1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierarchy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 164 /* Handle for cpuset.cpus.partition */ 165 struct cgroup_file partition_file; 166 }; 167 168 /* 169 * Partition root states: 170 * 171 * 0 - not a partition root 172 * 173 * 1 - partition root 174 * 175 * -1 - invalid partition root 176 * None of the cpus in cpus_allowed can be put into the parent's 177 * subparts_cpus. In this case, the cpuset is not a real partition 178 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 179 * and the cpuset can be restored back to a partition root if the 180 * parent cpuset can give more CPUs back to this child cpuset. 181 */ 182 #define PRS_DISABLED 0 183 #define PRS_ENABLED 1 184 #define PRS_ERROR -1 185 186 /* 187 * Temporary cpumasks for working with partitions that are passed among 188 * functions to avoid memory allocation in inner functions. 189 */ 190 struct tmpmasks { 191 cpumask_var_t addmask, delmask; /* For partition root */ 192 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 193 }; 194 195 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 196 { 197 return css ? container_of(css, struct cpuset, css) : NULL; 198 } 199 200 /* Retrieve the cpuset for a task */ 201 static inline struct cpuset *task_cs(struct task_struct *task) 202 { 203 return css_cs(task_css(task, cpuset_cgrp_id)); 204 } 205 206 static inline struct cpuset *parent_cs(struct cpuset *cs) 207 { 208 return css_cs(cs->css.parent); 209 } 210 211 /* bits in struct cpuset flags field */ 212 typedef enum { 213 CS_ONLINE, 214 CS_CPU_EXCLUSIVE, 215 CS_MEM_EXCLUSIVE, 216 CS_MEM_HARDWALL, 217 CS_MEMORY_MIGRATE, 218 CS_SCHED_LOAD_BALANCE, 219 CS_SPREAD_PAGE, 220 CS_SPREAD_SLAB, 221 } cpuset_flagbits_t; 222 223 /* convenient tests for these bits */ 224 static inline bool is_cpuset_online(struct cpuset *cs) 225 { 226 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 227 } 228 229 static inline int is_cpu_exclusive(const struct cpuset *cs) 230 { 231 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 232 } 233 234 static inline int is_mem_exclusive(const struct cpuset *cs) 235 { 236 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 237 } 238 239 static inline int is_mem_hardwall(const struct cpuset *cs) 240 { 241 return test_bit(CS_MEM_HARDWALL, &cs->flags); 242 } 243 244 static inline int is_sched_load_balance(const struct cpuset *cs) 245 { 246 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 247 } 248 249 static inline int is_memory_migrate(const struct cpuset *cs) 250 { 251 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 252 } 253 254 static inline int is_spread_page(const struct cpuset *cs) 255 { 256 return test_bit(CS_SPREAD_PAGE, &cs->flags); 257 } 258 259 static inline int is_spread_slab(const struct cpuset *cs) 260 { 261 return test_bit(CS_SPREAD_SLAB, &cs->flags); 262 } 263 264 static inline int is_partition_root(const struct cpuset *cs) 265 { 266 return cs->partition_root_state > 0; 267 } 268 269 /* 270 * Send notification event of whenever partition_root_state changes. 271 */ 272 static inline void notify_partition_change(struct cpuset *cs, 273 int old_prs, int new_prs) 274 { 275 if (old_prs != new_prs) 276 cgroup_file_notify(&cs->partition_file); 277 } 278 279 static struct cpuset top_cpuset = { 280 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 281 (1 << CS_MEM_EXCLUSIVE)), 282 .partition_root_state = PRS_ENABLED, 283 }; 284 285 /** 286 * cpuset_for_each_child - traverse online children of a cpuset 287 * @child_cs: loop cursor pointing to the current child 288 * @pos_css: used for iteration 289 * @parent_cs: target cpuset to walk children of 290 * 291 * Walk @child_cs through the online children of @parent_cs. Must be used 292 * with RCU read locked. 293 */ 294 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 295 css_for_each_child((pos_css), &(parent_cs)->css) \ 296 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 297 298 /** 299 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 300 * @des_cs: loop cursor pointing to the current descendant 301 * @pos_css: used for iteration 302 * @root_cs: target cpuset to walk ancestor of 303 * 304 * Walk @des_cs through the online descendants of @root_cs. Must be used 305 * with RCU read locked. The caller may modify @pos_css by calling 306 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 307 * iteration and the first node to be visited. 308 */ 309 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 310 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 311 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 312 313 /* 314 * There are two global locks guarding cpuset structures - cpuset_mutex and 315 * callback_lock. We also require taking task_lock() when dereferencing a 316 * task's cpuset pointer. See "The task_lock() exception", at the end of this 317 * comment. 318 * 319 * A task must hold both locks to modify cpusets. If a task holds 320 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 321 * is the only task able to also acquire callback_lock and be able to 322 * modify cpusets. It can perform various checks on the cpuset structure 323 * first, knowing nothing will change. It can also allocate memory while 324 * just holding cpuset_mutex. While it is performing these checks, various 325 * callback routines can briefly acquire callback_lock to query cpusets. 326 * Once it is ready to make the changes, it takes callback_lock, blocking 327 * everyone else. 328 * 329 * Calls to the kernel memory allocator can not be made while holding 330 * callback_lock, as that would risk double tripping on callback_lock 331 * from one of the callbacks into the cpuset code from within 332 * __alloc_pages(). 333 * 334 * If a task is only holding callback_lock, then it has read-only 335 * access to cpusets. 336 * 337 * Now, the task_struct fields mems_allowed and mempolicy may be changed 338 * by other task, we use alloc_lock in the task_struct fields to protect 339 * them. 340 * 341 * The cpuset_common_file_read() handlers only hold callback_lock across 342 * small pieces of code, such as when reading out possibly multi-word 343 * cpumasks and nodemasks. 344 * 345 * Accessing a task's cpuset should be done in accordance with the 346 * guidelines for accessing subsystem state in kernel/cgroup.c 347 */ 348 349 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 350 351 void cpuset_read_lock(void) 352 { 353 percpu_down_read(&cpuset_rwsem); 354 } 355 356 void cpuset_read_unlock(void) 357 { 358 percpu_up_read(&cpuset_rwsem); 359 } 360 361 static DEFINE_SPINLOCK(callback_lock); 362 363 static struct workqueue_struct *cpuset_migrate_mm_wq; 364 365 /* 366 * CPU / memory hotplug is handled asynchronously. 367 */ 368 static void cpuset_hotplug_workfn(struct work_struct *work); 369 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 370 371 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 372 373 /* 374 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 375 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 376 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 377 * With v2 behavior, "cpus" and "mems" are always what the users have 378 * requested and won't be changed by hotplug events. Only the effective 379 * cpus or mems will be affected. 380 */ 381 static inline bool is_in_v2_mode(void) 382 { 383 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 384 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 385 } 386 387 /* 388 * Return in pmask the portion of a task's cpusets's cpus_allowed that 389 * are online and are capable of running the task. If none are found, 390 * walk up the cpuset hierarchy until we find one that does have some 391 * appropriate cpus. 392 * 393 * One way or another, we guarantee to return some non-empty subset 394 * of cpu_online_mask. 395 * 396 * Call with callback_lock or cpuset_mutex held. 397 */ 398 static void guarantee_online_cpus(struct task_struct *tsk, 399 struct cpumask *pmask) 400 { 401 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 402 struct cpuset *cs; 403 404 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 405 cpumask_copy(pmask, cpu_online_mask); 406 407 rcu_read_lock(); 408 cs = task_cs(tsk); 409 410 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 411 cs = parent_cs(cs); 412 if (unlikely(!cs)) { 413 /* 414 * The top cpuset doesn't have any online cpu as a 415 * consequence of a race between cpuset_hotplug_work 416 * and cpu hotplug notifier. But we know the top 417 * cpuset's effective_cpus is on its way to be 418 * identical to cpu_online_mask. 419 */ 420 goto out_unlock; 421 } 422 } 423 cpumask_and(pmask, pmask, cs->effective_cpus); 424 425 out_unlock: 426 rcu_read_unlock(); 427 } 428 429 /* 430 * Return in *pmask the portion of a cpusets's mems_allowed that 431 * are online, with memory. If none are online with memory, walk 432 * up the cpuset hierarchy until we find one that does have some 433 * online mems. The top cpuset always has some mems online. 434 * 435 * One way or another, we guarantee to return some non-empty subset 436 * of node_states[N_MEMORY]. 437 * 438 * Call with callback_lock or cpuset_mutex held. 439 */ 440 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 441 { 442 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 443 cs = parent_cs(cs); 444 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 445 } 446 447 /* 448 * update task's spread flag if cpuset's page/slab spread flag is set 449 * 450 * Call with callback_lock or cpuset_mutex held. 451 */ 452 static void cpuset_update_task_spread_flag(struct cpuset *cs, 453 struct task_struct *tsk) 454 { 455 if (is_spread_page(cs)) 456 task_set_spread_page(tsk); 457 else 458 task_clear_spread_page(tsk); 459 460 if (is_spread_slab(cs)) 461 task_set_spread_slab(tsk); 462 else 463 task_clear_spread_slab(tsk); 464 } 465 466 /* 467 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 468 * 469 * One cpuset is a subset of another if all its allowed CPUs and 470 * Memory Nodes are a subset of the other, and its exclusive flags 471 * are only set if the other's are set. Call holding cpuset_mutex. 472 */ 473 474 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 475 { 476 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 477 nodes_subset(p->mems_allowed, q->mems_allowed) && 478 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 479 is_mem_exclusive(p) <= is_mem_exclusive(q); 480 } 481 482 /** 483 * alloc_cpumasks - allocate three cpumasks for cpuset 484 * @cs: the cpuset that have cpumasks to be allocated. 485 * @tmp: the tmpmasks structure pointer 486 * Return: 0 if successful, -ENOMEM otherwise. 487 * 488 * Only one of the two input arguments should be non-NULL. 489 */ 490 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 491 { 492 cpumask_var_t *pmask1, *pmask2, *pmask3; 493 494 if (cs) { 495 pmask1 = &cs->cpus_allowed; 496 pmask2 = &cs->effective_cpus; 497 pmask3 = &cs->subparts_cpus; 498 } else { 499 pmask1 = &tmp->new_cpus; 500 pmask2 = &tmp->addmask; 501 pmask3 = &tmp->delmask; 502 } 503 504 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 505 return -ENOMEM; 506 507 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 508 goto free_one; 509 510 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 511 goto free_two; 512 513 return 0; 514 515 free_two: 516 free_cpumask_var(*pmask2); 517 free_one: 518 free_cpumask_var(*pmask1); 519 return -ENOMEM; 520 } 521 522 /** 523 * free_cpumasks - free cpumasks in a tmpmasks structure 524 * @cs: the cpuset that have cpumasks to be free. 525 * @tmp: the tmpmasks structure pointer 526 */ 527 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 528 { 529 if (cs) { 530 free_cpumask_var(cs->cpus_allowed); 531 free_cpumask_var(cs->effective_cpus); 532 free_cpumask_var(cs->subparts_cpus); 533 } 534 if (tmp) { 535 free_cpumask_var(tmp->new_cpus); 536 free_cpumask_var(tmp->addmask); 537 free_cpumask_var(tmp->delmask); 538 } 539 } 540 541 /** 542 * alloc_trial_cpuset - allocate a trial cpuset 543 * @cs: the cpuset that the trial cpuset duplicates 544 */ 545 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 546 { 547 struct cpuset *trial; 548 549 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 550 if (!trial) 551 return NULL; 552 553 if (alloc_cpumasks(trial, NULL)) { 554 kfree(trial); 555 return NULL; 556 } 557 558 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 559 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 560 return trial; 561 } 562 563 /** 564 * free_cpuset - free the cpuset 565 * @cs: the cpuset to be freed 566 */ 567 static inline void free_cpuset(struct cpuset *cs) 568 { 569 free_cpumasks(cs, NULL); 570 kfree(cs); 571 } 572 573 /* 574 * validate_change() - Used to validate that any proposed cpuset change 575 * follows the structural rules for cpusets. 576 * 577 * If we replaced the flag and mask values of the current cpuset 578 * (cur) with those values in the trial cpuset (trial), would 579 * our various subset and exclusive rules still be valid? Presumes 580 * cpuset_mutex held. 581 * 582 * 'cur' is the address of an actual, in-use cpuset. Operations 583 * such as list traversal that depend on the actual address of the 584 * cpuset in the list must use cur below, not trial. 585 * 586 * 'trial' is the address of bulk structure copy of cur, with 587 * perhaps one or more of the fields cpus_allowed, mems_allowed, 588 * or flags changed to new, trial values. 589 * 590 * Return 0 if valid, -errno if not. 591 */ 592 593 static int validate_change(struct cpuset *cur, struct cpuset *trial) 594 { 595 struct cgroup_subsys_state *css; 596 struct cpuset *c, *par; 597 int ret; 598 599 rcu_read_lock(); 600 601 /* Each of our child cpusets must be a subset of us */ 602 ret = -EBUSY; 603 cpuset_for_each_child(c, css, cur) 604 if (!is_cpuset_subset(c, trial)) 605 goto out; 606 607 /* Remaining checks don't apply to root cpuset */ 608 ret = 0; 609 if (cur == &top_cpuset) 610 goto out; 611 612 par = parent_cs(cur); 613 614 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 615 ret = -EACCES; 616 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 617 goto out; 618 619 /* 620 * If either I or some sibling (!= me) is exclusive, we can't 621 * overlap 622 */ 623 ret = -EINVAL; 624 cpuset_for_each_child(c, css, par) { 625 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 626 c != cur && 627 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 628 goto out; 629 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 630 c != cur && 631 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 632 goto out; 633 } 634 635 /* 636 * Cpusets with tasks - existing or newly being attached - can't 637 * be changed to have empty cpus_allowed or mems_allowed. 638 */ 639 ret = -ENOSPC; 640 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 641 if (!cpumask_empty(cur->cpus_allowed) && 642 cpumask_empty(trial->cpus_allowed)) 643 goto out; 644 if (!nodes_empty(cur->mems_allowed) && 645 nodes_empty(trial->mems_allowed)) 646 goto out; 647 } 648 649 /* 650 * We can't shrink if we won't have enough room for SCHED_DEADLINE 651 * tasks. 652 */ 653 ret = -EBUSY; 654 if (is_cpu_exclusive(cur) && 655 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 656 trial->cpus_allowed)) 657 goto out; 658 659 ret = 0; 660 out: 661 rcu_read_unlock(); 662 return ret; 663 } 664 665 #ifdef CONFIG_SMP 666 /* 667 * Helper routine for generate_sched_domains(). 668 * Do cpusets a, b have overlapping effective cpus_allowed masks? 669 */ 670 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 671 { 672 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 673 } 674 675 static void 676 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 677 { 678 if (dattr->relax_domain_level < c->relax_domain_level) 679 dattr->relax_domain_level = c->relax_domain_level; 680 return; 681 } 682 683 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 684 struct cpuset *root_cs) 685 { 686 struct cpuset *cp; 687 struct cgroup_subsys_state *pos_css; 688 689 rcu_read_lock(); 690 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 691 /* skip the whole subtree if @cp doesn't have any CPU */ 692 if (cpumask_empty(cp->cpus_allowed)) { 693 pos_css = css_rightmost_descendant(pos_css); 694 continue; 695 } 696 697 if (is_sched_load_balance(cp)) 698 update_domain_attr(dattr, cp); 699 } 700 rcu_read_unlock(); 701 } 702 703 /* Must be called with cpuset_mutex held. */ 704 static inline int nr_cpusets(void) 705 { 706 /* jump label reference count + the top-level cpuset */ 707 return static_key_count(&cpusets_enabled_key.key) + 1; 708 } 709 710 /* 711 * generate_sched_domains() 712 * 713 * This function builds a partial partition of the systems CPUs 714 * A 'partial partition' is a set of non-overlapping subsets whose 715 * union is a subset of that set. 716 * The output of this function needs to be passed to kernel/sched/core.c 717 * partition_sched_domains() routine, which will rebuild the scheduler's 718 * load balancing domains (sched domains) as specified by that partial 719 * partition. 720 * 721 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 722 * for a background explanation of this. 723 * 724 * Does not return errors, on the theory that the callers of this 725 * routine would rather not worry about failures to rebuild sched 726 * domains when operating in the severe memory shortage situations 727 * that could cause allocation failures below. 728 * 729 * Must be called with cpuset_mutex held. 730 * 731 * The three key local variables below are: 732 * cp - cpuset pointer, used (together with pos_css) to perform a 733 * top-down scan of all cpusets. For our purposes, rebuilding 734 * the schedulers sched domains, we can ignore !is_sched_load_ 735 * balance cpusets. 736 * csa - (for CpuSet Array) Array of pointers to all the cpusets 737 * that need to be load balanced, for convenient iterative 738 * access by the subsequent code that finds the best partition, 739 * i.e the set of domains (subsets) of CPUs such that the 740 * cpus_allowed of every cpuset marked is_sched_load_balance 741 * is a subset of one of these domains, while there are as 742 * many such domains as possible, each as small as possible. 743 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 744 * the kernel/sched/core.c routine partition_sched_domains() in a 745 * convenient format, that can be easily compared to the prior 746 * value to determine what partition elements (sched domains) 747 * were changed (added or removed.) 748 * 749 * Finding the best partition (set of domains): 750 * The triple nested loops below over i, j, k scan over the 751 * load balanced cpusets (using the array of cpuset pointers in 752 * csa[]) looking for pairs of cpusets that have overlapping 753 * cpus_allowed, but which don't have the same 'pn' partition 754 * number and gives them in the same partition number. It keeps 755 * looping on the 'restart' label until it can no longer find 756 * any such pairs. 757 * 758 * The union of the cpus_allowed masks from the set of 759 * all cpusets having the same 'pn' value then form the one 760 * element of the partition (one sched domain) to be passed to 761 * partition_sched_domains(). 762 */ 763 static int generate_sched_domains(cpumask_var_t **domains, 764 struct sched_domain_attr **attributes) 765 { 766 struct cpuset *cp; /* top-down scan of cpusets */ 767 struct cpuset **csa; /* array of all cpuset ptrs */ 768 int csn; /* how many cpuset ptrs in csa so far */ 769 int i, j, k; /* indices for partition finding loops */ 770 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 771 struct sched_domain_attr *dattr; /* attributes for custom domains */ 772 int ndoms = 0; /* number of sched domains in result */ 773 int nslot; /* next empty doms[] struct cpumask slot */ 774 struct cgroup_subsys_state *pos_css; 775 bool root_load_balance = is_sched_load_balance(&top_cpuset); 776 777 doms = NULL; 778 dattr = NULL; 779 csa = NULL; 780 781 /* Special case for the 99% of systems with one, full, sched domain */ 782 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 783 ndoms = 1; 784 doms = alloc_sched_domains(ndoms); 785 if (!doms) 786 goto done; 787 788 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 789 if (dattr) { 790 *dattr = SD_ATTR_INIT; 791 update_domain_attr_tree(dattr, &top_cpuset); 792 } 793 cpumask_and(doms[0], top_cpuset.effective_cpus, 794 housekeeping_cpumask(HK_FLAG_DOMAIN)); 795 796 goto done; 797 } 798 799 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 800 if (!csa) 801 goto done; 802 csn = 0; 803 804 rcu_read_lock(); 805 if (root_load_balance) 806 csa[csn++] = &top_cpuset; 807 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 808 if (cp == &top_cpuset) 809 continue; 810 /* 811 * Continue traversing beyond @cp iff @cp has some CPUs and 812 * isn't load balancing. The former is obvious. The 813 * latter: All child cpusets contain a subset of the 814 * parent's cpus, so just skip them, and then we call 815 * update_domain_attr_tree() to calc relax_domain_level of 816 * the corresponding sched domain. 817 * 818 * If root is load-balancing, we can skip @cp if it 819 * is a subset of the root's effective_cpus. 820 */ 821 if (!cpumask_empty(cp->cpus_allowed) && 822 !(is_sched_load_balance(cp) && 823 cpumask_intersects(cp->cpus_allowed, 824 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 825 continue; 826 827 if (root_load_balance && 828 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 829 continue; 830 831 if (is_sched_load_balance(cp) && 832 !cpumask_empty(cp->effective_cpus)) 833 csa[csn++] = cp; 834 835 /* skip @cp's subtree if not a partition root */ 836 if (!is_partition_root(cp)) 837 pos_css = css_rightmost_descendant(pos_css); 838 } 839 rcu_read_unlock(); 840 841 for (i = 0; i < csn; i++) 842 csa[i]->pn = i; 843 ndoms = csn; 844 845 restart: 846 /* Find the best partition (set of sched domains) */ 847 for (i = 0; i < csn; i++) { 848 struct cpuset *a = csa[i]; 849 int apn = a->pn; 850 851 for (j = 0; j < csn; j++) { 852 struct cpuset *b = csa[j]; 853 int bpn = b->pn; 854 855 if (apn != bpn && cpusets_overlap(a, b)) { 856 for (k = 0; k < csn; k++) { 857 struct cpuset *c = csa[k]; 858 859 if (c->pn == bpn) 860 c->pn = apn; 861 } 862 ndoms--; /* one less element */ 863 goto restart; 864 } 865 } 866 } 867 868 /* 869 * Now we know how many domains to create. 870 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 871 */ 872 doms = alloc_sched_domains(ndoms); 873 if (!doms) 874 goto done; 875 876 /* 877 * The rest of the code, including the scheduler, can deal with 878 * dattr==NULL case. No need to abort if alloc fails. 879 */ 880 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 881 GFP_KERNEL); 882 883 for (nslot = 0, i = 0; i < csn; i++) { 884 struct cpuset *a = csa[i]; 885 struct cpumask *dp; 886 int apn = a->pn; 887 888 if (apn < 0) { 889 /* Skip completed partitions */ 890 continue; 891 } 892 893 dp = doms[nslot]; 894 895 if (nslot == ndoms) { 896 static int warnings = 10; 897 if (warnings) { 898 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 899 nslot, ndoms, csn, i, apn); 900 warnings--; 901 } 902 continue; 903 } 904 905 cpumask_clear(dp); 906 if (dattr) 907 *(dattr + nslot) = SD_ATTR_INIT; 908 for (j = i; j < csn; j++) { 909 struct cpuset *b = csa[j]; 910 911 if (apn == b->pn) { 912 cpumask_or(dp, dp, b->effective_cpus); 913 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 914 if (dattr) 915 update_domain_attr_tree(dattr + nslot, b); 916 917 /* Done with this partition */ 918 b->pn = -1; 919 } 920 } 921 nslot++; 922 } 923 BUG_ON(nslot != ndoms); 924 925 done: 926 kfree(csa); 927 928 /* 929 * Fallback to the default domain if kmalloc() failed. 930 * See comments in partition_sched_domains(). 931 */ 932 if (doms == NULL) 933 ndoms = 1; 934 935 *domains = doms; 936 *attributes = dattr; 937 return ndoms; 938 } 939 940 static void update_tasks_root_domain(struct cpuset *cs) 941 { 942 struct css_task_iter it; 943 struct task_struct *task; 944 945 css_task_iter_start(&cs->css, 0, &it); 946 947 while ((task = css_task_iter_next(&it))) 948 dl_add_task_root_domain(task); 949 950 css_task_iter_end(&it); 951 } 952 953 static void rebuild_root_domains(void) 954 { 955 struct cpuset *cs = NULL; 956 struct cgroup_subsys_state *pos_css; 957 958 percpu_rwsem_assert_held(&cpuset_rwsem); 959 lockdep_assert_cpus_held(); 960 lockdep_assert_held(&sched_domains_mutex); 961 962 rcu_read_lock(); 963 964 /* 965 * Clear default root domain DL accounting, it will be computed again 966 * if a task belongs to it. 967 */ 968 dl_clear_root_domain(&def_root_domain); 969 970 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 971 972 if (cpumask_empty(cs->effective_cpus)) { 973 pos_css = css_rightmost_descendant(pos_css); 974 continue; 975 } 976 977 css_get(&cs->css); 978 979 rcu_read_unlock(); 980 981 update_tasks_root_domain(cs); 982 983 rcu_read_lock(); 984 css_put(&cs->css); 985 } 986 rcu_read_unlock(); 987 } 988 989 static void 990 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 991 struct sched_domain_attr *dattr_new) 992 { 993 mutex_lock(&sched_domains_mutex); 994 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 995 rebuild_root_domains(); 996 mutex_unlock(&sched_domains_mutex); 997 } 998 999 /* 1000 * Rebuild scheduler domains. 1001 * 1002 * If the flag 'sched_load_balance' of any cpuset with non-empty 1003 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1004 * which has that flag enabled, or if any cpuset with a non-empty 1005 * 'cpus' is removed, then call this routine to rebuild the 1006 * scheduler's dynamic sched domains. 1007 * 1008 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1009 */ 1010 static void rebuild_sched_domains_locked(void) 1011 { 1012 struct cgroup_subsys_state *pos_css; 1013 struct sched_domain_attr *attr; 1014 cpumask_var_t *doms; 1015 struct cpuset *cs; 1016 int ndoms; 1017 1018 lockdep_assert_cpus_held(); 1019 percpu_rwsem_assert_held(&cpuset_rwsem); 1020 1021 /* 1022 * If we have raced with CPU hotplug, return early to avoid 1023 * passing doms with offlined cpu to partition_sched_domains(). 1024 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1025 * 1026 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1027 * should be the same as the active CPUs, so checking only top_cpuset 1028 * is enough to detect racing CPU offlines. 1029 */ 1030 if (!top_cpuset.nr_subparts_cpus && 1031 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1032 return; 1033 1034 /* 1035 * With subpartition CPUs, however, the effective CPUs of a partition 1036 * root should be only a subset of the active CPUs. Since a CPU in any 1037 * partition root could be offlined, all must be checked. 1038 */ 1039 if (top_cpuset.nr_subparts_cpus) { 1040 rcu_read_lock(); 1041 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1042 if (!is_partition_root(cs)) { 1043 pos_css = css_rightmost_descendant(pos_css); 1044 continue; 1045 } 1046 if (!cpumask_subset(cs->effective_cpus, 1047 cpu_active_mask)) { 1048 rcu_read_unlock(); 1049 return; 1050 } 1051 } 1052 rcu_read_unlock(); 1053 } 1054 1055 /* Generate domain masks and attrs */ 1056 ndoms = generate_sched_domains(&doms, &attr); 1057 1058 /* Have scheduler rebuild the domains */ 1059 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1060 } 1061 #else /* !CONFIG_SMP */ 1062 static void rebuild_sched_domains_locked(void) 1063 { 1064 } 1065 #endif /* CONFIG_SMP */ 1066 1067 void rebuild_sched_domains(void) 1068 { 1069 cpus_read_lock(); 1070 percpu_down_write(&cpuset_rwsem); 1071 rebuild_sched_domains_locked(); 1072 percpu_up_write(&cpuset_rwsem); 1073 cpus_read_unlock(); 1074 } 1075 1076 /** 1077 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1078 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1079 * 1080 * Iterate through each task of @cs updating its cpus_allowed to the 1081 * effective cpuset's. As this function is called with cpuset_mutex held, 1082 * cpuset membership stays stable. 1083 */ 1084 static void update_tasks_cpumask(struct cpuset *cs) 1085 { 1086 struct css_task_iter it; 1087 struct task_struct *task; 1088 1089 css_task_iter_start(&cs->css, 0, &it); 1090 while ((task = css_task_iter_next(&it))) 1091 set_cpus_allowed_ptr(task, cs->effective_cpus); 1092 css_task_iter_end(&it); 1093 } 1094 1095 /** 1096 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1097 * @new_cpus: the temp variable for the new effective_cpus mask 1098 * @cs: the cpuset the need to recompute the new effective_cpus mask 1099 * @parent: the parent cpuset 1100 * 1101 * If the parent has subpartition CPUs, include them in the list of 1102 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1103 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1104 * to mask those out. 1105 */ 1106 static void compute_effective_cpumask(struct cpumask *new_cpus, 1107 struct cpuset *cs, struct cpuset *parent) 1108 { 1109 if (parent->nr_subparts_cpus) { 1110 cpumask_or(new_cpus, parent->effective_cpus, 1111 parent->subparts_cpus); 1112 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1113 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1114 } else { 1115 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1116 } 1117 } 1118 1119 /* 1120 * Commands for update_parent_subparts_cpumask 1121 */ 1122 enum subparts_cmd { 1123 partcmd_enable, /* Enable partition root */ 1124 partcmd_disable, /* Disable partition root */ 1125 partcmd_update, /* Update parent's subparts_cpus */ 1126 }; 1127 1128 /** 1129 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1130 * @cpuset: The cpuset that requests change in partition root state 1131 * @cmd: Partition root state change command 1132 * @newmask: Optional new cpumask for partcmd_update 1133 * @tmp: Temporary addmask and delmask 1134 * Return: 0, 1 or an error code 1135 * 1136 * For partcmd_enable, the cpuset is being transformed from a non-partition 1137 * root to a partition root. The cpus_allowed mask of the given cpuset will 1138 * be put into parent's subparts_cpus and taken away from parent's 1139 * effective_cpus. The function will return 0 if all the CPUs listed in 1140 * cpus_allowed can be granted or an error code will be returned. 1141 * 1142 * For partcmd_disable, the cpuset is being transofrmed from a partition 1143 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1144 * parent's subparts_cpus will be taken away from that cpumask and put back 1145 * into parent's effective_cpus. 0 should always be returned. 1146 * 1147 * For partcmd_update, if the optional newmask is specified, the cpu 1148 * list is to be changed from cpus_allowed to newmask. Otherwise, 1149 * cpus_allowed is assumed to remain the same. The cpuset should either 1150 * be a partition root or an invalid partition root. The partition root 1151 * state may change if newmask is NULL and none of the requested CPUs can 1152 * be granted by the parent. The function will return 1 if changes to 1153 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1154 * Error code should only be returned when newmask is non-NULL. 1155 * 1156 * The partcmd_enable and partcmd_disable commands are used by 1157 * update_prstate(). The partcmd_update command is used by 1158 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1159 * newmask set. 1160 * 1161 * The checking is more strict when enabling partition root than the 1162 * other two commands. 1163 * 1164 * Because of the implicit cpu exclusive nature of a partition root, 1165 * cpumask changes that violates the cpu exclusivity rule will not be 1166 * permitted when checked by validate_change(). The validate_change() 1167 * function will also prevent any changes to the cpu list if it is not 1168 * a superset of children's cpu lists. 1169 */ 1170 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1171 struct cpumask *newmask, 1172 struct tmpmasks *tmp) 1173 { 1174 struct cpuset *parent = parent_cs(cpuset); 1175 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1176 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1177 int old_prs, new_prs; 1178 bool part_error = false; /* Partition error? */ 1179 1180 percpu_rwsem_assert_held(&cpuset_rwsem); 1181 1182 /* 1183 * The parent must be a partition root. 1184 * The new cpumask, if present, or the current cpus_allowed must 1185 * not be empty. 1186 */ 1187 if (!is_partition_root(parent) || 1188 (newmask && cpumask_empty(newmask)) || 1189 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1190 return -EINVAL; 1191 1192 /* 1193 * Enabling/disabling partition root is not allowed if there are 1194 * online children. 1195 */ 1196 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1197 return -EBUSY; 1198 1199 /* 1200 * Enabling partition root is not allowed if not all the CPUs 1201 * can be granted from parent's effective_cpus or at least one 1202 * CPU will be left after that. 1203 */ 1204 if ((cmd == partcmd_enable) && 1205 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1206 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1207 return -EINVAL; 1208 1209 /* 1210 * A cpumask update cannot make parent's effective_cpus become empty. 1211 */ 1212 adding = deleting = false; 1213 old_prs = new_prs = cpuset->partition_root_state; 1214 if (cmd == partcmd_enable) { 1215 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1216 adding = true; 1217 } else if (cmd == partcmd_disable) { 1218 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1219 parent->subparts_cpus); 1220 } else if (newmask) { 1221 /* 1222 * partcmd_update with newmask: 1223 * 1224 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1225 * addmask = newmask & parent->effective_cpus 1226 * & ~parent->subparts_cpus 1227 */ 1228 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1229 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1230 parent->subparts_cpus); 1231 1232 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1233 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1234 parent->subparts_cpus); 1235 /* 1236 * Return error if the new effective_cpus could become empty. 1237 */ 1238 if (adding && 1239 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1240 if (!deleting) 1241 return -EINVAL; 1242 /* 1243 * As some of the CPUs in subparts_cpus might have 1244 * been offlined, we need to compute the real delmask 1245 * to confirm that. 1246 */ 1247 if (!cpumask_and(tmp->addmask, tmp->delmask, 1248 cpu_active_mask)) 1249 return -EINVAL; 1250 cpumask_copy(tmp->addmask, parent->effective_cpus); 1251 } 1252 } else { 1253 /* 1254 * partcmd_update w/o newmask: 1255 * 1256 * addmask = cpus_allowed & parent->effective_cpus 1257 * 1258 * Note that parent's subparts_cpus may have been 1259 * pre-shrunk in case there is a change in the cpu list. 1260 * So no deletion is needed. 1261 */ 1262 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1263 parent->effective_cpus); 1264 part_error = cpumask_equal(tmp->addmask, 1265 parent->effective_cpus); 1266 } 1267 1268 if (cmd == partcmd_update) { 1269 int prev_prs = cpuset->partition_root_state; 1270 1271 /* 1272 * Check for possible transition between PRS_ENABLED 1273 * and PRS_ERROR. 1274 */ 1275 switch (cpuset->partition_root_state) { 1276 case PRS_ENABLED: 1277 if (part_error) 1278 new_prs = PRS_ERROR; 1279 break; 1280 case PRS_ERROR: 1281 if (!part_error) 1282 new_prs = PRS_ENABLED; 1283 break; 1284 } 1285 /* 1286 * Set part_error if previously in invalid state. 1287 */ 1288 part_error = (prev_prs == PRS_ERROR); 1289 } 1290 1291 if (!part_error && (new_prs == PRS_ERROR)) 1292 return 0; /* Nothing need to be done */ 1293 1294 if (new_prs == PRS_ERROR) { 1295 /* 1296 * Remove all its cpus from parent's subparts_cpus. 1297 */ 1298 adding = false; 1299 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1300 parent->subparts_cpus); 1301 } 1302 1303 if (!adding && !deleting && (new_prs == old_prs)) 1304 return 0; 1305 1306 /* 1307 * Change the parent's subparts_cpus. 1308 * Newly added CPUs will be removed from effective_cpus and 1309 * newly deleted ones will be added back to effective_cpus. 1310 */ 1311 spin_lock_irq(&callback_lock); 1312 if (adding) { 1313 cpumask_or(parent->subparts_cpus, 1314 parent->subparts_cpus, tmp->addmask); 1315 cpumask_andnot(parent->effective_cpus, 1316 parent->effective_cpus, tmp->addmask); 1317 } 1318 if (deleting) { 1319 cpumask_andnot(parent->subparts_cpus, 1320 parent->subparts_cpus, tmp->delmask); 1321 /* 1322 * Some of the CPUs in subparts_cpus might have been offlined. 1323 */ 1324 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1325 cpumask_or(parent->effective_cpus, 1326 parent->effective_cpus, tmp->delmask); 1327 } 1328 1329 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1330 1331 if (old_prs != new_prs) 1332 cpuset->partition_root_state = new_prs; 1333 1334 spin_unlock_irq(&callback_lock); 1335 notify_partition_change(cpuset, old_prs, new_prs); 1336 1337 return cmd == partcmd_update; 1338 } 1339 1340 /* 1341 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1342 * @cs: the cpuset to consider 1343 * @tmp: temp variables for calculating effective_cpus & partition setup 1344 * 1345 * When configured cpumask is changed, the effective cpumasks of this cpuset 1346 * and all its descendants need to be updated. 1347 * 1348 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1349 * 1350 * Called with cpuset_mutex held 1351 */ 1352 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1353 { 1354 struct cpuset *cp; 1355 struct cgroup_subsys_state *pos_css; 1356 bool need_rebuild_sched_domains = false; 1357 int old_prs, new_prs; 1358 1359 rcu_read_lock(); 1360 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1361 struct cpuset *parent = parent_cs(cp); 1362 1363 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1364 1365 /* 1366 * If it becomes empty, inherit the effective mask of the 1367 * parent, which is guaranteed to have some CPUs. 1368 */ 1369 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1370 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1371 if (!cp->use_parent_ecpus) { 1372 cp->use_parent_ecpus = true; 1373 parent->child_ecpus_count++; 1374 } 1375 } else if (cp->use_parent_ecpus) { 1376 cp->use_parent_ecpus = false; 1377 WARN_ON_ONCE(!parent->child_ecpus_count); 1378 parent->child_ecpus_count--; 1379 } 1380 1381 /* 1382 * Skip the whole subtree if the cpumask remains the same 1383 * and has no partition root state. 1384 */ 1385 if (!cp->partition_root_state && 1386 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1387 pos_css = css_rightmost_descendant(pos_css); 1388 continue; 1389 } 1390 1391 /* 1392 * update_parent_subparts_cpumask() should have been called 1393 * for cs already in update_cpumask(). We should also call 1394 * update_tasks_cpumask() again for tasks in the parent 1395 * cpuset if the parent's subparts_cpus changes. 1396 */ 1397 old_prs = new_prs = cp->partition_root_state; 1398 if ((cp != cs) && old_prs) { 1399 switch (parent->partition_root_state) { 1400 case PRS_DISABLED: 1401 /* 1402 * If parent is not a partition root or an 1403 * invalid partition root, clear its state 1404 * and its CS_CPU_EXCLUSIVE flag. 1405 */ 1406 WARN_ON_ONCE(cp->partition_root_state 1407 != PRS_ERROR); 1408 new_prs = PRS_DISABLED; 1409 1410 /* 1411 * clear_bit() is an atomic operation and 1412 * readers aren't interested in the state 1413 * of CS_CPU_EXCLUSIVE anyway. So we can 1414 * just update the flag without holding 1415 * the callback_lock. 1416 */ 1417 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1418 break; 1419 1420 case PRS_ENABLED: 1421 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1422 update_tasks_cpumask(parent); 1423 break; 1424 1425 case PRS_ERROR: 1426 /* 1427 * When parent is invalid, it has to be too. 1428 */ 1429 new_prs = PRS_ERROR; 1430 break; 1431 } 1432 } 1433 1434 if (!css_tryget_online(&cp->css)) 1435 continue; 1436 rcu_read_unlock(); 1437 1438 spin_lock_irq(&callback_lock); 1439 1440 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1441 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) { 1442 cp->nr_subparts_cpus = 0; 1443 cpumask_clear(cp->subparts_cpus); 1444 } else if (cp->nr_subparts_cpus) { 1445 /* 1446 * Make sure that effective_cpus & subparts_cpus 1447 * are mutually exclusive. 1448 * 1449 * In the unlikely event that effective_cpus 1450 * becomes empty. we clear cp->nr_subparts_cpus and 1451 * let its child partition roots to compete for 1452 * CPUs again. 1453 */ 1454 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1455 cp->subparts_cpus); 1456 if (cpumask_empty(cp->effective_cpus)) { 1457 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1458 cpumask_clear(cp->subparts_cpus); 1459 cp->nr_subparts_cpus = 0; 1460 } else if (!cpumask_subset(cp->subparts_cpus, 1461 tmp->new_cpus)) { 1462 cpumask_andnot(cp->subparts_cpus, 1463 cp->subparts_cpus, tmp->new_cpus); 1464 cp->nr_subparts_cpus 1465 = cpumask_weight(cp->subparts_cpus); 1466 } 1467 } 1468 1469 if (new_prs != old_prs) 1470 cp->partition_root_state = new_prs; 1471 1472 spin_unlock_irq(&callback_lock); 1473 notify_partition_change(cp, old_prs, new_prs); 1474 1475 WARN_ON(!is_in_v2_mode() && 1476 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1477 1478 update_tasks_cpumask(cp); 1479 1480 /* 1481 * On legacy hierarchy, if the effective cpumask of any non- 1482 * empty cpuset is changed, we need to rebuild sched domains. 1483 * On default hierarchy, the cpuset needs to be a partition 1484 * root as well. 1485 */ 1486 if (!cpumask_empty(cp->cpus_allowed) && 1487 is_sched_load_balance(cp) && 1488 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1489 is_partition_root(cp))) 1490 need_rebuild_sched_domains = true; 1491 1492 rcu_read_lock(); 1493 css_put(&cp->css); 1494 } 1495 rcu_read_unlock(); 1496 1497 if (need_rebuild_sched_domains) 1498 rebuild_sched_domains_locked(); 1499 } 1500 1501 /** 1502 * update_sibling_cpumasks - Update siblings cpumasks 1503 * @parent: Parent cpuset 1504 * @cs: Current cpuset 1505 * @tmp: Temp variables 1506 */ 1507 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1508 struct tmpmasks *tmp) 1509 { 1510 struct cpuset *sibling; 1511 struct cgroup_subsys_state *pos_css; 1512 1513 /* 1514 * Check all its siblings and call update_cpumasks_hier() 1515 * if their use_parent_ecpus flag is set in order for them 1516 * to use the right effective_cpus value. 1517 */ 1518 rcu_read_lock(); 1519 cpuset_for_each_child(sibling, pos_css, parent) { 1520 if (sibling == cs) 1521 continue; 1522 if (!sibling->use_parent_ecpus) 1523 continue; 1524 1525 update_cpumasks_hier(sibling, tmp); 1526 } 1527 rcu_read_unlock(); 1528 } 1529 1530 /** 1531 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1532 * @cs: the cpuset to consider 1533 * @trialcs: trial cpuset 1534 * @buf: buffer of cpu numbers written to this cpuset 1535 */ 1536 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1537 const char *buf) 1538 { 1539 int retval; 1540 struct tmpmasks tmp; 1541 1542 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1543 if (cs == &top_cpuset) 1544 return -EACCES; 1545 1546 /* 1547 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1548 * Since cpulist_parse() fails on an empty mask, we special case 1549 * that parsing. The validate_change() call ensures that cpusets 1550 * with tasks have cpus. 1551 */ 1552 if (!*buf) { 1553 cpumask_clear(trialcs->cpus_allowed); 1554 } else { 1555 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1556 if (retval < 0) 1557 return retval; 1558 1559 if (!cpumask_subset(trialcs->cpus_allowed, 1560 top_cpuset.cpus_allowed)) 1561 return -EINVAL; 1562 } 1563 1564 /* Nothing to do if the cpus didn't change */ 1565 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1566 return 0; 1567 1568 retval = validate_change(cs, trialcs); 1569 if (retval < 0) 1570 return retval; 1571 1572 #ifdef CONFIG_CPUMASK_OFFSTACK 1573 /* 1574 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1575 * to allocated cpumasks. 1576 */ 1577 tmp.addmask = trialcs->subparts_cpus; 1578 tmp.delmask = trialcs->effective_cpus; 1579 tmp.new_cpus = trialcs->cpus_allowed; 1580 #endif 1581 1582 if (cs->partition_root_state) { 1583 /* Cpumask of a partition root cannot be empty */ 1584 if (cpumask_empty(trialcs->cpus_allowed)) 1585 return -EINVAL; 1586 if (update_parent_subparts_cpumask(cs, partcmd_update, 1587 trialcs->cpus_allowed, &tmp) < 0) 1588 return -EINVAL; 1589 } 1590 1591 spin_lock_irq(&callback_lock); 1592 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1593 1594 /* 1595 * Make sure that subparts_cpus is a subset of cpus_allowed. 1596 */ 1597 if (cs->nr_subparts_cpus) { 1598 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1599 cs->cpus_allowed); 1600 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1601 } 1602 spin_unlock_irq(&callback_lock); 1603 1604 update_cpumasks_hier(cs, &tmp); 1605 1606 if (cs->partition_root_state) { 1607 struct cpuset *parent = parent_cs(cs); 1608 1609 /* 1610 * For partition root, update the cpumasks of sibling 1611 * cpusets if they use parent's effective_cpus. 1612 */ 1613 if (parent->child_ecpus_count) 1614 update_sibling_cpumasks(parent, cs, &tmp); 1615 } 1616 return 0; 1617 } 1618 1619 /* 1620 * Migrate memory region from one set of nodes to another. This is 1621 * performed asynchronously as it can be called from process migration path 1622 * holding locks involved in process management. All mm migrations are 1623 * performed in the queued order and can be waited for by flushing 1624 * cpuset_migrate_mm_wq. 1625 */ 1626 1627 struct cpuset_migrate_mm_work { 1628 struct work_struct work; 1629 struct mm_struct *mm; 1630 nodemask_t from; 1631 nodemask_t to; 1632 }; 1633 1634 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1635 { 1636 struct cpuset_migrate_mm_work *mwork = 1637 container_of(work, struct cpuset_migrate_mm_work, work); 1638 1639 /* on a wq worker, no need to worry about %current's mems_allowed */ 1640 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1641 mmput(mwork->mm); 1642 kfree(mwork); 1643 } 1644 1645 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1646 const nodemask_t *to) 1647 { 1648 struct cpuset_migrate_mm_work *mwork; 1649 1650 if (nodes_equal(*from, *to)) { 1651 mmput(mm); 1652 return; 1653 } 1654 1655 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1656 if (mwork) { 1657 mwork->mm = mm; 1658 mwork->from = *from; 1659 mwork->to = *to; 1660 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1661 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1662 } else { 1663 mmput(mm); 1664 } 1665 } 1666 1667 static void cpuset_post_attach(void) 1668 { 1669 flush_workqueue(cpuset_migrate_mm_wq); 1670 } 1671 1672 /* 1673 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1674 * @tsk: the task to change 1675 * @newmems: new nodes that the task will be set 1676 * 1677 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1678 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1679 * parallel, it might temporarily see an empty intersection, which results in 1680 * a seqlock check and retry before OOM or allocation failure. 1681 */ 1682 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1683 nodemask_t *newmems) 1684 { 1685 task_lock(tsk); 1686 1687 local_irq_disable(); 1688 write_seqcount_begin(&tsk->mems_allowed_seq); 1689 1690 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1691 mpol_rebind_task(tsk, newmems); 1692 tsk->mems_allowed = *newmems; 1693 1694 write_seqcount_end(&tsk->mems_allowed_seq); 1695 local_irq_enable(); 1696 1697 task_unlock(tsk); 1698 } 1699 1700 static void *cpuset_being_rebound; 1701 1702 /** 1703 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1704 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1705 * 1706 * Iterate through each task of @cs updating its mems_allowed to the 1707 * effective cpuset's. As this function is called with cpuset_mutex held, 1708 * cpuset membership stays stable. 1709 */ 1710 static void update_tasks_nodemask(struct cpuset *cs) 1711 { 1712 static nodemask_t newmems; /* protected by cpuset_mutex */ 1713 struct css_task_iter it; 1714 struct task_struct *task; 1715 1716 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1717 1718 guarantee_online_mems(cs, &newmems); 1719 1720 /* 1721 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1722 * take while holding tasklist_lock. Forks can happen - the 1723 * mpol_dup() cpuset_being_rebound check will catch such forks, 1724 * and rebind their vma mempolicies too. Because we still hold 1725 * the global cpuset_mutex, we know that no other rebind effort 1726 * will be contending for the global variable cpuset_being_rebound. 1727 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1728 * is idempotent. Also migrate pages in each mm to new nodes. 1729 */ 1730 css_task_iter_start(&cs->css, 0, &it); 1731 while ((task = css_task_iter_next(&it))) { 1732 struct mm_struct *mm; 1733 bool migrate; 1734 1735 cpuset_change_task_nodemask(task, &newmems); 1736 1737 mm = get_task_mm(task); 1738 if (!mm) 1739 continue; 1740 1741 migrate = is_memory_migrate(cs); 1742 1743 mpol_rebind_mm(mm, &cs->mems_allowed); 1744 if (migrate) 1745 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1746 else 1747 mmput(mm); 1748 } 1749 css_task_iter_end(&it); 1750 1751 /* 1752 * All the tasks' nodemasks have been updated, update 1753 * cs->old_mems_allowed. 1754 */ 1755 cs->old_mems_allowed = newmems; 1756 1757 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1758 cpuset_being_rebound = NULL; 1759 } 1760 1761 /* 1762 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1763 * @cs: the cpuset to consider 1764 * @new_mems: a temp variable for calculating new effective_mems 1765 * 1766 * When configured nodemask is changed, the effective nodemasks of this cpuset 1767 * and all its descendants need to be updated. 1768 * 1769 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 1770 * 1771 * Called with cpuset_mutex held 1772 */ 1773 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1774 { 1775 struct cpuset *cp; 1776 struct cgroup_subsys_state *pos_css; 1777 1778 rcu_read_lock(); 1779 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1780 struct cpuset *parent = parent_cs(cp); 1781 1782 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1783 1784 /* 1785 * If it becomes empty, inherit the effective mask of the 1786 * parent, which is guaranteed to have some MEMs. 1787 */ 1788 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1789 *new_mems = parent->effective_mems; 1790 1791 /* Skip the whole subtree if the nodemask remains the same. */ 1792 if (nodes_equal(*new_mems, cp->effective_mems)) { 1793 pos_css = css_rightmost_descendant(pos_css); 1794 continue; 1795 } 1796 1797 if (!css_tryget_online(&cp->css)) 1798 continue; 1799 rcu_read_unlock(); 1800 1801 spin_lock_irq(&callback_lock); 1802 cp->effective_mems = *new_mems; 1803 spin_unlock_irq(&callback_lock); 1804 1805 WARN_ON(!is_in_v2_mode() && 1806 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1807 1808 update_tasks_nodemask(cp); 1809 1810 rcu_read_lock(); 1811 css_put(&cp->css); 1812 } 1813 rcu_read_unlock(); 1814 } 1815 1816 /* 1817 * Handle user request to change the 'mems' memory placement 1818 * of a cpuset. Needs to validate the request, update the 1819 * cpusets mems_allowed, and for each task in the cpuset, 1820 * update mems_allowed and rebind task's mempolicy and any vma 1821 * mempolicies and if the cpuset is marked 'memory_migrate', 1822 * migrate the tasks pages to the new memory. 1823 * 1824 * Call with cpuset_mutex held. May take callback_lock during call. 1825 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1826 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1827 * their mempolicies to the cpusets new mems_allowed. 1828 */ 1829 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1830 const char *buf) 1831 { 1832 int retval; 1833 1834 /* 1835 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1836 * it's read-only 1837 */ 1838 if (cs == &top_cpuset) { 1839 retval = -EACCES; 1840 goto done; 1841 } 1842 1843 /* 1844 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1845 * Since nodelist_parse() fails on an empty mask, we special case 1846 * that parsing. The validate_change() call ensures that cpusets 1847 * with tasks have memory. 1848 */ 1849 if (!*buf) { 1850 nodes_clear(trialcs->mems_allowed); 1851 } else { 1852 retval = nodelist_parse(buf, trialcs->mems_allowed); 1853 if (retval < 0) 1854 goto done; 1855 1856 if (!nodes_subset(trialcs->mems_allowed, 1857 top_cpuset.mems_allowed)) { 1858 retval = -EINVAL; 1859 goto done; 1860 } 1861 } 1862 1863 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1864 retval = 0; /* Too easy - nothing to do */ 1865 goto done; 1866 } 1867 retval = validate_change(cs, trialcs); 1868 if (retval < 0) 1869 goto done; 1870 1871 spin_lock_irq(&callback_lock); 1872 cs->mems_allowed = trialcs->mems_allowed; 1873 spin_unlock_irq(&callback_lock); 1874 1875 /* use trialcs->mems_allowed as a temp variable */ 1876 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1877 done: 1878 return retval; 1879 } 1880 1881 bool current_cpuset_is_being_rebound(void) 1882 { 1883 bool ret; 1884 1885 rcu_read_lock(); 1886 ret = task_cs(current) == cpuset_being_rebound; 1887 rcu_read_unlock(); 1888 1889 return ret; 1890 } 1891 1892 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1893 { 1894 #ifdef CONFIG_SMP 1895 if (val < -1 || val >= sched_domain_level_max) 1896 return -EINVAL; 1897 #endif 1898 1899 if (val != cs->relax_domain_level) { 1900 cs->relax_domain_level = val; 1901 if (!cpumask_empty(cs->cpus_allowed) && 1902 is_sched_load_balance(cs)) 1903 rebuild_sched_domains_locked(); 1904 } 1905 1906 return 0; 1907 } 1908 1909 /** 1910 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1911 * @cs: the cpuset in which each task's spread flags needs to be changed 1912 * 1913 * Iterate through each task of @cs updating its spread flags. As this 1914 * function is called with cpuset_mutex held, cpuset membership stays 1915 * stable. 1916 */ 1917 static void update_tasks_flags(struct cpuset *cs) 1918 { 1919 struct css_task_iter it; 1920 struct task_struct *task; 1921 1922 css_task_iter_start(&cs->css, 0, &it); 1923 while ((task = css_task_iter_next(&it))) 1924 cpuset_update_task_spread_flag(cs, task); 1925 css_task_iter_end(&it); 1926 } 1927 1928 /* 1929 * update_flag - read a 0 or a 1 in a file and update associated flag 1930 * bit: the bit to update (see cpuset_flagbits_t) 1931 * cs: the cpuset to update 1932 * turning_on: whether the flag is being set or cleared 1933 * 1934 * Call with cpuset_mutex held. 1935 */ 1936 1937 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1938 int turning_on) 1939 { 1940 struct cpuset *trialcs; 1941 int balance_flag_changed; 1942 int spread_flag_changed; 1943 int err; 1944 1945 trialcs = alloc_trial_cpuset(cs); 1946 if (!trialcs) 1947 return -ENOMEM; 1948 1949 if (turning_on) 1950 set_bit(bit, &trialcs->flags); 1951 else 1952 clear_bit(bit, &trialcs->flags); 1953 1954 err = validate_change(cs, trialcs); 1955 if (err < 0) 1956 goto out; 1957 1958 balance_flag_changed = (is_sched_load_balance(cs) != 1959 is_sched_load_balance(trialcs)); 1960 1961 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1962 || (is_spread_page(cs) != is_spread_page(trialcs))); 1963 1964 spin_lock_irq(&callback_lock); 1965 cs->flags = trialcs->flags; 1966 spin_unlock_irq(&callback_lock); 1967 1968 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1969 rebuild_sched_domains_locked(); 1970 1971 if (spread_flag_changed) 1972 update_tasks_flags(cs); 1973 out: 1974 free_cpuset(trialcs); 1975 return err; 1976 } 1977 1978 /* 1979 * update_prstate - update partititon_root_state 1980 * cs: the cpuset to update 1981 * new_prs: new partition root state 1982 * 1983 * Call with cpuset_mutex held. 1984 */ 1985 static int update_prstate(struct cpuset *cs, int new_prs) 1986 { 1987 int err, old_prs = cs->partition_root_state; 1988 struct cpuset *parent = parent_cs(cs); 1989 struct tmpmasks tmpmask; 1990 1991 if (old_prs == new_prs) 1992 return 0; 1993 1994 /* 1995 * Cannot force a partial or invalid partition root to a full 1996 * partition root. 1997 */ 1998 if (new_prs && (old_prs == PRS_ERROR)) 1999 return -EINVAL; 2000 2001 if (alloc_cpumasks(NULL, &tmpmask)) 2002 return -ENOMEM; 2003 2004 err = -EINVAL; 2005 if (!old_prs) { 2006 /* 2007 * Turning on partition root requires setting the 2008 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2009 * cannot be NULL. 2010 */ 2011 if (cpumask_empty(cs->cpus_allowed)) 2012 goto out; 2013 2014 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2015 if (err) 2016 goto out; 2017 2018 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2019 NULL, &tmpmask); 2020 if (err) { 2021 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2022 goto out; 2023 } 2024 } else { 2025 /* 2026 * Turning off partition root will clear the 2027 * CS_CPU_EXCLUSIVE bit. 2028 */ 2029 if (old_prs == PRS_ERROR) { 2030 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2031 err = 0; 2032 goto out; 2033 } 2034 2035 err = update_parent_subparts_cpumask(cs, partcmd_disable, 2036 NULL, &tmpmask); 2037 if (err) 2038 goto out; 2039 2040 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2041 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2042 } 2043 2044 /* 2045 * Update cpumask of parent's tasks except when it is the top 2046 * cpuset as some system daemons cannot be mapped to other CPUs. 2047 */ 2048 if (parent != &top_cpuset) 2049 update_tasks_cpumask(parent); 2050 2051 if (parent->child_ecpus_count) 2052 update_sibling_cpumasks(parent, cs, &tmpmask); 2053 2054 rebuild_sched_domains_locked(); 2055 out: 2056 if (!err) { 2057 spin_lock_irq(&callback_lock); 2058 cs->partition_root_state = new_prs; 2059 spin_unlock_irq(&callback_lock); 2060 notify_partition_change(cs, old_prs, new_prs); 2061 } 2062 2063 free_cpumasks(NULL, &tmpmask); 2064 return err; 2065 } 2066 2067 /* 2068 * Frequency meter - How fast is some event occurring? 2069 * 2070 * These routines manage a digitally filtered, constant time based, 2071 * event frequency meter. There are four routines: 2072 * fmeter_init() - initialize a frequency meter. 2073 * fmeter_markevent() - called each time the event happens. 2074 * fmeter_getrate() - returns the recent rate of such events. 2075 * fmeter_update() - internal routine used to update fmeter. 2076 * 2077 * A common data structure is passed to each of these routines, 2078 * which is used to keep track of the state required to manage the 2079 * frequency meter and its digital filter. 2080 * 2081 * The filter works on the number of events marked per unit time. 2082 * The filter is single-pole low-pass recursive (IIR). The time unit 2083 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2084 * simulate 3 decimal digits of precision (multiplied by 1000). 2085 * 2086 * With an FM_COEF of 933, and a time base of 1 second, the filter 2087 * has a half-life of 10 seconds, meaning that if the events quit 2088 * happening, then the rate returned from the fmeter_getrate() 2089 * will be cut in half each 10 seconds, until it converges to zero. 2090 * 2091 * It is not worth doing a real infinitely recursive filter. If more 2092 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2093 * just compute FM_MAXTICKS ticks worth, by which point the level 2094 * will be stable. 2095 * 2096 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2097 * arithmetic overflow in the fmeter_update() routine. 2098 * 2099 * Given the simple 32 bit integer arithmetic used, this meter works 2100 * best for reporting rates between one per millisecond (msec) and 2101 * one per 32 (approx) seconds. At constant rates faster than one 2102 * per msec it maxes out at values just under 1,000,000. At constant 2103 * rates between one per msec, and one per second it will stabilize 2104 * to a value N*1000, where N is the rate of events per second. 2105 * At constant rates between one per second and one per 32 seconds, 2106 * it will be choppy, moving up on the seconds that have an event, 2107 * and then decaying until the next event. At rates slower than 2108 * about one in 32 seconds, it decays all the way back to zero between 2109 * each event. 2110 */ 2111 2112 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2113 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2114 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2115 #define FM_SCALE 1000 /* faux fixed point scale */ 2116 2117 /* Initialize a frequency meter */ 2118 static void fmeter_init(struct fmeter *fmp) 2119 { 2120 fmp->cnt = 0; 2121 fmp->val = 0; 2122 fmp->time = 0; 2123 spin_lock_init(&fmp->lock); 2124 } 2125 2126 /* Internal meter update - process cnt events and update value */ 2127 static void fmeter_update(struct fmeter *fmp) 2128 { 2129 time64_t now; 2130 u32 ticks; 2131 2132 now = ktime_get_seconds(); 2133 ticks = now - fmp->time; 2134 2135 if (ticks == 0) 2136 return; 2137 2138 ticks = min(FM_MAXTICKS, ticks); 2139 while (ticks-- > 0) 2140 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2141 fmp->time = now; 2142 2143 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2144 fmp->cnt = 0; 2145 } 2146 2147 /* Process any previous ticks, then bump cnt by one (times scale). */ 2148 static void fmeter_markevent(struct fmeter *fmp) 2149 { 2150 spin_lock(&fmp->lock); 2151 fmeter_update(fmp); 2152 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2153 spin_unlock(&fmp->lock); 2154 } 2155 2156 /* Process any previous ticks, then return current value. */ 2157 static int fmeter_getrate(struct fmeter *fmp) 2158 { 2159 int val; 2160 2161 spin_lock(&fmp->lock); 2162 fmeter_update(fmp); 2163 val = fmp->val; 2164 spin_unlock(&fmp->lock); 2165 return val; 2166 } 2167 2168 static struct cpuset *cpuset_attach_old_cs; 2169 2170 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2171 static int cpuset_can_attach(struct cgroup_taskset *tset) 2172 { 2173 struct cgroup_subsys_state *css; 2174 struct cpuset *cs; 2175 struct task_struct *task; 2176 int ret; 2177 2178 /* used later by cpuset_attach() */ 2179 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2180 cs = css_cs(css); 2181 2182 percpu_down_write(&cpuset_rwsem); 2183 2184 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2185 ret = -ENOSPC; 2186 if (!is_in_v2_mode() && 2187 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2188 goto out_unlock; 2189 2190 cgroup_taskset_for_each(task, css, tset) { 2191 ret = task_can_attach(task, cs->cpus_allowed); 2192 if (ret) 2193 goto out_unlock; 2194 ret = security_task_setscheduler(task); 2195 if (ret) 2196 goto out_unlock; 2197 } 2198 2199 /* 2200 * Mark attach is in progress. This makes validate_change() fail 2201 * changes which zero cpus/mems_allowed. 2202 */ 2203 cs->attach_in_progress++; 2204 ret = 0; 2205 out_unlock: 2206 percpu_up_write(&cpuset_rwsem); 2207 return ret; 2208 } 2209 2210 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2211 { 2212 struct cgroup_subsys_state *css; 2213 2214 cgroup_taskset_first(tset, &css); 2215 2216 percpu_down_write(&cpuset_rwsem); 2217 css_cs(css)->attach_in_progress--; 2218 percpu_up_write(&cpuset_rwsem); 2219 } 2220 2221 /* 2222 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2223 * but we can't allocate it dynamically there. Define it global and 2224 * allocate from cpuset_init(). 2225 */ 2226 static cpumask_var_t cpus_attach; 2227 2228 static void cpuset_attach(struct cgroup_taskset *tset) 2229 { 2230 /* static buf protected by cpuset_mutex */ 2231 static nodemask_t cpuset_attach_nodemask_to; 2232 struct task_struct *task; 2233 struct task_struct *leader; 2234 struct cgroup_subsys_state *css; 2235 struct cpuset *cs; 2236 struct cpuset *oldcs = cpuset_attach_old_cs; 2237 2238 cgroup_taskset_first(tset, &css); 2239 cs = css_cs(css); 2240 2241 percpu_down_write(&cpuset_rwsem); 2242 2243 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2244 2245 cgroup_taskset_for_each(task, css, tset) { 2246 if (cs != &top_cpuset) 2247 guarantee_online_cpus(task, cpus_attach); 2248 else 2249 cpumask_copy(cpus_attach, task_cpu_possible_mask(task)); 2250 /* 2251 * can_attach beforehand should guarantee that this doesn't 2252 * fail. TODO: have a better way to handle failure here 2253 */ 2254 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2255 2256 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2257 cpuset_update_task_spread_flag(cs, task); 2258 } 2259 2260 /* 2261 * Change mm for all threadgroup leaders. This is expensive and may 2262 * sleep and should be moved outside migration path proper. 2263 */ 2264 cpuset_attach_nodemask_to = cs->effective_mems; 2265 cgroup_taskset_for_each_leader(leader, css, tset) { 2266 struct mm_struct *mm = get_task_mm(leader); 2267 2268 if (mm) { 2269 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2270 2271 /* 2272 * old_mems_allowed is the same with mems_allowed 2273 * here, except if this task is being moved 2274 * automatically due to hotplug. In that case 2275 * @mems_allowed has been updated and is empty, so 2276 * @old_mems_allowed is the right nodesets that we 2277 * migrate mm from. 2278 */ 2279 if (is_memory_migrate(cs)) 2280 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2281 &cpuset_attach_nodemask_to); 2282 else 2283 mmput(mm); 2284 } 2285 } 2286 2287 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2288 2289 cs->attach_in_progress--; 2290 if (!cs->attach_in_progress) 2291 wake_up(&cpuset_attach_wq); 2292 2293 percpu_up_write(&cpuset_rwsem); 2294 } 2295 2296 /* The various types of files and directories in a cpuset file system */ 2297 2298 typedef enum { 2299 FILE_MEMORY_MIGRATE, 2300 FILE_CPULIST, 2301 FILE_MEMLIST, 2302 FILE_EFFECTIVE_CPULIST, 2303 FILE_EFFECTIVE_MEMLIST, 2304 FILE_SUBPARTS_CPULIST, 2305 FILE_CPU_EXCLUSIVE, 2306 FILE_MEM_EXCLUSIVE, 2307 FILE_MEM_HARDWALL, 2308 FILE_SCHED_LOAD_BALANCE, 2309 FILE_PARTITION_ROOT, 2310 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2311 FILE_MEMORY_PRESSURE_ENABLED, 2312 FILE_MEMORY_PRESSURE, 2313 FILE_SPREAD_PAGE, 2314 FILE_SPREAD_SLAB, 2315 } cpuset_filetype_t; 2316 2317 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2318 u64 val) 2319 { 2320 struct cpuset *cs = css_cs(css); 2321 cpuset_filetype_t type = cft->private; 2322 int retval = 0; 2323 2324 cpus_read_lock(); 2325 percpu_down_write(&cpuset_rwsem); 2326 if (!is_cpuset_online(cs)) { 2327 retval = -ENODEV; 2328 goto out_unlock; 2329 } 2330 2331 switch (type) { 2332 case FILE_CPU_EXCLUSIVE: 2333 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2334 break; 2335 case FILE_MEM_EXCLUSIVE: 2336 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2337 break; 2338 case FILE_MEM_HARDWALL: 2339 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2340 break; 2341 case FILE_SCHED_LOAD_BALANCE: 2342 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2343 break; 2344 case FILE_MEMORY_MIGRATE: 2345 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2346 break; 2347 case FILE_MEMORY_PRESSURE_ENABLED: 2348 cpuset_memory_pressure_enabled = !!val; 2349 break; 2350 case FILE_SPREAD_PAGE: 2351 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2352 break; 2353 case FILE_SPREAD_SLAB: 2354 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2355 break; 2356 default: 2357 retval = -EINVAL; 2358 break; 2359 } 2360 out_unlock: 2361 percpu_up_write(&cpuset_rwsem); 2362 cpus_read_unlock(); 2363 return retval; 2364 } 2365 2366 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2367 s64 val) 2368 { 2369 struct cpuset *cs = css_cs(css); 2370 cpuset_filetype_t type = cft->private; 2371 int retval = -ENODEV; 2372 2373 cpus_read_lock(); 2374 percpu_down_write(&cpuset_rwsem); 2375 if (!is_cpuset_online(cs)) 2376 goto out_unlock; 2377 2378 switch (type) { 2379 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2380 retval = update_relax_domain_level(cs, val); 2381 break; 2382 default: 2383 retval = -EINVAL; 2384 break; 2385 } 2386 out_unlock: 2387 percpu_up_write(&cpuset_rwsem); 2388 cpus_read_unlock(); 2389 return retval; 2390 } 2391 2392 /* 2393 * Common handling for a write to a "cpus" or "mems" file. 2394 */ 2395 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2396 char *buf, size_t nbytes, loff_t off) 2397 { 2398 struct cpuset *cs = css_cs(of_css(of)); 2399 struct cpuset *trialcs; 2400 int retval = -ENODEV; 2401 2402 buf = strstrip(buf); 2403 2404 /* 2405 * CPU or memory hotunplug may leave @cs w/o any execution 2406 * resources, in which case the hotplug code asynchronously updates 2407 * configuration and transfers all tasks to the nearest ancestor 2408 * which can execute. 2409 * 2410 * As writes to "cpus" or "mems" may restore @cs's execution 2411 * resources, wait for the previously scheduled operations before 2412 * proceeding, so that we don't end up keep removing tasks added 2413 * after execution capability is restored. 2414 * 2415 * cpuset_hotplug_work calls back into cgroup core via 2416 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2417 * operation like this one can lead to a deadlock through kernfs 2418 * active_ref protection. Let's break the protection. Losing the 2419 * protection is okay as we check whether @cs is online after 2420 * grabbing cpuset_mutex anyway. This only happens on the legacy 2421 * hierarchies. 2422 */ 2423 css_get(&cs->css); 2424 kernfs_break_active_protection(of->kn); 2425 flush_work(&cpuset_hotplug_work); 2426 2427 cpus_read_lock(); 2428 percpu_down_write(&cpuset_rwsem); 2429 if (!is_cpuset_online(cs)) 2430 goto out_unlock; 2431 2432 trialcs = alloc_trial_cpuset(cs); 2433 if (!trialcs) { 2434 retval = -ENOMEM; 2435 goto out_unlock; 2436 } 2437 2438 switch (of_cft(of)->private) { 2439 case FILE_CPULIST: 2440 retval = update_cpumask(cs, trialcs, buf); 2441 break; 2442 case FILE_MEMLIST: 2443 retval = update_nodemask(cs, trialcs, buf); 2444 break; 2445 default: 2446 retval = -EINVAL; 2447 break; 2448 } 2449 2450 free_cpuset(trialcs); 2451 out_unlock: 2452 percpu_up_write(&cpuset_rwsem); 2453 cpus_read_unlock(); 2454 kernfs_unbreak_active_protection(of->kn); 2455 css_put(&cs->css); 2456 flush_workqueue(cpuset_migrate_mm_wq); 2457 return retval ?: nbytes; 2458 } 2459 2460 /* 2461 * These ascii lists should be read in a single call, by using a user 2462 * buffer large enough to hold the entire map. If read in smaller 2463 * chunks, there is no guarantee of atomicity. Since the display format 2464 * used, list of ranges of sequential numbers, is variable length, 2465 * and since these maps can change value dynamically, one could read 2466 * gibberish by doing partial reads while a list was changing. 2467 */ 2468 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2469 { 2470 struct cpuset *cs = css_cs(seq_css(sf)); 2471 cpuset_filetype_t type = seq_cft(sf)->private; 2472 int ret = 0; 2473 2474 spin_lock_irq(&callback_lock); 2475 2476 switch (type) { 2477 case FILE_CPULIST: 2478 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2479 break; 2480 case FILE_MEMLIST: 2481 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2482 break; 2483 case FILE_EFFECTIVE_CPULIST: 2484 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2485 break; 2486 case FILE_EFFECTIVE_MEMLIST: 2487 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2488 break; 2489 case FILE_SUBPARTS_CPULIST: 2490 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2491 break; 2492 default: 2493 ret = -EINVAL; 2494 } 2495 2496 spin_unlock_irq(&callback_lock); 2497 return ret; 2498 } 2499 2500 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2501 { 2502 struct cpuset *cs = css_cs(css); 2503 cpuset_filetype_t type = cft->private; 2504 switch (type) { 2505 case FILE_CPU_EXCLUSIVE: 2506 return is_cpu_exclusive(cs); 2507 case FILE_MEM_EXCLUSIVE: 2508 return is_mem_exclusive(cs); 2509 case FILE_MEM_HARDWALL: 2510 return is_mem_hardwall(cs); 2511 case FILE_SCHED_LOAD_BALANCE: 2512 return is_sched_load_balance(cs); 2513 case FILE_MEMORY_MIGRATE: 2514 return is_memory_migrate(cs); 2515 case FILE_MEMORY_PRESSURE_ENABLED: 2516 return cpuset_memory_pressure_enabled; 2517 case FILE_MEMORY_PRESSURE: 2518 return fmeter_getrate(&cs->fmeter); 2519 case FILE_SPREAD_PAGE: 2520 return is_spread_page(cs); 2521 case FILE_SPREAD_SLAB: 2522 return is_spread_slab(cs); 2523 default: 2524 BUG(); 2525 } 2526 2527 /* Unreachable but makes gcc happy */ 2528 return 0; 2529 } 2530 2531 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2532 { 2533 struct cpuset *cs = css_cs(css); 2534 cpuset_filetype_t type = cft->private; 2535 switch (type) { 2536 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2537 return cs->relax_domain_level; 2538 default: 2539 BUG(); 2540 } 2541 2542 /* Unreachable but makes gcc happy */ 2543 return 0; 2544 } 2545 2546 static int sched_partition_show(struct seq_file *seq, void *v) 2547 { 2548 struct cpuset *cs = css_cs(seq_css(seq)); 2549 2550 switch (cs->partition_root_state) { 2551 case PRS_ENABLED: 2552 seq_puts(seq, "root\n"); 2553 break; 2554 case PRS_DISABLED: 2555 seq_puts(seq, "member\n"); 2556 break; 2557 case PRS_ERROR: 2558 seq_puts(seq, "root invalid\n"); 2559 break; 2560 } 2561 return 0; 2562 } 2563 2564 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2565 size_t nbytes, loff_t off) 2566 { 2567 struct cpuset *cs = css_cs(of_css(of)); 2568 int val; 2569 int retval = -ENODEV; 2570 2571 buf = strstrip(buf); 2572 2573 /* 2574 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2575 */ 2576 if (!strcmp(buf, "root")) 2577 val = PRS_ENABLED; 2578 else if (!strcmp(buf, "member")) 2579 val = PRS_DISABLED; 2580 else 2581 return -EINVAL; 2582 2583 css_get(&cs->css); 2584 cpus_read_lock(); 2585 percpu_down_write(&cpuset_rwsem); 2586 if (!is_cpuset_online(cs)) 2587 goto out_unlock; 2588 2589 retval = update_prstate(cs, val); 2590 out_unlock: 2591 percpu_up_write(&cpuset_rwsem); 2592 cpus_read_unlock(); 2593 css_put(&cs->css); 2594 return retval ?: nbytes; 2595 } 2596 2597 /* 2598 * for the common functions, 'private' gives the type of file 2599 */ 2600 2601 static struct cftype legacy_files[] = { 2602 { 2603 .name = "cpus", 2604 .seq_show = cpuset_common_seq_show, 2605 .write = cpuset_write_resmask, 2606 .max_write_len = (100U + 6 * NR_CPUS), 2607 .private = FILE_CPULIST, 2608 }, 2609 2610 { 2611 .name = "mems", 2612 .seq_show = cpuset_common_seq_show, 2613 .write = cpuset_write_resmask, 2614 .max_write_len = (100U + 6 * MAX_NUMNODES), 2615 .private = FILE_MEMLIST, 2616 }, 2617 2618 { 2619 .name = "effective_cpus", 2620 .seq_show = cpuset_common_seq_show, 2621 .private = FILE_EFFECTIVE_CPULIST, 2622 }, 2623 2624 { 2625 .name = "effective_mems", 2626 .seq_show = cpuset_common_seq_show, 2627 .private = FILE_EFFECTIVE_MEMLIST, 2628 }, 2629 2630 { 2631 .name = "cpu_exclusive", 2632 .read_u64 = cpuset_read_u64, 2633 .write_u64 = cpuset_write_u64, 2634 .private = FILE_CPU_EXCLUSIVE, 2635 }, 2636 2637 { 2638 .name = "mem_exclusive", 2639 .read_u64 = cpuset_read_u64, 2640 .write_u64 = cpuset_write_u64, 2641 .private = FILE_MEM_EXCLUSIVE, 2642 }, 2643 2644 { 2645 .name = "mem_hardwall", 2646 .read_u64 = cpuset_read_u64, 2647 .write_u64 = cpuset_write_u64, 2648 .private = FILE_MEM_HARDWALL, 2649 }, 2650 2651 { 2652 .name = "sched_load_balance", 2653 .read_u64 = cpuset_read_u64, 2654 .write_u64 = cpuset_write_u64, 2655 .private = FILE_SCHED_LOAD_BALANCE, 2656 }, 2657 2658 { 2659 .name = "sched_relax_domain_level", 2660 .read_s64 = cpuset_read_s64, 2661 .write_s64 = cpuset_write_s64, 2662 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2663 }, 2664 2665 { 2666 .name = "memory_migrate", 2667 .read_u64 = cpuset_read_u64, 2668 .write_u64 = cpuset_write_u64, 2669 .private = FILE_MEMORY_MIGRATE, 2670 }, 2671 2672 { 2673 .name = "memory_pressure", 2674 .read_u64 = cpuset_read_u64, 2675 .private = FILE_MEMORY_PRESSURE, 2676 }, 2677 2678 { 2679 .name = "memory_spread_page", 2680 .read_u64 = cpuset_read_u64, 2681 .write_u64 = cpuset_write_u64, 2682 .private = FILE_SPREAD_PAGE, 2683 }, 2684 2685 { 2686 .name = "memory_spread_slab", 2687 .read_u64 = cpuset_read_u64, 2688 .write_u64 = cpuset_write_u64, 2689 .private = FILE_SPREAD_SLAB, 2690 }, 2691 2692 { 2693 .name = "memory_pressure_enabled", 2694 .flags = CFTYPE_ONLY_ON_ROOT, 2695 .read_u64 = cpuset_read_u64, 2696 .write_u64 = cpuset_write_u64, 2697 .private = FILE_MEMORY_PRESSURE_ENABLED, 2698 }, 2699 2700 { } /* terminate */ 2701 }; 2702 2703 /* 2704 * This is currently a minimal set for the default hierarchy. It can be 2705 * expanded later on by migrating more features and control files from v1. 2706 */ 2707 static struct cftype dfl_files[] = { 2708 { 2709 .name = "cpus", 2710 .seq_show = cpuset_common_seq_show, 2711 .write = cpuset_write_resmask, 2712 .max_write_len = (100U + 6 * NR_CPUS), 2713 .private = FILE_CPULIST, 2714 .flags = CFTYPE_NOT_ON_ROOT, 2715 }, 2716 2717 { 2718 .name = "mems", 2719 .seq_show = cpuset_common_seq_show, 2720 .write = cpuset_write_resmask, 2721 .max_write_len = (100U + 6 * MAX_NUMNODES), 2722 .private = FILE_MEMLIST, 2723 .flags = CFTYPE_NOT_ON_ROOT, 2724 }, 2725 2726 { 2727 .name = "cpus.effective", 2728 .seq_show = cpuset_common_seq_show, 2729 .private = FILE_EFFECTIVE_CPULIST, 2730 }, 2731 2732 { 2733 .name = "mems.effective", 2734 .seq_show = cpuset_common_seq_show, 2735 .private = FILE_EFFECTIVE_MEMLIST, 2736 }, 2737 2738 { 2739 .name = "cpus.partition", 2740 .seq_show = sched_partition_show, 2741 .write = sched_partition_write, 2742 .private = FILE_PARTITION_ROOT, 2743 .flags = CFTYPE_NOT_ON_ROOT, 2744 .file_offset = offsetof(struct cpuset, partition_file), 2745 }, 2746 2747 { 2748 .name = "cpus.subpartitions", 2749 .seq_show = cpuset_common_seq_show, 2750 .private = FILE_SUBPARTS_CPULIST, 2751 .flags = CFTYPE_DEBUG, 2752 }, 2753 2754 { } /* terminate */ 2755 }; 2756 2757 2758 /* 2759 * cpuset_css_alloc - allocate a cpuset css 2760 * cgrp: control group that the new cpuset will be part of 2761 */ 2762 2763 static struct cgroup_subsys_state * 2764 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2765 { 2766 struct cpuset *cs; 2767 2768 if (!parent_css) 2769 return &top_cpuset.css; 2770 2771 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2772 if (!cs) 2773 return ERR_PTR(-ENOMEM); 2774 2775 if (alloc_cpumasks(cs, NULL)) { 2776 kfree(cs); 2777 return ERR_PTR(-ENOMEM); 2778 } 2779 2780 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2781 nodes_clear(cs->mems_allowed); 2782 nodes_clear(cs->effective_mems); 2783 fmeter_init(&cs->fmeter); 2784 cs->relax_domain_level = -1; 2785 2786 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 2787 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 2788 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 2789 2790 return &cs->css; 2791 } 2792 2793 static int cpuset_css_online(struct cgroup_subsys_state *css) 2794 { 2795 struct cpuset *cs = css_cs(css); 2796 struct cpuset *parent = parent_cs(cs); 2797 struct cpuset *tmp_cs; 2798 struct cgroup_subsys_state *pos_css; 2799 2800 if (!parent) 2801 return 0; 2802 2803 cpus_read_lock(); 2804 percpu_down_write(&cpuset_rwsem); 2805 2806 set_bit(CS_ONLINE, &cs->flags); 2807 if (is_spread_page(parent)) 2808 set_bit(CS_SPREAD_PAGE, &cs->flags); 2809 if (is_spread_slab(parent)) 2810 set_bit(CS_SPREAD_SLAB, &cs->flags); 2811 2812 cpuset_inc(); 2813 2814 spin_lock_irq(&callback_lock); 2815 if (is_in_v2_mode()) { 2816 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2817 cs->effective_mems = parent->effective_mems; 2818 cs->use_parent_ecpus = true; 2819 parent->child_ecpus_count++; 2820 } 2821 spin_unlock_irq(&callback_lock); 2822 2823 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2824 goto out_unlock; 2825 2826 /* 2827 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2828 * set. This flag handling is implemented in cgroup core for 2829 * histrical reasons - the flag may be specified during mount. 2830 * 2831 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2832 * refuse to clone the configuration - thereby refusing the task to 2833 * be entered, and as a result refusing the sys_unshare() or 2834 * clone() which initiated it. If this becomes a problem for some 2835 * users who wish to allow that scenario, then this could be 2836 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2837 * (and likewise for mems) to the new cgroup. 2838 */ 2839 rcu_read_lock(); 2840 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2841 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2842 rcu_read_unlock(); 2843 goto out_unlock; 2844 } 2845 } 2846 rcu_read_unlock(); 2847 2848 spin_lock_irq(&callback_lock); 2849 cs->mems_allowed = parent->mems_allowed; 2850 cs->effective_mems = parent->mems_allowed; 2851 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2852 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2853 spin_unlock_irq(&callback_lock); 2854 out_unlock: 2855 percpu_up_write(&cpuset_rwsem); 2856 cpus_read_unlock(); 2857 return 0; 2858 } 2859 2860 /* 2861 * If the cpuset being removed has its flag 'sched_load_balance' 2862 * enabled, then simulate turning sched_load_balance off, which 2863 * will call rebuild_sched_domains_locked(). That is not needed 2864 * in the default hierarchy where only changes in partition 2865 * will cause repartitioning. 2866 * 2867 * If the cpuset has the 'sched.partition' flag enabled, simulate 2868 * turning 'sched.partition" off. 2869 */ 2870 2871 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2872 { 2873 struct cpuset *cs = css_cs(css); 2874 2875 cpus_read_lock(); 2876 percpu_down_write(&cpuset_rwsem); 2877 2878 if (is_partition_root(cs)) 2879 update_prstate(cs, 0); 2880 2881 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2882 is_sched_load_balance(cs)) 2883 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2884 2885 if (cs->use_parent_ecpus) { 2886 struct cpuset *parent = parent_cs(cs); 2887 2888 cs->use_parent_ecpus = false; 2889 parent->child_ecpus_count--; 2890 } 2891 2892 cpuset_dec(); 2893 clear_bit(CS_ONLINE, &cs->flags); 2894 2895 percpu_up_write(&cpuset_rwsem); 2896 cpus_read_unlock(); 2897 } 2898 2899 static void cpuset_css_free(struct cgroup_subsys_state *css) 2900 { 2901 struct cpuset *cs = css_cs(css); 2902 2903 free_cpuset(cs); 2904 } 2905 2906 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2907 { 2908 percpu_down_write(&cpuset_rwsem); 2909 spin_lock_irq(&callback_lock); 2910 2911 if (is_in_v2_mode()) { 2912 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2913 top_cpuset.mems_allowed = node_possible_map; 2914 } else { 2915 cpumask_copy(top_cpuset.cpus_allowed, 2916 top_cpuset.effective_cpus); 2917 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2918 } 2919 2920 spin_unlock_irq(&callback_lock); 2921 percpu_up_write(&cpuset_rwsem); 2922 } 2923 2924 /* 2925 * Make sure the new task conform to the current state of its parent, 2926 * which could have been changed by cpuset just after it inherits the 2927 * state from the parent and before it sits on the cgroup's task list. 2928 */ 2929 static void cpuset_fork(struct task_struct *task) 2930 { 2931 if (task_css_is_root(task, cpuset_cgrp_id)) 2932 return; 2933 2934 set_cpus_allowed_ptr(task, current->cpus_ptr); 2935 task->mems_allowed = current->mems_allowed; 2936 } 2937 2938 struct cgroup_subsys cpuset_cgrp_subsys = { 2939 .css_alloc = cpuset_css_alloc, 2940 .css_online = cpuset_css_online, 2941 .css_offline = cpuset_css_offline, 2942 .css_free = cpuset_css_free, 2943 .can_attach = cpuset_can_attach, 2944 .cancel_attach = cpuset_cancel_attach, 2945 .attach = cpuset_attach, 2946 .post_attach = cpuset_post_attach, 2947 .bind = cpuset_bind, 2948 .fork = cpuset_fork, 2949 .legacy_cftypes = legacy_files, 2950 .dfl_cftypes = dfl_files, 2951 .early_init = true, 2952 .threaded = true, 2953 }; 2954 2955 /** 2956 * cpuset_init - initialize cpusets at system boot 2957 * 2958 * Description: Initialize top_cpuset 2959 **/ 2960 2961 int __init cpuset_init(void) 2962 { 2963 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2964 2965 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2966 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2967 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2968 2969 cpumask_setall(top_cpuset.cpus_allowed); 2970 nodes_setall(top_cpuset.mems_allowed); 2971 cpumask_setall(top_cpuset.effective_cpus); 2972 nodes_setall(top_cpuset.effective_mems); 2973 2974 fmeter_init(&top_cpuset.fmeter); 2975 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2976 top_cpuset.relax_domain_level = -1; 2977 2978 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2979 2980 return 0; 2981 } 2982 2983 /* 2984 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2985 * or memory nodes, we need to walk over the cpuset hierarchy, 2986 * removing that CPU or node from all cpusets. If this removes the 2987 * last CPU or node from a cpuset, then move the tasks in the empty 2988 * cpuset to its next-highest non-empty parent. 2989 */ 2990 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2991 { 2992 struct cpuset *parent; 2993 2994 /* 2995 * Find its next-highest non-empty parent, (top cpuset 2996 * has online cpus, so can't be empty). 2997 */ 2998 parent = parent_cs(cs); 2999 while (cpumask_empty(parent->cpus_allowed) || 3000 nodes_empty(parent->mems_allowed)) 3001 parent = parent_cs(parent); 3002 3003 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3004 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3005 pr_cont_cgroup_name(cs->css.cgroup); 3006 pr_cont("\n"); 3007 } 3008 } 3009 3010 static void 3011 hotplug_update_tasks_legacy(struct cpuset *cs, 3012 struct cpumask *new_cpus, nodemask_t *new_mems, 3013 bool cpus_updated, bool mems_updated) 3014 { 3015 bool is_empty; 3016 3017 spin_lock_irq(&callback_lock); 3018 cpumask_copy(cs->cpus_allowed, new_cpus); 3019 cpumask_copy(cs->effective_cpus, new_cpus); 3020 cs->mems_allowed = *new_mems; 3021 cs->effective_mems = *new_mems; 3022 spin_unlock_irq(&callback_lock); 3023 3024 /* 3025 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3026 * as the tasks will be migratecd to an ancestor. 3027 */ 3028 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3029 update_tasks_cpumask(cs); 3030 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3031 update_tasks_nodemask(cs); 3032 3033 is_empty = cpumask_empty(cs->cpus_allowed) || 3034 nodes_empty(cs->mems_allowed); 3035 3036 percpu_up_write(&cpuset_rwsem); 3037 3038 /* 3039 * Move tasks to the nearest ancestor with execution resources, 3040 * This is full cgroup operation which will also call back into 3041 * cpuset. Should be done outside any lock. 3042 */ 3043 if (is_empty) 3044 remove_tasks_in_empty_cpuset(cs); 3045 3046 percpu_down_write(&cpuset_rwsem); 3047 } 3048 3049 static void 3050 hotplug_update_tasks(struct cpuset *cs, 3051 struct cpumask *new_cpus, nodemask_t *new_mems, 3052 bool cpus_updated, bool mems_updated) 3053 { 3054 if (cpumask_empty(new_cpus)) 3055 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3056 if (nodes_empty(*new_mems)) 3057 *new_mems = parent_cs(cs)->effective_mems; 3058 3059 spin_lock_irq(&callback_lock); 3060 cpumask_copy(cs->effective_cpus, new_cpus); 3061 cs->effective_mems = *new_mems; 3062 spin_unlock_irq(&callback_lock); 3063 3064 if (cpus_updated) 3065 update_tasks_cpumask(cs); 3066 if (mems_updated) 3067 update_tasks_nodemask(cs); 3068 } 3069 3070 static bool force_rebuild; 3071 3072 void cpuset_force_rebuild(void) 3073 { 3074 force_rebuild = true; 3075 } 3076 3077 /** 3078 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3079 * @cs: cpuset in interest 3080 * @tmp: the tmpmasks structure pointer 3081 * 3082 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3083 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3084 * all its tasks are moved to the nearest ancestor with both resources. 3085 */ 3086 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3087 { 3088 static cpumask_t new_cpus; 3089 static nodemask_t new_mems; 3090 bool cpus_updated; 3091 bool mems_updated; 3092 struct cpuset *parent; 3093 retry: 3094 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3095 3096 percpu_down_write(&cpuset_rwsem); 3097 3098 /* 3099 * We have raced with task attaching. We wait until attaching 3100 * is finished, so we won't attach a task to an empty cpuset. 3101 */ 3102 if (cs->attach_in_progress) { 3103 percpu_up_write(&cpuset_rwsem); 3104 goto retry; 3105 } 3106 3107 parent = parent_cs(cs); 3108 compute_effective_cpumask(&new_cpus, cs, parent); 3109 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3110 3111 if (cs->nr_subparts_cpus) 3112 /* 3113 * Make sure that CPUs allocated to child partitions 3114 * do not show up in effective_cpus. 3115 */ 3116 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3117 3118 if (!tmp || !cs->partition_root_state) 3119 goto update_tasks; 3120 3121 /* 3122 * In the unlikely event that a partition root has empty 3123 * effective_cpus or its parent becomes erroneous, we have to 3124 * transition it to the erroneous state. 3125 */ 3126 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3127 (parent->partition_root_state == PRS_ERROR))) { 3128 if (cs->nr_subparts_cpus) { 3129 spin_lock_irq(&callback_lock); 3130 cs->nr_subparts_cpus = 0; 3131 cpumask_clear(cs->subparts_cpus); 3132 spin_unlock_irq(&callback_lock); 3133 compute_effective_cpumask(&new_cpus, cs, parent); 3134 } 3135 3136 /* 3137 * If the effective_cpus is empty because the child 3138 * partitions take away all the CPUs, we can keep 3139 * the current partition and let the child partitions 3140 * fight for available CPUs. 3141 */ 3142 if ((parent->partition_root_state == PRS_ERROR) || 3143 cpumask_empty(&new_cpus)) { 3144 int old_prs; 3145 3146 update_parent_subparts_cpumask(cs, partcmd_disable, 3147 NULL, tmp); 3148 old_prs = cs->partition_root_state; 3149 if (old_prs != PRS_ERROR) { 3150 spin_lock_irq(&callback_lock); 3151 cs->partition_root_state = PRS_ERROR; 3152 spin_unlock_irq(&callback_lock); 3153 notify_partition_change(cs, old_prs, PRS_ERROR); 3154 } 3155 } 3156 cpuset_force_rebuild(); 3157 } 3158 3159 /* 3160 * On the other hand, an erroneous partition root may be transitioned 3161 * back to a regular one or a partition root with no CPU allocated 3162 * from the parent may change to erroneous. 3163 */ 3164 if (is_partition_root(parent) && 3165 ((cs->partition_root_state == PRS_ERROR) || 3166 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3167 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3168 cpuset_force_rebuild(); 3169 3170 update_tasks: 3171 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3172 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3173 3174 if (is_in_v2_mode()) 3175 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3176 cpus_updated, mems_updated); 3177 else 3178 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3179 cpus_updated, mems_updated); 3180 3181 percpu_up_write(&cpuset_rwsem); 3182 } 3183 3184 /** 3185 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3186 * 3187 * This function is called after either CPU or memory configuration has 3188 * changed and updates cpuset accordingly. The top_cpuset is always 3189 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3190 * order to make cpusets transparent (of no affect) on systems that are 3191 * actively using CPU hotplug but making no active use of cpusets. 3192 * 3193 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3194 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3195 * all descendants. 3196 * 3197 * Note that CPU offlining during suspend is ignored. We don't modify 3198 * cpusets across suspend/resume cycles at all. 3199 */ 3200 static void cpuset_hotplug_workfn(struct work_struct *work) 3201 { 3202 static cpumask_t new_cpus; 3203 static nodemask_t new_mems; 3204 bool cpus_updated, mems_updated; 3205 bool on_dfl = is_in_v2_mode(); 3206 struct tmpmasks tmp, *ptmp = NULL; 3207 3208 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3209 ptmp = &tmp; 3210 3211 percpu_down_write(&cpuset_rwsem); 3212 3213 /* fetch the available cpus/mems and find out which changed how */ 3214 cpumask_copy(&new_cpus, cpu_active_mask); 3215 new_mems = node_states[N_MEMORY]; 3216 3217 /* 3218 * If subparts_cpus is populated, it is likely that the check below 3219 * will produce a false positive on cpus_updated when the cpu list 3220 * isn't changed. It is extra work, but it is better to be safe. 3221 */ 3222 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3223 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3224 3225 /* 3226 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3227 * we assumed that cpus are updated. 3228 */ 3229 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3230 cpus_updated = true; 3231 3232 /* synchronize cpus_allowed to cpu_active_mask */ 3233 if (cpus_updated) { 3234 spin_lock_irq(&callback_lock); 3235 if (!on_dfl) 3236 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3237 /* 3238 * Make sure that CPUs allocated to child partitions 3239 * do not show up in effective_cpus. If no CPU is left, 3240 * we clear the subparts_cpus & let the child partitions 3241 * fight for the CPUs again. 3242 */ 3243 if (top_cpuset.nr_subparts_cpus) { 3244 if (cpumask_subset(&new_cpus, 3245 top_cpuset.subparts_cpus)) { 3246 top_cpuset.nr_subparts_cpus = 0; 3247 cpumask_clear(top_cpuset.subparts_cpus); 3248 } else { 3249 cpumask_andnot(&new_cpus, &new_cpus, 3250 top_cpuset.subparts_cpus); 3251 } 3252 } 3253 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3254 spin_unlock_irq(&callback_lock); 3255 /* we don't mess with cpumasks of tasks in top_cpuset */ 3256 } 3257 3258 /* synchronize mems_allowed to N_MEMORY */ 3259 if (mems_updated) { 3260 spin_lock_irq(&callback_lock); 3261 if (!on_dfl) 3262 top_cpuset.mems_allowed = new_mems; 3263 top_cpuset.effective_mems = new_mems; 3264 spin_unlock_irq(&callback_lock); 3265 update_tasks_nodemask(&top_cpuset); 3266 } 3267 3268 percpu_up_write(&cpuset_rwsem); 3269 3270 /* if cpus or mems changed, we need to propagate to descendants */ 3271 if (cpus_updated || mems_updated) { 3272 struct cpuset *cs; 3273 struct cgroup_subsys_state *pos_css; 3274 3275 rcu_read_lock(); 3276 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3277 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3278 continue; 3279 rcu_read_unlock(); 3280 3281 cpuset_hotplug_update_tasks(cs, ptmp); 3282 3283 rcu_read_lock(); 3284 css_put(&cs->css); 3285 } 3286 rcu_read_unlock(); 3287 } 3288 3289 /* rebuild sched domains if cpus_allowed has changed */ 3290 if (cpus_updated || force_rebuild) { 3291 force_rebuild = false; 3292 rebuild_sched_domains(); 3293 } 3294 3295 free_cpumasks(NULL, ptmp); 3296 } 3297 3298 void cpuset_update_active_cpus(void) 3299 { 3300 /* 3301 * We're inside cpu hotplug critical region which usually nests 3302 * inside cgroup synchronization. Bounce actual hotplug processing 3303 * to a work item to avoid reverse locking order. 3304 */ 3305 schedule_work(&cpuset_hotplug_work); 3306 } 3307 3308 void cpuset_wait_for_hotplug(void) 3309 { 3310 flush_work(&cpuset_hotplug_work); 3311 } 3312 3313 /* 3314 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3315 * Call this routine anytime after node_states[N_MEMORY] changes. 3316 * See cpuset_update_active_cpus() for CPU hotplug handling. 3317 */ 3318 static int cpuset_track_online_nodes(struct notifier_block *self, 3319 unsigned long action, void *arg) 3320 { 3321 schedule_work(&cpuset_hotplug_work); 3322 return NOTIFY_OK; 3323 } 3324 3325 static struct notifier_block cpuset_track_online_nodes_nb = { 3326 .notifier_call = cpuset_track_online_nodes, 3327 .priority = 10, /* ??! */ 3328 }; 3329 3330 /** 3331 * cpuset_init_smp - initialize cpus_allowed 3332 * 3333 * Description: Finish top cpuset after cpu, node maps are initialized 3334 */ 3335 void __init cpuset_init_smp(void) 3336 { 3337 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3338 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3339 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3340 3341 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3342 top_cpuset.effective_mems = node_states[N_MEMORY]; 3343 3344 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3345 3346 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3347 BUG_ON(!cpuset_migrate_mm_wq); 3348 } 3349 3350 /** 3351 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3352 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3353 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3354 * 3355 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3356 * attached to the specified @tsk. Guaranteed to return some non-empty 3357 * subset of cpu_online_mask, even if this means going outside the 3358 * tasks cpuset. 3359 **/ 3360 3361 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3362 { 3363 unsigned long flags; 3364 3365 spin_lock_irqsave(&callback_lock, flags); 3366 guarantee_online_cpus(tsk, pmask); 3367 spin_unlock_irqrestore(&callback_lock, flags); 3368 } 3369 3370 /** 3371 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3372 * @tsk: pointer to task_struct with which the scheduler is struggling 3373 * 3374 * Description: In the case that the scheduler cannot find an allowed cpu in 3375 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3376 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3377 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3378 * This is the absolute last resort for the scheduler and it is only used if 3379 * _every_ other avenue has been traveled. 3380 * 3381 * Returns true if the affinity of @tsk was changed, false otherwise. 3382 **/ 3383 3384 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3385 { 3386 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3387 const struct cpumask *cs_mask; 3388 bool changed = false; 3389 3390 rcu_read_lock(); 3391 cs_mask = task_cs(tsk)->cpus_allowed; 3392 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3393 do_set_cpus_allowed(tsk, cs_mask); 3394 changed = true; 3395 } 3396 rcu_read_unlock(); 3397 3398 /* 3399 * We own tsk->cpus_allowed, nobody can change it under us. 3400 * 3401 * But we used cs && cs->cpus_allowed lockless and thus can 3402 * race with cgroup_attach_task() or update_cpumask() and get 3403 * the wrong tsk->cpus_allowed. However, both cases imply the 3404 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3405 * which takes task_rq_lock(). 3406 * 3407 * If we are called after it dropped the lock we must see all 3408 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3409 * set any mask even if it is not right from task_cs() pov, 3410 * the pending set_cpus_allowed_ptr() will fix things. 3411 * 3412 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3413 * if required. 3414 */ 3415 return changed; 3416 } 3417 3418 void __init cpuset_init_current_mems_allowed(void) 3419 { 3420 nodes_setall(current->mems_allowed); 3421 } 3422 3423 /** 3424 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3425 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3426 * 3427 * Description: Returns the nodemask_t mems_allowed of the cpuset 3428 * attached to the specified @tsk. Guaranteed to return some non-empty 3429 * subset of node_states[N_MEMORY], even if this means going outside the 3430 * tasks cpuset. 3431 **/ 3432 3433 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3434 { 3435 nodemask_t mask; 3436 unsigned long flags; 3437 3438 spin_lock_irqsave(&callback_lock, flags); 3439 rcu_read_lock(); 3440 guarantee_online_mems(task_cs(tsk), &mask); 3441 rcu_read_unlock(); 3442 spin_unlock_irqrestore(&callback_lock, flags); 3443 3444 return mask; 3445 } 3446 3447 /** 3448 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3449 * @nodemask: the nodemask to be checked 3450 * 3451 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3452 */ 3453 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3454 { 3455 return nodes_intersects(*nodemask, current->mems_allowed); 3456 } 3457 3458 /* 3459 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3460 * mem_hardwall ancestor to the specified cpuset. Call holding 3461 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3462 * (an unusual configuration), then returns the root cpuset. 3463 */ 3464 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3465 { 3466 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3467 cs = parent_cs(cs); 3468 return cs; 3469 } 3470 3471 /** 3472 * cpuset_node_allowed - Can we allocate on a memory node? 3473 * @node: is this an allowed node? 3474 * @gfp_mask: memory allocation flags 3475 * 3476 * If we're in interrupt, yes, we can always allocate. If @node is set in 3477 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3478 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3479 * yes. If current has access to memory reserves as an oom victim, yes. 3480 * Otherwise, no. 3481 * 3482 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3483 * and do not allow allocations outside the current tasks cpuset 3484 * unless the task has been OOM killed. 3485 * GFP_KERNEL allocations are not so marked, so can escape to the 3486 * nearest enclosing hardwalled ancestor cpuset. 3487 * 3488 * Scanning up parent cpusets requires callback_lock. The 3489 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3490 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3491 * current tasks mems_allowed came up empty on the first pass over 3492 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3493 * cpuset are short of memory, might require taking the callback_lock. 3494 * 3495 * The first call here from mm/page_alloc:get_page_from_freelist() 3496 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3497 * so no allocation on a node outside the cpuset is allowed (unless 3498 * in interrupt, of course). 3499 * 3500 * The second pass through get_page_from_freelist() doesn't even call 3501 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3502 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3503 * in alloc_flags. That logic and the checks below have the combined 3504 * affect that: 3505 * in_interrupt - any node ok (current task context irrelevant) 3506 * GFP_ATOMIC - any node ok 3507 * tsk_is_oom_victim - any node ok 3508 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3509 * GFP_USER - only nodes in current tasks mems allowed ok. 3510 */ 3511 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3512 { 3513 struct cpuset *cs; /* current cpuset ancestors */ 3514 int allowed; /* is allocation in zone z allowed? */ 3515 unsigned long flags; 3516 3517 if (in_interrupt()) 3518 return true; 3519 if (node_isset(node, current->mems_allowed)) 3520 return true; 3521 /* 3522 * Allow tasks that have access to memory reserves because they have 3523 * been OOM killed to get memory anywhere. 3524 */ 3525 if (unlikely(tsk_is_oom_victim(current))) 3526 return true; 3527 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3528 return false; 3529 3530 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3531 return true; 3532 3533 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3534 spin_lock_irqsave(&callback_lock, flags); 3535 3536 rcu_read_lock(); 3537 cs = nearest_hardwall_ancestor(task_cs(current)); 3538 allowed = node_isset(node, cs->mems_allowed); 3539 rcu_read_unlock(); 3540 3541 spin_unlock_irqrestore(&callback_lock, flags); 3542 return allowed; 3543 } 3544 3545 /** 3546 * cpuset_mem_spread_node() - On which node to begin search for a file page 3547 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3548 * 3549 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3550 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3551 * and if the memory allocation used cpuset_mem_spread_node() 3552 * to determine on which node to start looking, as it will for 3553 * certain page cache or slab cache pages such as used for file 3554 * system buffers and inode caches, then instead of starting on the 3555 * local node to look for a free page, rather spread the starting 3556 * node around the tasks mems_allowed nodes. 3557 * 3558 * We don't have to worry about the returned node being offline 3559 * because "it can't happen", and even if it did, it would be ok. 3560 * 3561 * The routines calling guarantee_online_mems() are careful to 3562 * only set nodes in task->mems_allowed that are online. So it 3563 * should not be possible for the following code to return an 3564 * offline node. But if it did, that would be ok, as this routine 3565 * is not returning the node where the allocation must be, only 3566 * the node where the search should start. The zonelist passed to 3567 * __alloc_pages() will include all nodes. If the slab allocator 3568 * is passed an offline node, it will fall back to the local node. 3569 * See kmem_cache_alloc_node(). 3570 */ 3571 3572 static int cpuset_spread_node(int *rotor) 3573 { 3574 return *rotor = next_node_in(*rotor, current->mems_allowed); 3575 } 3576 3577 int cpuset_mem_spread_node(void) 3578 { 3579 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3580 current->cpuset_mem_spread_rotor = 3581 node_random(¤t->mems_allowed); 3582 3583 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3584 } 3585 3586 int cpuset_slab_spread_node(void) 3587 { 3588 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3589 current->cpuset_slab_spread_rotor = 3590 node_random(¤t->mems_allowed); 3591 3592 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3593 } 3594 3595 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3596 3597 /** 3598 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3599 * @tsk1: pointer to task_struct of some task. 3600 * @tsk2: pointer to task_struct of some other task. 3601 * 3602 * Description: Return true if @tsk1's mems_allowed intersects the 3603 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3604 * one of the task's memory usage might impact the memory available 3605 * to the other. 3606 **/ 3607 3608 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3609 const struct task_struct *tsk2) 3610 { 3611 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3612 } 3613 3614 /** 3615 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3616 * 3617 * Description: Prints current's name, cpuset name, and cached copy of its 3618 * mems_allowed to the kernel log. 3619 */ 3620 void cpuset_print_current_mems_allowed(void) 3621 { 3622 struct cgroup *cgrp; 3623 3624 rcu_read_lock(); 3625 3626 cgrp = task_cs(current)->css.cgroup; 3627 pr_cont(",cpuset="); 3628 pr_cont_cgroup_name(cgrp); 3629 pr_cont(",mems_allowed=%*pbl", 3630 nodemask_pr_args(¤t->mems_allowed)); 3631 3632 rcu_read_unlock(); 3633 } 3634 3635 /* 3636 * Collection of memory_pressure is suppressed unless 3637 * this flag is enabled by writing "1" to the special 3638 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3639 */ 3640 3641 int cpuset_memory_pressure_enabled __read_mostly; 3642 3643 /** 3644 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3645 * 3646 * Keep a running average of the rate of synchronous (direct) 3647 * page reclaim efforts initiated by tasks in each cpuset. 3648 * 3649 * This represents the rate at which some task in the cpuset 3650 * ran low on memory on all nodes it was allowed to use, and 3651 * had to enter the kernels page reclaim code in an effort to 3652 * create more free memory by tossing clean pages or swapping 3653 * or writing dirty pages. 3654 * 3655 * Display to user space in the per-cpuset read-only file 3656 * "memory_pressure". Value displayed is an integer 3657 * representing the recent rate of entry into the synchronous 3658 * (direct) page reclaim by any task attached to the cpuset. 3659 **/ 3660 3661 void __cpuset_memory_pressure_bump(void) 3662 { 3663 rcu_read_lock(); 3664 fmeter_markevent(&task_cs(current)->fmeter); 3665 rcu_read_unlock(); 3666 } 3667 3668 #ifdef CONFIG_PROC_PID_CPUSET 3669 /* 3670 * proc_cpuset_show() 3671 * - Print tasks cpuset path into seq_file. 3672 * - Used for /proc/<pid>/cpuset. 3673 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3674 * doesn't really matter if tsk->cpuset changes after we read it, 3675 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3676 * anyway. 3677 */ 3678 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3679 struct pid *pid, struct task_struct *tsk) 3680 { 3681 char *buf; 3682 struct cgroup_subsys_state *css; 3683 int retval; 3684 3685 retval = -ENOMEM; 3686 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3687 if (!buf) 3688 goto out; 3689 3690 css = task_get_css(tsk, cpuset_cgrp_id); 3691 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3692 current->nsproxy->cgroup_ns); 3693 css_put(css); 3694 if (retval >= PATH_MAX) 3695 retval = -ENAMETOOLONG; 3696 if (retval < 0) 3697 goto out_free; 3698 seq_puts(m, buf); 3699 seq_putc(m, '\n'); 3700 retval = 0; 3701 out_free: 3702 kfree(buf); 3703 out: 3704 return retval; 3705 } 3706 #endif /* CONFIG_PROC_PID_CPUSET */ 3707 3708 /* Display task mems_allowed in /proc/<pid>/status file. */ 3709 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3710 { 3711 seq_printf(m, "Mems_allowed:\t%*pb\n", 3712 nodemask_pr_args(&task->mems_allowed)); 3713 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3714 nodemask_pr_args(&task->mems_allowed)); 3715 } 3716