xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision a71ace35)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /*
74  * There could be abnormal cpuset configurations for cpu or memory
75  * node binding, add this key to provide a quick low-cost judgment
76  * of the situation.
77  */
78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79 
80 /* See "Frequency meter" comments, below. */
81 
82 struct fmeter {
83 	int cnt;		/* unprocessed events count */
84 	int val;		/* most recent output value */
85 	time64_t time;		/* clock (secs) when val computed */
86 	spinlock_t lock;	/* guards read or write of above */
87 };
88 
89 /*
90  * Invalid partition error code
91  */
92 enum prs_errcode {
93 	PERR_NONE = 0,
94 	PERR_INVCPUS,
95 	PERR_INVPARENT,
96 	PERR_NOTPART,
97 	PERR_NOTEXCL,
98 	PERR_NOCPUS,
99 	PERR_HOTPLUG,
100 	PERR_CPUSEMPTY,
101 };
102 
103 static const char * const perr_strings[] = {
104 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
105 	[PERR_INVPARENT] = "Parent is an invalid partition root",
106 	[PERR_NOTPART]   = "Parent is not a partition root",
107 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
108 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
109 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
110 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111 };
112 
113 struct cpuset {
114 	struct cgroup_subsys_state css;
115 
116 	unsigned long flags;		/* "unsigned long" so bitops work */
117 
118 	/*
119 	 * On default hierarchy:
120 	 *
121 	 * The user-configured masks can only be changed by writing to
122 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 	 * parent masks.
124 	 *
125 	 * The effective masks is the real masks that apply to the tasks
126 	 * in the cpuset. They may be changed if the configured masks are
127 	 * changed or hotplug happens.
128 	 *
129 	 * effective_mask == configured_mask & parent's effective_mask,
130 	 * and if it ends up empty, it will inherit the parent's mask.
131 	 *
132 	 *
133 	 * On legacy hierarchy:
134 	 *
135 	 * The user-configured masks are always the same with effective masks.
136 	 */
137 
138 	/* user-configured CPUs and Memory Nodes allow to tasks */
139 	cpumask_var_t cpus_allowed;
140 	nodemask_t mems_allowed;
141 
142 	/* effective CPUs and Memory Nodes allow to tasks */
143 	cpumask_var_t effective_cpus;
144 	nodemask_t effective_mems;
145 
146 	/*
147 	 * CPUs allocated to child sub-partitions (default hierarchy only)
148 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 	 * - effective_cpus and subparts_cpus are mutually exclusive.
150 	 *
151 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 	 * may have offlined ones.
153 	 */
154 	cpumask_var_t subparts_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of CPUs in subparts_cpus */
183 	int nr_subparts_cpus;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/* Invalid partition error code, not lock protected */
197 	enum prs_errcode prs_err;
198 
199 	/* Handle for cpuset.cpus.partition */
200 	struct cgroup_file partition_file;
201 };
202 
203 /*
204  * Partition root states:
205  *
206  *   0 - member (not a partition root)
207  *   1 - partition root
208  *   2 - partition root without load balancing (isolated)
209  *  -1 - invalid partition root
210  *  -2 - invalid isolated partition root
211  */
212 #define PRS_MEMBER		0
213 #define PRS_ROOT		1
214 #define PRS_ISOLATED		2
215 #define PRS_INVALID_ROOT	-1
216 #define PRS_INVALID_ISOLATED	-2
217 
218 static inline bool is_prs_invalid(int prs_state)
219 {
220 	return prs_state < 0;
221 }
222 
223 /*
224  * Temporary cpumasks for working with partitions that are passed among
225  * functions to avoid memory allocation in inner functions.
226  */
227 struct tmpmasks {
228 	cpumask_var_t addmask, delmask;	/* For partition root */
229 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
230 };
231 
232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233 {
234 	return css ? container_of(css, struct cpuset, css) : NULL;
235 }
236 
237 /* Retrieve the cpuset for a task */
238 static inline struct cpuset *task_cs(struct task_struct *task)
239 {
240 	return css_cs(task_css(task, cpuset_cgrp_id));
241 }
242 
243 static inline struct cpuset *parent_cs(struct cpuset *cs)
244 {
245 	return css_cs(cs->css.parent);
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_rwsem and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
373  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374  * prevent change to cpuset structures.
375  *
376  * A task must hold both locks to modify cpusets.  If a task holds
377  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378  * is the only task able to also acquire callback_lock and be able to
379  * modify cpusets.  It can perform various checks on the cpuset structure
380  * first, knowing nothing will change.  It can also allocate memory while
381  * just holding cpuset_rwsem.  While it is performing these checks, various
382  * callback routines can briefly acquire callback_lock to query cpusets.
383  * Once it is ready to make the changes, it takes callback_lock, blocking
384  * everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407 
408 void cpuset_read_lock(void)
409 {
410 	percpu_down_read(&cpuset_rwsem);
411 }
412 
413 void cpuset_read_unlock(void)
414 {
415 	percpu_up_read(&cpuset_rwsem);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_rwsem held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_rwsem held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_rwsem held. The check can be skipped
554  * if on default hierarchy.
555  */
556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_rwsem.
579  */
580 
581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_rwsem held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_rwsem held.  */
833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_rwsem held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
1069 static void update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	css_task_iter_start(&cs->css, 0, &it);
1075 
1076 	while ((task = css_task_iter_next(&it)))
1077 		dl_add_task_root_domain(task);
1078 
1079 	css_task_iter_end(&it);
1080 }
1081 
1082 static void rebuild_root_domains(void)
1083 {
1084 	struct cpuset *cs = NULL;
1085 	struct cgroup_subsys_state *pos_css;
1086 
1087 	percpu_rwsem_assert_held(&cpuset_rwsem);
1088 	lockdep_assert_cpus_held();
1089 	lockdep_assert_held(&sched_domains_mutex);
1090 
1091 	rcu_read_lock();
1092 
1093 	/*
1094 	 * Clear default root domain DL accounting, it will be computed again
1095 	 * if a task belongs to it.
1096 	 */
1097 	dl_clear_root_domain(&def_root_domain);
1098 
1099 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1100 
1101 		if (cpumask_empty(cs->effective_cpus)) {
1102 			pos_css = css_rightmost_descendant(pos_css);
1103 			continue;
1104 		}
1105 
1106 		css_get(&cs->css);
1107 
1108 		rcu_read_unlock();
1109 
1110 		update_tasks_root_domain(cs);
1111 
1112 		rcu_read_lock();
1113 		css_put(&cs->css);
1114 	}
1115 	rcu_read_unlock();
1116 }
1117 
1118 static void
1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1120 				    struct sched_domain_attr *dattr_new)
1121 {
1122 	mutex_lock(&sched_domains_mutex);
1123 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1124 	rebuild_root_domains();
1125 	mutex_unlock(&sched_domains_mutex);
1126 }
1127 
1128 /*
1129  * Rebuild scheduler domains.
1130  *
1131  * If the flag 'sched_load_balance' of any cpuset with non-empty
1132  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1133  * which has that flag enabled, or if any cpuset with a non-empty
1134  * 'cpus' is removed, then call this routine to rebuild the
1135  * scheduler's dynamic sched domains.
1136  *
1137  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1138  */
1139 static void rebuild_sched_domains_locked(void)
1140 {
1141 	struct cgroup_subsys_state *pos_css;
1142 	struct sched_domain_attr *attr;
1143 	cpumask_var_t *doms;
1144 	struct cpuset *cs;
1145 	int ndoms;
1146 
1147 	lockdep_assert_cpus_held();
1148 	percpu_rwsem_assert_held(&cpuset_rwsem);
1149 
1150 	/*
1151 	 * If we have raced with CPU hotplug, return early to avoid
1152 	 * passing doms with offlined cpu to partition_sched_domains().
1153 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1154 	 *
1155 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1156 	 * should be the same as the active CPUs, so checking only top_cpuset
1157 	 * is enough to detect racing CPU offlines.
1158 	 */
1159 	if (!top_cpuset.nr_subparts_cpus &&
1160 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1161 		return;
1162 
1163 	/*
1164 	 * With subpartition CPUs, however, the effective CPUs of a partition
1165 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1166 	 * partition root could be offlined, all must be checked.
1167 	 */
1168 	if (top_cpuset.nr_subparts_cpus) {
1169 		rcu_read_lock();
1170 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1171 			if (!is_partition_valid(cs)) {
1172 				pos_css = css_rightmost_descendant(pos_css);
1173 				continue;
1174 			}
1175 			if (!cpumask_subset(cs->effective_cpus,
1176 					    cpu_active_mask)) {
1177 				rcu_read_unlock();
1178 				return;
1179 			}
1180 		}
1181 		rcu_read_unlock();
1182 	}
1183 
1184 	/* Generate domain masks and attrs */
1185 	ndoms = generate_sched_domains(&doms, &attr);
1186 
1187 	/* Have scheduler rebuild the domains */
1188 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1189 }
1190 #else /* !CONFIG_SMP */
1191 static void rebuild_sched_domains_locked(void)
1192 {
1193 }
1194 #endif /* CONFIG_SMP */
1195 
1196 void rebuild_sched_domains(void)
1197 {
1198 	cpus_read_lock();
1199 	percpu_down_write(&cpuset_rwsem);
1200 	rebuild_sched_domains_locked();
1201 	percpu_up_write(&cpuset_rwsem);
1202 	cpus_read_unlock();
1203 }
1204 
1205 /**
1206  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1207  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1208  *
1209  * Iterate through each task of @cs updating its cpus_allowed to the
1210  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1211  * cpuset membership stays stable.
1212  */
1213 static void update_tasks_cpumask(struct cpuset *cs)
1214 {
1215 	struct css_task_iter it;
1216 	struct task_struct *task;
1217 	bool top_cs = cs == &top_cpuset;
1218 
1219 	css_task_iter_start(&cs->css, 0, &it);
1220 	while ((task = css_task_iter_next(&it))) {
1221 		/*
1222 		 * Percpu kthreads in top_cpuset are ignored
1223 		 */
1224 		if (top_cs && (task->flags & PF_KTHREAD) &&
1225 		    kthread_is_per_cpu(task))
1226 			continue;
1227 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1228 	}
1229 	css_task_iter_end(&it);
1230 }
1231 
1232 /**
1233  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1234  * @new_cpus: the temp variable for the new effective_cpus mask
1235  * @cs: the cpuset the need to recompute the new effective_cpus mask
1236  * @parent: the parent cpuset
1237  *
1238  * If the parent has subpartition CPUs, include them in the list of
1239  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1240  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1241  * to mask those out.
1242  */
1243 static void compute_effective_cpumask(struct cpumask *new_cpus,
1244 				      struct cpuset *cs, struct cpuset *parent)
1245 {
1246 	if (parent->nr_subparts_cpus) {
1247 		cpumask_or(new_cpus, parent->effective_cpus,
1248 			   parent->subparts_cpus);
1249 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1250 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1251 	} else {
1252 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1253 	}
1254 }
1255 
1256 /*
1257  * Commands for update_parent_subparts_cpumask
1258  */
1259 enum subparts_cmd {
1260 	partcmd_enable,		/* Enable partition root	 */
1261 	partcmd_disable,	/* Disable partition root	 */
1262 	partcmd_update,		/* Update parent's subparts_cpus */
1263 	partcmd_invalidate,	/* Make partition invalid	 */
1264 };
1265 
1266 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1267 		       int turning_on);
1268 /**
1269  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1270  * @cpuset:  The cpuset that requests change in partition root state
1271  * @cmd:     Partition root state change command
1272  * @newmask: Optional new cpumask for partcmd_update
1273  * @tmp:     Temporary addmask and delmask
1274  * Return:   0 or a partition root state error code
1275  *
1276  * For partcmd_enable, the cpuset is being transformed from a non-partition
1277  * root to a partition root. The cpus_allowed mask of the given cpuset will
1278  * be put into parent's subparts_cpus and taken away from parent's
1279  * effective_cpus. The function will return 0 if all the CPUs listed in
1280  * cpus_allowed can be granted or an error code will be returned.
1281  *
1282  * For partcmd_disable, the cpuset is being transformed from a partition
1283  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1284  * parent's subparts_cpus will be taken away from that cpumask and put back
1285  * into parent's effective_cpus. 0 will always be returned.
1286  *
1287  * For partcmd_update, if the optional newmask is specified, the cpu list is
1288  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1289  * assumed to remain the same. The cpuset should either be a valid or invalid
1290  * partition root. The partition root state may change from valid to invalid
1291  * or vice versa. An error code will only be returned if transitioning from
1292  * invalid to valid violates the exclusivity rule.
1293  *
1294  * For partcmd_invalidate, the current partition will be made invalid.
1295  *
1296  * The partcmd_enable and partcmd_disable commands are used by
1297  * update_prstate(). An error code may be returned and the caller will check
1298  * for error.
1299  *
1300  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1301  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1302  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1303  * check for error and so partition_root_state and prs_error will be updated
1304  * directly.
1305  */
1306 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1307 					  struct cpumask *newmask,
1308 					  struct tmpmasks *tmp)
1309 {
1310 	struct cpuset *parent = parent_cs(cs);
1311 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1312 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1313 	int old_prs, new_prs;
1314 	int part_error = PERR_NONE;	/* Partition error? */
1315 
1316 	percpu_rwsem_assert_held(&cpuset_rwsem);
1317 
1318 	/*
1319 	 * The parent must be a partition root.
1320 	 * The new cpumask, if present, or the current cpus_allowed must
1321 	 * not be empty.
1322 	 */
1323 	if (!is_partition_valid(parent)) {
1324 		return is_partition_invalid(parent)
1325 		       ? PERR_INVPARENT : PERR_NOTPART;
1326 	}
1327 	if ((newmask && cpumask_empty(newmask)) ||
1328 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1329 		return PERR_CPUSEMPTY;
1330 
1331 	/*
1332 	 * new_prs will only be changed for the partcmd_update and
1333 	 * partcmd_invalidate commands.
1334 	 */
1335 	adding = deleting = false;
1336 	old_prs = new_prs = cs->partition_root_state;
1337 	if (cmd == partcmd_enable) {
1338 		/*
1339 		 * Enabling partition root is not allowed if cpus_allowed
1340 		 * doesn't overlap parent's cpus_allowed.
1341 		 */
1342 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1343 			return PERR_INVCPUS;
1344 
1345 		/*
1346 		 * A parent can be left with no CPU as long as there is no
1347 		 * task directly associated with the parent partition.
1348 		 */
1349 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1350 		    partition_is_populated(parent, cs))
1351 			return PERR_NOCPUS;
1352 
1353 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1354 		adding = true;
1355 	} else if (cmd == partcmd_disable) {
1356 		/*
1357 		 * Need to remove cpus from parent's subparts_cpus for valid
1358 		 * partition root.
1359 		 */
1360 		deleting = !is_prs_invalid(old_prs) &&
1361 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1362 				       parent->subparts_cpus);
1363 	} else if (cmd == partcmd_invalidate) {
1364 		if (is_prs_invalid(old_prs))
1365 			return 0;
1366 
1367 		/*
1368 		 * Make the current partition invalid. It is assumed that
1369 		 * invalidation is caused by violating cpu exclusivity rule.
1370 		 */
1371 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1372 				       parent->subparts_cpus);
1373 		if (old_prs > 0) {
1374 			new_prs = -old_prs;
1375 			part_error = PERR_NOTEXCL;
1376 		}
1377 	} else if (newmask) {
1378 		/*
1379 		 * partcmd_update with newmask:
1380 		 *
1381 		 * Compute add/delete mask to/from subparts_cpus
1382 		 *
1383 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1384 		 * addmask = newmask & parent->cpus_allowed
1385 		 *		     & ~parent->subparts_cpus
1386 		 */
1387 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1388 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1389 				       parent->subparts_cpus);
1390 
1391 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1392 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1393 					parent->subparts_cpus);
1394 		/*
1395 		 * Make partition invalid if parent's effective_cpus could
1396 		 * become empty and there are tasks in the parent.
1397 		 */
1398 		if (adding &&
1399 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1400 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1401 		    partition_is_populated(parent, cs)) {
1402 			part_error = PERR_NOCPUS;
1403 			adding = false;
1404 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1405 					       parent->subparts_cpus);
1406 		}
1407 	} else {
1408 		/*
1409 		 * partcmd_update w/o newmask:
1410 		 *
1411 		 * delmask = cpus_allowed & parent->subparts_cpus
1412 		 * addmask = cpus_allowed & parent->cpus_allowed
1413 		 *			  & ~parent->subparts_cpus
1414 		 *
1415 		 * This gets invoked either due to a hotplug event or from
1416 		 * update_cpumasks_hier(). This can cause the state of a
1417 		 * partition root to transition from valid to invalid or vice
1418 		 * versa. So we still need to compute the addmask and delmask.
1419 
1420 		 * A partition error happens when:
1421 		 * 1) Cpuset is valid partition, but parent does not distribute
1422 		 *    out any CPUs.
1423 		 * 2) Parent has tasks and all its effective CPUs will have
1424 		 *    to be distributed out.
1425 		 */
1426 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1427 					  parent->cpus_allowed);
1428 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1429 					parent->subparts_cpus);
1430 
1431 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1432 		    (adding &&
1433 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1434 		     partition_is_populated(parent, cs))) {
1435 			part_error = PERR_NOCPUS;
1436 			adding = false;
1437 		}
1438 
1439 		if (part_error && is_partition_valid(cs) &&
1440 		    parent->nr_subparts_cpus)
1441 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1442 					       parent->subparts_cpus);
1443 	}
1444 	if (part_error)
1445 		WRITE_ONCE(cs->prs_err, part_error);
1446 
1447 	if (cmd == partcmd_update) {
1448 		/*
1449 		 * Check for possible transition between valid and invalid
1450 		 * partition root.
1451 		 */
1452 		switch (cs->partition_root_state) {
1453 		case PRS_ROOT:
1454 		case PRS_ISOLATED:
1455 			if (part_error)
1456 				new_prs = -old_prs;
1457 			break;
1458 		case PRS_INVALID_ROOT:
1459 		case PRS_INVALID_ISOLATED:
1460 			if (!part_error)
1461 				new_prs = -old_prs;
1462 			break;
1463 		}
1464 	}
1465 
1466 	if (!adding && !deleting && (new_prs == old_prs))
1467 		return 0;
1468 
1469 	/*
1470 	 * Transitioning between invalid to valid or vice versa may require
1471 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1472 	 */
1473 	if (old_prs != new_prs) {
1474 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1475 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1476 			return PERR_NOTEXCL;
1477 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1478 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1479 	}
1480 
1481 	/*
1482 	 * Change the parent's subparts_cpus.
1483 	 * Newly added CPUs will be removed from effective_cpus and
1484 	 * newly deleted ones will be added back to effective_cpus.
1485 	 */
1486 	spin_lock_irq(&callback_lock);
1487 	if (adding) {
1488 		cpumask_or(parent->subparts_cpus,
1489 			   parent->subparts_cpus, tmp->addmask);
1490 		cpumask_andnot(parent->effective_cpus,
1491 			       parent->effective_cpus, tmp->addmask);
1492 	}
1493 	if (deleting) {
1494 		cpumask_andnot(parent->subparts_cpus,
1495 			       parent->subparts_cpus, tmp->delmask);
1496 		/*
1497 		 * Some of the CPUs in subparts_cpus might have been offlined.
1498 		 */
1499 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1500 		cpumask_or(parent->effective_cpus,
1501 			   parent->effective_cpus, tmp->delmask);
1502 	}
1503 
1504 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1505 
1506 	if (old_prs != new_prs)
1507 		cs->partition_root_state = new_prs;
1508 
1509 	spin_unlock_irq(&callback_lock);
1510 
1511 	if (adding || deleting)
1512 		update_tasks_cpumask(parent);
1513 
1514 	/*
1515 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1516 	 * rebuild_sched_domains_locked() may be called.
1517 	 */
1518 	if (old_prs != new_prs) {
1519 		if (old_prs == PRS_ISOLATED)
1520 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1521 		else if (new_prs == PRS_ISOLATED)
1522 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1523 	}
1524 	notify_partition_change(cs, old_prs);
1525 	return 0;
1526 }
1527 
1528 /*
1529  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1530  * @cs:  the cpuset to consider
1531  * @tmp: temp variables for calculating effective_cpus & partition setup
1532  * @force: don't skip any descendant cpusets if set
1533  *
1534  * When configured cpumask is changed, the effective cpumasks of this cpuset
1535  * and all its descendants need to be updated.
1536  *
1537  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1538  *
1539  * Called with cpuset_rwsem held
1540  */
1541 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1542 				 bool force)
1543 {
1544 	struct cpuset *cp;
1545 	struct cgroup_subsys_state *pos_css;
1546 	bool need_rebuild_sched_domains = false;
1547 	int old_prs, new_prs;
1548 
1549 	rcu_read_lock();
1550 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1551 		struct cpuset *parent = parent_cs(cp);
1552 		bool update_parent = false;
1553 
1554 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1555 
1556 		/*
1557 		 * If it becomes empty, inherit the effective mask of the
1558 		 * parent, which is guaranteed to have some CPUs unless
1559 		 * it is a partition root that has explicitly distributed
1560 		 * out all its CPUs.
1561 		 */
1562 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1563 			if (is_partition_valid(cp) &&
1564 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1565 				goto update_parent_subparts;
1566 
1567 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1568 			if (!cp->use_parent_ecpus) {
1569 				cp->use_parent_ecpus = true;
1570 				parent->child_ecpus_count++;
1571 			}
1572 		} else if (cp->use_parent_ecpus) {
1573 			cp->use_parent_ecpus = false;
1574 			WARN_ON_ONCE(!parent->child_ecpus_count);
1575 			parent->child_ecpus_count--;
1576 		}
1577 
1578 		/*
1579 		 * Skip the whole subtree if the cpumask remains the same
1580 		 * and has no partition root state and force flag not set.
1581 		 */
1582 		if (!cp->partition_root_state && !force &&
1583 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1584 			pos_css = css_rightmost_descendant(pos_css);
1585 			continue;
1586 		}
1587 
1588 update_parent_subparts:
1589 		/*
1590 		 * update_parent_subparts_cpumask() should have been called
1591 		 * for cs already in update_cpumask(). We should also call
1592 		 * update_tasks_cpumask() again for tasks in the parent
1593 		 * cpuset if the parent's subparts_cpus changes.
1594 		 */
1595 		old_prs = new_prs = cp->partition_root_state;
1596 		if ((cp != cs) && old_prs) {
1597 			switch (parent->partition_root_state) {
1598 			case PRS_ROOT:
1599 			case PRS_ISOLATED:
1600 				update_parent = true;
1601 				break;
1602 
1603 			default:
1604 				/*
1605 				 * When parent is not a partition root or is
1606 				 * invalid, child partition roots become
1607 				 * invalid too.
1608 				 */
1609 				if (is_partition_valid(cp))
1610 					new_prs = -cp->partition_root_state;
1611 				WRITE_ONCE(cp->prs_err,
1612 					   is_partition_invalid(parent)
1613 					   ? PERR_INVPARENT : PERR_NOTPART);
1614 				break;
1615 			}
1616 		}
1617 
1618 		if (!css_tryget_online(&cp->css))
1619 			continue;
1620 		rcu_read_unlock();
1621 
1622 		if (update_parent) {
1623 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1624 						       tmp);
1625 			/*
1626 			 * The cpuset partition_root_state may become
1627 			 * invalid. Capture it.
1628 			 */
1629 			new_prs = cp->partition_root_state;
1630 		}
1631 
1632 		spin_lock_irq(&callback_lock);
1633 
1634 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1635 			/*
1636 			 * Put all active subparts_cpus back to effective_cpus.
1637 			 */
1638 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1639 				   cp->subparts_cpus);
1640 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1641 				   cpu_active_mask);
1642 			cp->nr_subparts_cpus = 0;
1643 			cpumask_clear(cp->subparts_cpus);
1644 		}
1645 
1646 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1647 		if (cp->nr_subparts_cpus) {
1648 			/*
1649 			 * Make sure that effective_cpus & subparts_cpus
1650 			 * are mutually exclusive.
1651 			 */
1652 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1653 				       cp->subparts_cpus);
1654 		}
1655 
1656 		cp->partition_root_state = new_prs;
1657 		spin_unlock_irq(&callback_lock);
1658 
1659 		notify_partition_change(cp, old_prs);
1660 
1661 		WARN_ON(!is_in_v2_mode() &&
1662 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1663 
1664 		update_tasks_cpumask(cp);
1665 
1666 		/*
1667 		 * On legacy hierarchy, if the effective cpumask of any non-
1668 		 * empty cpuset is changed, we need to rebuild sched domains.
1669 		 * On default hierarchy, the cpuset needs to be a partition
1670 		 * root as well.
1671 		 */
1672 		if (!cpumask_empty(cp->cpus_allowed) &&
1673 		    is_sched_load_balance(cp) &&
1674 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1675 		    is_partition_valid(cp)))
1676 			need_rebuild_sched_domains = true;
1677 
1678 		rcu_read_lock();
1679 		css_put(&cp->css);
1680 	}
1681 	rcu_read_unlock();
1682 
1683 	if (need_rebuild_sched_domains)
1684 		rebuild_sched_domains_locked();
1685 }
1686 
1687 /**
1688  * update_sibling_cpumasks - Update siblings cpumasks
1689  * @parent:  Parent cpuset
1690  * @cs:      Current cpuset
1691  * @tmp:     Temp variables
1692  */
1693 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1694 				    struct tmpmasks *tmp)
1695 {
1696 	struct cpuset *sibling;
1697 	struct cgroup_subsys_state *pos_css;
1698 
1699 	percpu_rwsem_assert_held(&cpuset_rwsem);
1700 
1701 	/*
1702 	 * Check all its siblings and call update_cpumasks_hier()
1703 	 * if their use_parent_ecpus flag is set in order for them
1704 	 * to use the right effective_cpus value.
1705 	 *
1706 	 * The update_cpumasks_hier() function may sleep. So we have to
1707 	 * release the RCU read lock before calling it.
1708 	 */
1709 	rcu_read_lock();
1710 	cpuset_for_each_child(sibling, pos_css, parent) {
1711 		if (sibling == cs)
1712 			continue;
1713 		if (!sibling->use_parent_ecpus)
1714 			continue;
1715 		if (!css_tryget_online(&sibling->css))
1716 			continue;
1717 
1718 		rcu_read_unlock();
1719 		update_cpumasks_hier(sibling, tmp, false);
1720 		rcu_read_lock();
1721 		css_put(&sibling->css);
1722 	}
1723 	rcu_read_unlock();
1724 }
1725 
1726 /**
1727  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1728  * @cs: the cpuset to consider
1729  * @trialcs: trial cpuset
1730  * @buf: buffer of cpu numbers written to this cpuset
1731  */
1732 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1733 			  const char *buf)
1734 {
1735 	int retval;
1736 	struct tmpmasks tmp;
1737 	bool invalidate = false;
1738 
1739 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1740 	if (cs == &top_cpuset)
1741 		return -EACCES;
1742 
1743 	/*
1744 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1745 	 * Since cpulist_parse() fails on an empty mask, we special case
1746 	 * that parsing.  The validate_change() call ensures that cpusets
1747 	 * with tasks have cpus.
1748 	 */
1749 	if (!*buf) {
1750 		cpumask_clear(trialcs->cpus_allowed);
1751 	} else {
1752 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1753 		if (retval < 0)
1754 			return retval;
1755 
1756 		if (!cpumask_subset(trialcs->cpus_allowed,
1757 				    top_cpuset.cpus_allowed))
1758 			return -EINVAL;
1759 	}
1760 
1761 	/* Nothing to do if the cpus didn't change */
1762 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1763 		return 0;
1764 
1765 #ifdef CONFIG_CPUMASK_OFFSTACK
1766 	/*
1767 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1768 	 * to allocated cpumasks.
1769 	 */
1770 	tmp.addmask  = trialcs->subparts_cpus;
1771 	tmp.delmask  = trialcs->effective_cpus;
1772 	tmp.new_cpus = trialcs->cpus_allowed;
1773 #endif
1774 
1775 	retval = validate_change(cs, trialcs);
1776 
1777 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1778 		struct cpuset *cp, *parent;
1779 		struct cgroup_subsys_state *css;
1780 
1781 		/*
1782 		 * The -EINVAL error code indicates that partition sibling
1783 		 * CPU exclusivity rule has been violated. We still allow
1784 		 * the cpumask change to proceed while invalidating the
1785 		 * partition. However, any conflicting sibling partitions
1786 		 * have to be marked as invalid too.
1787 		 */
1788 		invalidate = true;
1789 		rcu_read_lock();
1790 		parent = parent_cs(cs);
1791 		cpuset_for_each_child(cp, css, parent)
1792 			if (is_partition_valid(cp) &&
1793 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1794 				rcu_read_unlock();
1795 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1796 				rcu_read_lock();
1797 			}
1798 		rcu_read_unlock();
1799 		retval = 0;
1800 	}
1801 	if (retval < 0)
1802 		return retval;
1803 
1804 	if (cs->partition_root_state) {
1805 		if (invalidate)
1806 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1807 						       NULL, &tmp);
1808 		else
1809 			update_parent_subparts_cpumask(cs, partcmd_update,
1810 						trialcs->cpus_allowed, &tmp);
1811 	}
1812 
1813 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1814 				  parent_cs(cs));
1815 	spin_lock_irq(&callback_lock);
1816 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1817 
1818 	/*
1819 	 * Make sure that subparts_cpus, if not empty, is a subset of
1820 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1821 	 * empty effective cpus with tasks.
1822 	 */
1823 	if (cs->nr_subparts_cpus) {
1824 		if (!is_partition_valid(cs) ||
1825 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1826 		    partition_is_populated(cs, NULL))) {
1827 			cs->nr_subparts_cpus = 0;
1828 			cpumask_clear(cs->subparts_cpus);
1829 		} else {
1830 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1831 				    cs->cpus_allowed);
1832 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1833 		}
1834 	}
1835 	spin_unlock_irq(&callback_lock);
1836 
1837 	/* effective_cpus will be updated here */
1838 	update_cpumasks_hier(cs, &tmp, false);
1839 
1840 	if (cs->partition_root_state) {
1841 		struct cpuset *parent = parent_cs(cs);
1842 
1843 		/*
1844 		 * For partition root, update the cpumasks of sibling
1845 		 * cpusets if they use parent's effective_cpus.
1846 		 */
1847 		if (parent->child_ecpus_count)
1848 			update_sibling_cpumasks(parent, cs, &tmp);
1849 	}
1850 	return 0;
1851 }
1852 
1853 /*
1854  * Migrate memory region from one set of nodes to another.  This is
1855  * performed asynchronously as it can be called from process migration path
1856  * holding locks involved in process management.  All mm migrations are
1857  * performed in the queued order and can be waited for by flushing
1858  * cpuset_migrate_mm_wq.
1859  */
1860 
1861 struct cpuset_migrate_mm_work {
1862 	struct work_struct	work;
1863 	struct mm_struct	*mm;
1864 	nodemask_t		from;
1865 	nodemask_t		to;
1866 };
1867 
1868 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1869 {
1870 	struct cpuset_migrate_mm_work *mwork =
1871 		container_of(work, struct cpuset_migrate_mm_work, work);
1872 
1873 	/* on a wq worker, no need to worry about %current's mems_allowed */
1874 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1875 	mmput(mwork->mm);
1876 	kfree(mwork);
1877 }
1878 
1879 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1880 							const nodemask_t *to)
1881 {
1882 	struct cpuset_migrate_mm_work *mwork;
1883 
1884 	if (nodes_equal(*from, *to)) {
1885 		mmput(mm);
1886 		return;
1887 	}
1888 
1889 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1890 	if (mwork) {
1891 		mwork->mm = mm;
1892 		mwork->from = *from;
1893 		mwork->to = *to;
1894 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1895 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1896 	} else {
1897 		mmput(mm);
1898 	}
1899 }
1900 
1901 static void cpuset_post_attach(void)
1902 {
1903 	flush_workqueue(cpuset_migrate_mm_wq);
1904 }
1905 
1906 /*
1907  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1908  * @tsk: the task to change
1909  * @newmems: new nodes that the task will be set
1910  *
1911  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1912  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1913  * parallel, it might temporarily see an empty intersection, which results in
1914  * a seqlock check and retry before OOM or allocation failure.
1915  */
1916 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1917 					nodemask_t *newmems)
1918 {
1919 	task_lock(tsk);
1920 
1921 	local_irq_disable();
1922 	write_seqcount_begin(&tsk->mems_allowed_seq);
1923 
1924 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1925 	mpol_rebind_task(tsk, newmems);
1926 	tsk->mems_allowed = *newmems;
1927 
1928 	write_seqcount_end(&tsk->mems_allowed_seq);
1929 	local_irq_enable();
1930 
1931 	task_unlock(tsk);
1932 }
1933 
1934 static void *cpuset_being_rebound;
1935 
1936 /**
1937  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1938  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1939  *
1940  * Iterate through each task of @cs updating its mems_allowed to the
1941  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1942  * cpuset membership stays stable.
1943  */
1944 static void update_tasks_nodemask(struct cpuset *cs)
1945 {
1946 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1947 	struct css_task_iter it;
1948 	struct task_struct *task;
1949 
1950 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1951 
1952 	guarantee_online_mems(cs, &newmems);
1953 
1954 	/*
1955 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1956 	 * take while holding tasklist_lock.  Forks can happen - the
1957 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1958 	 * and rebind their vma mempolicies too.  Because we still hold
1959 	 * the global cpuset_rwsem, we know that no other rebind effort
1960 	 * will be contending for the global variable cpuset_being_rebound.
1961 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1962 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1963 	 */
1964 	css_task_iter_start(&cs->css, 0, &it);
1965 	while ((task = css_task_iter_next(&it))) {
1966 		struct mm_struct *mm;
1967 		bool migrate;
1968 
1969 		cpuset_change_task_nodemask(task, &newmems);
1970 
1971 		mm = get_task_mm(task);
1972 		if (!mm)
1973 			continue;
1974 
1975 		migrate = is_memory_migrate(cs);
1976 
1977 		mpol_rebind_mm(mm, &cs->mems_allowed);
1978 		if (migrate)
1979 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1980 		else
1981 			mmput(mm);
1982 	}
1983 	css_task_iter_end(&it);
1984 
1985 	/*
1986 	 * All the tasks' nodemasks have been updated, update
1987 	 * cs->old_mems_allowed.
1988 	 */
1989 	cs->old_mems_allowed = newmems;
1990 
1991 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1992 	cpuset_being_rebound = NULL;
1993 }
1994 
1995 /*
1996  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1997  * @cs: the cpuset to consider
1998  * @new_mems: a temp variable for calculating new effective_mems
1999  *
2000  * When configured nodemask is changed, the effective nodemasks of this cpuset
2001  * and all its descendants need to be updated.
2002  *
2003  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2004  *
2005  * Called with cpuset_rwsem held
2006  */
2007 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2008 {
2009 	struct cpuset *cp;
2010 	struct cgroup_subsys_state *pos_css;
2011 
2012 	rcu_read_lock();
2013 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2014 		struct cpuset *parent = parent_cs(cp);
2015 
2016 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2017 
2018 		/*
2019 		 * If it becomes empty, inherit the effective mask of the
2020 		 * parent, which is guaranteed to have some MEMs.
2021 		 */
2022 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2023 			*new_mems = parent->effective_mems;
2024 
2025 		/* Skip the whole subtree if the nodemask remains the same. */
2026 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2027 			pos_css = css_rightmost_descendant(pos_css);
2028 			continue;
2029 		}
2030 
2031 		if (!css_tryget_online(&cp->css))
2032 			continue;
2033 		rcu_read_unlock();
2034 
2035 		spin_lock_irq(&callback_lock);
2036 		cp->effective_mems = *new_mems;
2037 		spin_unlock_irq(&callback_lock);
2038 
2039 		WARN_ON(!is_in_v2_mode() &&
2040 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2041 
2042 		update_tasks_nodemask(cp);
2043 
2044 		rcu_read_lock();
2045 		css_put(&cp->css);
2046 	}
2047 	rcu_read_unlock();
2048 }
2049 
2050 /*
2051  * Handle user request to change the 'mems' memory placement
2052  * of a cpuset.  Needs to validate the request, update the
2053  * cpusets mems_allowed, and for each task in the cpuset,
2054  * update mems_allowed and rebind task's mempolicy and any vma
2055  * mempolicies and if the cpuset is marked 'memory_migrate',
2056  * migrate the tasks pages to the new memory.
2057  *
2058  * Call with cpuset_rwsem held. May take callback_lock during call.
2059  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2060  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2061  * their mempolicies to the cpusets new mems_allowed.
2062  */
2063 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2064 			   const char *buf)
2065 {
2066 	int retval;
2067 
2068 	/*
2069 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2070 	 * it's read-only
2071 	 */
2072 	if (cs == &top_cpuset) {
2073 		retval = -EACCES;
2074 		goto done;
2075 	}
2076 
2077 	/*
2078 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2079 	 * Since nodelist_parse() fails on an empty mask, we special case
2080 	 * that parsing.  The validate_change() call ensures that cpusets
2081 	 * with tasks have memory.
2082 	 */
2083 	if (!*buf) {
2084 		nodes_clear(trialcs->mems_allowed);
2085 	} else {
2086 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2087 		if (retval < 0)
2088 			goto done;
2089 
2090 		if (!nodes_subset(trialcs->mems_allowed,
2091 				  top_cpuset.mems_allowed)) {
2092 			retval = -EINVAL;
2093 			goto done;
2094 		}
2095 	}
2096 
2097 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2098 		retval = 0;		/* Too easy - nothing to do */
2099 		goto done;
2100 	}
2101 	retval = validate_change(cs, trialcs);
2102 	if (retval < 0)
2103 		goto done;
2104 
2105 	check_insane_mems_config(&trialcs->mems_allowed);
2106 
2107 	spin_lock_irq(&callback_lock);
2108 	cs->mems_allowed = trialcs->mems_allowed;
2109 	spin_unlock_irq(&callback_lock);
2110 
2111 	/* use trialcs->mems_allowed as a temp variable */
2112 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2113 done:
2114 	return retval;
2115 }
2116 
2117 bool current_cpuset_is_being_rebound(void)
2118 {
2119 	bool ret;
2120 
2121 	rcu_read_lock();
2122 	ret = task_cs(current) == cpuset_being_rebound;
2123 	rcu_read_unlock();
2124 
2125 	return ret;
2126 }
2127 
2128 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2129 {
2130 #ifdef CONFIG_SMP
2131 	if (val < -1 || val >= sched_domain_level_max)
2132 		return -EINVAL;
2133 #endif
2134 
2135 	if (val != cs->relax_domain_level) {
2136 		cs->relax_domain_level = val;
2137 		if (!cpumask_empty(cs->cpus_allowed) &&
2138 		    is_sched_load_balance(cs))
2139 			rebuild_sched_domains_locked();
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 /**
2146  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2147  * @cs: the cpuset in which each task's spread flags needs to be changed
2148  *
2149  * Iterate through each task of @cs updating its spread flags.  As this
2150  * function is called with cpuset_rwsem held, cpuset membership stays
2151  * stable.
2152  */
2153 static void update_tasks_flags(struct cpuset *cs)
2154 {
2155 	struct css_task_iter it;
2156 	struct task_struct *task;
2157 
2158 	css_task_iter_start(&cs->css, 0, &it);
2159 	while ((task = css_task_iter_next(&it)))
2160 		cpuset_update_task_spread_flags(cs, task);
2161 	css_task_iter_end(&it);
2162 }
2163 
2164 /*
2165  * update_flag - read a 0 or a 1 in a file and update associated flag
2166  * bit:		the bit to update (see cpuset_flagbits_t)
2167  * cs:		the cpuset to update
2168  * turning_on: 	whether the flag is being set or cleared
2169  *
2170  * Call with cpuset_rwsem held.
2171  */
2172 
2173 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2174 		       int turning_on)
2175 {
2176 	struct cpuset *trialcs;
2177 	int balance_flag_changed;
2178 	int spread_flag_changed;
2179 	int err;
2180 
2181 	trialcs = alloc_trial_cpuset(cs);
2182 	if (!trialcs)
2183 		return -ENOMEM;
2184 
2185 	if (turning_on)
2186 		set_bit(bit, &trialcs->flags);
2187 	else
2188 		clear_bit(bit, &trialcs->flags);
2189 
2190 	err = validate_change(cs, trialcs);
2191 	if (err < 0)
2192 		goto out;
2193 
2194 	balance_flag_changed = (is_sched_load_balance(cs) !=
2195 				is_sched_load_balance(trialcs));
2196 
2197 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2198 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2199 
2200 	spin_lock_irq(&callback_lock);
2201 	cs->flags = trialcs->flags;
2202 	spin_unlock_irq(&callback_lock);
2203 
2204 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2205 		rebuild_sched_domains_locked();
2206 
2207 	if (spread_flag_changed)
2208 		update_tasks_flags(cs);
2209 out:
2210 	free_cpuset(trialcs);
2211 	return err;
2212 }
2213 
2214 /**
2215  * update_prstate - update partition_root_state
2216  * @cs: the cpuset to update
2217  * @new_prs: new partition root state
2218  * Return: 0 if successful, != 0 if error
2219  *
2220  * Call with cpuset_rwsem held.
2221  */
2222 static int update_prstate(struct cpuset *cs, int new_prs)
2223 {
2224 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2225 	bool sched_domain_rebuilt = false;
2226 	struct cpuset *parent = parent_cs(cs);
2227 	struct tmpmasks tmpmask;
2228 
2229 	if (old_prs == new_prs)
2230 		return 0;
2231 
2232 	/*
2233 	 * For a previously invalid partition root, leave it at being
2234 	 * invalid if new_prs is not "member".
2235 	 */
2236 	if (new_prs && is_prs_invalid(old_prs)) {
2237 		cs->partition_root_state = -new_prs;
2238 		return 0;
2239 	}
2240 
2241 	if (alloc_cpumasks(NULL, &tmpmask))
2242 		return -ENOMEM;
2243 
2244 	if (!old_prs) {
2245 		/*
2246 		 * Turning on partition root requires setting the
2247 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2248 		 * cannot be empty.
2249 		 */
2250 		if (cpumask_empty(cs->cpus_allowed)) {
2251 			err = PERR_CPUSEMPTY;
2252 			goto out;
2253 		}
2254 
2255 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2256 		if (err) {
2257 			err = PERR_NOTEXCL;
2258 			goto out;
2259 		}
2260 
2261 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2262 						     NULL, &tmpmask);
2263 		if (err) {
2264 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2265 			goto out;
2266 		}
2267 
2268 		if (new_prs == PRS_ISOLATED) {
2269 			/*
2270 			 * Disable the load balance flag should not return an
2271 			 * error unless the system is running out of memory.
2272 			 */
2273 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2274 			sched_domain_rebuilt = true;
2275 		}
2276 	} else if (old_prs && new_prs) {
2277 		/*
2278 		 * A change in load balance state only, no change in cpumasks.
2279 		 */
2280 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2281 		sched_domain_rebuilt = true;
2282 		goto out;	/* Sched domain is rebuilt in update_flag() */
2283 	} else {
2284 		/*
2285 		 * Switching back to member is always allowed even if it
2286 		 * disables child partitions.
2287 		 */
2288 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2289 					       &tmpmask);
2290 
2291 		/*
2292 		 * If there are child partitions, they will all become invalid.
2293 		 */
2294 		if (unlikely(cs->nr_subparts_cpus)) {
2295 			spin_lock_irq(&callback_lock);
2296 			cs->nr_subparts_cpus = 0;
2297 			cpumask_clear(cs->subparts_cpus);
2298 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2299 			spin_unlock_irq(&callback_lock);
2300 		}
2301 
2302 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2303 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2304 
2305 		if (!is_sched_load_balance(cs)) {
2306 			/* Make sure load balance is on */
2307 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2308 			sched_domain_rebuilt = true;
2309 		}
2310 	}
2311 
2312 	update_tasks_cpumask(parent);
2313 
2314 	if (parent->child_ecpus_count)
2315 		update_sibling_cpumasks(parent, cs, &tmpmask);
2316 
2317 	if (!sched_domain_rebuilt)
2318 		rebuild_sched_domains_locked();
2319 out:
2320 	/*
2321 	 * Make partition invalid if an error happen
2322 	 */
2323 	if (err)
2324 		new_prs = -new_prs;
2325 	spin_lock_irq(&callback_lock);
2326 	cs->partition_root_state = new_prs;
2327 	WRITE_ONCE(cs->prs_err, err);
2328 	spin_unlock_irq(&callback_lock);
2329 	/*
2330 	 * Update child cpusets, if present.
2331 	 * Force update if switching back to member.
2332 	 */
2333 	if (!list_empty(&cs->css.children))
2334 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2335 
2336 	notify_partition_change(cs, old_prs);
2337 	free_cpumasks(NULL, &tmpmask);
2338 	return 0;
2339 }
2340 
2341 /*
2342  * Frequency meter - How fast is some event occurring?
2343  *
2344  * These routines manage a digitally filtered, constant time based,
2345  * event frequency meter.  There are four routines:
2346  *   fmeter_init() - initialize a frequency meter.
2347  *   fmeter_markevent() - called each time the event happens.
2348  *   fmeter_getrate() - returns the recent rate of such events.
2349  *   fmeter_update() - internal routine used to update fmeter.
2350  *
2351  * A common data structure is passed to each of these routines,
2352  * which is used to keep track of the state required to manage the
2353  * frequency meter and its digital filter.
2354  *
2355  * The filter works on the number of events marked per unit time.
2356  * The filter is single-pole low-pass recursive (IIR).  The time unit
2357  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2358  * simulate 3 decimal digits of precision (multiplied by 1000).
2359  *
2360  * With an FM_COEF of 933, and a time base of 1 second, the filter
2361  * has a half-life of 10 seconds, meaning that if the events quit
2362  * happening, then the rate returned from the fmeter_getrate()
2363  * will be cut in half each 10 seconds, until it converges to zero.
2364  *
2365  * It is not worth doing a real infinitely recursive filter.  If more
2366  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2367  * just compute FM_MAXTICKS ticks worth, by which point the level
2368  * will be stable.
2369  *
2370  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2371  * arithmetic overflow in the fmeter_update() routine.
2372  *
2373  * Given the simple 32 bit integer arithmetic used, this meter works
2374  * best for reporting rates between one per millisecond (msec) and
2375  * one per 32 (approx) seconds.  At constant rates faster than one
2376  * per msec it maxes out at values just under 1,000,000.  At constant
2377  * rates between one per msec, and one per second it will stabilize
2378  * to a value N*1000, where N is the rate of events per second.
2379  * At constant rates between one per second and one per 32 seconds,
2380  * it will be choppy, moving up on the seconds that have an event,
2381  * and then decaying until the next event.  At rates slower than
2382  * about one in 32 seconds, it decays all the way back to zero between
2383  * each event.
2384  */
2385 
2386 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2387 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2388 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2389 #define FM_SCALE 1000		/* faux fixed point scale */
2390 
2391 /* Initialize a frequency meter */
2392 static void fmeter_init(struct fmeter *fmp)
2393 {
2394 	fmp->cnt = 0;
2395 	fmp->val = 0;
2396 	fmp->time = 0;
2397 	spin_lock_init(&fmp->lock);
2398 }
2399 
2400 /* Internal meter update - process cnt events and update value */
2401 static void fmeter_update(struct fmeter *fmp)
2402 {
2403 	time64_t now;
2404 	u32 ticks;
2405 
2406 	now = ktime_get_seconds();
2407 	ticks = now - fmp->time;
2408 
2409 	if (ticks == 0)
2410 		return;
2411 
2412 	ticks = min(FM_MAXTICKS, ticks);
2413 	while (ticks-- > 0)
2414 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2415 	fmp->time = now;
2416 
2417 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2418 	fmp->cnt = 0;
2419 }
2420 
2421 /* Process any previous ticks, then bump cnt by one (times scale). */
2422 static void fmeter_markevent(struct fmeter *fmp)
2423 {
2424 	spin_lock(&fmp->lock);
2425 	fmeter_update(fmp);
2426 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2427 	spin_unlock(&fmp->lock);
2428 }
2429 
2430 /* Process any previous ticks, then return current value. */
2431 static int fmeter_getrate(struct fmeter *fmp)
2432 {
2433 	int val;
2434 
2435 	spin_lock(&fmp->lock);
2436 	fmeter_update(fmp);
2437 	val = fmp->val;
2438 	spin_unlock(&fmp->lock);
2439 	return val;
2440 }
2441 
2442 static struct cpuset *cpuset_attach_old_cs;
2443 
2444 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2445 static int cpuset_can_attach(struct cgroup_taskset *tset)
2446 {
2447 	struct cgroup_subsys_state *css;
2448 	struct cpuset *cs;
2449 	struct task_struct *task;
2450 	int ret;
2451 
2452 	/* used later by cpuset_attach() */
2453 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2454 	cs = css_cs(css);
2455 
2456 	percpu_down_write(&cpuset_rwsem);
2457 
2458 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2459 	ret = -ENOSPC;
2460 	if (!is_in_v2_mode() &&
2461 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2462 		goto out_unlock;
2463 
2464 	/*
2465 	 * Task cannot be moved to a cpuset with empty effective cpus.
2466 	 */
2467 	if (cpumask_empty(cs->effective_cpus))
2468 		goto out_unlock;
2469 
2470 	cgroup_taskset_for_each(task, css, tset) {
2471 		ret = task_can_attach(task, cs->effective_cpus);
2472 		if (ret)
2473 			goto out_unlock;
2474 		ret = security_task_setscheduler(task);
2475 		if (ret)
2476 			goto out_unlock;
2477 	}
2478 
2479 	/*
2480 	 * Mark attach is in progress.  This makes validate_change() fail
2481 	 * changes which zero cpus/mems_allowed.
2482 	 */
2483 	cs->attach_in_progress++;
2484 	ret = 0;
2485 out_unlock:
2486 	percpu_up_write(&cpuset_rwsem);
2487 	return ret;
2488 }
2489 
2490 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2491 {
2492 	struct cgroup_subsys_state *css;
2493 
2494 	cgroup_taskset_first(tset, &css);
2495 
2496 	percpu_down_write(&cpuset_rwsem);
2497 	css_cs(css)->attach_in_progress--;
2498 	percpu_up_write(&cpuset_rwsem);
2499 }
2500 
2501 /*
2502  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2503  * but we can't allocate it dynamically there.  Define it global and
2504  * allocate from cpuset_init().
2505  */
2506 static cpumask_var_t cpus_attach;
2507 
2508 static void cpuset_attach(struct cgroup_taskset *tset)
2509 {
2510 	/* static buf protected by cpuset_rwsem */
2511 	static nodemask_t cpuset_attach_nodemask_to;
2512 	struct task_struct *task;
2513 	struct task_struct *leader;
2514 	struct cgroup_subsys_state *css;
2515 	struct cpuset *cs;
2516 	struct cpuset *oldcs = cpuset_attach_old_cs;
2517 	bool cpus_updated, mems_updated;
2518 
2519 	cgroup_taskset_first(tset, &css);
2520 	cs = css_cs(css);
2521 
2522 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2523 	percpu_down_write(&cpuset_rwsem);
2524 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2525 				      oldcs->effective_cpus);
2526 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2527 
2528 	/*
2529 	 * In the default hierarchy, enabling cpuset in the child cgroups
2530 	 * will trigger a number of cpuset_attach() calls with no change
2531 	 * in effective cpus and mems. In that case, we can optimize out
2532 	 * by skipping the task iteration and update.
2533 	 */
2534 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2535 	    !cpus_updated && !mems_updated) {
2536 		cpuset_attach_nodemask_to = cs->effective_mems;
2537 		goto out;
2538 	}
2539 
2540 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2541 
2542 	cgroup_taskset_for_each(task, css, tset) {
2543 		if (cs != &top_cpuset)
2544 			guarantee_online_cpus(task, cpus_attach);
2545 		else
2546 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2547 		/*
2548 		 * can_attach beforehand should guarantee that this doesn't
2549 		 * fail.  TODO: have a better way to handle failure here
2550 		 */
2551 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2552 
2553 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2554 		cpuset_update_task_spread_flags(cs, task);
2555 	}
2556 
2557 	/*
2558 	 * Change mm for all threadgroup leaders. This is expensive and may
2559 	 * sleep and should be moved outside migration path proper. Skip it
2560 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2561 	 * not set.
2562 	 */
2563 	cpuset_attach_nodemask_to = cs->effective_mems;
2564 	if (!is_memory_migrate(cs) && !mems_updated)
2565 		goto out;
2566 
2567 	cgroup_taskset_for_each_leader(leader, css, tset) {
2568 		struct mm_struct *mm = get_task_mm(leader);
2569 
2570 		if (mm) {
2571 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2572 
2573 			/*
2574 			 * old_mems_allowed is the same with mems_allowed
2575 			 * here, except if this task is being moved
2576 			 * automatically due to hotplug.  In that case
2577 			 * @mems_allowed has been updated and is empty, so
2578 			 * @old_mems_allowed is the right nodesets that we
2579 			 * migrate mm from.
2580 			 */
2581 			if (is_memory_migrate(cs))
2582 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2583 						  &cpuset_attach_nodemask_to);
2584 			else
2585 				mmput(mm);
2586 		}
2587 	}
2588 
2589 out:
2590 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2591 
2592 	cs->attach_in_progress--;
2593 	if (!cs->attach_in_progress)
2594 		wake_up(&cpuset_attach_wq);
2595 
2596 	percpu_up_write(&cpuset_rwsem);
2597 }
2598 
2599 /* The various types of files and directories in a cpuset file system */
2600 
2601 typedef enum {
2602 	FILE_MEMORY_MIGRATE,
2603 	FILE_CPULIST,
2604 	FILE_MEMLIST,
2605 	FILE_EFFECTIVE_CPULIST,
2606 	FILE_EFFECTIVE_MEMLIST,
2607 	FILE_SUBPARTS_CPULIST,
2608 	FILE_CPU_EXCLUSIVE,
2609 	FILE_MEM_EXCLUSIVE,
2610 	FILE_MEM_HARDWALL,
2611 	FILE_SCHED_LOAD_BALANCE,
2612 	FILE_PARTITION_ROOT,
2613 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2614 	FILE_MEMORY_PRESSURE_ENABLED,
2615 	FILE_MEMORY_PRESSURE,
2616 	FILE_SPREAD_PAGE,
2617 	FILE_SPREAD_SLAB,
2618 } cpuset_filetype_t;
2619 
2620 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2621 			    u64 val)
2622 {
2623 	struct cpuset *cs = css_cs(css);
2624 	cpuset_filetype_t type = cft->private;
2625 	int retval = 0;
2626 
2627 	cpus_read_lock();
2628 	percpu_down_write(&cpuset_rwsem);
2629 	if (!is_cpuset_online(cs)) {
2630 		retval = -ENODEV;
2631 		goto out_unlock;
2632 	}
2633 
2634 	switch (type) {
2635 	case FILE_CPU_EXCLUSIVE:
2636 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2637 		break;
2638 	case FILE_MEM_EXCLUSIVE:
2639 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2640 		break;
2641 	case FILE_MEM_HARDWALL:
2642 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2643 		break;
2644 	case FILE_SCHED_LOAD_BALANCE:
2645 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2646 		break;
2647 	case FILE_MEMORY_MIGRATE:
2648 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2649 		break;
2650 	case FILE_MEMORY_PRESSURE_ENABLED:
2651 		cpuset_memory_pressure_enabled = !!val;
2652 		break;
2653 	case FILE_SPREAD_PAGE:
2654 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2655 		break;
2656 	case FILE_SPREAD_SLAB:
2657 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2658 		break;
2659 	default:
2660 		retval = -EINVAL;
2661 		break;
2662 	}
2663 out_unlock:
2664 	percpu_up_write(&cpuset_rwsem);
2665 	cpus_read_unlock();
2666 	return retval;
2667 }
2668 
2669 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2670 			    s64 val)
2671 {
2672 	struct cpuset *cs = css_cs(css);
2673 	cpuset_filetype_t type = cft->private;
2674 	int retval = -ENODEV;
2675 
2676 	cpus_read_lock();
2677 	percpu_down_write(&cpuset_rwsem);
2678 	if (!is_cpuset_online(cs))
2679 		goto out_unlock;
2680 
2681 	switch (type) {
2682 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2683 		retval = update_relax_domain_level(cs, val);
2684 		break;
2685 	default:
2686 		retval = -EINVAL;
2687 		break;
2688 	}
2689 out_unlock:
2690 	percpu_up_write(&cpuset_rwsem);
2691 	cpus_read_unlock();
2692 	return retval;
2693 }
2694 
2695 /*
2696  * Common handling for a write to a "cpus" or "mems" file.
2697  */
2698 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2699 				    char *buf, size_t nbytes, loff_t off)
2700 {
2701 	struct cpuset *cs = css_cs(of_css(of));
2702 	struct cpuset *trialcs;
2703 	int retval = -ENODEV;
2704 
2705 	buf = strstrip(buf);
2706 
2707 	/*
2708 	 * CPU or memory hotunplug may leave @cs w/o any execution
2709 	 * resources, in which case the hotplug code asynchronously updates
2710 	 * configuration and transfers all tasks to the nearest ancestor
2711 	 * which can execute.
2712 	 *
2713 	 * As writes to "cpus" or "mems" may restore @cs's execution
2714 	 * resources, wait for the previously scheduled operations before
2715 	 * proceeding, so that we don't end up keep removing tasks added
2716 	 * after execution capability is restored.
2717 	 *
2718 	 * cpuset_hotplug_work calls back into cgroup core via
2719 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2720 	 * operation like this one can lead to a deadlock through kernfs
2721 	 * active_ref protection.  Let's break the protection.  Losing the
2722 	 * protection is okay as we check whether @cs is online after
2723 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2724 	 * hierarchies.
2725 	 */
2726 	css_get(&cs->css);
2727 	kernfs_break_active_protection(of->kn);
2728 	flush_work(&cpuset_hotplug_work);
2729 
2730 	cpus_read_lock();
2731 	percpu_down_write(&cpuset_rwsem);
2732 	if (!is_cpuset_online(cs))
2733 		goto out_unlock;
2734 
2735 	trialcs = alloc_trial_cpuset(cs);
2736 	if (!trialcs) {
2737 		retval = -ENOMEM;
2738 		goto out_unlock;
2739 	}
2740 
2741 	switch (of_cft(of)->private) {
2742 	case FILE_CPULIST:
2743 		retval = update_cpumask(cs, trialcs, buf);
2744 		break;
2745 	case FILE_MEMLIST:
2746 		retval = update_nodemask(cs, trialcs, buf);
2747 		break;
2748 	default:
2749 		retval = -EINVAL;
2750 		break;
2751 	}
2752 
2753 	free_cpuset(trialcs);
2754 out_unlock:
2755 	percpu_up_write(&cpuset_rwsem);
2756 	cpus_read_unlock();
2757 	kernfs_unbreak_active_protection(of->kn);
2758 	css_put(&cs->css);
2759 	flush_workqueue(cpuset_migrate_mm_wq);
2760 	return retval ?: nbytes;
2761 }
2762 
2763 /*
2764  * These ascii lists should be read in a single call, by using a user
2765  * buffer large enough to hold the entire map.  If read in smaller
2766  * chunks, there is no guarantee of atomicity.  Since the display format
2767  * used, list of ranges of sequential numbers, is variable length,
2768  * and since these maps can change value dynamically, one could read
2769  * gibberish by doing partial reads while a list was changing.
2770  */
2771 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2772 {
2773 	struct cpuset *cs = css_cs(seq_css(sf));
2774 	cpuset_filetype_t type = seq_cft(sf)->private;
2775 	int ret = 0;
2776 
2777 	spin_lock_irq(&callback_lock);
2778 
2779 	switch (type) {
2780 	case FILE_CPULIST:
2781 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2782 		break;
2783 	case FILE_MEMLIST:
2784 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2785 		break;
2786 	case FILE_EFFECTIVE_CPULIST:
2787 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2788 		break;
2789 	case FILE_EFFECTIVE_MEMLIST:
2790 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2791 		break;
2792 	case FILE_SUBPARTS_CPULIST:
2793 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2794 		break;
2795 	default:
2796 		ret = -EINVAL;
2797 	}
2798 
2799 	spin_unlock_irq(&callback_lock);
2800 	return ret;
2801 }
2802 
2803 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2804 {
2805 	struct cpuset *cs = css_cs(css);
2806 	cpuset_filetype_t type = cft->private;
2807 	switch (type) {
2808 	case FILE_CPU_EXCLUSIVE:
2809 		return is_cpu_exclusive(cs);
2810 	case FILE_MEM_EXCLUSIVE:
2811 		return is_mem_exclusive(cs);
2812 	case FILE_MEM_HARDWALL:
2813 		return is_mem_hardwall(cs);
2814 	case FILE_SCHED_LOAD_BALANCE:
2815 		return is_sched_load_balance(cs);
2816 	case FILE_MEMORY_MIGRATE:
2817 		return is_memory_migrate(cs);
2818 	case FILE_MEMORY_PRESSURE_ENABLED:
2819 		return cpuset_memory_pressure_enabled;
2820 	case FILE_MEMORY_PRESSURE:
2821 		return fmeter_getrate(&cs->fmeter);
2822 	case FILE_SPREAD_PAGE:
2823 		return is_spread_page(cs);
2824 	case FILE_SPREAD_SLAB:
2825 		return is_spread_slab(cs);
2826 	default:
2827 		BUG();
2828 	}
2829 
2830 	/* Unreachable but makes gcc happy */
2831 	return 0;
2832 }
2833 
2834 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2835 {
2836 	struct cpuset *cs = css_cs(css);
2837 	cpuset_filetype_t type = cft->private;
2838 	switch (type) {
2839 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2840 		return cs->relax_domain_level;
2841 	default:
2842 		BUG();
2843 	}
2844 
2845 	/* Unreachable but makes gcc happy */
2846 	return 0;
2847 }
2848 
2849 static int sched_partition_show(struct seq_file *seq, void *v)
2850 {
2851 	struct cpuset *cs = css_cs(seq_css(seq));
2852 	const char *err, *type = NULL;
2853 
2854 	switch (cs->partition_root_state) {
2855 	case PRS_ROOT:
2856 		seq_puts(seq, "root\n");
2857 		break;
2858 	case PRS_ISOLATED:
2859 		seq_puts(seq, "isolated\n");
2860 		break;
2861 	case PRS_MEMBER:
2862 		seq_puts(seq, "member\n");
2863 		break;
2864 	case PRS_INVALID_ROOT:
2865 		type = "root";
2866 		fallthrough;
2867 	case PRS_INVALID_ISOLATED:
2868 		if (!type)
2869 			type = "isolated";
2870 		err = perr_strings[READ_ONCE(cs->prs_err)];
2871 		if (err)
2872 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2873 		else
2874 			seq_printf(seq, "%s invalid\n", type);
2875 		break;
2876 	}
2877 	return 0;
2878 }
2879 
2880 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2881 				     size_t nbytes, loff_t off)
2882 {
2883 	struct cpuset *cs = css_cs(of_css(of));
2884 	int val;
2885 	int retval = -ENODEV;
2886 
2887 	buf = strstrip(buf);
2888 
2889 	/*
2890 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2891 	 */
2892 	if (!strcmp(buf, "root"))
2893 		val = PRS_ROOT;
2894 	else if (!strcmp(buf, "member"))
2895 		val = PRS_MEMBER;
2896 	else if (!strcmp(buf, "isolated"))
2897 		val = PRS_ISOLATED;
2898 	else
2899 		return -EINVAL;
2900 
2901 	css_get(&cs->css);
2902 	cpus_read_lock();
2903 	percpu_down_write(&cpuset_rwsem);
2904 	if (!is_cpuset_online(cs))
2905 		goto out_unlock;
2906 
2907 	retval = update_prstate(cs, val);
2908 out_unlock:
2909 	percpu_up_write(&cpuset_rwsem);
2910 	cpus_read_unlock();
2911 	css_put(&cs->css);
2912 	return retval ?: nbytes;
2913 }
2914 
2915 /*
2916  * for the common functions, 'private' gives the type of file
2917  */
2918 
2919 static struct cftype legacy_files[] = {
2920 	{
2921 		.name = "cpus",
2922 		.seq_show = cpuset_common_seq_show,
2923 		.write = cpuset_write_resmask,
2924 		.max_write_len = (100U + 6 * NR_CPUS),
2925 		.private = FILE_CPULIST,
2926 	},
2927 
2928 	{
2929 		.name = "mems",
2930 		.seq_show = cpuset_common_seq_show,
2931 		.write = cpuset_write_resmask,
2932 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2933 		.private = FILE_MEMLIST,
2934 	},
2935 
2936 	{
2937 		.name = "effective_cpus",
2938 		.seq_show = cpuset_common_seq_show,
2939 		.private = FILE_EFFECTIVE_CPULIST,
2940 	},
2941 
2942 	{
2943 		.name = "effective_mems",
2944 		.seq_show = cpuset_common_seq_show,
2945 		.private = FILE_EFFECTIVE_MEMLIST,
2946 	},
2947 
2948 	{
2949 		.name = "cpu_exclusive",
2950 		.read_u64 = cpuset_read_u64,
2951 		.write_u64 = cpuset_write_u64,
2952 		.private = FILE_CPU_EXCLUSIVE,
2953 	},
2954 
2955 	{
2956 		.name = "mem_exclusive",
2957 		.read_u64 = cpuset_read_u64,
2958 		.write_u64 = cpuset_write_u64,
2959 		.private = FILE_MEM_EXCLUSIVE,
2960 	},
2961 
2962 	{
2963 		.name = "mem_hardwall",
2964 		.read_u64 = cpuset_read_u64,
2965 		.write_u64 = cpuset_write_u64,
2966 		.private = FILE_MEM_HARDWALL,
2967 	},
2968 
2969 	{
2970 		.name = "sched_load_balance",
2971 		.read_u64 = cpuset_read_u64,
2972 		.write_u64 = cpuset_write_u64,
2973 		.private = FILE_SCHED_LOAD_BALANCE,
2974 	},
2975 
2976 	{
2977 		.name = "sched_relax_domain_level",
2978 		.read_s64 = cpuset_read_s64,
2979 		.write_s64 = cpuset_write_s64,
2980 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2981 	},
2982 
2983 	{
2984 		.name = "memory_migrate",
2985 		.read_u64 = cpuset_read_u64,
2986 		.write_u64 = cpuset_write_u64,
2987 		.private = FILE_MEMORY_MIGRATE,
2988 	},
2989 
2990 	{
2991 		.name = "memory_pressure",
2992 		.read_u64 = cpuset_read_u64,
2993 		.private = FILE_MEMORY_PRESSURE,
2994 	},
2995 
2996 	{
2997 		.name = "memory_spread_page",
2998 		.read_u64 = cpuset_read_u64,
2999 		.write_u64 = cpuset_write_u64,
3000 		.private = FILE_SPREAD_PAGE,
3001 	},
3002 
3003 	{
3004 		.name = "memory_spread_slab",
3005 		.read_u64 = cpuset_read_u64,
3006 		.write_u64 = cpuset_write_u64,
3007 		.private = FILE_SPREAD_SLAB,
3008 	},
3009 
3010 	{
3011 		.name = "memory_pressure_enabled",
3012 		.flags = CFTYPE_ONLY_ON_ROOT,
3013 		.read_u64 = cpuset_read_u64,
3014 		.write_u64 = cpuset_write_u64,
3015 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3016 	},
3017 
3018 	{ }	/* terminate */
3019 };
3020 
3021 /*
3022  * This is currently a minimal set for the default hierarchy. It can be
3023  * expanded later on by migrating more features and control files from v1.
3024  */
3025 static struct cftype dfl_files[] = {
3026 	{
3027 		.name = "cpus",
3028 		.seq_show = cpuset_common_seq_show,
3029 		.write = cpuset_write_resmask,
3030 		.max_write_len = (100U + 6 * NR_CPUS),
3031 		.private = FILE_CPULIST,
3032 		.flags = CFTYPE_NOT_ON_ROOT,
3033 	},
3034 
3035 	{
3036 		.name = "mems",
3037 		.seq_show = cpuset_common_seq_show,
3038 		.write = cpuset_write_resmask,
3039 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3040 		.private = FILE_MEMLIST,
3041 		.flags = CFTYPE_NOT_ON_ROOT,
3042 	},
3043 
3044 	{
3045 		.name = "cpus.effective",
3046 		.seq_show = cpuset_common_seq_show,
3047 		.private = FILE_EFFECTIVE_CPULIST,
3048 	},
3049 
3050 	{
3051 		.name = "mems.effective",
3052 		.seq_show = cpuset_common_seq_show,
3053 		.private = FILE_EFFECTIVE_MEMLIST,
3054 	},
3055 
3056 	{
3057 		.name = "cpus.partition",
3058 		.seq_show = sched_partition_show,
3059 		.write = sched_partition_write,
3060 		.private = FILE_PARTITION_ROOT,
3061 		.flags = CFTYPE_NOT_ON_ROOT,
3062 		.file_offset = offsetof(struct cpuset, partition_file),
3063 	},
3064 
3065 	{
3066 		.name = "cpus.subpartitions",
3067 		.seq_show = cpuset_common_seq_show,
3068 		.private = FILE_SUBPARTS_CPULIST,
3069 		.flags = CFTYPE_DEBUG,
3070 	},
3071 
3072 	{ }	/* terminate */
3073 };
3074 
3075 
3076 /**
3077  * cpuset_css_alloc - Allocate a cpuset css
3078  * @parent_css: Parent css of the control group that the new cpuset will be
3079  *              part of
3080  * Return: cpuset css on success, -ENOMEM on failure.
3081  *
3082  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3083  * top cpuset css otherwise.
3084  */
3085 static struct cgroup_subsys_state *
3086 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3087 {
3088 	struct cpuset *cs;
3089 
3090 	if (!parent_css)
3091 		return &top_cpuset.css;
3092 
3093 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3094 	if (!cs)
3095 		return ERR_PTR(-ENOMEM);
3096 
3097 	if (alloc_cpumasks(cs, NULL)) {
3098 		kfree(cs);
3099 		return ERR_PTR(-ENOMEM);
3100 	}
3101 
3102 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3103 	nodes_clear(cs->mems_allowed);
3104 	nodes_clear(cs->effective_mems);
3105 	fmeter_init(&cs->fmeter);
3106 	cs->relax_domain_level = -1;
3107 
3108 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3109 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3110 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3111 
3112 	return &cs->css;
3113 }
3114 
3115 static int cpuset_css_online(struct cgroup_subsys_state *css)
3116 {
3117 	struct cpuset *cs = css_cs(css);
3118 	struct cpuset *parent = parent_cs(cs);
3119 	struct cpuset *tmp_cs;
3120 	struct cgroup_subsys_state *pos_css;
3121 
3122 	if (!parent)
3123 		return 0;
3124 
3125 	cpus_read_lock();
3126 	percpu_down_write(&cpuset_rwsem);
3127 
3128 	set_bit(CS_ONLINE, &cs->flags);
3129 	if (is_spread_page(parent))
3130 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3131 	if (is_spread_slab(parent))
3132 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3133 
3134 	cpuset_inc();
3135 
3136 	spin_lock_irq(&callback_lock);
3137 	if (is_in_v2_mode()) {
3138 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3139 		cs->effective_mems = parent->effective_mems;
3140 		cs->use_parent_ecpus = true;
3141 		parent->child_ecpus_count++;
3142 	}
3143 	spin_unlock_irq(&callback_lock);
3144 
3145 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3146 		goto out_unlock;
3147 
3148 	/*
3149 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3150 	 * set.  This flag handling is implemented in cgroup core for
3151 	 * historical reasons - the flag may be specified during mount.
3152 	 *
3153 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3154 	 * refuse to clone the configuration - thereby refusing the task to
3155 	 * be entered, and as a result refusing the sys_unshare() or
3156 	 * clone() which initiated it.  If this becomes a problem for some
3157 	 * users who wish to allow that scenario, then this could be
3158 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3159 	 * (and likewise for mems) to the new cgroup.
3160 	 */
3161 	rcu_read_lock();
3162 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3163 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3164 			rcu_read_unlock();
3165 			goto out_unlock;
3166 		}
3167 	}
3168 	rcu_read_unlock();
3169 
3170 	spin_lock_irq(&callback_lock);
3171 	cs->mems_allowed = parent->mems_allowed;
3172 	cs->effective_mems = parent->mems_allowed;
3173 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3174 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3175 	spin_unlock_irq(&callback_lock);
3176 out_unlock:
3177 	percpu_up_write(&cpuset_rwsem);
3178 	cpus_read_unlock();
3179 	return 0;
3180 }
3181 
3182 /*
3183  * If the cpuset being removed has its flag 'sched_load_balance'
3184  * enabled, then simulate turning sched_load_balance off, which
3185  * will call rebuild_sched_domains_locked(). That is not needed
3186  * in the default hierarchy where only changes in partition
3187  * will cause repartitioning.
3188  *
3189  * If the cpuset has the 'sched.partition' flag enabled, simulate
3190  * turning 'sched.partition" off.
3191  */
3192 
3193 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3194 {
3195 	struct cpuset *cs = css_cs(css);
3196 
3197 	cpus_read_lock();
3198 	percpu_down_write(&cpuset_rwsem);
3199 
3200 	if (is_partition_valid(cs))
3201 		update_prstate(cs, 0);
3202 
3203 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3204 	    is_sched_load_balance(cs))
3205 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3206 
3207 	if (cs->use_parent_ecpus) {
3208 		struct cpuset *parent = parent_cs(cs);
3209 
3210 		cs->use_parent_ecpus = false;
3211 		parent->child_ecpus_count--;
3212 	}
3213 
3214 	cpuset_dec();
3215 	clear_bit(CS_ONLINE, &cs->flags);
3216 
3217 	percpu_up_write(&cpuset_rwsem);
3218 	cpus_read_unlock();
3219 }
3220 
3221 static void cpuset_css_free(struct cgroup_subsys_state *css)
3222 {
3223 	struct cpuset *cs = css_cs(css);
3224 
3225 	free_cpuset(cs);
3226 }
3227 
3228 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3229 {
3230 	percpu_down_write(&cpuset_rwsem);
3231 	spin_lock_irq(&callback_lock);
3232 
3233 	if (is_in_v2_mode()) {
3234 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3235 		top_cpuset.mems_allowed = node_possible_map;
3236 	} else {
3237 		cpumask_copy(top_cpuset.cpus_allowed,
3238 			     top_cpuset.effective_cpus);
3239 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3240 	}
3241 
3242 	spin_unlock_irq(&callback_lock);
3243 	percpu_up_write(&cpuset_rwsem);
3244 }
3245 
3246 /*
3247  * Make sure the new task conform to the current state of its parent,
3248  * which could have been changed by cpuset just after it inherits the
3249  * state from the parent and before it sits on the cgroup's task list.
3250  */
3251 static void cpuset_fork(struct task_struct *task)
3252 {
3253 	if (task_css_is_root(task, cpuset_cgrp_id))
3254 		return;
3255 
3256 	set_cpus_allowed_ptr(task, current->cpus_ptr);
3257 	task->mems_allowed = current->mems_allowed;
3258 }
3259 
3260 struct cgroup_subsys cpuset_cgrp_subsys = {
3261 	.css_alloc	= cpuset_css_alloc,
3262 	.css_online	= cpuset_css_online,
3263 	.css_offline	= cpuset_css_offline,
3264 	.css_free	= cpuset_css_free,
3265 	.can_attach	= cpuset_can_attach,
3266 	.cancel_attach	= cpuset_cancel_attach,
3267 	.attach		= cpuset_attach,
3268 	.post_attach	= cpuset_post_attach,
3269 	.bind		= cpuset_bind,
3270 	.fork		= cpuset_fork,
3271 	.legacy_cftypes	= legacy_files,
3272 	.dfl_cftypes	= dfl_files,
3273 	.early_init	= true,
3274 	.threaded	= true,
3275 };
3276 
3277 /**
3278  * cpuset_init - initialize cpusets at system boot
3279  *
3280  * Description: Initialize top_cpuset
3281  **/
3282 
3283 int __init cpuset_init(void)
3284 {
3285 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
3286 
3287 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3288 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3289 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3290 
3291 	cpumask_setall(top_cpuset.cpus_allowed);
3292 	nodes_setall(top_cpuset.mems_allowed);
3293 	cpumask_setall(top_cpuset.effective_cpus);
3294 	nodes_setall(top_cpuset.effective_mems);
3295 
3296 	fmeter_init(&top_cpuset.fmeter);
3297 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3298 	top_cpuset.relax_domain_level = -1;
3299 
3300 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3301 
3302 	return 0;
3303 }
3304 
3305 /*
3306  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3307  * or memory nodes, we need to walk over the cpuset hierarchy,
3308  * removing that CPU or node from all cpusets.  If this removes the
3309  * last CPU or node from a cpuset, then move the tasks in the empty
3310  * cpuset to its next-highest non-empty parent.
3311  */
3312 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3313 {
3314 	struct cpuset *parent;
3315 
3316 	/*
3317 	 * Find its next-highest non-empty parent, (top cpuset
3318 	 * has online cpus, so can't be empty).
3319 	 */
3320 	parent = parent_cs(cs);
3321 	while (cpumask_empty(parent->cpus_allowed) ||
3322 			nodes_empty(parent->mems_allowed))
3323 		parent = parent_cs(parent);
3324 
3325 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3326 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3327 		pr_cont_cgroup_name(cs->css.cgroup);
3328 		pr_cont("\n");
3329 	}
3330 }
3331 
3332 static void
3333 hotplug_update_tasks_legacy(struct cpuset *cs,
3334 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3335 			    bool cpus_updated, bool mems_updated)
3336 {
3337 	bool is_empty;
3338 
3339 	spin_lock_irq(&callback_lock);
3340 	cpumask_copy(cs->cpus_allowed, new_cpus);
3341 	cpumask_copy(cs->effective_cpus, new_cpus);
3342 	cs->mems_allowed = *new_mems;
3343 	cs->effective_mems = *new_mems;
3344 	spin_unlock_irq(&callback_lock);
3345 
3346 	/*
3347 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3348 	 * as the tasks will be migrated to an ancestor.
3349 	 */
3350 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3351 		update_tasks_cpumask(cs);
3352 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3353 		update_tasks_nodemask(cs);
3354 
3355 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3356 		   nodes_empty(cs->mems_allowed);
3357 
3358 	percpu_up_write(&cpuset_rwsem);
3359 
3360 	/*
3361 	 * Move tasks to the nearest ancestor with execution resources,
3362 	 * This is full cgroup operation which will also call back into
3363 	 * cpuset. Should be done outside any lock.
3364 	 */
3365 	if (is_empty)
3366 		remove_tasks_in_empty_cpuset(cs);
3367 
3368 	percpu_down_write(&cpuset_rwsem);
3369 }
3370 
3371 static void
3372 hotplug_update_tasks(struct cpuset *cs,
3373 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3374 		     bool cpus_updated, bool mems_updated)
3375 {
3376 	/* A partition root is allowed to have empty effective cpus */
3377 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3378 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3379 	if (nodes_empty(*new_mems))
3380 		*new_mems = parent_cs(cs)->effective_mems;
3381 
3382 	spin_lock_irq(&callback_lock);
3383 	cpumask_copy(cs->effective_cpus, new_cpus);
3384 	cs->effective_mems = *new_mems;
3385 	spin_unlock_irq(&callback_lock);
3386 
3387 	if (cpus_updated)
3388 		update_tasks_cpumask(cs);
3389 	if (mems_updated)
3390 		update_tasks_nodemask(cs);
3391 }
3392 
3393 static bool force_rebuild;
3394 
3395 void cpuset_force_rebuild(void)
3396 {
3397 	force_rebuild = true;
3398 }
3399 
3400 /**
3401  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3402  * @cs: cpuset in interest
3403  * @tmp: the tmpmasks structure pointer
3404  *
3405  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3406  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3407  * all its tasks are moved to the nearest ancestor with both resources.
3408  */
3409 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3410 {
3411 	static cpumask_t new_cpus;
3412 	static nodemask_t new_mems;
3413 	bool cpus_updated;
3414 	bool mems_updated;
3415 	struct cpuset *parent;
3416 retry:
3417 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3418 
3419 	percpu_down_write(&cpuset_rwsem);
3420 
3421 	/*
3422 	 * We have raced with task attaching. We wait until attaching
3423 	 * is finished, so we won't attach a task to an empty cpuset.
3424 	 */
3425 	if (cs->attach_in_progress) {
3426 		percpu_up_write(&cpuset_rwsem);
3427 		goto retry;
3428 	}
3429 
3430 	parent = parent_cs(cs);
3431 	compute_effective_cpumask(&new_cpus, cs, parent);
3432 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3433 
3434 	if (cs->nr_subparts_cpus)
3435 		/*
3436 		 * Make sure that CPUs allocated to child partitions
3437 		 * do not show up in effective_cpus.
3438 		 */
3439 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3440 
3441 	if (!tmp || !cs->partition_root_state)
3442 		goto update_tasks;
3443 
3444 	/*
3445 	 * In the unlikely event that a partition root has empty
3446 	 * effective_cpus with tasks, we will have to invalidate child
3447 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3448 	 * reclaim their cpus.
3449 	 */
3450 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3451 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3452 		spin_lock_irq(&callback_lock);
3453 		cs->nr_subparts_cpus = 0;
3454 		cpumask_clear(cs->subparts_cpus);
3455 		spin_unlock_irq(&callback_lock);
3456 		compute_effective_cpumask(&new_cpus, cs, parent);
3457 	}
3458 
3459 	/*
3460 	 * Force the partition to become invalid if either one of
3461 	 * the following conditions hold:
3462 	 * 1) empty effective cpus but not valid empty partition.
3463 	 * 2) parent is invalid or doesn't grant any cpus to child
3464 	 *    partitions.
3465 	 */
3466 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3467 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3468 		int old_prs, parent_prs;
3469 
3470 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3471 		if (cs->nr_subparts_cpus) {
3472 			spin_lock_irq(&callback_lock);
3473 			cs->nr_subparts_cpus = 0;
3474 			cpumask_clear(cs->subparts_cpus);
3475 			spin_unlock_irq(&callback_lock);
3476 			compute_effective_cpumask(&new_cpus, cs, parent);
3477 		}
3478 
3479 		old_prs = cs->partition_root_state;
3480 		parent_prs = parent->partition_root_state;
3481 		if (is_partition_valid(cs)) {
3482 			spin_lock_irq(&callback_lock);
3483 			make_partition_invalid(cs);
3484 			spin_unlock_irq(&callback_lock);
3485 			if (is_prs_invalid(parent_prs))
3486 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3487 			else if (!parent_prs)
3488 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3489 			else
3490 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3491 			notify_partition_change(cs, old_prs);
3492 		}
3493 		cpuset_force_rebuild();
3494 	}
3495 
3496 	/*
3497 	 * On the other hand, an invalid partition root may be transitioned
3498 	 * back to a regular one.
3499 	 */
3500 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3501 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3502 		if (is_partition_valid(cs))
3503 			cpuset_force_rebuild();
3504 	}
3505 
3506 update_tasks:
3507 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3508 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3509 
3510 	if (mems_updated)
3511 		check_insane_mems_config(&new_mems);
3512 
3513 	if (is_in_v2_mode())
3514 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3515 				     cpus_updated, mems_updated);
3516 	else
3517 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3518 					    cpus_updated, mems_updated);
3519 
3520 	percpu_up_write(&cpuset_rwsem);
3521 }
3522 
3523 /**
3524  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3525  *
3526  * This function is called after either CPU or memory configuration has
3527  * changed and updates cpuset accordingly.  The top_cpuset is always
3528  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3529  * order to make cpusets transparent (of no affect) on systems that are
3530  * actively using CPU hotplug but making no active use of cpusets.
3531  *
3532  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3533  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3534  * all descendants.
3535  *
3536  * Note that CPU offlining during suspend is ignored.  We don't modify
3537  * cpusets across suspend/resume cycles at all.
3538  */
3539 static void cpuset_hotplug_workfn(struct work_struct *work)
3540 {
3541 	static cpumask_t new_cpus;
3542 	static nodemask_t new_mems;
3543 	bool cpus_updated, mems_updated;
3544 	bool on_dfl = is_in_v2_mode();
3545 	struct tmpmasks tmp, *ptmp = NULL;
3546 
3547 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3548 		ptmp = &tmp;
3549 
3550 	percpu_down_write(&cpuset_rwsem);
3551 
3552 	/* fetch the available cpus/mems and find out which changed how */
3553 	cpumask_copy(&new_cpus, cpu_active_mask);
3554 	new_mems = node_states[N_MEMORY];
3555 
3556 	/*
3557 	 * If subparts_cpus is populated, it is likely that the check below
3558 	 * will produce a false positive on cpus_updated when the cpu list
3559 	 * isn't changed. It is extra work, but it is better to be safe.
3560 	 */
3561 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3562 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3563 
3564 	/*
3565 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3566 	 * we assumed that cpus are updated.
3567 	 */
3568 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3569 		cpus_updated = true;
3570 
3571 	/* synchronize cpus_allowed to cpu_active_mask */
3572 	if (cpus_updated) {
3573 		spin_lock_irq(&callback_lock);
3574 		if (!on_dfl)
3575 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3576 		/*
3577 		 * Make sure that CPUs allocated to child partitions
3578 		 * do not show up in effective_cpus. If no CPU is left,
3579 		 * we clear the subparts_cpus & let the child partitions
3580 		 * fight for the CPUs again.
3581 		 */
3582 		if (top_cpuset.nr_subparts_cpus) {
3583 			if (cpumask_subset(&new_cpus,
3584 					   top_cpuset.subparts_cpus)) {
3585 				top_cpuset.nr_subparts_cpus = 0;
3586 				cpumask_clear(top_cpuset.subparts_cpus);
3587 			} else {
3588 				cpumask_andnot(&new_cpus, &new_cpus,
3589 					       top_cpuset.subparts_cpus);
3590 			}
3591 		}
3592 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3593 		spin_unlock_irq(&callback_lock);
3594 		/* we don't mess with cpumasks of tasks in top_cpuset */
3595 	}
3596 
3597 	/* synchronize mems_allowed to N_MEMORY */
3598 	if (mems_updated) {
3599 		spin_lock_irq(&callback_lock);
3600 		if (!on_dfl)
3601 			top_cpuset.mems_allowed = new_mems;
3602 		top_cpuset.effective_mems = new_mems;
3603 		spin_unlock_irq(&callback_lock);
3604 		update_tasks_nodemask(&top_cpuset);
3605 	}
3606 
3607 	percpu_up_write(&cpuset_rwsem);
3608 
3609 	/* if cpus or mems changed, we need to propagate to descendants */
3610 	if (cpus_updated || mems_updated) {
3611 		struct cpuset *cs;
3612 		struct cgroup_subsys_state *pos_css;
3613 
3614 		rcu_read_lock();
3615 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3616 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3617 				continue;
3618 			rcu_read_unlock();
3619 
3620 			cpuset_hotplug_update_tasks(cs, ptmp);
3621 
3622 			rcu_read_lock();
3623 			css_put(&cs->css);
3624 		}
3625 		rcu_read_unlock();
3626 	}
3627 
3628 	/* rebuild sched domains if cpus_allowed has changed */
3629 	if (cpus_updated || force_rebuild) {
3630 		force_rebuild = false;
3631 		rebuild_sched_domains();
3632 	}
3633 
3634 	free_cpumasks(NULL, ptmp);
3635 }
3636 
3637 void cpuset_update_active_cpus(void)
3638 {
3639 	/*
3640 	 * We're inside cpu hotplug critical region which usually nests
3641 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3642 	 * to a work item to avoid reverse locking order.
3643 	 */
3644 	schedule_work(&cpuset_hotplug_work);
3645 }
3646 
3647 void cpuset_wait_for_hotplug(void)
3648 {
3649 	flush_work(&cpuset_hotplug_work);
3650 }
3651 
3652 /*
3653  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3654  * Call this routine anytime after node_states[N_MEMORY] changes.
3655  * See cpuset_update_active_cpus() for CPU hotplug handling.
3656  */
3657 static int cpuset_track_online_nodes(struct notifier_block *self,
3658 				unsigned long action, void *arg)
3659 {
3660 	schedule_work(&cpuset_hotplug_work);
3661 	return NOTIFY_OK;
3662 }
3663 
3664 /**
3665  * cpuset_init_smp - initialize cpus_allowed
3666  *
3667  * Description: Finish top cpuset after cpu, node maps are initialized
3668  */
3669 void __init cpuset_init_smp(void)
3670 {
3671 	/*
3672 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3673 	 * cpuset_bind() call will be reset to v1 values in another
3674 	 * cpuset_bind() call when v1 cpuset is mounted.
3675 	 */
3676 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3677 
3678 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3679 	top_cpuset.effective_mems = node_states[N_MEMORY];
3680 
3681 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3682 
3683 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3684 	BUG_ON(!cpuset_migrate_mm_wq);
3685 }
3686 
3687 /**
3688  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3689  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3690  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3691  *
3692  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3693  * attached to the specified @tsk.  Guaranteed to return some non-empty
3694  * subset of cpu_online_mask, even if this means going outside the
3695  * tasks cpuset.
3696  **/
3697 
3698 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3699 {
3700 	unsigned long flags;
3701 
3702 	spin_lock_irqsave(&callback_lock, flags);
3703 	guarantee_online_cpus(tsk, pmask);
3704 	spin_unlock_irqrestore(&callback_lock, flags);
3705 }
3706 
3707 /**
3708  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3709  * @tsk: pointer to task_struct with which the scheduler is struggling
3710  *
3711  * Description: In the case that the scheduler cannot find an allowed cpu in
3712  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3713  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3714  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3715  * This is the absolute last resort for the scheduler and it is only used if
3716  * _every_ other avenue has been traveled.
3717  *
3718  * Returns true if the affinity of @tsk was changed, false otherwise.
3719  **/
3720 
3721 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3722 {
3723 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3724 	const struct cpumask *cs_mask;
3725 	bool changed = false;
3726 
3727 	rcu_read_lock();
3728 	cs_mask = task_cs(tsk)->cpus_allowed;
3729 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3730 		do_set_cpus_allowed(tsk, cs_mask);
3731 		changed = true;
3732 	}
3733 	rcu_read_unlock();
3734 
3735 	/*
3736 	 * We own tsk->cpus_allowed, nobody can change it under us.
3737 	 *
3738 	 * But we used cs && cs->cpus_allowed lockless and thus can
3739 	 * race with cgroup_attach_task() or update_cpumask() and get
3740 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3741 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3742 	 * which takes task_rq_lock().
3743 	 *
3744 	 * If we are called after it dropped the lock we must see all
3745 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3746 	 * set any mask even if it is not right from task_cs() pov,
3747 	 * the pending set_cpus_allowed_ptr() will fix things.
3748 	 *
3749 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3750 	 * if required.
3751 	 */
3752 	return changed;
3753 }
3754 
3755 void __init cpuset_init_current_mems_allowed(void)
3756 {
3757 	nodes_setall(current->mems_allowed);
3758 }
3759 
3760 /**
3761  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3762  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3763  *
3764  * Description: Returns the nodemask_t mems_allowed of the cpuset
3765  * attached to the specified @tsk.  Guaranteed to return some non-empty
3766  * subset of node_states[N_MEMORY], even if this means going outside the
3767  * tasks cpuset.
3768  **/
3769 
3770 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3771 {
3772 	nodemask_t mask;
3773 	unsigned long flags;
3774 
3775 	spin_lock_irqsave(&callback_lock, flags);
3776 	rcu_read_lock();
3777 	guarantee_online_mems(task_cs(tsk), &mask);
3778 	rcu_read_unlock();
3779 	spin_unlock_irqrestore(&callback_lock, flags);
3780 
3781 	return mask;
3782 }
3783 
3784 /**
3785  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3786  * @nodemask: the nodemask to be checked
3787  *
3788  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3789  */
3790 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3791 {
3792 	return nodes_intersects(*nodemask, current->mems_allowed);
3793 }
3794 
3795 /*
3796  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3797  * mem_hardwall ancestor to the specified cpuset.  Call holding
3798  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3799  * (an unusual configuration), then returns the root cpuset.
3800  */
3801 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3802 {
3803 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3804 		cs = parent_cs(cs);
3805 	return cs;
3806 }
3807 
3808 /*
3809  * __cpuset_node_allowed - Can we allocate on a memory node?
3810  * @node: is this an allowed node?
3811  * @gfp_mask: memory allocation flags
3812  *
3813  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3814  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3815  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3816  * yes.  If current has access to memory reserves as an oom victim, yes.
3817  * Otherwise, no.
3818  *
3819  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3820  * and do not allow allocations outside the current tasks cpuset
3821  * unless the task has been OOM killed.
3822  * GFP_KERNEL allocations are not so marked, so can escape to the
3823  * nearest enclosing hardwalled ancestor cpuset.
3824  *
3825  * Scanning up parent cpusets requires callback_lock.  The
3826  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3827  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3828  * current tasks mems_allowed came up empty on the first pass over
3829  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3830  * cpuset are short of memory, might require taking the callback_lock.
3831  *
3832  * The first call here from mm/page_alloc:get_page_from_freelist()
3833  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3834  * so no allocation on a node outside the cpuset is allowed (unless
3835  * in interrupt, of course).
3836  *
3837  * The second pass through get_page_from_freelist() doesn't even call
3838  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3839  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3840  * in alloc_flags.  That logic and the checks below have the combined
3841  * affect that:
3842  *	in_interrupt - any node ok (current task context irrelevant)
3843  *	GFP_ATOMIC   - any node ok
3844  *	tsk_is_oom_victim   - any node ok
3845  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3846  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3847  */
3848 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3849 {
3850 	struct cpuset *cs;		/* current cpuset ancestors */
3851 	bool allowed;			/* is allocation in zone z allowed? */
3852 	unsigned long flags;
3853 
3854 	if (in_interrupt())
3855 		return true;
3856 	if (node_isset(node, current->mems_allowed))
3857 		return true;
3858 	/*
3859 	 * Allow tasks that have access to memory reserves because they have
3860 	 * been OOM killed to get memory anywhere.
3861 	 */
3862 	if (unlikely(tsk_is_oom_victim(current)))
3863 		return true;
3864 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3865 		return false;
3866 
3867 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3868 		return true;
3869 
3870 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3871 	spin_lock_irqsave(&callback_lock, flags);
3872 
3873 	rcu_read_lock();
3874 	cs = nearest_hardwall_ancestor(task_cs(current));
3875 	allowed = node_isset(node, cs->mems_allowed);
3876 	rcu_read_unlock();
3877 
3878 	spin_unlock_irqrestore(&callback_lock, flags);
3879 	return allowed;
3880 }
3881 
3882 /**
3883  * cpuset_mem_spread_node() - On which node to begin search for a file page
3884  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3885  *
3886  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3887  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3888  * and if the memory allocation used cpuset_mem_spread_node()
3889  * to determine on which node to start looking, as it will for
3890  * certain page cache or slab cache pages such as used for file
3891  * system buffers and inode caches, then instead of starting on the
3892  * local node to look for a free page, rather spread the starting
3893  * node around the tasks mems_allowed nodes.
3894  *
3895  * We don't have to worry about the returned node being offline
3896  * because "it can't happen", and even if it did, it would be ok.
3897  *
3898  * The routines calling guarantee_online_mems() are careful to
3899  * only set nodes in task->mems_allowed that are online.  So it
3900  * should not be possible for the following code to return an
3901  * offline node.  But if it did, that would be ok, as this routine
3902  * is not returning the node where the allocation must be, only
3903  * the node where the search should start.  The zonelist passed to
3904  * __alloc_pages() will include all nodes.  If the slab allocator
3905  * is passed an offline node, it will fall back to the local node.
3906  * See kmem_cache_alloc_node().
3907  */
3908 
3909 static int cpuset_spread_node(int *rotor)
3910 {
3911 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3912 }
3913 
3914 int cpuset_mem_spread_node(void)
3915 {
3916 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3917 		current->cpuset_mem_spread_rotor =
3918 			node_random(&current->mems_allowed);
3919 
3920 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3921 }
3922 
3923 int cpuset_slab_spread_node(void)
3924 {
3925 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3926 		current->cpuset_slab_spread_rotor =
3927 			node_random(&current->mems_allowed);
3928 
3929 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3930 }
3931 
3932 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3933 
3934 /**
3935  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3936  * @tsk1: pointer to task_struct of some task.
3937  * @tsk2: pointer to task_struct of some other task.
3938  *
3939  * Description: Return true if @tsk1's mems_allowed intersects the
3940  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3941  * one of the task's memory usage might impact the memory available
3942  * to the other.
3943  **/
3944 
3945 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3946 				   const struct task_struct *tsk2)
3947 {
3948 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3949 }
3950 
3951 /**
3952  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3953  *
3954  * Description: Prints current's name, cpuset name, and cached copy of its
3955  * mems_allowed to the kernel log.
3956  */
3957 void cpuset_print_current_mems_allowed(void)
3958 {
3959 	struct cgroup *cgrp;
3960 
3961 	rcu_read_lock();
3962 
3963 	cgrp = task_cs(current)->css.cgroup;
3964 	pr_cont(",cpuset=");
3965 	pr_cont_cgroup_name(cgrp);
3966 	pr_cont(",mems_allowed=%*pbl",
3967 		nodemask_pr_args(&current->mems_allowed));
3968 
3969 	rcu_read_unlock();
3970 }
3971 
3972 /*
3973  * Collection of memory_pressure is suppressed unless
3974  * this flag is enabled by writing "1" to the special
3975  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3976  */
3977 
3978 int cpuset_memory_pressure_enabled __read_mostly;
3979 
3980 /*
3981  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3982  *
3983  * Keep a running average of the rate of synchronous (direct)
3984  * page reclaim efforts initiated by tasks in each cpuset.
3985  *
3986  * This represents the rate at which some task in the cpuset
3987  * ran low on memory on all nodes it was allowed to use, and
3988  * had to enter the kernels page reclaim code in an effort to
3989  * create more free memory by tossing clean pages or swapping
3990  * or writing dirty pages.
3991  *
3992  * Display to user space in the per-cpuset read-only file
3993  * "memory_pressure".  Value displayed is an integer
3994  * representing the recent rate of entry into the synchronous
3995  * (direct) page reclaim by any task attached to the cpuset.
3996  */
3997 
3998 void __cpuset_memory_pressure_bump(void)
3999 {
4000 	rcu_read_lock();
4001 	fmeter_markevent(&task_cs(current)->fmeter);
4002 	rcu_read_unlock();
4003 }
4004 
4005 #ifdef CONFIG_PROC_PID_CPUSET
4006 /*
4007  * proc_cpuset_show()
4008  *  - Print tasks cpuset path into seq_file.
4009  *  - Used for /proc/<pid>/cpuset.
4010  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4011  *    doesn't really matter if tsk->cpuset changes after we read it,
4012  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
4013  *    anyway.
4014  */
4015 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4016 		     struct pid *pid, struct task_struct *tsk)
4017 {
4018 	char *buf;
4019 	struct cgroup_subsys_state *css;
4020 	int retval;
4021 
4022 	retval = -ENOMEM;
4023 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4024 	if (!buf)
4025 		goto out;
4026 
4027 	css = task_get_css(tsk, cpuset_cgrp_id);
4028 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4029 				current->nsproxy->cgroup_ns);
4030 	css_put(css);
4031 	if (retval >= PATH_MAX)
4032 		retval = -ENAMETOOLONG;
4033 	if (retval < 0)
4034 		goto out_free;
4035 	seq_puts(m, buf);
4036 	seq_putc(m, '\n');
4037 	retval = 0;
4038 out_free:
4039 	kfree(buf);
4040 out:
4041 	return retval;
4042 }
4043 #endif /* CONFIG_PROC_PID_CPUSET */
4044 
4045 /* Display task mems_allowed in /proc/<pid>/status file. */
4046 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4047 {
4048 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4049 		   nodemask_pr_args(&task->mems_allowed));
4050 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4051 		   nodemask_pr_args(&task->mems_allowed));
4052 }
4053