_read_lock(); 1886 parent = parent_cs(cs); 1887 cpuset_for_each_child(cp, css, parent) 1888 if (is_partition_valid(cp) && 1889 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1890 rcu_read_unlock(); 1891 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1892 rcu_read_lock(); 1893 } 1894 rcu_read_unlock(); 1895 retval = 0; 1896 } 1897 if (retval < 0) 1898 goto out_free; 1899 1900 if (cs->partition_root_state) { 1901 if (invalidate) 1902 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1903 NULL, &tmp); 1904 else 1905 update_parent_subparts_cpumask(cs, partcmd_update, 1906 trialcs->cpus_allowed, &tmp); 1907 } 1908 1909 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1910 parent_cs(cs)); 1911 spin_lock_irq(&callback_lock); 1912 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1913 1914 /* 1915 * Make sure that subparts_cpus, if not empty, is a subset of 1916 * cpus_allowed. Clear subparts_cpus if partition not valid or 1917 * empty effective cpus with tasks. 1918 */ 1919 if (cs->nr_subparts_cpus) { 1920 if (!is_partition_valid(cs) || 1921 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1922 partition_is_populated(cs, NULL))) { 1923 cs->nr_subparts_cpus = 0; 1924 cpumask_clear(cs->subparts_cpus); 1925 } else { 1926 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1927 cs->cpus_allowed); 1928 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1929 } 1930 } 1931 spin_unlock_irq(&callback_lock); 1932 1933 /* effective_cpus will be updated here */ 1934 update_cpumasks_hier(cs, &tmp, 0); 1935 1936 if (cs->partition_root_state) { 1937 struct cpuset *parent = parent_cs(cs); 1938 1939 /* 1940 * For partition root, update the cpumasks of sibling 1941 * cpusets if they use parent's effective_cpus. 1942 */ 1943 if (parent->child_ecpus_count) 1944 update_sibling_cpumasks(parent, cs, &tmp); 1945 1946 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */ 1947 update_partition_sd_lb(cs, old_prs); 1948 } 1949 out_free: 1950 free_cpumasks(NULL, &tmp); 1951 return retval; 1952 } 1953 1954 /* 1955 * Migrate memory region from one set of nodes to another. This is 1956 * performed asynchronously as it can be called from process migration path 1957 * holding locks involved in process management. All mm migrations are 1958 * performed in the queued order and can be waited for by flushing 1959 * cpuset_migrate_mm_wq. 1960 */ 1961 1962 struct cpuset_migrate_mm_work { 1963 struct work_struct work; 1964 struct mm_struct *mm; 1965 nodemask_t from; 1966 nodemask_t to; 1967 }; 1968 1969 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1970 { 1971 struct cpuset_migrate_mm_work *mwork = 1972 container_of(work, struct cpuset_migrate_mm_work, work); 1973 1974 /* on a wq worker, no need to worry about %current's mems_allowed */ 1975 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1976 mmput(mwork->mm); 1977 kfree(mwork); 1978 } 1979 1980 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1981 const nodemask_t *to) 1982 { 1983 struct cpuset_migrate_mm_work *mwork; 1984 1985 if (nodes_equal(*from, *to)) { 1986 mmput(mm); 1987 return; 1988 } 1989 1990 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1991 if (mwork) { 1992 mwork->mm = mm; 1993 mwork->from = *from; 1994 mwork->to = *to; 1995 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1996 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1997 } else { 1998 mmput(mm); 1999 } 2000 } 2001 2002 static void cpuset_post_attach(void) 2003 { 2004 flush_workqueue(cpuset_migrate_mm_wq); 2005 } 2006 2007 /* 2008 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2009 * @tsk: the task to change 2010 * @newmems: new nodes that the task will be set 2011 * 2012 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2013 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2014 * parallel, it might temporarily see an empty intersection, which results in 2015 * a seqlock check and retry before OOM or allocation failure. 2016 */ 2017 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2018 nodemask_t *newmems) 2019 { 2020 task_lock(tsk); 2021 2022 local_irq_disable(); 2023 write_seqcount_begin(&tsk->mems_allowed_seq); 2024 2025 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2026 mpol_rebind_task(tsk, newmems); 2027 tsk->mems_allowed = *newmems; 2028 2029 write_seqcount_end(&tsk->mems_allowed_seq); 2030 local_irq_enable(); 2031 2032 task_unlock(tsk); 2033 } 2034 2035 static void *cpuset_being_rebound; 2036 2037 /** 2038 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2039 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2040 * 2041 * Iterate through each task of @cs updating its mems_allowed to the 2042 * effective cpuset's. As this function is called with cpuset_mutex held, 2043 * cpuset membership stays stable. 2044 */ 2045 static void update_tasks_nodemask(struct cpuset *cs) 2046 { 2047 static nodemask_t newmems; /* protected by cpuset_mutex */ 2048 struct css_task_iter it; 2049 struct task_struct *task; 2050 2051 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2052 2053 guarantee_online_mems(cs, &newmems); 2054 2055 /* 2056 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2057 * take while holding tasklist_lock. Forks can happen - the 2058 * mpol_dup() cpuset_being_rebound check will catch such forks, 2059 * and rebind their vma mempolicies too. Because we still hold 2060 * the global cpuset_mutex, we know that no other rebind effort 2061 * will be contending for the global variable cpuset_being_rebound. 2062 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2063 * is idempotent. Also migrate pages in each mm to new nodes. 2064 */ 2065 css_task_iter_start(&cs->css, 0, &it); 2066 while ((task = css_task_iter_next(&it))) { 2067 struct mm_struct *mm; 2068 bool migrate; 2069 2070 cpuset_change_task_nodemask(task, &newmems); 2071 2072 mm = get_task_mm(task); 2073 if (!mm) 2074 continue; 2075 2076 migrate = is_memory_migrate(cs); 2077 2078 mpol_rebind_mm(mm, &cs->mems_allowed); 2079 if (migrate) 2080 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2081 else 2082 mmput(mm); 2083 } 2084 css_task_iter_end(&it); 2085 2086 /* 2087 * All the tasks' nodemasks have been updated, update 2088 * cs->old_mems_allowed. 2089 */ 2090 cs->old_mems_allowed = newmems; 2091 2092 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2093 cpuset_being_rebound = NULL; 2094 } 2095 2096 /* 2097 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2098 * @cs: the cpuset to consider 2099 * @new_mems: a temp variable for calculating new effective_mems 2100 * 2101 * When configured nodemask is changed, the effective nodemasks of this cpuset 2102 * and all its descendants need to be updated. 2103 * 2104 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2105 * 2106 * Called with cpuset_mutex held 2107 */ 2108 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2109 { 2110 struct cpuset *cp; 2111 struct cgroup_subsys_state *pos_css; 2112 2113 rcu_read_lock(); 2114 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2115 struct cpuset *parent = parent_cs(cp); 2116 2117 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2118 2119 /* 2120 * If it becomes empty, inherit the effective mask of the 2121 * parent, which is guaranteed to have some MEMs. 2122 */ 2123 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2124 *new_mems = parent->effective_mems; 2125 2126 /* Skip the whole subtree if the nodemask remains the same. */ 2127 if (nodes_equal(*new_mems, cp->effective_mems)) { 2128 pos_css = css_rightmost_descendant(pos_css); 2129 continue; 2130 } 2131 2132 if (!css_tryget_online(&cp->css)) 2133 continue; 2134 rcu_read_unlock(); 2135 2136 spin_lock_irq(&callback_lock); 2137 cp->effective_mems = *new_mems; 2138 spin_unlock_irq(&callback_lock); 2139 2140 WARN_ON(!is_in_v2_mode() && 2141 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2142 2143 update_tasks_nodemask(cp); 2144 2145 rcu_read_lock(); 2146 css_put(&cp->css); 2147 } 2148 rcu_read_unlock(); 2149 } 2150 2151 /* 2152 * Handle user request to change the 'mems' memory placement 2153 * of a cpuset. Needs to validate the request, update the 2154 * cpusets mems_allowed, and for each task in the cpuset, 2155 * update mems_allowed and rebind task's mempolicy and any vma 2156 * mempolicies and if the cpuset is marked 'memory_migrate', 2157 * migrate the tasks pages to the new memory. 2158 * 2159 * Call with cpuset_mutex held. May take callback_lock during call. 2160 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2161 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2162 * their mempolicies to the cpusets new mems_allowed. 2163 */ 2164 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2165 const char *buf) 2166 { 2167 int retval; 2168 2169 /* 2170 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2171 * it's read-only 2172 */ 2173 if (cs == &top_cpuset) { 2174 retval = -EACCES; 2175 goto done; 2176 } 2177 2178 /* 2179 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2180 * Since nodelist_parse() fails on an empty mask, we special case 2181 * that parsing. The validate_change() call ensures that cpusets 2182 * with tasks have memory. 2183 */ 2184 if (!*buf) { 2185 nodes_clear(trialcs->mems_allowed); 2186 } else { 2187 retval = nodelist_parse(buf, trialcs->mems_allowed); 2188 if (retval < 0) 2189 goto done; 2190 2191 if (!nodes_subset(trialcs->mems_allowed, 2192 top_cpuset.mems_allowed)) { 2193 retval = -EINVAL; 2194 goto done; 2195 } 2196 } 2197 2198 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2199 retval = 0; /* Too easy - nothing to do */ 2200 goto done; 2201 } 2202 retval = validate_change(cs, trialcs); 2203 if (retval < 0) 2204 goto done; 2205 2206 check_insane_mems_config(&trialcs->mems_allowed); 2207 2208 spin_lock_irq(&callback_lock); 2209 cs->mems_allowed = trialcs->mems_allowed; 2210 spin_unlock_irq(&callback_lock); 2211 2212 /* use trialcs->mems_allowed as a temp variable */ 2213 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2214 done: 2215 return retval; 2216 } 2217 2218 bool current_cpuset_is_being_rebound(void) 2219 { 2220 bool ret; 2221 2222 rcu_read_lock(); 2223 ret = task_cs(current) == cpuset_being_rebound; 2224 rcu_read_unlock(); 2225 2226 return ret; 2227 } 2228 2229 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2230 { 2231 #ifdef CONFIG_SMP 2232 if (val < -1 || val > sched_domain_level_max + 1) 2233 return -EINVAL; 2234 #endif 2235 2236 if (val != cs->relax_domain_level) { 2237 cs->relax_domain_level = val; 2238 if (!cpumask_empty(cs->cpus_allowed) && 2239 is_sched_load_balance(cs)) 2240 rebuild_sched_domains_locked(); 2241 } 2242 2243 return 0; 2244 } 2245 2246 /** 2247 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2248 * @cs: the cpuset in which each task's spread flags needs to be changed 2249 * 2250 * Iterate through each task of @cs updating its spread flags. As this 2251 * function is called with cpuset_mutex held, cpuset membership stays 2252 * stable. 2253 */ 2254 static void update_tasks_flags(struct cpuset *cs) 2255 { 2256 struct css_task_iter it; 2257 struct task_struct *task; 2258 2259 css_task_iter_start(&cs->css, 0, &it); 2260 while ((task = css_task_iter_next(&it))) 2261 cpuset_update_task_spread_flags(cs, task); 2262 css_task_iter_end(&it); 2263 } 2264 2265 /* 2266 * update_flag - read a 0 or a 1 in a file and update associated flag 2267 * bit: the bit to update (see cpuset_flagbits_t) 2268 * cs: the cpuset to update 2269 * turning_on: whether the flag is being set or cleared 2270 * 2271 * Call with cpuset_mutex held. 2272 */ 2273 2274 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2275 int turning_on) 2276 { 2277 struct cpuset *trialcs; 2278 int balance_flag_changed; 2279 int spread_flag_changed; 2280 int err; 2281 2282 trialcs = alloc_trial_cpuset(cs); 2283 if (!trialcs) 2284 return -ENOMEM; 2285 2286 if (turning_on) 2287 set_bit(bit, &trialcs->flags); 2288 else 2289 clear_bit(bit, &trialcs->flags); 2290 2291 err = validate_change(cs, trialcs); 2292 if (err < 0) 2293 goto out; 2294 2295 balance_flag_changed = (is_sched_load_balance(cs) != 2296 is_sched_load_balance(trialcs)); 2297 2298 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2299 || (is_spread_page(cs) != is_spread_page(trialcs))); 2300 2301 spin_lock_irq(&callback_lock); 2302 cs->flags = trialcs->flags; 2303 spin_unlock_irq(&callback_lock); 2304 2305 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2306 rebuild_sched_domains_locked(); 2307 2308 if (spread_flag_changed) 2309 update_tasks_flags(cs); 2310 out: 2311 free_cpuset(trialcs); 2312 return err; 2313 } 2314 2315 /** 2316 * update_prstate - update partition_root_state 2317 * @cs: the cpuset to update 2318 * @new_prs: new partition root state 2319 * Return: 0 if successful, != 0 if error 2320 * 2321 * Call with cpuset_mutex held. 2322 */ 2323 static int update_prstate(struct cpuset *cs, int new_prs) 2324 { 2325 int err = PERR_NONE, old_prs = cs->partition_root_state; 2326 struct cpuset *parent = parent_cs(cs); 2327 struct tmpmasks tmpmask; 2328 2329 if (old_prs == new_prs) 2330 return 0; 2331 2332 /* 2333 * For a previously invalid partition root, leave it at being 2334 * invalid if new_prs is not "member". 2335 */ 2336 if (new_prs && is_prs_invalid(old_prs)) { 2337 cs->partition_root_state = -new_prs; 2338 return 0; 2339 } 2340 2341 if (alloc_cpumasks(NULL, &tmpmask)) 2342 return -ENOMEM; 2343 2344 err = update_partition_exclusive(cs, new_prs); 2345 if (err) 2346 goto out; 2347 2348 if (!old_prs) { 2349 /* 2350 * cpus_allowed cannot be empty. 2351 */ 2352 if (cpumask_empty(cs->cpus_allowed)) { 2353 err = PERR_CPUSEMPTY; 2354 goto out; 2355 } 2356 2357 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2358 NULL, &tmpmask); 2359 } else if (old_prs && new_prs) { 2360 /* 2361 * A change in load balance state only, no change in cpumasks. 2362 */ 2363 ; 2364 } else { 2365 /* 2366 * Switching back to member is always allowed even if it 2367 * disables child partitions. 2368 */ 2369 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2370 &tmpmask); 2371 2372 /* 2373 * If there are child partitions, they will all become invalid. 2374 */ 2375 if (unlikely(cs->nr_subparts_cpus)) { 2376 spin_lock_irq(&callback_lock); 2377 cs->nr_subparts_cpus = 0; 2378 cpumask_clear(cs->subparts_cpus); 2379 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2380 spin_unlock_irq(&callback_lock); 2381 } 2382 } 2383 out: 2384 /* 2385 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2386 * happens. 2387 */ 2388 if (err) { 2389 new_prs = -new_prs; 2390 update_partition_exclusive(cs, new_prs); 2391 } 2392 2393 spin_lock_irq(&callback_lock); 2394 cs->partition_root_state = new_prs; 2395 WRITE_ONCE(cs->prs_err, err); 2396 spin_unlock_irq(&callback_lock); 2397 2398 /* 2399 * Update child cpusets, if present. 2400 * Force update if switching back to member. 2401 */ 2402 if (!list_empty(&cs->css.children)) 2403 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 2404 2405 /* Update sched domains and load balance flag */ 2406 update_partition_sd_lb(cs, old_prs); 2407 2408 notify_partition_change(cs, old_prs); 2409 free_cpumasks(NULL, &tmpmask); 2410 return 0; 2411 } 2412 2413 /* 2414 * Frequency meter - How fast is some event occurring? 2415 * 2416 * These routines manage a digitally filtered, constant time based, 2417 * event frequency meter. There are four routines: 2418 * fmeter_init() - initialize a frequency meter. 2419 * fmeter_markevent() - called each time the event happens. 2420 * fmeter_getrate() - returns the recent rate of such events. 2421 * fmeter_update() - internal routine used to update fmeter. 2422 * 2423 * A common data structure is passed to each of these routines, 2424 * which is used to keep track of the state required to manage the 2425 * frequency meter and its digital filter. 2426 * 2427 * The filter works on the number of events marked per unit time. 2428 * The filter is single-pole low-pass recursive (IIR). The time unit 2429 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2430 * simulate 3 decimal digits of precision (multiplied by 1000). 2431 * 2432 * With an FM_COEF of 933, and a time base of 1 second, the filter 2433 * has a half-life of 10 seconds, meaning that if the events quit 2434 * happening, then the rate returned from the fmeter_getrate() 2435 * will be cut in half each 10 seconds, until it converges to zero. 2436 * 2437 * It is not worth doing a real infinitely recursive filter. If more 2438 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2439 * just compute FM_MAXTICKS ticks worth, by which point the level 2440 * will be stable. 2441 * 2442 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2443 * arithmetic overflow in the fmeter_update() routine. 2444 * 2445 * Given the simple 32 bit integer arithmetic used, this meter works 2446 * best for reporting rates between one per millisecond (msec) and 2447 * one per 32 (approx) seconds. At constant rates faster than one 2448 * per msec it maxes out at values just under 1,000,000. At constant 2449 * rates between one per msec, and one per second it will stabilize 2450 * to a value N*1000, where N is the rate of events per second. 2451 * At constant rates between one per second and one per 32 seconds, 2452 * it will be choppy, moving up on the seconds that have an event, 2453 * and then decaying until the next event. At rates slower than 2454 * about one in 32 seconds, it decays all the way back to zero between 2455 * each event. 2456 */ 2457 2458 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2459 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2460 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2461 #define FM_SCALE 1000 /* faux fixed point scale */ 2462 2463 /* Initialize a frequency meter */ 2464 static void fmeter_init(struct fmeter *fmp) 2465 { 2466 fmp->cnt = 0; 2467 fmp->val = 0; 2468 fmp->time = 0; 2469 spin_lock_init(&fmp->lock); 2470 } 2471 2472 /* Internal meter update - process cnt events and update value */ 2473 static void fmeter_update(struct fmeter *fmp) 2474 { 2475 time64_t now; 2476 u32 ticks; 2477 2478 now = ktime_get_seconds(); 2479 ticks = now - fmp->time; 2480 2481 if (ticks == 0) 2482 return; 2483 2484 ticks = min(FM_MAXTICKS, ticks); 2485 while (ticks-- > 0) 2486 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2487 fmp->time = now; 2488 2489 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2490 fmp->cnt = 0; 2491 } 2492 2493 /* Process any previous ticks, then bump cnt by one (times scale). */ 2494 static void fmeter_markevent(struct fmeter *fmp) 2495 { 2496 spin_lock(&fmp->lock); 2497 fmeter_update(fmp); 2498 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2499 spin_unlock(&fmp->lock); 2500 } 2501 2502 /* Process any previous ticks, then return current value. */ 2503 static int fmeter_getrate(struct fmeter *fmp) 2504 { 2505 int val; 2506 2507 spin_lock(&fmp->lock); 2508 fmeter_update(fmp); 2509 val = fmp->val; 2510 spin_unlock(&fmp->lock); 2511 return val; 2512 } 2513 2514 static struct cpuset *cpuset_attach_old_cs; 2515 2516 /* 2517 * Check to see if a cpuset can accept a new task 2518 * For v1, cpus_allowed and mems_allowed can't be empty. 2519 * For v2, effective_cpus can't be empty. 2520 * Note that in v1, effective_cpus = cpus_allowed. 2521 */ 2522 static int cpuset_can_attach_check(struct cpuset *cs) 2523 { 2524 if (cpumask_empty(cs->effective_cpus) || 2525 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2526 return -ENOSPC; 2527 return 0; 2528 } 2529 2530 static void reset_migrate_dl_data(struct cpuset *cs) 2531 { 2532 cs->nr_migrate_dl_tasks = 0; 2533 cs->sum_migrate_dl_bw = 0; 2534 } 2535 2536 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2537 static int cpuset_can_attach(struct cgroup_taskset *tset) 2538 { 2539 struct cgroup_subsys_state *css; 2540 struct cpuset *cs, *oldcs; 2541 struct task_struct *task; 2542 bool cpus_updated, mems_updated; 2543 int ret; 2544 2545 /* used later by cpuset_attach() */ 2546 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2547 oldcs = cpuset_attach_old_cs; 2548 cs = css_cs(css); 2549 2550 mutex_lock(&cpuset_mutex); 2551 2552 /* Check to see if task is allowed in the cpuset */ 2553 ret = cpuset_can_attach_check(cs); 2554 if (ret) 2555 goto out_unlock; 2556 2557 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2558 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2559 2560 cgroup_taskset_for_each(task, css, tset) { 2561 ret = task_can_attach(task); 2562 if (ret) 2563 goto out_unlock; 2564 2565 /* 2566 * Skip rights over task check in v2 when nothing changes, 2567 * migration permission derives from hierarchy ownership in 2568 * cgroup_procs_write_permission()). 2569 */ 2570 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2571 (cpus_updated || mems_updated)) { 2572 ret = security_task_setscheduler(task); 2573 if (ret) 2574 goto out_unlock; 2575 } 2576 2577 if (dl_task(task)) { 2578 cs->nr_migrate_dl_tasks++; 2579 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2580 } 2581 } 2582 2583 if (!cs->nr_migrate_dl_tasks) 2584 goto out_success; 2585 2586 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2587 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2588 2589 if (unlikely(cpu >= nr_cpu_ids)) { 2590 reset_migrate_dl_data(cs); 2591 ret = -EINVAL; 2592 goto out_unlock; 2593 } 2594 2595 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2596 if (ret) { 2597 reset_migrate_dl_data(cs); 2598 goto out_unlock; 2599 } 2600 } 2601 2602 out_success: 2603 /* 2604 * Mark attach is in progress. This makes validate_change() fail 2605 * changes which zero cpus/mems_allowed. 2606 */ 2607 cs->attach_in_progress++; 2608 out_unlock: 2609 mutex_unlock(&cpuset_mutex); 2610 return ret; 2611 } 2612 2613 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2614 { 2615 struct cgroup_subsys_state *css; 2616 struct cpuset *cs; 2617 2618 cgroup_taskset_first(tset, &css); 2619 cs = css_cs(css); 2620 2621 mutex_lock(&cpuset_mutex); 2622 cs->attach_in_progress--; 2623 if (!cs->attach_in_progress) 2624 wake_up(&cpuset_attach_wq); 2625 2626 if (cs->nr_migrate_dl_tasks) { 2627 int cpu = cpumask_any(cs->effective_cpus); 2628 2629 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 2630 reset_migrate_dl_data(cs); 2631 } 2632 2633 mutex_unlock(&cpuset_mutex); 2634 } 2635 2636 /* 2637 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 2638 * but we can't allocate it dynamically there. Define it global and 2639 * allocate from cpuset_init(). 2640 */ 2641 static cpumask_var_t cpus_attach; 2642 static nodemask_t cpuset_attach_nodemask_to; 2643 2644 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2645 { 2646 lockdep_assert_held(&cpuset_mutex); 2647 2648 if (cs != &top_cpuset) 2649 guarantee_online_cpus(task, cpus_attach); 2650 else 2651 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 2652 cs->subparts_cpus); 2653 /* 2654 * can_attach beforehand should guarantee that this doesn't 2655 * fail. TODO: have a better way to handle failure here 2656 */ 2657 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2658 2659 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2660 cpuset_update_task_spread_flags(cs, task); 2661 } 2662 2663 static void cpuset_attach(struct cgroup_taskset *tset) 2664 { 2665 struct task_struct *task; 2666 struct task_struct *leader; 2667 struct cgroup_subsys_state *css; 2668 struct cpuset *cs; 2669 struct cpuset *oldcs = cpuset_attach_old_cs; 2670 bool cpus_updated, mems_updated; 2671 2672 cgroup_taskset_first(tset, &css); 2673 cs = css_cs(css); 2674 2675 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2676 mutex_lock(&cpuset_mutex); 2677 cpus_updated = !cpumask_equal(cs->effective_cpus, 2678 oldcs->effective_cpus); 2679 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2680 2681 /* 2682 * In the default hierarchy, enabling cpuset in the child cgroups 2683 * will trigger a number of cpuset_attach() calls with no change 2684 * in effective cpus and mems. In that case, we can optimize out 2685 * by skipping the task iteration and update. 2686 */ 2687 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2688 !cpus_updated && !mems_updated) { 2689 cpuset_attach_nodemask_to = cs->effective_mems; 2690 goto out; 2691 } 2692 2693 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2694 2695 cgroup_taskset_for_each(task, css, tset) 2696 cpuset_attach_task(cs, task); 2697 2698 /* 2699 * Change mm for all threadgroup leaders. This is expensive and may 2700 * sleep and should be moved outside migration path proper. Skip it 2701 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2702 * not set. 2703 */ 2704 cpuset_attach_nodemask_to = cs->effective_mems; 2705 if (!is_memory_migrate(cs) && !mems_updated) 2706 goto out; 2707 2708 cgroup_taskset_for_each_leader(leader, css, tset) { 2709 struct mm_struct *mm = get_task_mm(leader); 2710 2711 if (mm) { 2712 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2713 2714 /* 2715 * old_mems_allowed is the same with mems_allowed 2716 * here, except if this task is being moved 2717 * automatically due to hotplug. In that case 2718 * @mems_allowed has been updated and is empty, so 2719 * @old_mems_allowed is the right nodesets that we 2720 * migrate mm from. 2721 */ 2722 if (is_memory_migrate(cs)) 2723 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2724 &cpuset_attach_nodemask_to); 2725 else 2726 mmput(mm); 2727 } 2728 } 2729 2730 out: 2731 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2732 2733 if (cs->nr_migrate_dl_tasks) { 2734 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 2735 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 2736 reset_migrate_dl_data(cs); 2737 } 2738 2739 cs->attach_in_progress--; 2740 if (!cs->attach_in_progress) 2741 wake_up(&cpuset_attach_wq); 2742 2743 mutex_unlock(&cpuset_mutex); 2744 } 2745 2746 /* The various types of files and directories in a cpuset file system */ 2747 2748 typedef enum { 2749 FILE_MEMORY_MIGRATE, 2750 FILE_CPULIST, 2751 FILE_MEMLIST, 2752 FILE_EFFECTIVE_CPULIST, 2753 FILE_EFFECTIVE_MEMLIST, 2754 FILE_SUBPARTS_CPULIST, 2755 FILE_CPU_EXCLUSIVE, 2756 FILE_MEM_EXCLUSIVE, 2757 FILE_MEM_HARDWALL, 2758 FILE_SCHED_LOAD_BALANCE, 2759 FILE_PARTITION_ROOT, 2760 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2761 FILE_MEMORY_PRESSURE_ENABLED, 2762 FILE_MEMORY_PRESSURE, 2763 FILE_SPREAD_PAGE, 2764 FILE_SPREAD_SLAB, 2765 } cpuset_filetype_t; 2766 2767 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2768 u64 val) 2769 { 2770 struct cpuset *cs = css_cs(css); 2771 cpuset_filetype_t type = cft->private; 2772 int retval = 0; 2773 2774 cpus_read_lock(); 2775 mutex_lock(&cpuset_mutex); 2776 if (!is_cpuset_online(cs)) { 2777 retval = -ENODEV; 2778 goto out_unlock; 2779 } 2780 2781 switch (type) { 2782 case FILE_CPU_EXCLUSIVE: 2783 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2784 break; 2785 case FILE_MEM_EXCLUSIVE: 2786 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2787 break; 2788 case FILE_MEM_HARDWALL: 2789 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2790 break; 2791 case FILE_SCHED_LOAD_BALANCE: 2792 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2793 break; 2794 case FILE_MEMORY_MIGRATE: 2795 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2796 break; 2797 case FILE_MEMORY_PRESSURE_ENABLED: 2798 cpuset_memory_pressure_enabled = !!val; 2799 break; 2800 case FILE_SPREAD_PAGE: 2801 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2802 break; 2803 case FILE_SPREAD_SLAB: 2804 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2805 break; 2806 default: 2807 retval = -EINVAL; 2808 break; 2809 } 2810 out_unlock: 2811 mutex_unlock(&cpuset_mutex); 2812 cpus_read_unlock(); 2813 return retval; 2814 } 2815 2816 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2817 s64 val) 2818 { 2819 struct cpuset *cs = css_cs(css); 2820 cpuset_filetype_t type = cft->private; 2821 int retval = -ENODEV; 2822 2823 cpus_read_lock(); 2824 mutex_lock(&cpuset_mutex); 2825 if (!is_cpuset_online(cs)) 2826 goto out_unlock; 2827 2828 switch (type) { 2829 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2830 retval = update_relax_domain_level(cs, val); 2831 break; 2832 default: 2833 retval = -EINVAL; 2834 break; 2835 } 2836 out_unlock: 2837 mutex_unlock(&cpuset_mutex); 2838 cpus_read_unlock(); 2839 return retval; 2840 } 2841 2842 /* 2843 * Common handling for a write to a "cpus" or "mems" file. 2844 */ 2845 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2846 char *buf, size_t nbytes, loff_t off) 2847 { 2848 struct cpuset *cs = css_cs(of_css(of)); 2849 struct cpuset *trialcs; 2850 int retval = -ENODEV; 2851 2852 buf = strstrip(buf); 2853 2854 /* 2855 * CPU or memory hotunplug may leave @cs w/o any execution 2856 * resources, in which case the hotplug code asynchronously updates 2857 * configuration and transfers all tasks to the nearest ancestor 2858 * which can execute. 2859 * 2860 * As writes to "cpus" or "mems" may restore @cs's execution 2861 * resources, wait for the previously scheduled operations before 2862 * proceeding, so that we don't end up keep removing tasks added 2863 * after execution capability is restored. 2864 * 2865 * cpuset_hotplug_work calls back into cgroup core via 2866 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2867 * operation like this one can lead to a deadlock through kernfs 2868 * active_ref protection. Let's break the protection. Losing the 2869 * protection is okay as we check whether @cs is online after 2870 * grabbing cpuset_mutex anyway. This only happens on the legacy 2871 * hierarchies. 2872 */ 2873 css_get(&cs->css); 2874 kernfs_break_active_protection(of->kn); 2875 flush_work(&cpuset_hotplug_work); 2876 2877 cpus_read_lock(); 2878 mutex_lock(&cpuset_mutex); 2879 if (!is_cpuset_online(cs)) 2880 goto out_unlock; 2881 2882 trialcs = alloc_trial_cpuset(cs); 2883 if (!trialcs) { 2884 retval = -ENOMEM; 2885 goto out_unlock; 2886 } 2887 2888 switch (of_cft(of)->private) { 2889 case FILE_CPULIST: 2890 retval = update_cpumask(cs, trialcs, buf); 2891 break; 2892 case FILE_MEMLIST: 2893 retval = update_nodemask(cs, trialcs, buf); 2894 break; 2895 default: 2896 retval = -EINVAL; 2897 break; 2898 } 2899 2900 free_cpuset(trialcs); 2901 out_unlock: 2902 mutex_unlock(&cpuset_mutex); 2903 cpus_read_unlock(); 2904 kernfs_unbreak_active_protection(of->kn); 2905 css_put(&cs->css); 2906 flush_workqueue(cpuset_migrate_mm_wq); 2907 return retval ?: nbytes; 2908 } 2909 2910 /* 2911 * These ascii lists should be read in a single call, by using a user 2912 * buffer large enough to hold the entire map. If read in smaller 2913 * chunks, there is no guarantee of atomicity. Since the display format 2914 * used, list of ranges of sequential numbers, is variable length, 2915 * and since these maps can change value dynamically, one could read 2916 * gibberish by doing partial reads while a list was changing. 2917 */ 2918 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2919 { 2920 struct cpuset *cs = css_cs(seq_css(sf)); 2921 cpuset_filetype_t type = seq_cft(sf)->private; 2922 int ret = 0; 2923 2924 spin_lock_irq(&callback_lock); 2925 2926 switch (type) { 2927 case FILE_CPULIST: 2928 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2929 break; 2930 case FILE_MEMLIST: 2931 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2932 break; 2933 case FILE_EFFECTIVE_CPULIST: 2934 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2935 break; 2936 case FILE_EFFECTIVE_MEMLIST: 2937 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2938 break; 2939 case FILE_SUBPARTS_CPULIST: 2940 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2941 break; 2942 default: 2943 ret = -EINVAL; 2944 } 2945 2946 spin_unlock_irq(&callback_lock); 2947 return ret; 2948 } 2949 2950 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2951 { 2952 struct cpuset *cs = css_cs(css); 2953 cpuset_filetype_t type = cft->private; 2954 switch (type) { 2955 case FILE_CPU_EXCLUSIVE: 2956 return is_cpu_exclusive(cs); 2957 case FILE_MEM_EXCLUSIVE: 2958 return is_mem_exclusive(cs); 2959 case FILE_MEM_HARDWALL: 2960 return is_mem_hardwall(cs); 2961 case FILE_SCHED_LOAD_BALANCE: 2962 return is_sched_load_balance(cs); 2963 case FILE_MEMORY_MIGRATE: 2964 return is_memory_migrate(cs); 2965 case FILE_MEMORY_PRESSURE_ENABLED: 2966 return cpuset_memory_pressure_enabled; 2967 case FILE_MEMORY_PRESSURE: 2968 return fmeter_getrate(&cs->fmeter); 2969 case FILE_SPREAD_PAGE: 2970 return is_spread_page(cs); 2971 case FILE_SPREAD_SLAB: 2972 return is_spread_slab(cs); 2973 default: 2974 BUG(); 2975 } 2976 2977 /* Unreachable but makes gcc happy */ 2978 return 0; 2979 } 2980 2981 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2982 { 2983 struct cpuset *cs = css_cs(css); 2984 cpuset_filetype_t type = cft->private; 2985 switch (type) { 2986 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2987 return cs->relax_domain_level; 2988 default: 2989 BUG(); 2990 } 2991 2992 /* Unreachable but makes gcc happy */ 2993 return 0; 2994 } 2995 2996 static int sched_partition_show(struct seq_file *seq, void *v) 2997 { 2998 struct cpuset *cs = css_cs(seq_css(seq)); 2999 const char *err, *type = NULL; 3000 3001 switch (cs->partition_root_state) { 3002 case PRS_ROOT: 3003 seq_puts(seq, "root\n"); 3004 break; 3005 case PRS_ISOLATED: 3006 seq_puts(seq, "isolated\n"); 3007 break; 3008 case PRS_MEMBER: 3009 seq_puts(seq, "member\n"); 3010 break; 3011 case PRS_INVALID_ROOT: 3012 type = "root"; 3013 fallthrough; 3014 case PRS_INVALID_ISOLATED: 3015 if (!type) 3016 type = "isolated"; 3017 err = perr_strings[READ_ONCE(cs->prs_err)]; 3018 if (err) 3019 seq_printf(seq, "%s invalid (%s)\n", type, err); 3020 else 3021 seq_printf(seq, "%s invalid\n", type); 3022 break; 3023 } 3024 return 0; 3025 } 3026 3027 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3028 size_t nbytes, loff_t off) 3029 { 3030 struct cpuset *cs = css_cs(of_css(of)); 3031 int val; 3032 int retval = -ENODEV; 3033 3034 buf = strstrip(buf); 3035 3036 /* 3037 * Convert "root" to ENABLED, and convert "member" to DISABLED. 3038 */ 3039 if (!strcmp(buf, "root")) 3040 val = PRS_ROOT; 3041 else if (!strcmp(buf, "member")) 3042 val = PRS_MEMBER; 3043 else if (!strcmp(buf, "isolated")) 3044 val = PRS_ISOLATED; 3045 else 3046 return -EINVAL; 3047 3048 css_get(&cs->css); 3049 cpus_read_lock(); 3050 mutex_lock(&cpuset_mutex); 3051 if (!is_cpuset_online(cs)) 3052 goto out_unlock; 3053 3054 retval = update_prstate(cs, val); 3055 out_unlock: 3056 mutex_unlock(&cpuset_mutex); 3057 cpus_read_unlock(); 3058 css_put(&cs->css); 3059 return retval ?: nbytes; 3060 } 3061 3062 /* 3063 * for the common functions, 'private' gives the type of file 3064 */ 3065 3066 static struct cftype legacy_files[] = { 3067 { 3068 .name = "cpus", 3069 .seq_show = cpuset_common_seq_show, 3070 .write = cpuset_write_resmask, 3071 .max_write_len = (100U + 6 * NR_CPUS), 3072 .private = FILE_CPULIST, 3073 }, 3074 3075 { 3076 .name = "mems", 3077 .seq_show = cpuset_common_seq_show, 3078 .write = cpuset_write_resmask, 3079 .max_write_len = (100U + 6 * MAX_NUMNODES), 3080 .private = FILE_MEMLIST, 3081 }, 3082 3083 { 3084 .name = "effective_cpus", 3085 .seq_show = cpuset_common_seq_show, 3086 .private = FILE_EFFECTIVE_CPULIST, 3087 }, 3088 3089 { 3090 .name = "effective_mems", 3091 .seq_show = cpuset_common_seq_show, 3092 .private = FILE_EFFECTIVE_MEMLIST, 3093 }, 3094 3095 { 3096 .name = "cpu_exclusive", 3097 .read_u64 = cpuset_read_u64, 3098 .write_u64 = cpuset_write_u64, 3099 .private = FILE_CPU_EXCLUSIVE, 3100 }, 3101 3102 { 3103 .name = "mem_exclusive", 3104 .read_u64 = cpuset_read_u64, 3105 .write_u64 = cpuset_write_u64, 3106 .private = FILE_MEM_EXCLUSIVE, 3107 }, 3108 3109 { 3110 .name = "mem_hardwall", 3111 .read_u64 = cpuset_read_u64, 3112 .write_u64 = cpuset_write_u64, 3113 .private = FILE_MEM_HARDWALL, 3114 }, 3115 3116 { 3117 .name = "sched_load_balance", 3118 .read_u64 = cpuset_read_u64, 3119 .write_u64 = cpuset_write_u64, 3120 .private = FILE_SCHED_LOAD_BALANCE, 3121 }, 3122 3123 { 3124 .name = "sched_relax_domain_level", 3125 .read_s64 = cpuset_read_s64, 3126 .write_s64 = cpuset_write_s64, 3127 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3128 }, 3129 3130 { 3131 .name = "memory_migrate", 3132 .read_u64 = cpuset_read_u64, 3133 .write_u64 = cpuset_write_u64, 3134 .private = FILE_MEMORY_MIGRATE, 3135 }, 3136 3137 { 3138 .name = "memory_pressure", 3139 .read_u64 = cpuset_read_u64, 3140 .private = FILE_MEMORY_PRESSURE, 3141 }, 3142 3143 { 3144 .name = "memory_spread_page", 3145 .read_u64 = cpuset_read_u64, 3146 .write_u64 = cpuset_write_u64, 3147 .private = FILE_SPREAD_PAGE, 3148 }, 3149 3150 { 3151 .name = "memory_spread_slab", 3152 .read_u64 = cpuset_read_u64, 3153 .write_u64 = cpuset_write_u64, 3154 .private = FILE_SPREAD_SLAB, 3155 }, 3156 3157 { 3158 .name = "memory_pressure_enabled", 3159 .flags = CFTYPE_ONLY_ON_ROOT, 3160 .read_u64 = cpuset_read_u64, 3161 .write_u64 = cpuset_write_u64, 3162 .private = FILE_MEMORY_PRESSURE_ENABLED, 3163 }, 3164 3165 { } /* terminate */ 3166 }; 3167 3168 /* 3169 * This is currently a minimal set for the default hierarchy. It can be 3170 * expanded later on by migrating more features and control files from v1. 3171 */ 3172 static struct cftype dfl_files[] = { 3173 { 3174 .name = "cpus", 3175 .seq_show = cpuset_common_seq_show, 3176 .write = cpuset_write_resmask, 3177 .max_write_len = (100U + 6 * NR_CPUS), 3178 .private = FILE_CPULIST, 3179 .flags = CFTYPE_NOT_ON_ROOT, 3180 }, 3181 3182 { 3183 .name = "mems", 3184 .seq_show = cpuset_common_seq_show, 3185 .write = cpuset_write_resmask, 3186 .max_write_len = (100U + 6 * MAX_NUMNODES), 3187 .private = FILE_MEMLIST, 3188 .flags = CFTYPE_NOT_ON_ROOT, 3189 }, 3190 3191 { 3192 .name = "cpus.effective", 3193 .seq_show = cpuset_common_seq_show, 3194 .private = FILE_EFFECTIVE_CPULIST, 3195 }, 3196 3197 { 3198 .name = "mems.effective", 3199 .seq_show = cpuset_common_seq_show, 3200 .private = FILE_EFFECTIVE_MEMLIST, 3201 }, 3202 3203 { 3204 .name = "cpus.partition", 3205 .seq_show = sched_partition_show, 3206 .write = sched_partition_write, 3207 .private = FILE_PARTITION_ROOT, 3208 .flags = CFTYPE_NOT_ON_ROOT, 3209 .file_offset = offsetof(struct cpuset, partition_file), 3210 }, 3211 3212 { 3213 .name = "cpus.subpartitions", 3214 .seq_show = cpuset_common_seq_show, 3215 .private = FILE_SUBPARTS_CPULIST, 3216 .flags = CFTYPE_DEBUG, 3217 }, 3218 3219 { } /* terminate */ 3220 }; 3221 3222 3223 /** 3224 * cpuset_css_alloc - Allocate a cpuset css 3225 * @parent_css: Parent css of the control group that the new cpuset will be 3226 * part of 3227 * Return: cpuset css on success, -ENOMEM on failure. 3228 * 3229 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3230 * top cpuset css otherwise. 3231 */ 3232 static struct cgroup_subsys_state * 3233 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3234 { 3235 struct cpuset *cs; 3236 3237 if (!parent_css) 3238 return &top_cpuset.css; 3239 3240 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3241 if (!cs) 3242 return ERR_PTR(-ENOMEM); 3243 3244 if (alloc_cpumasks(cs, NULL)) { 3245 kfree(cs); 3246 return ERR_PTR(-ENOMEM); 3247 } 3248 3249 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3250 nodes_clear(cs->mems_allowed); 3251 nodes_clear(cs->effective_mems); 3252 fmeter_init(&cs->fmeter); 3253 cs->relax_domain_level = -1; 3254 3255 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3256 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3257 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3258 3259 return &cs->css; 3260 } 3261 3262 static int cpuset_css_online(struct cgroup_subsys_state *css) 3263 { 3264 struct cpuset *cs = css_cs(css); 3265 struct cpuset *parent = parent_cs(cs); 3266 struct cpuset *tmp_cs; 3267 struct cgroup_subsys_state *pos_css; 3268 3269 if (!parent) 3270 return 0; 3271 3272 cpus_read_lock(); 3273 mutex_lock(&cpuset_mutex); 3274 3275 set_bit(CS_ONLINE, &cs->flags); 3276 if (is_spread_page(parent)) 3277 set_bit(CS_SPREAD_PAGE, &cs->flags); 3278 if (is_spread_slab(parent)) 3279 set_bit(CS_SPREAD_SLAB, &cs->flags); 3280 3281 cpuset_inc(); 3282 3283 spin_lock_irq(&callback_lock); 3284 if (is_in_v2_mode()) { 3285 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3286 cs->effective_mems = parent->effective_mems; 3287 cs->use_parent_ecpus = true; 3288 parent->child_ecpus_count++; 3289 } 3290 3291 /* 3292 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3293 */ 3294 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3295 !is_sched_load_balance(parent)) 3296 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3297 3298 spin_unlock_irq(&callback_lock); 3299 3300 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3301 goto out_unlock; 3302 3303 /* 3304 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3305 * set. This flag handling is implemented in cgroup core for 3306 * historical reasons - the flag may be specified during mount. 3307 * 3308 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3309 * refuse to clone the configuration - thereby refusing the task to 3310 * be entered, and as a result refusing the sys_unshare() or 3311 * clone() which initiated it. If this becomes a problem for some 3312 * users who wish to allow that scenario, then this could be 3313 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3314 * (and likewise for mems) to the new cgroup. 3315 */ 3316 rcu_read_lock(); 3317 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3318 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3319 rcu_read_unlock(); 3320 goto out_unlock; 3321 } 3322 } 3323 rcu_read_unlock(); 3324 3325 spin_lock_irq(&callback_lock); 3326 cs->mems_allowed = parent->mems_allowed; 3327 cs->effective_mems = parent->mems_allowed; 3328 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3329 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3330 spin_unlock_irq(&callback_lock); 3331 out_unlock: 3332 mutex_unlock(&cpuset_mutex); 3333 cpus_read_unlock(); 3334 return 0; 3335 } 3336 3337 /* 3338 * If the cpuset being removed has its flag 'sched_load_balance' 3339 * enabled, then simulate turning sched_load_balance off, which 3340 * will call rebuild_sched_domains_locked(). That is not needed 3341 * in the default hierarchy where only changes in partition 3342 * will cause repartitioning. 3343 * 3344 * If the cpuset has the 'sched.partition' flag enabled, simulate 3345 * turning 'sched.partition" off. 3346 */ 3347 3348 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3349 { 3350 struct cpuset *cs = css_cs(css); 3351 3352 cpus_read_lock(); 3353 mutex_lock(&cpuset_mutex); 3354 3355 if (is_partition_valid(cs)) 3356 update_prstate(cs, 0); 3357 3358 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3359 is_sched_load_balance(cs)) 3360 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3361 3362 if (cs->use_parent_ecpus) { 3363 struct cpuset *parent = parent_cs(cs); 3364 3365 cs->use_parent_ecpus = false; 3366 parent->child_ecpus_count--; 3367 } 3368 3369 cpuset_dec(); 3370 clear_bit(CS_ONLINE, &cs->flags); 3371 3372 mutex_unlock(&cpuset_mutex); 3373 cpus_read_unlock(); 3374 } 3375 3376 static void cpuset_css_free(struct cgroup_subsys_state *css) 3377 { 3378 struct cpuset *cs = css_cs(css); 3379 3380 free_cpuset(cs); 3381 } 3382 3383 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3384 { 3385 mutex_lock(&cpuset_mutex); 3386 spin_lock_irq(&callback_lock); 3387 3388 if (is_in_v2_mode()) { 3389 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3390 top_cpuset.mems_allowed = node_possible_map; 3391 } else { 3392 cpumask_copy(top_cpuset.cpus_allowed, 3393 top_cpuset.effective_cpus); 3394 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3395 } 3396 3397 spin_unlock_irq(&callback_lock); 3398 mutex_unlock(&cpuset_mutex); 3399 } 3400 3401 /* 3402 * In case the child is cloned into a cpuset different from its parent, 3403 * additional checks are done to see if the move is allowed. 3404 */ 3405 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3406 { 3407 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3408 bool same_cs; 3409 int ret; 3410 3411 rcu_read_lock(); 3412 same_cs = (cs == task_cs(current)); 3413 rcu_read_unlock(); 3414 3415 if (same_cs) 3416 return 0; 3417 3418 lockdep_assert_held(&cgroup_mutex); 3419 mutex_lock(&cpuset_mutex); 3420 3421 /* Check to see if task is allowed in the cpuset */ 3422 ret = cpuset_can_attach_check(cs); 3423 if (ret) 3424 goto out_unlock; 3425 3426 ret = task_can_attach(task); 3427 if (ret) 3428 goto out_unlock; 3429 3430 ret = security_task_setscheduler(task); 3431 if (ret) 3432 goto out_unlock; 3433 3434 /* 3435 * Mark attach is in progress. This makes validate_change() fail 3436 * changes which zero cpus/mems_allowed. 3437 */ 3438 cs->attach_in_progress++; 3439 out_unlock: 3440 mutex_unlock(&cpuset_mutex); 3441 return ret; 3442 } 3443 3444 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3445 { 3446 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3447 bool same_cs; 3448 3449 rcu_read_lock(); 3450 same_cs = (cs == task_cs(current)); 3451 rcu_read_unlock(); 3452 3453 if (same_cs) 3454 return; 3455 3456 mutex_lock(&cpuset_mutex); 3457 cs->attach_in_progress--; 3458 if (!cs->attach_in_progress) 3459 wake_up(&cpuset_attach_wq); 3460 mutex_unlock(&cpuset_mutex); 3461 } 3462 3463 /* 3464 * Make sure the new task conform to the current state of its parent, 3465 * which could have been changed by cpuset just after it inherits the 3466 * state from the parent and before it sits on the cgroup's task list. 3467 */ 3468 static void cpuset_fork(struct task_struct *task) 3469 { 3470 struct cpuset *cs; 3471 bool same_cs; 3472 3473 rcu_read_lock(); 3474 cs = task_cs(task); 3475 same_cs = (cs == task_cs(current)); 3476 rcu_read_unlock(); 3477 3478 if (same_cs) { 3479 if (cs == &top_cpuset) 3480 return; 3481 3482 set_cpus_allowed_ptr(task, current->cpus_ptr); 3483 task->mems_allowed = current->mems_allowed; 3484 return; 3485 } 3486 3487 /* CLONE_INTO_CGROUP */ 3488 mutex_lock(&cpuset_mutex); 3489 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3490 cpuset_attach_task(cs, task); 3491 3492 cs->attach_in_progress--; 3493 if (!cs->attach_in_progress) 3494 wake_up(&cpuset_attach_wq); 3495 3496 mutex_unlock(&cpuset_mutex); 3497 } 3498 3499 struct cgroup_subsys cpuset_cgrp_subsys = { 3500 .css_alloc = cpuset_css_alloc, 3501 .css_online = cpuset_css_online, 3502 .css_offline = cpuset_css_offline, 3503 .css_free = cpuset_css_free, 3504 .can_attach = cpuset_can_attach, 3505 .cancel_attach = cpuset_cancel_attach, 3506 .attach = cpuset_attach, 3507 .post_attach = cpuset_post_attach, 3508 .bind = cpuset_bind, 3509 .can_fork = cpuset_can_fork, 3510 .cancel_fork = cpuset_cancel_fork, 3511 .fork = cpuset_fork, 3512 .legacy_cftypes = legacy_files, 3513 .dfl_cftypes = dfl_files, 3514 .early_init = true, 3515 .threaded = true, 3516 }; 3517 3518 /** 3519 * cpuset_init - initialize cpusets at system boot 3520 * 3521 * Description: Initialize top_cpuset 3522 **/ 3523 3524 int __init cpuset_init(void) 3525 { 3526 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3527 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3528 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3529 3530 cpumask_setall(top_cpuset.cpus_allowed); 3531 nodes_setall(top_cpuset.mems_allowed); 3532 cpumask_setall(top_cpuset.effective_cpus); 3533 nodes_setall(top_cpuset.effective_mems); 3534 3535 fmeter_init(&top_cpuset.fmeter); 3536 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3537 top_cpuset.relax_domain_level = -1; 3538 3539 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3540 3541 return 0; 3542 } 3543 3544 /* 3545 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3546 * or memory nodes, we need to walk over the cpuset hierarchy, 3547 * removing that CPU or node from all cpusets. If this removes the 3548 * last CPU or node from a cpuset, then move the tasks in the empty 3549 * cpuset to its next-highest non-empty parent. 3550 */ 3551 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3552 { 3553 struct cpuset *parent; 3554 3555 /* 3556 * Find its next-highest non-empty parent, (top cpuset 3557 * has online cpus, so can't be empty). 3558 */ 3559 parent = parent_cs(cs); 3560 while (cpumask_empty(parent->cpus_allowed) || 3561 nodes_empty(parent->mems_allowed)) 3562 parent = parent_cs(parent); 3563 3564 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3565 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3566 pr_cont_cgroup_name(cs->css.cgroup); 3567 pr_cont("\n"); 3568 } 3569 } 3570 3571 static void 3572 hotplug_update_tasks_legacy(struct cpuset *cs, 3573 struct cpumask *new_cpus, nodemask_t *new_mems, 3574 bool cpus_updated, bool mems_updated) 3575 { 3576 bool is_empty; 3577 3578 spin_lock_irq(&callback_lock); 3579 cpumask_copy(cs->cpus_allowed, new_cpus); 3580 cpumask_copy(cs->effective_cpus, new_cpus); 3581 cs->mems_allowed = *new_mems; 3582 cs->effective_mems = *new_mems; 3583 spin_unlock_irq(&callback_lock); 3584 3585 /* 3586 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3587 * as the tasks will be migrated to an ancestor. 3588 */ 3589 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3590 update_tasks_cpumask(cs, new_cpus); 3591 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3592 update_tasks_nodemask(cs); 3593 3594 is_empty = cpumask_empty(cs->cpus_allowed) || 3595 nodes_empty(cs->mems_allowed); 3596 3597 /* 3598 * Move tasks to the nearest ancestor with execution resources, 3599 * This is full cgroup operation which will also call back into 3600 * cpuset. Should be done outside any lock. 3601 */ 3602 if (is_empty) { 3603 mutex_unlock(&cpuset_mutex); 3604 remove_tasks_in_empty_cpuset(cs); 3605 mutex_lock(&cpuset_mutex); 3606 } 3607 } 3608 3609 static void 3610 hotplug_update_tasks(struct cpuset *cs, 3611 struct cpumask *new_cpus, nodemask_t *new_mems, 3612 bool cpus_updated, bool mems_updated) 3613 { 3614 /* A partition root is allowed to have empty effective cpus */ 3615 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3616 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3617 if (nodes_empty(*new_mems)) 3618 *new_mems = parent_cs(cs)->effective_mems; 3619 3620 spin_lock_irq(&callback_lock); 3621 cpumask_copy(cs->effective_cpus, new_cpus); 3622 cs->effective_mems = *new_mems; 3623 spin_unlock_irq(&callback_lock); 3624 3625 if (cpus_updated) 3626 update_tasks_cpumask(cs, new_cpus); 3627 if (mems_updated) 3628 update_tasks_nodemask(cs); 3629 } 3630 3631 static bool force_rebuild; 3632 3633 void cpuset_force_rebuild(void) 3634 { 3635 force_rebuild = true; 3636 } 3637 3638 /** 3639 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3640 * @cs: cpuset in interest 3641 * @tmp: the tmpmasks structure pointer 3642 * 3643 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3644 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3645 * all its tasks are moved to the nearest ancestor with both resources. 3646 */ 3647 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3648 { 3649 static cpumask_t new_cpus; 3650 static nodemask_t new_mems; 3651 bool cpus_updated; 3652 bool mems_updated; 3653 struct cpuset *parent; 3654 retry: 3655 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3656 3657 mutex_lock(&cpuset_mutex); 3658 3659 /* 3660 * We have raced with task attaching. We wait until attaching 3661 * is finished, so we won't attach a task to an empty cpuset. 3662 */ 3663 if (cs->attach_in_progress) { 3664 mutex_unlock(&cpuset_mutex); 3665 goto retry; 3666 } 3667 3668 parent = parent_cs(cs); 3669 compute_effective_cpumask(&new_cpus, cs, parent); 3670 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3671 3672 if (cs->nr_subparts_cpus) 3673 /* 3674 * Make sure that CPUs allocated to child partitions 3675 * do not show up in effective_cpus. 3676 */ 3677 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3678 3679 if (!tmp || !cs->partition_root_state) 3680 goto update_tasks; 3681 3682 /* 3683 * In the unlikely event that a partition root has empty 3684 * effective_cpus with tasks, we will have to invalidate child 3685 * partitions, if present, by setting nr_subparts_cpus to 0 to 3686 * reclaim their cpus. 3687 */ 3688 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3689 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3690 spin_lock_irq(&callback_lock); 3691 cs->nr_subparts_cpus = 0; 3692 cpumask_clear(cs->subparts_cpus); 3693 spin_unlock_irq(&callback_lock); 3694 compute_effective_cpumask(&new_cpus, cs, parent); 3695 } 3696 3697 /* 3698 * Force the partition to become invalid if either one of 3699 * the following conditions hold: 3700 * 1) empty effective cpus but not valid empty partition. 3701 * 2) parent is invalid or doesn't grant any cpus to child 3702 * partitions. 3703 */ 3704 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3705 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3706 int old_prs, parent_prs; 3707 3708 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3709 if (cs->nr_subparts_cpus) { 3710 spin_lock_irq(&callback_lock); 3711 cs->nr_subparts_cpus = 0; 3712 cpumask_clear(cs->subparts_cpus); 3713 spin_unlock_irq(&callback_lock); 3714 compute_effective_cpumask(&new_cpus, cs, parent); 3715 } 3716 3717 old_prs = cs->partition_root_state; 3718 parent_prs = parent->partition_root_state; 3719 if (is_partition_valid(cs)) { 3720 spin_lock_irq(&callback_lock); 3721 make_partition_invalid(cs); 3722 spin_unlock_irq(&callback_lock); 3723 if (is_prs_invalid(parent_prs)) 3724 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3725 else if (!parent_prs) 3726 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3727 else 3728 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3729 notify_partition_change(cs, old_prs); 3730 } 3731 cpuset_force_rebuild(); 3732 } 3733 3734 /* 3735 * On the other hand, an invalid partition root may be transitioned 3736 * back to a regular one. 3737 */ 3738 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3739 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3740 if (is_partition_valid(cs)) 3741 cpuset_force_rebuild(); 3742 } 3743 3744 update_tasks: 3745 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3746 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3747 if (!cpus_updated && !mems_updated) 3748 goto unlock; /* Hotplug doesn't affect this cpuset */ 3749 3750 if (mems_updated) 3751 check_insane_mems_config(&new_mems); 3752 3753 if (is_in_v2_mode()) 3754 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3755 cpus_updated, mems_updated); 3756 else 3757 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3758 cpus_updated, mems_updated); 3759 3760 unlock: 3761 mutex_unlock(&cpuset_mutex); 3762 } 3763 3764 /** 3765 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3766 * @work: unused 3767 * 3768 * This function is called after either CPU or memory configuration has 3769 * changed and updates cpuset accordingly. The top_cpuset is always 3770 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3771 * order to make cpusets transparent (of no affect) on systems that are 3772 * actively using CPU hotplug but making no active use of cpusets. 3773 * 3774 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3775 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3776 * all descendants. 3777 * 3778 * Note that CPU offlining during suspend is ignored. We don't modify 3779 * cpusets across suspend/resume cycles at all. 3780 */ 3781 static void cpuset_hotplug_workfn(struct work_struct *work) 3782 { 3783 static cpumask_t new_cpus; 3784 static nodemask_t new_mems; 3785 bool cpus_updated, mems_updated; 3786 bool on_dfl = is_in_v2_mode(); 3787 struct tmpmasks tmp, *ptmp = NULL; 3788 3789 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3790 ptmp = &tmp; 3791 3792 mutex_lock(&cpuset_mutex); 3793 3794 /* fetch the available cpus/mems and find out which changed how */ 3795 cpumask_copy(&new_cpus, cpu_active_mask); 3796 new_mems = node_states[N_MEMORY]; 3797 3798 /* 3799 * If subparts_cpus is populated, it is likely that the check below 3800 * will produce a false positive on cpus_updated when the cpu list 3801 * isn't changed. It is extra work, but it is better to be safe. 3802 */ 3803 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3804 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3805 3806 /* 3807 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3808 * we assumed that cpus are updated. 3809 */ 3810 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3811 cpus_updated = true; 3812 3813 /* synchronize cpus_allowed to cpu_active_mask */ 3814 if (cpus_updated) { 3815 spin_lock_irq(&callback_lock); 3816 if (!on_dfl) 3817 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3818 /* 3819 * Make sure that CPUs allocated to child partitions 3820 * do not show up in effective_cpus. If no CPU is left, 3821 * we clear the subparts_cpus & let the child partitions 3822 * fight for the CPUs again. 3823 */ 3824 if (top_cpuset.nr_subparts_cpus) { 3825 if (cpumask_subset(&new_cpus, 3826 top_cpuset.subparts_cpus)) { 3827 top_cpuset.nr_subparts_cpus = 0; 3828 cpumask_clear(top_cpuset.subparts_cpus); 3829 } else { 3830 cpumask_andnot(&new_cpus, &new_cpus, 3831 top_cpuset.subparts_cpus); 3832 } 3833 } 3834 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3835 spin_unlock_irq(&callback_lock); 3836 /* we don't mess with cpumasks of tasks in top_cpuset */ 3837 } 3838 3839 /* synchronize mems_allowed to N_MEMORY */ 3840 if (mems_updated) { 3841 spin_lock_irq(&callback_lock); 3842 if (!on_dfl) 3843 top_cpuset.mems_allowed = new_mems; 3844 top_cpuset.effective_mems = new_mems; 3845 spin_unlock_irq(&callback_lock); 3846 update_tasks_nodemask(&top_cpuset); 3847 } 3848 3849 mutex_unlock(&cpuset_mutex); 3850 3851 /* if cpus or mems changed, we need to propagate to descendants */ 3852 if (cpus_updated || mems_updated) { 3853 struct cpuset *cs; 3854 struct cgroup_subsys_state *pos_css; 3855 3856 rcu_read_lock(); 3857 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3858 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3859 continue; 3860 rcu_read_unlock(); 3861 3862 cpuset_hotplug_update_tasks(cs, ptmp); 3863 3864 rcu_read_lock(); 3865 css_put(&cs->css); 3866 } 3867 rcu_read_unlock(); 3868 } 3869 3870 /* rebuild sched domains if cpus_allowed has changed */ 3871 if (cpus_updated || force_rebuild) { 3872 force_rebuild = false; 3873 rebuild_sched_domains(); 3874 } 3875 3876 free_cpumasks(NULL, ptmp); 3877 } 3878 3879 void cpuset_update_active_cpus(void) 3880 { 3881 /* 3882 * We're inside cpu hotplug critical region which usually nests 3883 * inside cgroup synchronization. Bounce actual hotplug processing 3884 * to a work item to avoid reverse locking order. 3885 */ 3886 schedule_work(&cpuset_hotplug_work); 3887 } 3888 3889 void cpuset_wait_for_hotplug(void) 3890 { 3891 flush_work(&cpuset_hotplug_work); 3892 } 3893 3894 /* 3895 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3896 * Call this routine anytime after node_states[N_MEMORY] changes. 3897 * See cpuset_update_active_cpus() for CPU hotplug handling. 3898 */ 3899 static int cpuset_track_online_nodes(struct notifier_block *self, 3900 unsigned long action, void *arg) 3901 { 3902 schedule_work(&cpuset_hotplug_work); 3903 return NOTIFY_OK; 3904 } 3905 3906 /** 3907 * cpuset_init_smp - initialize cpus_allowed 3908 * 3909 * Description: Finish top cpuset after cpu, node maps are initialized 3910 */ 3911 void __init cpuset_init_smp(void) 3912 { 3913 /* 3914 * cpus_allowd/mems_allowed set to v2 values in the initial 3915 * cpuset_bind() call will be reset to v1 values in another 3916 * cpuset_bind() call when v1 cpuset is mounted. 3917 */ 3918 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3919 3920 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3921 top_cpuset.effective_mems = node_states[N_MEMORY]; 3922 3923 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3924 3925 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3926 BUG_ON(!cpuset_migrate_mm_wq); 3927 } 3928 3929 /** 3930 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3931 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3932 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3933 * 3934 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3935 * attached to the specified @tsk. Guaranteed to return some non-empty 3936 * subset of cpu_online_mask, even if this means going outside the 3937 * tasks cpuset, except when the task is in the top cpuset. 3938 **/ 3939 3940 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3941 { 3942 unsigned long flags; 3943 struct cpuset *cs; 3944 3945 spin_lock_irqsave(&callback_lock, flags); 3946 rcu_read_lock(); 3947 3948 cs = task_cs(tsk); 3949 if (cs != &top_cpuset) 3950 guarantee_online_cpus(tsk, pmask); 3951 /* 3952 * Tasks in the top cpuset won't get update to their cpumasks 3953 * when a hotplug online/offline event happens. So we include all 3954 * offline cpus in the allowed cpu list. 3955 */ 3956 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3957 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3958 3959 /* 3960 * We first exclude cpus allocated to partitions. If there is no 3961 * allowable online cpu left, we fall back to all possible cpus. 3962 */ 3963 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3964 if (!cpumask_intersects(pmask, cpu_online_mask)) 3965 cpumask_copy(pmask, possible_mask); 3966 } 3967 3968 rcu_read_unlock(); 3969 spin_unlock_irqrestore(&callback_lock, flags); 3970 } 3971 3972 /** 3973 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3974 * @tsk: pointer to task_struct with which the scheduler is struggling 3975 * 3976 * Description: In the case that the scheduler cannot find an allowed cpu in 3977 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3978 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3979 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3980 * This is the absolute last resort for the scheduler and it is only used if 3981 * _every_ other avenue has been traveled. 3982 * 3983 * Returns true if the affinity of @tsk was changed, false otherwise. 3984 **/ 3985 3986 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3987 { 3988 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3989 const struct cpumask *cs_mask; 3990 bool changed = false; 3991 3992 rcu_read_lock(); 3993 cs_mask = task_cs(tsk)->cpus_allowed; 3994 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3995 do_set_cpus_allowed(tsk, cs_mask); 3996 changed = true; 3997 } 3998 rcu_read_unlock(); 3999 4000 /* 4001 * We own tsk->cpus_allowed, nobody can change it under us. 4002 * 4003 * But we used cs && cs->cpus_allowed lockless and thus can 4004 * race with cgroup_attach_task() or update_cpumask() and get 4005 * the wrong tsk->cpus_allowed. However, both cases imply the 4006 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4007 * which takes task_rq_lock(). 4008 * 4009 * If we are called after it dropped the lock we must see all 4010 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4011 * set any mask even if it is not right from task_cs() pov, 4012 * the pending set_cpus_allowed_ptr() will fix things. 4013 * 4014 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4015 * if required. 4016 */ 4017 return changed; 4018 } 4019 4020 void __init cpuset_init_current_mems_allowed(void) 4021 { 4022 nodes_setall(current->mems_allowed); 4023 } 4024 4025 /** 4026 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4027 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4028 * 4029 * Description: Returns the nodemask_t mems_allowed of the cpuset 4030 * attached to the specified @tsk. Guaranteed to return some non-empty 4031 * subset of node_states[N_MEMORY], even if this means going outside the 4032 * tasks cpuset. 4033 **/ 4034 4035 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4036 { 4037 nodemask_t mask; 4038 unsigned long flags; 4039 4040 spin_lock_irqsave(&callback_lock, flags); 4041 rcu_read_lock(); 4042 guarantee_online_mems(task_cs(tsk), &mask); 4043 rcu_read_unlock(); 4044 spin_unlock_irqrestore(&callback_lock, flags); 4045 4046 return mask; 4047 } 4048 4049 /** 4050 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4051 * @nodemask: the nodemask to be checked 4052 * 4053 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4054 */ 4055 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4056 { 4057 return nodes_intersects(*nodemask, current->mems_allowed); 4058 } 4059 4060 /* 4061 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4062 * mem_hardwall ancestor to the specified cpuset. Call holding 4063 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4064 * (an unusual configuration), then returns the root cpuset. 4065 */ 4066 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4067 { 4068 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4069 cs = parent_cs(cs); 4070 return cs; 4071 } 4072 4073 /* 4074 * cpuset_node_allowed - Can we allocate on a memory node? 4075 * @node: is this an allowed node? 4076 * @gfp_mask: memory allocation flags 4077 * 4078 * If we're in interrupt, yes, we can always allocate. If @node is set in 4079 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4080 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4081 * yes. If current has access to memory reserves as an oom victim, yes. 4082 * Otherwise, no. 4083 * 4084 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4085 * and do not allow allocations outside the current tasks cpuset 4086 * unless the task has been OOM killed. 4087 * GFP_KERNEL allocations are not so marked, so can escape to the 4088 * nearest enclosing hardwalled ancestor cpuset. 4089 * 4090 * Scanning up parent cpusets requires callback_lock. The 4091 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4092 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4093 * current tasks mems_allowed came up empty on the first pass over 4094 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4095 * cpuset are short of memory, might require taking the callback_lock. 4096 * 4097 * The first call here from mm/page_alloc:get_page_from_freelist() 4098 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4099 * so no allocation on a node outside the cpuset is allowed (unless 4100 * in interrupt, of course). 4101 * 4102 * The second pass through get_page_from_freelist() doesn't even call 4103 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4104 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4105 * in alloc_flags. That logic and the checks below have the combined 4106 * affect that: 4107 * in_interrupt - any node ok (current task context irrelevant) 4108 * GFP_ATOMIC - any node ok 4109 * tsk_is_oom_victim - any node ok 4110 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4111 * GFP_USER - only nodes in current tasks mems allowed ok. 4112 */ 4113 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4114 { 4115 struct cpuset *cs; /* current cpuset ancestors */ 4116 bool allowed; /* is allocation in zone z allowed? */ 4117 unsigned long flags; 4118 4119 if (in_interrupt()) 4120 return true; 4121 if (node_isset(node, current->mems_allowed)) 4122 return true; 4123 /* 4124 * Allow tasks that have access to memory reserves because they have 4125 * been OOM killed to get memory anywhere. 4126 */ 4127 if (unlikely(tsk_is_oom_victim(current))) 4128 return true; 4129 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4130 return false; 4131 4132 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4133 return true; 4134 4135 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4136 spin_lock_irqsave(&callback_lock, flags); 4137 4138 rcu_read_lock(); 4139 cs = nearest_hardwall_ancestor(task_cs(current)); 4140 allowed = node_isset(node, cs->mems_allowed); 4141 rcu_read_unlock(); 4142 4143 spin_unlock_irqrestore(&callback_lock, flags); 4144 return allowed; 4145 } 4146 4147 /** 4148 * cpuset_spread_node() - On which node to begin search for a page 4149 * @rotor: round robin rotor 4150 * 4151 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4152 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4153 * and if the memory allocation used cpuset_mem_spread_node() 4154 * to determine on which node to start looking, as it will for 4155 * certain page cache or slab cache pages such as used for file 4156 * system buffers and inode caches, then instead of starting on the 4157 * local node to look for a free page, rather spread the starting 4158 * node around the tasks mems_allowed nodes. 4159 * 4160 * We don't have to worry about the returned node being offline 4161 * because "it can't happen", and even if it did, it would be ok. 4162 * 4163 * The routines calling guarantee_online_mems() are careful to 4164 * only set nodes in task->mems_allowed that are online. So it 4165 * should not be possible for the following code to return an 4166 * offline node. But if it did, that would be ok, as this routine 4167 * is not returning the node where the allocation must be, only 4168 * the node where the search should start. The zonelist passed to 4169 * __alloc_pages() will include all nodes. If the slab allocator 4170 * is passed an offline node, it will fall back to the local node. 4171 * See kmem_cache_alloc_node(). 4172 */ 4173 static int cpuset_spread_node(int *rotor) 4174 { 4175 return *rotor = next_node_in(*rotor, current->mems_allowed); 4176 } 4177 4178 /** 4179 * cpuset_mem_spread_node() - On which node to begin search for a file page 4180 */ 4181 int cpuset_mem_spread_node(void) 4182 { 4183 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4184 current->cpuset_mem_spread_rotor = 4185 node_random(¤t->mems_allowed); 4186 4187 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4188 } 4189 4190 /** 4191 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4192 */ 4193 int cpuset_slab_spread_node(void) 4194 { 4195 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4196 current->cpuset_slab_spread_rotor = 4197 node_random(¤t->mems_allowed); 4198 4199 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4200 } 4201 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4202 4203 /** 4204 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4205 * @tsk1: pointer to task_struct of some task. 4206 * @tsk2: pointer to task_struct of some other task. 4207 * 4208 * Description: Return true if @tsk1's mems_allowed intersects the 4209 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4210 * one of the task's memory usage might impact the memory available 4211 * to the other. 4212 **/ 4213 4214 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4215 const struct task_struct *tsk2) 4216 { 4217 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4218 } 4219 4220 /** 4221 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4222 * 4223 * Description: Prints current's name, cpuset name, and cached copy of its 4224 * mems_allowed to the kernel log. 4225 */ 4226 void cpuset_print_current_mems_allowed(void) 4227 { 4228 struct cgroup *cgrp; 4229 4230 rcu_read_lock(); 4231 4232 cgrp = task_cs(current)->css.cgroup; 4233 pr_cont(",cpuset="); 4234 pr_cont_cgroup_name(cgrp); 4235 pr_cont(",mems_allowed=%*pbl", 4236 nodemask_pr_args(¤t->mems_allowed)); 4237 4238 rcu_read_unlock(); 4239 } 4240 4241 /* 4242 * Collection of memory_pressure is suppressed unless 4243 * this flag is enabled by writing "1" to the special 4244 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4245 */ 4246 4247 int cpuset_memory_pressure_enabled __read_mostly; 4248 4249 /* 4250 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4251 * 4252 * Keep a running average of the rate of synchronous (direct) 4253 * page reclaim efforts initiated by tasks in each cpuset. 4254 * 4255 * This represents the rate at which some task in the cpuset 4256 * ran low on memory on all nodes it was allowed to use, and 4257 * had to enter the kernels page reclaim code in an effort to 4258 * create more free memory by tossing clean pages or swapping 4259 * or writing dirty pages. 4260 * 4261 * Display to user space in the per-cpuset read-only file 4262 * "memory_pressure". Value displayed is an integer 4263 * representing the recent rate of entry into the synchronous 4264 * (direct) page reclaim by any task attached to the cpuset. 4265 */ 4266 4267 void __cpuset_memory_pressure_bump(void) 4268 { 4269 rcu_read_lock(); 4270 fmeter_markevent(&task_cs(current)->fmeter); 4271 rcu_read_unlock(); 4272 } 4273 4274 #ifdef CONFIG_PROC_PID_CPUSET 4275 /* 4276 * proc_cpuset_show() 4277 * - Print tasks cpuset path into seq_file. 4278 * - Used for /proc/<pid>/cpuset. 4279 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4280 * doesn't really matter if tsk->cpuset changes after we read it, 4281 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 4282 * anyway. 4283 */ 4284 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4285 struct pid *pid, struct task_struct *tsk) 4286 { 4287 char *buf; 4288 struct cgroup_subsys_state *css; 4289 int retval; 4290 4291 retval = -ENOMEM; 4292 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4293 if (!buf) 4294 goto out; 4295 4296 css = task_get_css(tsk, cpuset_cgrp_id); 4297 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 4298 current->nsproxy->cgroup_ns); 4299 css_put(css); 4300 if (retval >= PATH_MAX) 4301 retval = -ENAMETOOLONG; 4302 if (retval < 0) 4303 goto out_free; 4304 seq_puts(m, buf); 4305 seq_putc(m, '\n'); 4306 retval = 0; 4307 out_free: 4308 kfree(buf); 4309 out: 4310 return retval; 4311 } 4312 #endif /* CONFIG_PROC_PID_CPUSET */ 4313 4314 /* Display task mems_allowed in /proc/<pid>/status file. */ 4315 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4316 { 4317 seq_printf(m, "Mems_allowed:\t%*pb\n", 4318 nodemask_pr_args(&task->mems_allowed)); 4319 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4320 nodemask_pr_args(&task->mems_allowed)); 4321 } 4322