xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision a5a7daa5)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierachy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	nodemask_t mems_allowed;
109 
110 	/* effective CPUs and Memory Nodes allow to tasks */
111 	cpumask_var_t effective_cpus;
112 	nodemask_t effective_mems;
113 
114 	/*
115 	 * CPUs allocated to child sub-partitions (default hierarchy only)
116 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 	 * - effective_cpus and subparts_cpus are mutually exclusive.
118 	 *
119 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 	 * may have offlined ones.
121 	 */
122 	cpumask_var_t subparts_cpus;
123 
124 	/*
125 	 * This is old Memory Nodes tasks took on.
126 	 *
127 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 	 * - A new cpuset's old_mems_allowed is initialized when some
129 	 *   task is moved into it.
130 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
132 	 *   then old_mems_allowed is updated to mems_allowed.
133 	 */
134 	nodemask_t old_mems_allowed;
135 
136 	struct fmeter fmeter;		/* memory_pressure filter */
137 
138 	/*
139 	 * Tasks are being attached to this cpuset.  Used to prevent
140 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 	 */
142 	int attach_in_progress;
143 
144 	/* partition number for rebuild_sched_domains() */
145 	int pn;
146 
147 	/* for custom sched domain */
148 	int relax_domain_level;
149 
150 	/* number of CPUs in subparts_cpus */
151 	int nr_subparts_cpus;
152 
153 	/* partition root state */
154 	int partition_root_state;
155 
156 	/*
157 	 * Default hierarchy only:
158 	 * use_parent_ecpus - set if using parent's effective_cpus
159 	 * child_ecpus_count - # of children with use_parent_ecpus set
160 	 */
161 	int use_parent_ecpus;
162 	int child_ecpus_count;
163 };
164 
165 /*
166  * Partition root states:
167  *
168  *   0 - not a partition root
169  *
170  *   1 - partition root
171  *
172  *  -1 - invalid partition root
173  *       None of the cpus in cpus_allowed can be put into the parent's
174  *       subparts_cpus. In this case, the cpuset is not a real partition
175  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
176  *       and the cpuset can be restored back to a partition root if the
177  *       parent cpuset can give more CPUs back to this child cpuset.
178  */
179 #define PRS_DISABLED		0
180 #define PRS_ENABLED		1
181 #define PRS_ERROR		-1
182 
183 /*
184  * Temporary cpumasks for working with partitions that are passed among
185  * functions to avoid memory allocation in inner functions.
186  */
187 struct tmpmasks {
188 	cpumask_var_t addmask, delmask;	/* For partition root */
189 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
190 };
191 
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 	return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196 
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 	return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202 
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 	return css_cs(cs->css.parent);
206 }
207 
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 	CS_ONLINE,
211 	CS_CPU_EXCLUSIVE,
212 	CS_MEM_EXCLUSIVE,
213 	CS_MEM_HARDWALL,
214 	CS_MEMORY_MIGRATE,
215 	CS_SCHED_LOAD_BALANCE,
216 	CS_SPREAD_PAGE,
217 	CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219 
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225 
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230 
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235 
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240 
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245 
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250 
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255 
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260 
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 	return cs->partition_root_state > 0;
264 }
265 
266 static struct cpuset top_cpuset = {
267 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 		  (1 << CS_MEM_EXCLUSIVE)),
269 	.partition_root_state = PRS_ENABLED,
270 };
271 
272 /**
273  * cpuset_for_each_child - traverse online children of a cpuset
274  * @child_cs: loop cursor pointing to the current child
275  * @pos_css: used for iteration
276  * @parent_cs: target cpuset to walk children of
277  *
278  * Walk @child_cs through the online children of @parent_cs.  Must be used
279  * with RCU read locked.
280  */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
282 	css_for_each_child((pos_css), &(parent_cs)->css)		\
283 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284 
285 /**
286  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287  * @des_cs: loop cursor pointing to the current descendant
288  * @pos_css: used for iteration
289  * @root_cs: target cpuset to walk ancestor of
290  *
291  * Walk @des_cs through the online descendants of @root_cs.  Must be used
292  * with RCU read locked.  The caller may modify @pos_css by calling
293  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
294  * iteration and the first node to be visited.
295  */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
297 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
298 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299 
300 /*
301  * There are two global locks guarding cpuset structures - cpuset_mutex and
302  * callback_lock. We also require taking task_lock() when dereferencing a
303  * task's cpuset pointer. See "The task_lock() exception", at the end of this
304  * comment.
305  *
306  * A task must hold both locks to modify cpusets.  If a task holds
307  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308  * is the only task able to also acquire callback_lock and be able to
309  * modify cpusets.  It can perform various checks on the cpuset structure
310  * first, knowing nothing will change.  It can also allocate memory while
311  * just holding cpuset_mutex.  While it is performing these checks, various
312  * callback routines can briefly acquire callback_lock to query cpusets.
313  * Once it is ready to make the changes, it takes callback_lock, blocking
314  * everyone else.
315  *
316  * Calls to the kernel memory allocator can not be made while holding
317  * callback_lock, as that would risk double tripping on callback_lock
318  * from one of the callbacks into the cpuset code from within
319  * __alloc_pages().
320  *
321  * If a task is only holding callback_lock, then it has read-only
322  * access to cpusets.
323  *
324  * Now, the task_struct fields mems_allowed and mempolicy may be changed
325  * by other task, we use alloc_lock in the task_struct fields to protect
326  * them.
327  *
328  * The cpuset_common_file_read() handlers only hold callback_lock across
329  * small pieces of code, such as when reading out possibly multi-word
330  * cpumasks and nodemasks.
331  *
332  * Accessing a task's cpuset should be done in accordance with the
333  * guidelines for accessing subsystem state in kernel/cgroup.c
334  */
335 
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337 
338 void cpuset_read_lock(void)
339 {
340 	percpu_down_read(&cpuset_rwsem);
341 }
342 
343 void cpuset_read_unlock(void)
344 {
345 	percpu_up_read(&cpuset_rwsem);
346 }
347 
348 static DEFINE_SPINLOCK(callback_lock);
349 
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351 
352 /*
353  * CPU / memory hotplug is handled asynchronously.
354  */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357 
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359 
360 /*
361  * Cgroup v2 behavior is used when on default hierarchy or the
362  * cgroup_v2_mode flag is set.
363  */
364 static inline bool is_in_v2_mode(void)
365 {
366 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
367 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
368 }
369 
370 /*
371  * Return in pmask the portion of a cpusets's cpus_allowed that
372  * are online.  If none are online, walk up the cpuset hierarchy
373  * until we find one that does have some online cpus.
374  *
375  * One way or another, we guarantee to return some non-empty subset
376  * of cpu_online_mask.
377  *
378  * Call with callback_lock or cpuset_mutex held.
379  */
380 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
381 {
382 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
383 		cs = parent_cs(cs);
384 		if (unlikely(!cs)) {
385 			/*
386 			 * The top cpuset doesn't have any online cpu as a
387 			 * consequence of a race between cpuset_hotplug_work
388 			 * and cpu hotplug notifier.  But we know the top
389 			 * cpuset's effective_cpus is on its way to to be
390 			 * identical to cpu_online_mask.
391 			 */
392 			cpumask_copy(pmask, cpu_online_mask);
393 			return;
394 		}
395 	}
396 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
397 }
398 
399 /*
400  * Return in *pmask the portion of a cpusets's mems_allowed that
401  * are online, with memory.  If none are online with memory, walk
402  * up the cpuset hierarchy until we find one that does have some
403  * online mems.  The top cpuset always has some mems online.
404  *
405  * One way or another, we guarantee to return some non-empty subset
406  * of node_states[N_MEMORY].
407  *
408  * Call with callback_lock or cpuset_mutex held.
409  */
410 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
411 {
412 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
413 		cs = parent_cs(cs);
414 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
415 }
416 
417 /*
418  * update task's spread flag if cpuset's page/slab spread flag is set
419  *
420  * Call with callback_lock or cpuset_mutex held.
421  */
422 static void cpuset_update_task_spread_flag(struct cpuset *cs,
423 					struct task_struct *tsk)
424 {
425 	if (is_spread_page(cs))
426 		task_set_spread_page(tsk);
427 	else
428 		task_clear_spread_page(tsk);
429 
430 	if (is_spread_slab(cs))
431 		task_set_spread_slab(tsk);
432 	else
433 		task_clear_spread_slab(tsk);
434 }
435 
436 /*
437  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
438  *
439  * One cpuset is a subset of another if all its allowed CPUs and
440  * Memory Nodes are a subset of the other, and its exclusive flags
441  * are only set if the other's are set.  Call holding cpuset_mutex.
442  */
443 
444 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
445 {
446 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
447 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
448 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
449 		is_mem_exclusive(p) <= is_mem_exclusive(q);
450 }
451 
452 /**
453  * alloc_cpumasks - allocate three cpumasks for cpuset
454  * @cs:  the cpuset that have cpumasks to be allocated.
455  * @tmp: the tmpmasks structure pointer
456  * Return: 0 if successful, -ENOMEM otherwise.
457  *
458  * Only one of the two input arguments should be non-NULL.
459  */
460 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
461 {
462 	cpumask_var_t *pmask1, *pmask2, *pmask3;
463 
464 	if (cs) {
465 		pmask1 = &cs->cpus_allowed;
466 		pmask2 = &cs->effective_cpus;
467 		pmask3 = &cs->subparts_cpus;
468 	} else {
469 		pmask1 = &tmp->new_cpus;
470 		pmask2 = &tmp->addmask;
471 		pmask3 = &tmp->delmask;
472 	}
473 
474 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
475 		return -ENOMEM;
476 
477 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
478 		goto free_one;
479 
480 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
481 		goto free_two;
482 
483 	return 0;
484 
485 free_two:
486 	free_cpumask_var(*pmask2);
487 free_one:
488 	free_cpumask_var(*pmask1);
489 	return -ENOMEM;
490 }
491 
492 /**
493  * free_cpumasks - free cpumasks in a tmpmasks structure
494  * @cs:  the cpuset that have cpumasks to be free.
495  * @tmp: the tmpmasks structure pointer
496  */
497 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
498 {
499 	if (cs) {
500 		free_cpumask_var(cs->cpus_allowed);
501 		free_cpumask_var(cs->effective_cpus);
502 		free_cpumask_var(cs->subparts_cpus);
503 	}
504 	if (tmp) {
505 		free_cpumask_var(tmp->new_cpus);
506 		free_cpumask_var(tmp->addmask);
507 		free_cpumask_var(tmp->delmask);
508 	}
509 }
510 
511 /**
512  * alloc_trial_cpuset - allocate a trial cpuset
513  * @cs: the cpuset that the trial cpuset duplicates
514  */
515 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
516 {
517 	struct cpuset *trial;
518 
519 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
520 	if (!trial)
521 		return NULL;
522 
523 	if (alloc_cpumasks(trial, NULL)) {
524 		kfree(trial);
525 		return NULL;
526 	}
527 
528 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
529 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
530 	return trial;
531 }
532 
533 /**
534  * free_cpuset - free the cpuset
535  * @cs: the cpuset to be freed
536  */
537 static inline void free_cpuset(struct cpuset *cs)
538 {
539 	free_cpumasks(cs, NULL);
540 	kfree(cs);
541 }
542 
543 /*
544  * validate_change() - Used to validate that any proposed cpuset change
545  *		       follows the structural rules for cpusets.
546  *
547  * If we replaced the flag and mask values of the current cpuset
548  * (cur) with those values in the trial cpuset (trial), would
549  * our various subset and exclusive rules still be valid?  Presumes
550  * cpuset_mutex held.
551  *
552  * 'cur' is the address of an actual, in-use cpuset.  Operations
553  * such as list traversal that depend on the actual address of the
554  * cpuset in the list must use cur below, not trial.
555  *
556  * 'trial' is the address of bulk structure copy of cur, with
557  * perhaps one or more of the fields cpus_allowed, mems_allowed,
558  * or flags changed to new, trial values.
559  *
560  * Return 0 if valid, -errno if not.
561  */
562 
563 static int validate_change(struct cpuset *cur, struct cpuset *trial)
564 {
565 	struct cgroup_subsys_state *css;
566 	struct cpuset *c, *par;
567 	int ret;
568 
569 	rcu_read_lock();
570 
571 	/* Each of our child cpusets must be a subset of us */
572 	ret = -EBUSY;
573 	cpuset_for_each_child(c, css, cur)
574 		if (!is_cpuset_subset(c, trial))
575 			goto out;
576 
577 	/* Remaining checks don't apply to root cpuset */
578 	ret = 0;
579 	if (cur == &top_cpuset)
580 		goto out;
581 
582 	par = parent_cs(cur);
583 
584 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
585 	ret = -EACCES;
586 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
587 		goto out;
588 
589 	/*
590 	 * If either I or some sibling (!= me) is exclusive, we can't
591 	 * overlap
592 	 */
593 	ret = -EINVAL;
594 	cpuset_for_each_child(c, css, par) {
595 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
596 		    c != cur &&
597 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
598 			goto out;
599 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
600 		    c != cur &&
601 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
602 			goto out;
603 	}
604 
605 	/*
606 	 * Cpusets with tasks - existing or newly being attached - can't
607 	 * be changed to have empty cpus_allowed or mems_allowed.
608 	 */
609 	ret = -ENOSPC;
610 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
611 		if (!cpumask_empty(cur->cpus_allowed) &&
612 		    cpumask_empty(trial->cpus_allowed))
613 			goto out;
614 		if (!nodes_empty(cur->mems_allowed) &&
615 		    nodes_empty(trial->mems_allowed))
616 			goto out;
617 	}
618 
619 	/*
620 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
621 	 * tasks.
622 	 */
623 	ret = -EBUSY;
624 	if (is_cpu_exclusive(cur) &&
625 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
626 				       trial->cpus_allowed))
627 		goto out;
628 
629 	ret = 0;
630 out:
631 	rcu_read_unlock();
632 	return ret;
633 }
634 
635 #ifdef CONFIG_SMP
636 /*
637  * Helper routine for generate_sched_domains().
638  * Do cpusets a, b have overlapping effective cpus_allowed masks?
639  */
640 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
641 {
642 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
643 }
644 
645 static void
646 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
647 {
648 	if (dattr->relax_domain_level < c->relax_domain_level)
649 		dattr->relax_domain_level = c->relax_domain_level;
650 	return;
651 }
652 
653 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
654 				    struct cpuset *root_cs)
655 {
656 	struct cpuset *cp;
657 	struct cgroup_subsys_state *pos_css;
658 
659 	rcu_read_lock();
660 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
661 		/* skip the whole subtree if @cp doesn't have any CPU */
662 		if (cpumask_empty(cp->cpus_allowed)) {
663 			pos_css = css_rightmost_descendant(pos_css);
664 			continue;
665 		}
666 
667 		if (is_sched_load_balance(cp))
668 			update_domain_attr(dattr, cp);
669 	}
670 	rcu_read_unlock();
671 }
672 
673 /* Must be called with cpuset_mutex held.  */
674 static inline int nr_cpusets(void)
675 {
676 	/* jump label reference count + the top-level cpuset */
677 	return static_key_count(&cpusets_enabled_key.key) + 1;
678 }
679 
680 /*
681  * generate_sched_domains()
682  *
683  * This function builds a partial partition of the systems CPUs
684  * A 'partial partition' is a set of non-overlapping subsets whose
685  * union is a subset of that set.
686  * The output of this function needs to be passed to kernel/sched/core.c
687  * partition_sched_domains() routine, which will rebuild the scheduler's
688  * load balancing domains (sched domains) as specified by that partial
689  * partition.
690  *
691  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
692  * for a background explanation of this.
693  *
694  * Does not return errors, on the theory that the callers of this
695  * routine would rather not worry about failures to rebuild sched
696  * domains when operating in the severe memory shortage situations
697  * that could cause allocation failures below.
698  *
699  * Must be called with cpuset_mutex held.
700  *
701  * The three key local variables below are:
702  *    cp - cpuset pointer, used (together with pos_css) to perform a
703  *	   top-down scan of all cpusets. For our purposes, rebuilding
704  *	   the schedulers sched domains, we can ignore !is_sched_load_
705  *	   balance cpusets.
706  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
707  *	   that need to be load balanced, for convenient iterative
708  *	   access by the subsequent code that finds the best partition,
709  *	   i.e the set of domains (subsets) of CPUs such that the
710  *	   cpus_allowed of every cpuset marked is_sched_load_balance
711  *	   is a subset of one of these domains, while there are as
712  *	   many such domains as possible, each as small as possible.
713  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
714  *	   the kernel/sched/core.c routine partition_sched_domains() in a
715  *	   convenient format, that can be easily compared to the prior
716  *	   value to determine what partition elements (sched domains)
717  *	   were changed (added or removed.)
718  *
719  * Finding the best partition (set of domains):
720  *	The triple nested loops below over i, j, k scan over the
721  *	load balanced cpusets (using the array of cpuset pointers in
722  *	csa[]) looking for pairs of cpusets that have overlapping
723  *	cpus_allowed, but which don't have the same 'pn' partition
724  *	number and gives them in the same partition number.  It keeps
725  *	looping on the 'restart' label until it can no longer find
726  *	any such pairs.
727  *
728  *	The union of the cpus_allowed masks from the set of
729  *	all cpusets having the same 'pn' value then form the one
730  *	element of the partition (one sched domain) to be passed to
731  *	partition_sched_domains().
732  */
733 static int generate_sched_domains(cpumask_var_t **domains,
734 			struct sched_domain_attr **attributes)
735 {
736 	struct cpuset *cp;	/* top-down scan of cpusets */
737 	struct cpuset **csa;	/* array of all cpuset ptrs */
738 	int csn;		/* how many cpuset ptrs in csa so far */
739 	int i, j, k;		/* indices for partition finding loops */
740 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
741 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
742 	int ndoms = 0;		/* number of sched domains in result */
743 	int nslot;		/* next empty doms[] struct cpumask slot */
744 	struct cgroup_subsys_state *pos_css;
745 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
746 
747 	doms = NULL;
748 	dattr = NULL;
749 	csa = NULL;
750 
751 	/* Special case for the 99% of systems with one, full, sched domain */
752 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
753 		ndoms = 1;
754 		doms = alloc_sched_domains(ndoms);
755 		if (!doms)
756 			goto done;
757 
758 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
759 		if (dattr) {
760 			*dattr = SD_ATTR_INIT;
761 			update_domain_attr_tree(dattr, &top_cpuset);
762 		}
763 		cpumask_and(doms[0], top_cpuset.effective_cpus,
764 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
765 
766 		goto done;
767 	}
768 
769 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
770 	if (!csa)
771 		goto done;
772 	csn = 0;
773 
774 	rcu_read_lock();
775 	if (root_load_balance)
776 		csa[csn++] = &top_cpuset;
777 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
778 		if (cp == &top_cpuset)
779 			continue;
780 		/*
781 		 * Continue traversing beyond @cp iff @cp has some CPUs and
782 		 * isn't load balancing.  The former is obvious.  The
783 		 * latter: All child cpusets contain a subset of the
784 		 * parent's cpus, so just skip them, and then we call
785 		 * update_domain_attr_tree() to calc relax_domain_level of
786 		 * the corresponding sched domain.
787 		 *
788 		 * If root is load-balancing, we can skip @cp if it
789 		 * is a subset of the root's effective_cpus.
790 		 */
791 		if (!cpumask_empty(cp->cpus_allowed) &&
792 		    !(is_sched_load_balance(cp) &&
793 		      cpumask_intersects(cp->cpus_allowed,
794 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
795 			continue;
796 
797 		if (root_load_balance &&
798 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
799 			continue;
800 
801 		if (is_sched_load_balance(cp) &&
802 		    !cpumask_empty(cp->effective_cpus))
803 			csa[csn++] = cp;
804 
805 		/* skip @cp's subtree if not a partition root */
806 		if (!is_partition_root(cp))
807 			pos_css = css_rightmost_descendant(pos_css);
808 	}
809 	rcu_read_unlock();
810 
811 	for (i = 0; i < csn; i++)
812 		csa[i]->pn = i;
813 	ndoms = csn;
814 
815 restart:
816 	/* Find the best partition (set of sched domains) */
817 	for (i = 0; i < csn; i++) {
818 		struct cpuset *a = csa[i];
819 		int apn = a->pn;
820 
821 		for (j = 0; j < csn; j++) {
822 			struct cpuset *b = csa[j];
823 			int bpn = b->pn;
824 
825 			if (apn != bpn && cpusets_overlap(a, b)) {
826 				for (k = 0; k < csn; k++) {
827 					struct cpuset *c = csa[k];
828 
829 					if (c->pn == bpn)
830 						c->pn = apn;
831 				}
832 				ndoms--;	/* one less element */
833 				goto restart;
834 			}
835 		}
836 	}
837 
838 	/*
839 	 * Now we know how many domains to create.
840 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
841 	 */
842 	doms = alloc_sched_domains(ndoms);
843 	if (!doms)
844 		goto done;
845 
846 	/*
847 	 * The rest of the code, including the scheduler, can deal with
848 	 * dattr==NULL case. No need to abort if alloc fails.
849 	 */
850 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
851 			      GFP_KERNEL);
852 
853 	for (nslot = 0, i = 0; i < csn; i++) {
854 		struct cpuset *a = csa[i];
855 		struct cpumask *dp;
856 		int apn = a->pn;
857 
858 		if (apn < 0) {
859 			/* Skip completed partitions */
860 			continue;
861 		}
862 
863 		dp = doms[nslot];
864 
865 		if (nslot == ndoms) {
866 			static int warnings = 10;
867 			if (warnings) {
868 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
869 					nslot, ndoms, csn, i, apn);
870 				warnings--;
871 			}
872 			continue;
873 		}
874 
875 		cpumask_clear(dp);
876 		if (dattr)
877 			*(dattr + nslot) = SD_ATTR_INIT;
878 		for (j = i; j < csn; j++) {
879 			struct cpuset *b = csa[j];
880 
881 			if (apn == b->pn) {
882 				cpumask_or(dp, dp, b->effective_cpus);
883 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
884 				if (dattr)
885 					update_domain_attr_tree(dattr + nslot, b);
886 
887 				/* Done with this partition */
888 				b->pn = -1;
889 			}
890 		}
891 		nslot++;
892 	}
893 	BUG_ON(nslot != ndoms);
894 
895 done:
896 	kfree(csa);
897 
898 	/*
899 	 * Fallback to the default domain if kmalloc() failed.
900 	 * See comments in partition_sched_domains().
901 	 */
902 	if (doms == NULL)
903 		ndoms = 1;
904 
905 	*domains    = doms;
906 	*attributes = dattr;
907 	return ndoms;
908 }
909 
910 static void update_tasks_root_domain(struct cpuset *cs)
911 {
912 	struct css_task_iter it;
913 	struct task_struct *task;
914 
915 	css_task_iter_start(&cs->css, 0, &it);
916 
917 	while ((task = css_task_iter_next(&it)))
918 		dl_add_task_root_domain(task);
919 
920 	css_task_iter_end(&it);
921 }
922 
923 static void rebuild_root_domains(void)
924 {
925 	struct cpuset *cs = NULL;
926 	struct cgroup_subsys_state *pos_css;
927 
928 	percpu_rwsem_assert_held(&cpuset_rwsem);
929 	lockdep_assert_cpus_held();
930 	lockdep_assert_held(&sched_domains_mutex);
931 
932 	cgroup_enable_task_cg_lists();
933 
934 	rcu_read_lock();
935 
936 	/*
937 	 * Clear default root domain DL accounting, it will be computed again
938 	 * if a task belongs to it.
939 	 */
940 	dl_clear_root_domain(&def_root_domain);
941 
942 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
943 
944 		if (cpumask_empty(cs->effective_cpus)) {
945 			pos_css = css_rightmost_descendant(pos_css);
946 			continue;
947 		}
948 
949 		css_get(&cs->css);
950 
951 		rcu_read_unlock();
952 
953 		update_tasks_root_domain(cs);
954 
955 		rcu_read_lock();
956 		css_put(&cs->css);
957 	}
958 	rcu_read_unlock();
959 }
960 
961 static void
962 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
963 				    struct sched_domain_attr *dattr_new)
964 {
965 	mutex_lock(&sched_domains_mutex);
966 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
967 	rebuild_root_domains();
968 	mutex_unlock(&sched_domains_mutex);
969 }
970 
971 /*
972  * Rebuild scheduler domains.
973  *
974  * If the flag 'sched_load_balance' of any cpuset with non-empty
975  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
976  * which has that flag enabled, or if any cpuset with a non-empty
977  * 'cpus' is removed, then call this routine to rebuild the
978  * scheduler's dynamic sched domains.
979  *
980  * Call with cpuset_mutex held.  Takes get_online_cpus().
981  */
982 static void rebuild_sched_domains_locked(void)
983 {
984 	struct sched_domain_attr *attr;
985 	cpumask_var_t *doms;
986 	int ndoms;
987 
988 	lockdep_assert_cpus_held();
989 	percpu_rwsem_assert_held(&cpuset_rwsem);
990 
991 	/*
992 	 * We have raced with CPU hotplug. Don't do anything to avoid
993 	 * passing doms with offlined cpu to partition_sched_domains().
994 	 * Anyways, hotplug work item will rebuild sched domains.
995 	 */
996 	if (!top_cpuset.nr_subparts_cpus &&
997 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
998 		return;
999 
1000 	if (top_cpuset.nr_subparts_cpus &&
1001 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1002 		return;
1003 
1004 	/* Generate domain masks and attrs */
1005 	ndoms = generate_sched_domains(&doms, &attr);
1006 
1007 	/* Have scheduler rebuild the domains */
1008 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1009 }
1010 #else /* !CONFIG_SMP */
1011 static void rebuild_sched_domains_locked(void)
1012 {
1013 }
1014 #endif /* CONFIG_SMP */
1015 
1016 void rebuild_sched_domains(void)
1017 {
1018 	get_online_cpus();
1019 	percpu_down_write(&cpuset_rwsem);
1020 	rebuild_sched_domains_locked();
1021 	percpu_up_write(&cpuset_rwsem);
1022 	put_online_cpus();
1023 }
1024 
1025 /**
1026  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1027  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1028  *
1029  * Iterate through each task of @cs updating its cpus_allowed to the
1030  * effective cpuset's.  As this function is called with cpuset_mutex held,
1031  * cpuset membership stays stable.
1032  */
1033 static void update_tasks_cpumask(struct cpuset *cs)
1034 {
1035 	struct css_task_iter it;
1036 	struct task_struct *task;
1037 
1038 	css_task_iter_start(&cs->css, 0, &it);
1039 	while ((task = css_task_iter_next(&it)))
1040 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1041 	css_task_iter_end(&it);
1042 }
1043 
1044 /**
1045  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1046  * @new_cpus: the temp variable for the new effective_cpus mask
1047  * @cs: the cpuset the need to recompute the new effective_cpus mask
1048  * @parent: the parent cpuset
1049  *
1050  * If the parent has subpartition CPUs, include them in the list of
1051  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1052  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1053  * to mask those out.
1054  */
1055 static void compute_effective_cpumask(struct cpumask *new_cpus,
1056 				      struct cpuset *cs, struct cpuset *parent)
1057 {
1058 	if (parent->nr_subparts_cpus) {
1059 		cpumask_or(new_cpus, parent->effective_cpus,
1060 			   parent->subparts_cpus);
1061 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1062 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1063 	} else {
1064 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1065 	}
1066 }
1067 
1068 /*
1069  * Commands for update_parent_subparts_cpumask
1070  */
1071 enum subparts_cmd {
1072 	partcmd_enable,		/* Enable partition root	 */
1073 	partcmd_disable,	/* Disable partition root	 */
1074 	partcmd_update,		/* Update parent's subparts_cpus */
1075 };
1076 
1077 /**
1078  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1079  * @cpuset:  The cpuset that requests change in partition root state
1080  * @cmd:     Partition root state change command
1081  * @newmask: Optional new cpumask for partcmd_update
1082  * @tmp:     Temporary addmask and delmask
1083  * Return:   0, 1 or an error code
1084  *
1085  * For partcmd_enable, the cpuset is being transformed from a non-partition
1086  * root to a partition root. The cpus_allowed mask of the given cpuset will
1087  * be put into parent's subparts_cpus and taken away from parent's
1088  * effective_cpus. The function will return 0 if all the CPUs listed in
1089  * cpus_allowed can be granted or an error code will be returned.
1090  *
1091  * For partcmd_disable, the cpuset is being transofrmed from a partition
1092  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1093  * parent's subparts_cpus will be taken away from that cpumask and put back
1094  * into parent's effective_cpus. 0 should always be returned.
1095  *
1096  * For partcmd_update, if the optional newmask is specified, the cpu
1097  * list is to be changed from cpus_allowed to newmask. Otherwise,
1098  * cpus_allowed is assumed to remain the same. The cpuset should either
1099  * be a partition root or an invalid partition root. The partition root
1100  * state may change if newmask is NULL and none of the requested CPUs can
1101  * be granted by the parent. The function will return 1 if changes to
1102  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1103  * Error code should only be returned when newmask is non-NULL.
1104  *
1105  * The partcmd_enable and partcmd_disable commands are used by
1106  * update_prstate(). The partcmd_update command is used by
1107  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1108  * newmask set.
1109  *
1110  * The checking is more strict when enabling partition root than the
1111  * other two commands.
1112  *
1113  * Because of the implicit cpu exclusive nature of a partition root,
1114  * cpumask changes that violates the cpu exclusivity rule will not be
1115  * permitted when checked by validate_change(). The validate_change()
1116  * function will also prevent any changes to the cpu list if it is not
1117  * a superset of children's cpu lists.
1118  */
1119 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1120 					  struct cpumask *newmask,
1121 					  struct tmpmasks *tmp)
1122 {
1123 	struct cpuset *parent = parent_cs(cpuset);
1124 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1125 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1126 	bool part_error = false;	/* Partition error? */
1127 
1128 	percpu_rwsem_assert_held(&cpuset_rwsem);
1129 
1130 	/*
1131 	 * The parent must be a partition root.
1132 	 * The new cpumask, if present, or the current cpus_allowed must
1133 	 * not be empty.
1134 	 */
1135 	if (!is_partition_root(parent) ||
1136 	   (newmask && cpumask_empty(newmask)) ||
1137 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1138 		return -EINVAL;
1139 
1140 	/*
1141 	 * Enabling/disabling partition root is not allowed if there are
1142 	 * online children.
1143 	 */
1144 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1145 		return -EBUSY;
1146 
1147 	/*
1148 	 * Enabling partition root is not allowed if not all the CPUs
1149 	 * can be granted from parent's effective_cpus or at least one
1150 	 * CPU will be left after that.
1151 	 */
1152 	if ((cmd == partcmd_enable) &&
1153 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1154 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1155 		return -EINVAL;
1156 
1157 	/*
1158 	 * A cpumask update cannot make parent's effective_cpus become empty.
1159 	 */
1160 	adding = deleting = false;
1161 	if (cmd == partcmd_enable) {
1162 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1163 		adding = true;
1164 	} else if (cmd == partcmd_disable) {
1165 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1166 				       parent->subparts_cpus);
1167 	} else if (newmask) {
1168 		/*
1169 		 * partcmd_update with newmask:
1170 		 *
1171 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1172 		 * addmask = newmask & parent->effective_cpus
1173 		 *		     & ~parent->subparts_cpus
1174 		 */
1175 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1176 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1177 				       parent->subparts_cpus);
1178 
1179 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1180 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1181 					parent->subparts_cpus);
1182 		/*
1183 		 * Return error if the new effective_cpus could become empty.
1184 		 */
1185 		if (adding &&
1186 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1187 			if (!deleting)
1188 				return -EINVAL;
1189 			/*
1190 			 * As some of the CPUs in subparts_cpus might have
1191 			 * been offlined, we need to compute the real delmask
1192 			 * to confirm that.
1193 			 */
1194 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1195 					 cpu_active_mask))
1196 				return -EINVAL;
1197 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1198 		}
1199 	} else {
1200 		/*
1201 		 * partcmd_update w/o newmask:
1202 		 *
1203 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1204 		 *
1205 		 * Note that parent's subparts_cpus may have been
1206 		 * pre-shrunk in case there is a change in the cpu list.
1207 		 * So no deletion is needed.
1208 		 */
1209 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1210 				     parent->effective_cpus);
1211 		part_error = cpumask_equal(tmp->addmask,
1212 					   parent->effective_cpus);
1213 	}
1214 
1215 	if (cmd == partcmd_update) {
1216 		int prev_prs = cpuset->partition_root_state;
1217 
1218 		/*
1219 		 * Check for possible transition between PRS_ENABLED
1220 		 * and PRS_ERROR.
1221 		 */
1222 		switch (cpuset->partition_root_state) {
1223 		case PRS_ENABLED:
1224 			if (part_error)
1225 				cpuset->partition_root_state = PRS_ERROR;
1226 			break;
1227 		case PRS_ERROR:
1228 			if (!part_error)
1229 				cpuset->partition_root_state = PRS_ENABLED;
1230 			break;
1231 		}
1232 		/*
1233 		 * Set part_error if previously in invalid state.
1234 		 */
1235 		part_error = (prev_prs == PRS_ERROR);
1236 	}
1237 
1238 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1239 		return 0;	/* Nothing need to be done */
1240 
1241 	if (cpuset->partition_root_state == PRS_ERROR) {
1242 		/*
1243 		 * Remove all its cpus from parent's subparts_cpus.
1244 		 */
1245 		adding = false;
1246 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1247 				       parent->subparts_cpus);
1248 	}
1249 
1250 	if (!adding && !deleting)
1251 		return 0;
1252 
1253 	/*
1254 	 * Change the parent's subparts_cpus.
1255 	 * Newly added CPUs will be removed from effective_cpus and
1256 	 * newly deleted ones will be added back to effective_cpus.
1257 	 */
1258 	spin_lock_irq(&callback_lock);
1259 	if (adding) {
1260 		cpumask_or(parent->subparts_cpus,
1261 			   parent->subparts_cpus, tmp->addmask);
1262 		cpumask_andnot(parent->effective_cpus,
1263 			       parent->effective_cpus, tmp->addmask);
1264 	}
1265 	if (deleting) {
1266 		cpumask_andnot(parent->subparts_cpus,
1267 			       parent->subparts_cpus, tmp->delmask);
1268 		/*
1269 		 * Some of the CPUs in subparts_cpus might have been offlined.
1270 		 */
1271 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1272 		cpumask_or(parent->effective_cpus,
1273 			   parent->effective_cpus, tmp->delmask);
1274 	}
1275 
1276 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1277 	spin_unlock_irq(&callback_lock);
1278 
1279 	return cmd == partcmd_update;
1280 }
1281 
1282 /*
1283  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1284  * @cs:  the cpuset to consider
1285  * @tmp: temp variables for calculating effective_cpus & partition setup
1286  *
1287  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1288  * and all its descendants need to be updated.
1289  *
1290  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1291  *
1292  * Called with cpuset_mutex held
1293  */
1294 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1295 {
1296 	struct cpuset *cp;
1297 	struct cgroup_subsys_state *pos_css;
1298 	bool need_rebuild_sched_domains = false;
1299 
1300 	rcu_read_lock();
1301 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1302 		struct cpuset *parent = parent_cs(cp);
1303 
1304 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1305 
1306 		/*
1307 		 * If it becomes empty, inherit the effective mask of the
1308 		 * parent, which is guaranteed to have some CPUs.
1309 		 */
1310 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1311 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1312 			if (!cp->use_parent_ecpus) {
1313 				cp->use_parent_ecpus = true;
1314 				parent->child_ecpus_count++;
1315 			}
1316 		} else if (cp->use_parent_ecpus) {
1317 			cp->use_parent_ecpus = false;
1318 			WARN_ON_ONCE(!parent->child_ecpus_count);
1319 			parent->child_ecpus_count--;
1320 		}
1321 
1322 		/*
1323 		 * Skip the whole subtree if the cpumask remains the same
1324 		 * and has no partition root state.
1325 		 */
1326 		if (!cp->partition_root_state &&
1327 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1328 			pos_css = css_rightmost_descendant(pos_css);
1329 			continue;
1330 		}
1331 
1332 		/*
1333 		 * update_parent_subparts_cpumask() should have been called
1334 		 * for cs already in update_cpumask(). We should also call
1335 		 * update_tasks_cpumask() again for tasks in the parent
1336 		 * cpuset if the parent's subparts_cpus changes.
1337 		 */
1338 		if ((cp != cs) && cp->partition_root_state) {
1339 			switch (parent->partition_root_state) {
1340 			case PRS_DISABLED:
1341 				/*
1342 				 * If parent is not a partition root or an
1343 				 * invalid partition root, clear the state
1344 				 * state and the CS_CPU_EXCLUSIVE flag.
1345 				 */
1346 				WARN_ON_ONCE(cp->partition_root_state
1347 					     != PRS_ERROR);
1348 				cp->partition_root_state = 0;
1349 
1350 				/*
1351 				 * clear_bit() is an atomic operation and
1352 				 * readers aren't interested in the state
1353 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1354 				 * just update the flag without holding
1355 				 * the callback_lock.
1356 				 */
1357 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1358 				break;
1359 
1360 			case PRS_ENABLED:
1361 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1362 					update_tasks_cpumask(parent);
1363 				break;
1364 
1365 			case PRS_ERROR:
1366 				/*
1367 				 * When parent is invalid, it has to be too.
1368 				 */
1369 				cp->partition_root_state = PRS_ERROR;
1370 				if (cp->nr_subparts_cpus) {
1371 					cp->nr_subparts_cpus = 0;
1372 					cpumask_clear(cp->subparts_cpus);
1373 				}
1374 				break;
1375 			}
1376 		}
1377 
1378 		if (!css_tryget_online(&cp->css))
1379 			continue;
1380 		rcu_read_unlock();
1381 
1382 		spin_lock_irq(&callback_lock);
1383 
1384 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1385 		if (cp->nr_subparts_cpus &&
1386 		   (cp->partition_root_state != PRS_ENABLED)) {
1387 			cp->nr_subparts_cpus = 0;
1388 			cpumask_clear(cp->subparts_cpus);
1389 		} else if (cp->nr_subparts_cpus) {
1390 			/*
1391 			 * Make sure that effective_cpus & subparts_cpus
1392 			 * are mutually exclusive.
1393 			 *
1394 			 * In the unlikely event that effective_cpus
1395 			 * becomes empty. we clear cp->nr_subparts_cpus and
1396 			 * let its child partition roots to compete for
1397 			 * CPUs again.
1398 			 */
1399 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1400 				       cp->subparts_cpus);
1401 			if (cpumask_empty(cp->effective_cpus)) {
1402 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1403 				cpumask_clear(cp->subparts_cpus);
1404 				cp->nr_subparts_cpus = 0;
1405 			} else if (!cpumask_subset(cp->subparts_cpus,
1406 						   tmp->new_cpus)) {
1407 				cpumask_andnot(cp->subparts_cpus,
1408 					cp->subparts_cpus, tmp->new_cpus);
1409 				cp->nr_subparts_cpus
1410 					= cpumask_weight(cp->subparts_cpus);
1411 			}
1412 		}
1413 		spin_unlock_irq(&callback_lock);
1414 
1415 		WARN_ON(!is_in_v2_mode() &&
1416 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1417 
1418 		update_tasks_cpumask(cp);
1419 
1420 		/*
1421 		 * On legacy hierarchy, if the effective cpumask of any non-
1422 		 * empty cpuset is changed, we need to rebuild sched domains.
1423 		 * On default hierarchy, the cpuset needs to be a partition
1424 		 * root as well.
1425 		 */
1426 		if (!cpumask_empty(cp->cpus_allowed) &&
1427 		    is_sched_load_balance(cp) &&
1428 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1429 		    is_partition_root(cp)))
1430 			need_rebuild_sched_domains = true;
1431 
1432 		rcu_read_lock();
1433 		css_put(&cp->css);
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	if (need_rebuild_sched_domains)
1438 		rebuild_sched_domains_locked();
1439 }
1440 
1441 /**
1442  * update_sibling_cpumasks - Update siblings cpumasks
1443  * @parent:  Parent cpuset
1444  * @cs:      Current cpuset
1445  * @tmp:     Temp variables
1446  */
1447 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1448 				    struct tmpmasks *tmp)
1449 {
1450 	struct cpuset *sibling;
1451 	struct cgroup_subsys_state *pos_css;
1452 
1453 	/*
1454 	 * Check all its siblings and call update_cpumasks_hier()
1455 	 * if their use_parent_ecpus flag is set in order for them
1456 	 * to use the right effective_cpus value.
1457 	 */
1458 	rcu_read_lock();
1459 	cpuset_for_each_child(sibling, pos_css, parent) {
1460 		if (sibling == cs)
1461 			continue;
1462 		if (!sibling->use_parent_ecpus)
1463 			continue;
1464 
1465 		update_cpumasks_hier(sibling, tmp);
1466 	}
1467 	rcu_read_unlock();
1468 }
1469 
1470 /**
1471  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1472  * @cs: the cpuset to consider
1473  * @trialcs: trial cpuset
1474  * @buf: buffer of cpu numbers written to this cpuset
1475  */
1476 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1477 			  const char *buf)
1478 {
1479 	int retval;
1480 	struct tmpmasks tmp;
1481 
1482 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1483 	if (cs == &top_cpuset)
1484 		return -EACCES;
1485 
1486 	/*
1487 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1488 	 * Since cpulist_parse() fails on an empty mask, we special case
1489 	 * that parsing.  The validate_change() call ensures that cpusets
1490 	 * with tasks have cpus.
1491 	 */
1492 	if (!*buf) {
1493 		cpumask_clear(trialcs->cpus_allowed);
1494 	} else {
1495 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1496 		if (retval < 0)
1497 			return retval;
1498 
1499 		if (!cpumask_subset(trialcs->cpus_allowed,
1500 				    top_cpuset.cpus_allowed))
1501 			return -EINVAL;
1502 	}
1503 
1504 	/* Nothing to do if the cpus didn't change */
1505 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1506 		return 0;
1507 
1508 	retval = validate_change(cs, trialcs);
1509 	if (retval < 0)
1510 		return retval;
1511 
1512 #ifdef CONFIG_CPUMASK_OFFSTACK
1513 	/*
1514 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1515 	 * to allocated cpumasks.
1516 	 */
1517 	tmp.addmask  = trialcs->subparts_cpus;
1518 	tmp.delmask  = trialcs->effective_cpus;
1519 	tmp.new_cpus = trialcs->cpus_allowed;
1520 #endif
1521 
1522 	if (cs->partition_root_state) {
1523 		/* Cpumask of a partition root cannot be empty */
1524 		if (cpumask_empty(trialcs->cpus_allowed))
1525 			return -EINVAL;
1526 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1527 					trialcs->cpus_allowed, &tmp) < 0)
1528 			return -EINVAL;
1529 	}
1530 
1531 	spin_lock_irq(&callback_lock);
1532 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1533 
1534 	/*
1535 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1536 	 */
1537 	if (cs->nr_subparts_cpus) {
1538 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1539 			       cs->cpus_allowed);
1540 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1541 	}
1542 	spin_unlock_irq(&callback_lock);
1543 
1544 	update_cpumasks_hier(cs, &tmp);
1545 
1546 	if (cs->partition_root_state) {
1547 		struct cpuset *parent = parent_cs(cs);
1548 
1549 		/*
1550 		 * For partition root, update the cpumasks of sibling
1551 		 * cpusets if they use parent's effective_cpus.
1552 		 */
1553 		if (parent->child_ecpus_count)
1554 			update_sibling_cpumasks(parent, cs, &tmp);
1555 	}
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Migrate memory region from one set of nodes to another.  This is
1561  * performed asynchronously as it can be called from process migration path
1562  * holding locks involved in process management.  All mm migrations are
1563  * performed in the queued order and can be waited for by flushing
1564  * cpuset_migrate_mm_wq.
1565  */
1566 
1567 struct cpuset_migrate_mm_work {
1568 	struct work_struct	work;
1569 	struct mm_struct	*mm;
1570 	nodemask_t		from;
1571 	nodemask_t		to;
1572 };
1573 
1574 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1575 {
1576 	struct cpuset_migrate_mm_work *mwork =
1577 		container_of(work, struct cpuset_migrate_mm_work, work);
1578 
1579 	/* on a wq worker, no need to worry about %current's mems_allowed */
1580 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1581 	mmput(mwork->mm);
1582 	kfree(mwork);
1583 }
1584 
1585 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1586 							const nodemask_t *to)
1587 {
1588 	struct cpuset_migrate_mm_work *mwork;
1589 
1590 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1591 	if (mwork) {
1592 		mwork->mm = mm;
1593 		mwork->from = *from;
1594 		mwork->to = *to;
1595 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1596 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1597 	} else {
1598 		mmput(mm);
1599 	}
1600 }
1601 
1602 static void cpuset_post_attach(void)
1603 {
1604 	flush_workqueue(cpuset_migrate_mm_wq);
1605 }
1606 
1607 /*
1608  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1609  * @tsk: the task to change
1610  * @newmems: new nodes that the task will be set
1611  *
1612  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1613  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1614  * parallel, it might temporarily see an empty intersection, which results in
1615  * a seqlock check and retry before OOM or allocation failure.
1616  */
1617 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1618 					nodemask_t *newmems)
1619 {
1620 	task_lock(tsk);
1621 
1622 	local_irq_disable();
1623 	write_seqcount_begin(&tsk->mems_allowed_seq);
1624 
1625 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1626 	mpol_rebind_task(tsk, newmems);
1627 	tsk->mems_allowed = *newmems;
1628 
1629 	write_seqcount_end(&tsk->mems_allowed_seq);
1630 	local_irq_enable();
1631 
1632 	task_unlock(tsk);
1633 }
1634 
1635 static void *cpuset_being_rebound;
1636 
1637 /**
1638  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1639  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1640  *
1641  * Iterate through each task of @cs updating its mems_allowed to the
1642  * effective cpuset's.  As this function is called with cpuset_mutex held,
1643  * cpuset membership stays stable.
1644  */
1645 static void update_tasks_nodemask(struct cpuset *cs)
1646 {
1647 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1648 	struct css_task_iter it;
1649 	struct task_struct *task;
1650 
1651 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1652 
1653 	guarantee_online_mems(cs, &newmems);
1654 
1655 	/*
1656 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1657 	 * take while holding tasklist_lock.  Forks can happen - the
1658 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1659 	 * and rebind their vma mempolicies too.  Because we still hold
1660 	 * the global cpuset_mutex, we know that no other rebind effort
1661 	 * will be contending for the global variable cpuset_being_rebound.
1662 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1663 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1664 	 */
1665 	css_task_iter_start(&cs->css, 0, &it);
1666 	while ((task = css_task_iter_next(&it))) {
1667 		struct mm_struct *mm;
1668 		bool migrate;
1669 
1670 		cpuset_change_task_nodemask(task, &newmems);
1671 
1672 		mm = get_task_mm(task);
1673 		if (!mm)
1674 			continue;
1675 
1676 		migrate = is_memory_migrate(cs);
1677 
1678 		mpol_rebind_mm(mm, &cs->mems_allowed);
1679 		if (migrate)
1680 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1681 		else
1682 			mmput(mm);
1683 	}
1684 	css_task_iter_end(&it);
1685 
1686 	/*
1687 	 * All the tasks' nodemasks have been updated, update
1688 	 * cs->old_mems_allowed.
1689 	 */
1690 	cs->old_mems_allowed = newmems;
1691 
1692 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1693 	cpuset_being_rebound = NULL;
1694 }
1695 
1696 /*
1697  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1698  * @cs: the cpuset to consider
1699  * @new_mems: a temp variable for calculating new effective_mems
1700  *
1701  * When configured nodemask is changed, the effective nodemasks of this cpuset
1702  * and all its descendants need to be updated.
1703  *
1704  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1705  *
1706  * Called with cpuset_mutex held
1707  */
1708 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1709 {
1710 	struct cpuset *cp;
1711 	struct cgroup_subsys_state *pos_css;
1712 
1713 	rcu_read_lock();
1714 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1715 		struct cpuset *parent = parent_cs(cp);
1716 
1717 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1718 
1719 		/*
1720 		 * If it becomes empty, inherit the effective mask of the
1721 		 * parent, which is guaranteed to have some MEMs.
1722 		 */
1723 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1724 			*new_mems = parent->effective_mems;
1725 
1726 		/* Skip the whole subtree if the nodemask remains the same. */
1727 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1728 			pos_css = css_rightmost_descendant(pos_css);
1729 			continue;
1730 		}
1731 
1732 		if (!css_tryget_online(&cp->css))
1733 			continue;
1734 		rcu_read_unlock();
1735 
1736 		spin_lock_irq(&callback_lock);
1737 		cp->effective_mems = *new_mems;
1738 		spin_unlock_irq(&callback_lock);
1739 
1740 		WARN_ON(!is_in_v2_mode() &&
1741 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1742 
1743 		update_tasks_nodemask(cp);
1744 
1745 		rcu_read_lock();
1746 		css_put(&cp->css);
1747 	}
1748 	rcu_read_unlock();
1749 }
1750 
1751 /*
1752  * Handle user request to change the 'mems' memory placement
1753  * of a cpuset.  Needs to validate the request, update the
1754  * cpusets mems_allowed, and for each task in the cpuset,
1755  * update mems_allowed and rebind task's mempolicy and any vma
1756  * mempolicies and if the cpuset is marked 'memory_migrate',
1757  * migrate the tasks pages to the new memory.
1758  *
1759  * Call with cpuset_mutex held. May take callback_lock during call.
1760  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1761  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1762  * their mempolicies to the cpusets new mems_allowed.
1763  */
1764 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1765 			   const char *buf)
1766 {
1767 	int retval;
1768 
1769 	/*
1770 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1771 	 * it's read-only
1772 	 */
1773 	if (cs == &top_cpuset) {
1774 		retval = -EACCES;
1775 		goto done;
1776 	}
1777 
1778 	/*
1779 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1780 	 * Since nodelist_parse() fails on an empty mask, we special case
1781 	 * that parsing.  The validate_change() call ensures that cpusets
1782 	 * with tasks have memory.
1783 	 */
1784 	if (!*buf) {
1785 		nodes_clear(trialcs->mems_allowed);
1786 	} else {
1787 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1788 		if (retval < 0)
1789 			goto done;
1790 
1791 		if (!nodes_subset(trialcs->mems_allowed,
1792 				  top_cpuset.mems_allowed)) {
1793 			retval = -EINVAL;
1794 			goto done;
1795 		}
1796 	}
1797 
1798 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1799 		retval = 0;		/* Too easy - nothing to do */
1800 		goto done;
1801 	}
1802 	retval = validate_change(cs, trialcs);
1803 	if (retval < 0)
1804 		goto done;
1805 
1806 	spin_lock_irq(&callback_lock);
1807 	cs->mems_allowed = trialcs->mems_allowed;
1808 	spin_unlock_irq(&callback_lock);
1809 
1810 	/* use trialcs->mems_allowed as a temp variable */
1811 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1812 done:
1813 	return retval;
1814 }
1815 
1816 bool current_cpuset_is_being_rebound(void)
1817 {
1818 	bool ret;
1819 
1820 	rcu_read_lock();
1821 	ret = task_cs(current) == cpuset_being_rebound;
1822 	rcu_read_unlock();
1823 
1824 	return ret;
1825 }
1826 
1827 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1828 {
1829 #ifdef CONFIG_SMP
1830 	if (val < -1 || val >= sched_domain_level_max)
1831 		return -EINVAL;
1832 #endif
1833 
1834 	if (val != cs->relax_domain_level) {
1835 		cs->relax_domain_level = val;
1836 		if (!cpumask_empty(cs->cpus_allowed) &&
1837 		    is_sched_load_balance(cs))
1838 			rebuild_sched_domains_locked();
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1846  * @cs: the cpuset in which each task's spread flags needs to be changed
1847  *
1848  * Iterate through each task of @cs updating its spread flags.  As this
1849  * function is called with cpuset_mutex held, cpuset membership stays
1850  * stable.
1851  */
1852 static void update_tasks_flags(struct cpuset *cs)
1853 {
1854 	struct css_task_iter it;
1855 	struct task_struct *task;
1856 
1857 	css_task_iter_start(&cs->css, 0, &it);
1858 	while ((task = css_task_iter_next(&it)))
1859 		cpuset_update_task_spread_flag(cs, task);
1860 	css_task_iter_end(&it);
1861 }
1862 
1863 /*
1864  * update_flag - read a 0 or a 1 in a file and update associated flag
1865  * bit:		the bit to update (see cpuset_flagbits_t)
1866  * cs:		the cpuset to update
1867  * turning_on: 	whether the flag is being set or cleared
1868  *
1869  * Call with cpuset_mutex held.
1870  */
1871 
1872 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1873 		       int turning_on)
1874 {
1875 	struct cpuset *trialcs;
1876 	int balance_flag_changed;
1877 	int spread_flag_changed;
1878 	int err;
1879 
1880 	trialcs = alloc_trial_cpuset(cs);
1881 	if (!trialcs)
1882 		return -ENOMEM;
1883 
1884 	if (turning_on)
1885 		set_bit(bit, &trialcs->flags);
1886 	else
1887 		clear_bit(bit, &trialcs->flags);
1888 
1889 	err = validate_change(cs, trialcs);
1890 	if (err < 0)
1891 		goto out;
1892 
1893 	balance_flag_changed = (is_sched_load_balance(cs) !=
1894 				is_sched_load_balance(trialcs));
1895 
1896 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1897 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1898 
1899 	spin_lock_irq(&callback_lock);
1900 	cs->flags = trialcs->flags;
1901 	spin_unlock_irq(&callback_lock);
1902 
1903 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1904 		rebuild_sched_domains_locked();
1905 
1906 	if (spread_flag_changed)
1907 		update_tasks_flags(cs);
1908 out:
1909 	free_cpuset(trialcs);
1910 	return err;
1911 }
1912 
1913 /*
1914  * update_prstate - update partititon_root_state
1915  * cs:	the cpuset to update
1916  * val: 0 - disabled, 1 - enabled
1917  *
1918  * Call with cpuset_mutex held.
1919  */
1920 static int update_prstate(struct cpuset *cs, int val)
1921 {
1922 	int err;
1923 	struct cpuset *parent = parent_cs(cs);
1924 	struct tmpmasks tmp;
1925 
1926 	if ((val != 0) && (val != 1))
1927 		return -EINVAL;
1928 	if (val == cs->partition_root_state)
1929 		return 0;
1930 
1931 	/*
1932 	 * Cannot force a partial or invalid partition root to a full
1933 	 * partition root.
1934 	 */
1935 	if (val && cs->partition_root_state)
1936 		return -EINVAL;
1937 
1938 	if (alloc_cpumasks(NULL, &tmp))
1939 		return -ENOMEM;
1940 
1941 	err = -EINVAL;
1942 	if (!cs->partition_root_state) {
1943 		/*
1944 		 * Turning on partition root requires setting the
1945 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1946 		 * cannot be NULL.
1947 		 */
1948 		if (cpumask_empty(cs->cpus_allowed))
1949 			goto out;
1950 
1951 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1952 		if (err)
1953 			goto out;
1954 
1955 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1956 						     NULL, &tmp);
1957 		if (err) {
1958 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1959 			goto out;
1960 		}
1961 		cs->partition_root_state = PRS_ENABLED;
1962 	} else {
1963 		/*
1964 		 * Turning off partition root will clear the
1965 		 * CS_CPU_EXCLUSIVE bit.
1966 		 */
1967 		if (cs->partition_root_state == PRS_ERROR) {
1968 			cs->partition_root_state = 0;
1969 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1970 			err = 0;
1971 			goto out;
1972 		}
1973 
1974 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1975 						     NULL, &tmp);
1976 		if (err)
1977 			goto out;
1978 
1979 		cs->partition_root_state = 0;
1980 
1981 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1982 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1983 	}
1984 
1985 	/*
1986 	 * Update cpumask of parent's tasks except when it is the top
1987 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1988 	 */
1989 	if (parent != &top_cpuset)
1990 		update_tasks_cpumask(parent);
1991 
1992 	if (parent->child_ecpus_count)
1993 		update_sibling_cpumasks(parent, cs, &tmp);
1994 
1995 	rebuild_sched_domains_locked();
1996 out:
1997 	free_cpumasks(NULL, &tmp);
1998 	return err;
1999 }
2000 
2001 /*
2002  * Frequency meter - How fast is some event occurring?
2003  *
2004  * These routines manage a digitally filtered, constant time based,
2005  * event frequency meter.  There are four routines:
2006  *   fmeter_init() - initialize a frequency meter.
2007  *   fmeter_markevent() - called each time the event happens.
2008  *   fmeter_getrate() - returns the recent rate of such events.
2009  *   fmeter_update() - internal routine used to update fmeter.
2010  *
2011  * A common data structure is passed to each of these routines,
2012  * which is used to keep track of the state required to manage the
2013  * frequency meter and its digital filter.
2014  *
2015  * The filter works on the number of events marked per unit time.
2016  * The filter is single-pole low-pass recursive (IIR).  The time unit
2017  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2018  * simulate 3 decimal digits of precision (multiplied by 1000).
2019  *
2020  * With an FM_COEF of 933, and a time base of 1 second, the filter
2021  * has a half-life of 10 seconds, meaning that if the events quit
2022  * happening, then the rate returned from the fmeter_getrate()
2023  * will be cut in half each 10 seconds, until it converges to zero.
2024  *
2025  * It is not worth doing a real infinitely recursive filter.  If more
2026  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2027  * just compute FM_MAXTICKS ticks worth, by which point the level
2028  * will be stable.
2029  *
2030  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2031  * arithmetic overflow in the fmeter_update() routine.
2032  *
2033  * Given the simple 32 bit integer arithmetic used, this meter works
2034  * best for reporting rates between one per millisecond (msec) and
2035  * one per 32 (approx) seconds.  At constant rates faster than one
2036  * per msec it maxes out at values just under 1,000,000.  At constant
2037  * rates between one per msec, and one per second it will stabilize
2038  * to a value N*1000, where N is the rate of events per second.
2039  * At constant rates between one per second and one per 32 seconds,
2040  * it will be choppy, moving up on the seconds that have an event,
2041  * and then decaying until the next event.  At rates slower than
2042  * about one in 32 seconds, it decays all the way back to zero between
2043  * each event.
2044  */
2045 
2046 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2047 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2048 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2049 #define FM_SCALE 1000		/* faux fixed point scale */
2050 
2051 /* Initialize a frequency meter */
2052 static void fmeter_init(struct fmeter *fmp)
2053 {
2054 	fmp->cnt = 0;
2055 	fmp->val = 0;
2056 	fmp->time = 0;
2057 	spin_lock_init(&fmp->lock);
2058 }
2059 
2060 /* Internal meter update - process cnt events and update value */
2061 static void fmeter_update(struct fmeter *fmp)
2062 {
2063 	time64_t now;
2064 	u32 ticks;
2065 
2066 	now = ktime_get_seconds();
2067 	ticks = now - fmp->time;
2068 
2069 	if (ticks == 0)
2070 		return;
2071 
2072 	ticks = min(FM_MAXTICKS, ticks);
2073 	while (ticks-- > 0)
2074 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2075 	fmp->time = now;
2076 
2077 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2078 	fmp->cnt = 0;
2079 }
2080 
2081 /* Process any previous ticks, then bump cnt by one (times scale). */
2082 static void fmeter_markevent(struct fmeter *fmp)
2083 {
2084 	spin_lock(&fmp->lock);
2085 	fmeter_update(fmp);
2086 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2087 	spin_unlock(&fmp->lock);
2088 }
2089 
2090 /* Process any previous ticks, then return current value. */
2091 static int fmeter_getrate(struct fmeter *fmp)
2092 {
2093 	int val;
2094 
2095 	spin_lock(&fmp->lock);
2096 	fmeter_update(fmp);
2097 	val = fmp->val;
2098 	spin_unlock(&fmp->lock);
2099 	return val;
2100 }
2101 
2102 static struct cpuset *cpuset_attach_old_cs;
2103 
2104 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2105 static int cpuset_can_attach(struct cgroup_taskset *tset)
2106 {
2107 	struct cgroup_subsys_state *css;
2108 	struct cpuset *cs;
2109 	struct task_struct *task;
2110 	int ret;
2111 
2112 	/* used later by cpuset_attach() */
2113 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2114 	cs = css_cs(css);
2115 
2116 	percpu_down_write(&cpuset_rwsem);
2117 
2118 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2119 	ret = -ENOSPC;
2120 	if (!is_in_v2_mode() &&
2121 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2122 		goto out_unlock;
2123 
2124 	cgroup_taskset_for_each(task, css, tset) {
2125 		ret = task_can_attach(task, cs->cpus_allowed);
2126 		if (ret)
2127 			goto out_unlock;
2128 		ret = security_task_setscheduler(task);
2129 		if (ret)
2130 			goto out_unlock;
2131 	}
2132 
2133 	/*
2134 	 * Mark attach is in progress.  This makes validate_change() fail
2135 	 * changes which zero cpus/mems_allowed.
2136 	 */
2137 	cs->attach_in_progress++;
2138 	ret = 0;
2139 out_unlock:
2140 	percpu_up_write(&cpuset_rwsem);
2141 	return ret;
2142 }
2143 
2144 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2145 {
2146 	struct cgroup_subsys_state *css;
2147 
2148 	cgroup_taskset_first(tset, &css);
2149 
2150 	percpu_down_write(&cpuset_rwsem);
2151 	css_cs(css)->attach_in_progress--;
2152 	percpu_up_write(&cpuset_rwsem);
2153 }
2154 
2155 /*
2156  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2157  * but we can't allocate it dynamically there.  Define it global and
2158  * allocate from cpuset_init().
2159  */
2160 static cpumask_var_t cpus_attach;
2161 
2162 static void cpuset_attach(struct cgroup_taskset *tset)
2163 {
2164 	/* static buf protected by cpuset_mutex */
2165 	static nodemask_t cpuset_attach_nodemask_to;
2166 	struct task_struct *task;
2167 	struct task_struct *leader;
2168 	struct cgroup_subsys_state *css;
2169 	struct cpuset *cs;
2170 	struct cpuset *oldcs = cpuset_attach_old_cs;
2171 
2172 	cgroup_taskset_first(tset, &css);
2173 	cs = css_cs(css);
2174 
2175 	percpu_down_write(&cpuset_rwsem);
2176 
2177 	/* prepare for attach */
2178 	if (cs == &top_cpuset)
2179 		cpumask_copy(cpus_attach, cpu_possible_mask);
2180 	else
2181 		guarantee_online_cpus(cs, cpus_attach);
2182 
2183 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2184 
2185 	cgroup_taskset_for_each(task, css, tset) {
2186 		/*
2187 		 * can_attach beforehand should guarantee that this doesn't
2188 		 * fail.  TODO: have a better way to handle failure here
2189 		 */
2190 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2191 
2192 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2193 		cpuset_update_task_spread_flag(cs, task);
2194 	}
2195 
2196 	/*
2197 	 * Change mm for all threadgroup leaders. This is expensive and may
2198 	 * sleep and should be moved outside migration path proper.
2199 	 */
2200 	cpuset_attach_nodemask_to = cs->effective_mems;
2201 	cgroup_taskset_for_each_leader(leader, css, tset) {
2202 		struct mm_struct *mm = get_task_mm(leader);
2203 
2204 		if (mm) {
2205 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2206 
2207 			/*
2208 			 * old_mems_allowed is the same with mems_allowed
2209 			 * here, except if this task is being moved
2210 			 * automatically due to hotplug.  In that case
2211 			 * @mems_allowed has been updated and is empty, so
2212 			 * @old_mems_allowed is the right nodesets that we
2213 			 * migrate mm from.
2214 			 */
2215 			if (is_memory_migrate(cs))
2216 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2217 						  &cpuset_attach_nodemask_to);
2218 			else
2219 				mmput(mm);
2220 		}
2221 	}
2222 
2223 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2224 
2225 	cs->attach_in_progress--;
2226 	if (!cs->attach_in_progress)
2227 		wake_up(&cpuset_attach_wq);
2228 
2229 	percpu_up_write(&cpuset_rwsem);
2230 }
2231 
2232 /* The various types of files and directories in a cpuset file system */
2233 
2234 typedef enum {
2235 	FILE_MEMORY_MIGRATE,
2236 	FILE_CPULIST,
2237 	FILE_MEMLIST,
2238 	FILE_EFFECTIVE_CPULIST,
2239 	FILE_EFFECTIVE_MEMLIST,
2240 	FILE_SUBPARTS_CPULIST,
2241 	FILE_CPU_EXCLUSIVE,
2242 	FILE_MEM_EXCLUSIVE,
2243 	FILE_MEM_HARDWALL,
2244 	FILE_SCHED_LOAD_BALANCE,
2245 	FILE_PARTITION_ROOT,
2246 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2247 	FILE_MEMORY_PRESSURE_ENABLED,
2248 	FILE_MEMORY_PRESSURE,
2249 	FILE_SPREAD_PAGE,
2250 	FILE_SPREAD_SLAB,
2251 } cpuset_filetype_t;
2252 
2253 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2254 			    u64 val)
2255 {
2256 	struct cpuset *cs = css_cs(css);
2257 	cpuset_filetype_t type = cft->private;
2258 	int retval = 0;
2259 
2260 	get_online_cpus();
2261 	percpu_down_write(&cpuset_rwsem);
2262 	if (!is_cpuset_online(cs)) {
2263 		retval = -ENODEV;
2264 		goto out_unlock;
2265 	}
2266 
2267 	switch (type) {
2268 	case FILE_CPU_EXCLUSIVE:
2269 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2270 		break;
2271 	case FILE_MEM_EXCLUSIVE:
2272 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2273 		break;
2274 	case FILE_MEM_HARDWALL:
2275 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2276 		break;
2277 	case FILE_SCHED_LOAD_BALANCE:
2278 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2279 		break;
2280 	case FILE_MEMORY_MIGRATE:
2281 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2282 		break;
2283 	case FILE_MEMORY_PRESSURE_ENABLED:
2284 		cpuset_memory_pressure_enabled = !!val;
2285 		break;
2286 	case FILE_SPREAD_PAGE:
2287 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2288 		break;
2289 	case FILE_SPREAD_SLAB:
2290 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2291 		break;
2292 	default:
2293 		retval = -EINVAL;
2294 		break;
2295 	}
2296 out_unlock:
2297 	percpu_up_write(&cpuset_rwsem);
2298 	put_online_cpus();
2299 	return retval;
2300 }
2301 
2302 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2303 			    s64 val)
2304 {
2305 	struct cpuset *cs = css_cs(css);
2306 	cpuset_filetype_t type = cft->private;
2307 	int retval = -ENODEV;
2308 
2309 	get_online_cpus();
2310 	percpu_down_write(&cpuset_rwsem);
2311 	if (!is_cpuset_online(cs))
2312 		goto out_unlock;
2313 
2314 	switch (type) {
2315 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2316 		retval = update_relax_domain_level(cs, val);
2317 		break;
2318 	default:
2319 		retval = -EINVAL;
2320 		break;
2321 	}
2322 out_unlock:
2323 	percpu_up_write(&cpuset_rwsem);
2324 	put_online_cpus();
2325 	return retval;
2326 }
2327 
2328 /*
2329  * Common handling for a write to a "cpus" or "mems" file.
2330  */
2331 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2332 				    char *buf, size_t nbytes, loff_t off)
2333 {
2334 	struct cpuset *cs = css_cs(of_css(of));
2335 	struct cpuset *trialcs;
2336 	int retval = -ENODEV;
2337 
2338 	buf = strstrip(buf);
2339 
2340 	/*
2341 	 * CPU or memory hotunplug may leave @cs w/o any execution
2342 	 * resources, in which case the hotplug code asynchronously updates
2343 	 * configuration and transfers all tasks to the nearest ancestor
2344 	 * which can execute.
2345 	 *
2346 	 * As writes to "cpus" or "mems" may restore @cs's execution
2347 	 * resources, wait for the previously scheduled operations before
2348 	 * proceeding, so that we don't end up keep removing tasks added
2349 	 * after execution capability is restored.
2350 	 *
2351 	 * cpuset_hotplug_work calls back into cgroup core via
2352 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2353 	 * operation like this one can lead to a deadlock through kernfs
2354 	 * active_ref protection.  Let's break the protection.  Losing the
2355 	 * protection is okay as we check whether @cs is online after
2356 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2357 	 * hierarchies.
2358 	 */
2359 	css_get(&cs->css);
2360 	kernfs_break_active_protection(of->kn);
2361 	flush_work(&cpuset_hotplug_work);
2362 
2363 	get_online_cpus();
2364 	percpu_down_write(&cpuset_rwsem);
2365 	if (!is_cpuset_online(cs))
2366 		goto out_unlock;
2367 
2368 	trialcs = alloc_trial_cpuset(cs);
2369 	if (!trialcs) {
2370 		retval = -ENOMEM;
2371 		goto out_unlock;
2372 	}
2373 
2374 	switch (of_cft(of)->private) {
2375 	case FILE_CPULIST:
2376 		retval = update_cpumask(cs, trialcs, buf);
2377 		break;
2378 	case FILE_MEMLIST:
2379 		retval = update_nodemask(cs, trialcs, buf);
2380 		break;
2381 	default:
2382 		retval = -EINVAL;
2383 		break;
2384 	}
2385 
2386 	free_cpuset(trialcs);
2387 out_unlock:
2388 	percpu_up_write(&cpuset_rwsem);
2389 	put_online_cpus();
2390 	kernfs_unbreak_active_protection(of->kn);
2391 	css_put(&cs->css);
2392 	flush_workqueue(cpuset_migrate_mm_wq);
2393 	return retval ?: nbytes;
2394 }
2395 
2396 /*
2397  * These ascii lists should be read in a single call, by using a user
2398  * buffer large enough to hold the entire map.  If read in smaller
2399  * chunks, there is no guarantee of atomicity.  Since the display format
2400  * used, list of ranges of sequential numbers, is variable length,
2401  * and since these maps can change value dynamically, one could read
2402  * gibberish by doing partial reads while a list was changing.
2403  */
2404 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2405 {
2406 	struct cpuset *cs = css_cs(seq_css(sf));
2407 	cpuset_filetype_t type = seq_cft(sf)->private;
2408 	int ret = 0;
2409 
2410 	spin_lock_irq(&callback_lock);
2411 
2412 	switch (type) {
2413 	case FILE_CPULIST:
2414 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2415 		break;
2416 	case FILE_MEMLIST:
2417 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2418 		break;
2419 	case FILE_EFFECTIVE_CPULIST:
2420 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2421 		break;
2422 	case FILE_EFFECTIVE_MEMLIST:
2423 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2424 		break;
2425 	case FILE_SUBPARTS_CPULIST:
2426 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2427 		break;
2428 	default:
2429 		ret = -EINVAL;
2430 	}
2431 
2432 	spin_unlock_irq(&callback_lock);
2433 	return ret;
2434 }
2435 
2436 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2437 {
2438 	struct cpuset *cs = css_cs(css);
2439 	cpuset_filetype_t type = cft->private;
2440 	switch (type) {
2441 	case FILE_CPU_EXCLUSIVE:
2442 		return is_cpu_exclusive(cs);
2443 	case FILE_MEM_EXCLUSIVE:
2444 		return is_mem_exclusive(cs);
2445 	case FILE_MEM_HARDWALL:
2446 		return is_mem_hardwall(cs);
2447 	case FILE_SCHED_LOAD_BALANCE:
2448 		return is_sched_load_balance(cs);
2449 	case FILE_MEMORY_MIGRATE:
2450 		return is_memory_migrate(cs);
2451 	case FILE_MEMORY_PRESSURE_ENABLED:
2452 		return cpuset_memory_pressure_enabled;
2453 	case FILE_MEMORY_PRESSURE:
2454 		return fmeter_getrate(&cs->fmeter);
2455 	case FILE_SPREAD_PAGE:
2456 		return is_spread_page(cs);
2457 	case FILE_SPREAD_SLAB:
2458 		return is_spread_slab(cs);
2459 	default:
2460 		BUG();
2461 	}
2462 
2463 	/* Unreachable but makes gcc happy */
2464 	return 0;
2465 }
2466 
2467 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2468 {
2469 	struct cpuset *cs = css_cs(css);
2470 	cpuset_filetype_t type = cft->private;
2471 	switch (type) {
2472 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2473 		return cs->relax_domain_level;
2474 	default:
2475 		BUG();
2476 	}
2477 
2478 	/* Unrechable but makes gcc happy */
2479 	return 0;
2480 }
2481 
2482 static int sched_partition_show(struct seq_file *seq, void *v)
2483 {
2484 	struct cpuset *cs = css_cs(seq_css(seq));
2485 
2486 	switch (cs->partition_root_state) {
2487 	case PRS_ENABLED:
2488 		seq_puts(seq, "root\n");
2489 		break;
2490 	case PRS_DISABLED:
2491 		seq_puts(seq, "member\n");
2492 		break;
2493 	case PRS_ERROR:
2494 		seq_puts(seq, "root invalid\n");
2495 		break;
2496 	}
2497 	return 0;
2498 }
2499 
2500 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2501 				     size_t nbytes, loff_t off)
2502 {
2503 	struct cpuset *cs = css_cs(of_css(of));
2504 	int val;
2505 	int retval = -ENODEV;
2506 
2507 	buf = strstrip(buf);
2508 
2509 	/*
2510 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2511 	 */
2512 	if (!strcmp(buf, "root"))
2513 		val = PRS_ENABLED;
2514 	else if (!strcmp(buf, "member"))
2515 		val = PRS_DISABLED;
2516 	else
2517 		return -EINVAL;
2518 
2519 	css_get(&cs->css);
2520 	get_online_cpus();
2521 	percpu_down_write(&cpuset_rwsem);
2522 	if (!is_cpuset_online(cs))
2523 		goto out_unlock;
2524 
2525 	retval = update_prstate(cs, val);
2526 out_unlock:
2527 	percpu_up_write(&cpuset_rwsem);
2528 	put_online_cpus();
2529 	css_put(&cs->css);
2530 	return retval ?: nbytes;
2531 }
2532 
2533 /*
2534  * for the common functions, 'private' gives the type of file
2535  */
2536 
2537 static struct cftype legacy_files[] = {
2538 	{
2539 		.name = "cpus",
2540 		.seq_show = cpuset_common_seq_show,
2541 		.write = cpuset_write_resmask,
2542 		.max_write_len = (100U + 6 * NR_CPUS),
2543 		.private = FILE_CPULIST,
2544 	},
2545 
2546 	{
2547 		.name = "mems",
2548 		.seq_show = cpuset_common_seq_show,
2549 		.write = cpuset_write_resmask,
2550 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2551 		.private = FILE_MEMLIST,
2552 	},
2553 
2554 	{
2555 		.name = "effective_cpus",
2556 		.seq_show = cpuset_common_seq_show,
2557 		.private = FILE_EFFECTIVE_CPULIST,
2558 	},
2559 
2560 	{
2561 		.name = "effective_mems",
2562 		.seq_show = cpuset_common_seq_show,
2563 		.private = FILE_EFFECTIVE_MEMLIST,
2564 	},
2565 
2566 	{
2567 		.name = "cpu_exclusive",
2568 		.read_u64 = cpuset_read_u64,
2569 		.write_u64 = cpuset_write_u64,
2570 		.private = FILE_CPU_EXCLUSIVE,
2571 	},
2572 
2573 	{
2574 		.name = "mem_exclusive",
2575 		.read_u64 = cpuset_read_u64,
2576 		.write_u64 = cpuset_write_u64,
2577 		.private = FILE_MEM_EXCLUSIVE,
2578 	},
2579 
2580 	{
2581 		.name = "mem_hardwall",
2582 		.read_u64 = cpuset_read_u64,
2583 		.write_u64 = cpuset_write_u64,
2584 		.private = FILE_MEM_HARDWALL,
2585 	},
2586 
2587 	{
2588 		.name = "sched_load_balance",
2589 		.read_u64 = cpuset_read_u64,
2590 		.write_u64 = cpuset_write_u64,
2591 		.private = FILE_SCHED_LOAD_BALANCE,
2592 	},
2593 
2594 	{
2595 		.name = "sched_relax_domain_level",
2596 		.read_s64 = cpuset_read_s64,
2597 		.write_s64 = cpuset_write_s64,
2598 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2599 	},
2600 
2601 	{
2602 		.name = "memory_migrate",
2603 		.read_u64 = cpuset_read_u64,
2604 		.write_u64 = cpuset_write_u64,
2605 		.private = FILE_MEMORY_MIGRATE,
2606 	},
2607 
2608 	{
2609 		.name = "memory_pressure",
2610 		.read_u64 = cpuset_read_u64,
2611 		.private = FILE_MEMORY_PRESSURE,
2612 	},
2613 
2614 	{
2615 		.name = "memory_spread_page",
2616 		.read_u64 = cpuset_read_u64,
2617 		.write_u64 = cpuset_write_u64,
2618 		.private = FILE_SPREAD_PAGE,
2619 	},
2620 
2621 	{
2622 		.name = "memory_spread_slab",
2623 		.read_u64 = cpuset_read_u64,
2624 		.write_u64 = cpuset_write_u64,
2625 		.private = FILE_SPREAD_SLAB,
2626 	},
2627 
2628 	{
2629 		.name = "memory_pressure_enabled",
2630 		.flags = CFTYPE_ONLY_ON_ROOT,
2631 		.read_u64 = cpuset_read_u64,
2632 		.write_u64 = cpuset_write_u64,
2633 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2634 	},
2635 
2636 	{ }	/* terminate */
2637 };
2638 
2639 /*
2640  * This is currently a minimal set for the default hierarchy. It can be
2641  * expanded later on by migrating more features and control files from v1.
2642  */
2643 static struct cftype dfl_files[] = {
2644 	{
2645 		.name = "cpus",
2646 		.seq_show = cpuset_common_seq_show,
2647 		.write = cpuset_write_resmask,
2648 		.max_write_len = (100U + 6 * NR_CPUS),
2649 		.private = FILE_CPULIST,
2650 		.flags = CFTYPE_NOT_ON_ROOT,
2651 	},
2652 
2653 	{
2654 		.name = "mems",
2655 		.seq_show = cpuset_common_seq_show,
2656 		.write = cpuset_write_resmask,
2657 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2658 		.private = FILE_MEMLIST,
2659 		.flags = CFTYPE_NOT_ON_ROOT,
2660 	},
2661 
2662 	{
2663 		.name = "cpus.effective",
2664 		.seq_show = cpuset_common_seq_show,
2665 		.private = FILE_EFFECTIVE_CPULIST,
2666 	},
2667 
2668 	{
2669 		.name = "mems.effective",
2670 		.seq_show = cpuset_common_seq_show,
2671 		.private = FILE_EFFECTIVE_MEMLIST,
2672 	},
2673 
2674 	{
2675 		.name = "cpus.partition",
2676 		.seq_show = sched_partition_show,
2677 		.write = sched_partition_write,
2678 		.private = FILE_PARTITION_ROOT,
2679 		.flags = CFTYPE_NOT_ON_ROOT,
2680 	},
2681 
2682 	{
2683 		.name = "cpus.subpartitions",
2684 		.seq_show = cpuset_common_seq_show,
2685 		.private = FILE_SUBPARTS_CPULIST,
2686 		.flags = CFTYPE_DEBUG,
2687 	},
2688 
2689 	{ }	/* terminate */
2690 };
2691 
2692 
2693 /*
2694  *	cpuset_css_alloc - allocate a cpuset css
2695  *	cgrp:	control group that the new cpuset will be part of
2696  */
2697 
2698 static struct cgroup_subsys_state *
2699 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2700 {
2701 	struct cpuset *cs;
2702 
2703 	if (!parent_css)
2704 		return &top_cpuset.css;
2705 
2706 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2707 	if (!cs)
2708 		return ERR_PTR(-ENOMEM);
2709 
2710 	if (alloc_cpumasks(cs, NULL)) {
2711 		kfree(cs);
2712 		return ERR_PTR(-ENOMEM);
2713 	}
2714 
2715 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2716 	nodes_clear(cs->mems_allowed);
2717 	nodes_clear(cs->effective_mems);
2718 	fmeter_init(&cs->fmeter);
2719 	cs->relax_domain_level = -1;
2720 
2721 	return &cs->css;
2722 }
2723 
2724 static int cpuset_css_online(struct cgroup_subsys_state *css)
2725 {
2726 	struct cpuset *cs = css_cs(css);
2727 	struct cpuset *parent = parent_cs(cs);
2728 	struct cpuset *tmp_cs;
2729 	struct cgroup_subsys_state *pos_css;
2730 
2731 	if (!parent)
2732 		return 0;
2733 
2734 	get_online_cpus();
2735 	percpu_down_write(&cpuset_rwsem);
2736 
2737 	set_bit(CS_ONLINE, &cs->flags);
2738 	if (is_spread_page(parent))
2739 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2740 	if (is_spread_slab(parent))
2741 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2742 
2743 	cpuset_inc();
2744 
2745 	spin_lock_irq(&callback_lock);
2746 	if (is_in_v2_mode()) {
2747 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2748 		cs->effective_mems = parent->effective_mems;
2749 		cs->use_parent_ecpus = true;
2750 		parent->child_ecpus_count++;
2751 	}
2752 	spin_unlock_irq(&callback_lock);
2753 
2754 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2755 		goto out_unlock;
2756 
2757 	/*
2758 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2759 	 * set.  This flag handling is implemented in cgroup core for
2760 	 * histrical reasons - the flag may be specified during mount.
2761 	 *
2762 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2763 	 * refuse to clone the configuration - thereby refusing the task to
2764 	 * be entered, and as a result refusing the sys_unshare() or
2765 	 * clone() which initiated it.  If this becomes a problem for some
2766 	 * users who wish to allow that scenario, then this could be
2767 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2768 	 * (and likewise for mems) to the new cgroup.
2769 	 */
2770 	rcu_read_lock();
2771 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2772 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2773 			rcu_read_unlock();
2774 			goto out_unlock;
2775 		}
2776 	}
2777 	rcu_read_unlock();
2778 
2779 	spin_lock_irq(&callback_lock);
2780 	cs->mems_allowed = parent->mems_allowed;
2781 	cs->effective_mems = parent->mems_allowed;
2782 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2783 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2784 	spin_unlock_irq(&callback_lock);
2785 out_unlock:
2786 	percpu_up_write(&cpuset_rwsem);
2787 	put_online_cpus();
2788 	return 0;
2789 }
2790 
2791 /*
2792  * If the cpuset being removed has its flag 'sched_load_balance'
2793  * enabled, then simulate turning sched_load_balance off, which
2794  * will call rebuild_sched_domains_locked(). That is not needed
2795  * in the default hierarchy where only changes in partition
2796  * will cause repartitioning.
2797  *
2798  * If the cpuset has the 'sched.partition' flag enabled, simulate
2799  * turning 'sched.partition" off.
2800  */
2801 
2802 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2803 {
2804 	struct cpuset *cs = css_cs(css);
2805 
2806 	get_online_cpus();
2807 	percpu_down_write(&cpuset_rwsem);
2808 
2809 	if (is_partition_root(cs))
2810 		update_prstate(cs, 0);
2811 
2812 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2813 	    is_sched_load_balance(cs))
2814 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2815 
2816 	if (cs->use_parent_ecpus) {
2817 		struct cpuset *parent = parent_cs(cs);
2818 
2819 		cs->use_parent_ecpus = false;
2820 		parent->child_ecpus_count--;
2821 	}
2822 
2823 	cpuset_dec();
2824 	clear_bit(CS_ONLINE, &cs->flags);
2825 
2826 	percpu_up_write(&cpuset_rwsem);
2827 	put_online_cpus();
2828 }
2829 
2830 static void cpuset_css_free(struct cgroup_subsys_state *css)
2831 {
2832 	struct cpuset *cs = css_cs(css);
2833 
2834 	free_cpuset(cs);
2835 }
2836 
2837 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2838 {
2839 	percpu_down_write(&cpuset_rwsem);
2840 	spin_lock_irq(&callback_lock);
2841 
2842 	if (is_in_v2_mode()) {
2843 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2844 		top_cpuset.mems_allowed = node_possible_map;
2845 	} else {
2846 		cpumask_copy(top_cpuset.cpus_allowed,
2847 			     top_cpuset.effective_cpus);
2848 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2849 	}
2850 
2851 	spin_unlock_irq(&callback_lock);
2852 	percpu_up_write(&cpuset_rwsem);
2853 }
2854 
2855 /*
2856  * Make sure the new task conform to the current state of its parent,
2857  * which could have been changed by cpuset just after it inherits the
2858  * state from the parent and before it sits on the cgroup's task list.
2859  */
2860 static void cpuset_fork(struct task_struct *task)
2861 {
2862 	if (task_css_is_root(task, cpuset_cgrp_id))
2863 		return;
2864 
2865 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2866 	task->mems_allowed = current->mems_allowed;
2867 }
2868 
2869 struct cgroup_subsys cpuset_cgrp_subsys = {
2870 	.css_alloc	= cpuset_css_alloc,
2871 	.css_online	= cpuset_css_online,
2872 	.css_offline	= cpuset_css_offline,
2873 	.css_free	= cpuset_css_free,
2874 	.can_attach	= cpuset_can_attach,
2875 	.cancel_attach	= cpuset_cancel_attach,
2876 	.attach		= cpuset_attach,
2877 	.post_attach	= cpuset_post_attach,
2878 	.bind		= cpuset_bind,
2879 	.fork		= cpuset_fork,
2880 	.legacy_cftypes	= legacy_files,
2881 	.dfl_cftypes	= dfl_files,
2882 	.early_init	= true,
2883 	.threaded	= true,
2884 };
2885 
2886 /**
2887  * cpuset_init - initialize cpusets at system boot
2888  *
2889  * Description: Initialize top_cpuset
2890  **/
2891 
2892 int __init cpuset_init(void)
2893 {
2894 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2895 
2896 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2897 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2898 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2899 
2900 	cpumask_setall(top_cpuset.cpus_allowed);
2901 	nodes_setall(top_cpuset.mems_allowed);
2902 	cpumask_setall(top_cpuset.effective_cpus);
2903 	nodes_setall(top_cpuset.effective_mems);
2904 
2905 	fmeter_init(&top_cpuset.fmeter);
2906 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2907 	top_cpuset.relax_domain_level = -1;
2908 
2909 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2910 
2911 	return 0;
2912 }
2913 
2914 /*
2915  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2916  * or memory nodes, we need to walk over the cpuset hierarchy,
2917  * removing that CPU or node from all cpusets.  If this removes the
2918  * last CPU or node from a cpuset, then move the tasks in the empty
2919  * cpuset to its next-highest non-empty parent.
2920  */
2921 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2922 {
2923 	struct cpuset *parent;
2924 
2925 	/*
2926 	 * Find its next-highest non-empty parent, (top cpuset
2927 	 * has online cpus, so can't be empty).
2928 	 */
2929 	parent = parent_cs(cs);
2930 	while (cpumask_empty(parent->cpus_allowed) ||
2931 			nodes_empty(parent->mems_allowed))
2932 		parent = parent_cs(parent);
2933 
2934 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2935 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2936 		pr_cont_cgroup_name(cs->css.cgroup);
2937 		pr_cont("\n");
2938 	}
2939 }
2940 
2941 static void
2942 hotplug_update_tasks_legacy(struct cpuset *cs,
2943 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2944 			    bool cpus_updated, bool mems_updated)
2945 {
2946 	bool is_empty;
2947 
2948 	spin_lock_irq(&callback_lock);
2949 	cpumask_copy(cs->cpus_allowed, new_cpus);
2950 	cpumask_copy(cs->effective_cpus, new_cpus);
2951 	cs->mems_allowed = *new_mems;
2952 	cs->effective_mems = *new_mems;
2953 	spin_unlock_irq(&callback_lock);
2954 
2955 	/*
2956 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2957 	 * as the tasks will be migratecd to an ancestor.
2958 	 */
2959 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2960 		update_tasks_cpumask(cs);
2961 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2962 		update_tasks_nodemask(cs);
2963 
2964 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2965 		   nodes_empty(cs->mems_allowed);
2966 
2967 	percpu_up_write(&cpuset_rwsem);
2968 
2969 	/*
2970 	 * Move tasks to the nearest ancestor with execution resources,
2971 	 * This is full cgroup operation which will also call back into
2972 	 * cpuset. Should be done outside any lock.
2973 	 */
2974 	if (is_empty)
2975 		remove_tasks_in_empty_cpuset(cs);
2976 
2977 	percpu_down_write(&cpuset_rwsem);
2978 }
2979 
2980 static void
2981 hotplug_update_tasks(struct cpuset *cs,
2982 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2983 		     bool cpus_updated, bool mems_updated)
2984 {
2985 	if (cpumask_empty(new_cpus))
2986 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2987 	if (nodes_empty(*new_mems))
2988 		*new_mems = parent_cs(cs)->effective_mems;
2989 
2990 	spin_lock_irq(&callback_lock);
2991 	cpumask_copy(cs->effective_cpus, new_cpus);
2992 	cs->effective_mems = *new_mems;
2993 	spin_unlock_irq(&callback_lock);
2994 
2995 	if (cpus_updated)
2996 		update_tasks_cpumask(cs);
2997 	if (mems_updated)
2998 		update_tasks_nodemask(cs);
2999 }
3000 
3001 static bool force_rebuild;
3002 
3003 void cpuset_force_rebuild(void)
3004 {
3005 	force_rebuild = true;
3006 }
3007 
3008 /**
3009  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3010  * @cs: cpuset in interest
3011  * @tmp: the tmpmasks structure pointer
3012  *
3013  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3014  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3015  * all its tasks are moved to the nearest ancestor with both resources.
3016  */
3017 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3018 {
3019 	static cpumask_t new_cpus;
3020 	static nodemask_t new_mems;
3021 	bool cpus_updated;
3022 	bool mems_updated;
3023 	struct cpuset *parent;
3024 retry:
3025 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3026 
3027 	percpu_down_write(&cpuset_rwsem);
3028 
3029 	/*
3030 	 * We have raced with task attaching. We wait until attaching
3031 	 * is finished, so we won't attach a task to an empty cpuset.
3032 	 */
3033 	if (cs->attach_in_progress) {
3034 		percpu_up_write(&cpuset_rwsem);
3035 		goto retry;
3036 	}
3037 
3038 	parent =  parent_cs(cs);
3039 	compute_effective_cpumask(&new_cpus, cs, parent);
3040 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3041 
3042 	if (cs->nr_subparts_cpus)
3043 		/*
3044 		 * Make sure that CPUs allocated to child partitions
3045 		 * do not show up in effective_cpus.
3046 		 */
3047 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3048 
3049 	if (!tmp || !cs->partition_root_state)
3050 		goto update_tasks;
3051 
3052 	/*
3053 	 * In the unlikely event that a partition root has empty
3054 	 * effective_cpus or its parent becomes erroneous, we have to
3055 	 * transition it to the erroneous state.
3056 	 */
3057 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3058 	   (parent->partition_root_state == PRS_ERROR))) {
3059 		if (cs->nr_subparts_cpus) {
3060 			cs->nr_subparts_cpus = 0;
3061 			cpumask_clear(cs->subparts_cpus);
3062 			compute_effective_cpumask(&new_cpus, cs, parent);
3063 		}
3064 
3065 		/*
3066 		 * If the effective_cpus is empty because the child
3067 		 * partitions take away all the CPUs, we can keep
3068 		 * the current partition and let the child partitions
3069 		 * fight for available CPUs.
3070 		 */
3071 		if ((parent->partition_root_state == PRS_ERROR) ||
3072 		     cpumask_empty(&new_cpus)) {
3073 			update_parent_subparts_cpumask(cs, partcmd_disable,
3074 						       NULL, tmp);
3075 			cs->partition_root_state = PRS_ERROR;
3076 		}
3077 		cpuset_force_rebuild();
3078 	}
3079 
3080 	/*
3081 	 * On the other hand, an erroneous partition root may be transitioned
3082 	 * back to a regular one or a partition root with no CPU allocated
3083 	 * from the parent may change to erroneous.
3084 	 */
3085 	if (is_partition_root(parent) &&
3086 	   ((cs->partition_root_state == PRS_ERROR) ||
3087 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3088 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3089 		cpuset_force_rebuild();
3090 
3091 update_tasks:
3092 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3093 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3094 
3095 	if (is_in_v2_mode())
3096 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3097 				     cpus_updated, mems_updated);
3098 	else
3099 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3100 					    cpus_updated, mems_updated);
3101 
3102 	percpu_up_write(&cpuset_rwsem);
3103 }
3104 
3105 /**
3106  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3107  *
3108  * This function is called after either CPU or memory configuration has
3109  * changed and updates cpuset accordingly.  The top_cpuset is always
3110  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3111  * order to make cpusets transparent (of no affect) on systems that are
3112  * actively using CPU hotplug but making no active use of cpusets.
3113  *
3114  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3115  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3116  * all descendants.
3117  *
3118  * Note that CPU offlining during suspend is ignored.  We don't modify
3119  * cpusets across suspend/resume cycles at all.
3120  */
3121 static void cpuset_hotplug_workfn(struct work_struct *work)
3122 {
3123 	static cpumask_t new_cpus;
3124 	static nodemask_t new_mems;
3125 	bool cpus_updated, mems_updated;
3126 	bool on_dfl = is_in_v2_mode();
3127 	struct tmpmasks tmp, *ptmp = NULL;
3128 
3129 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3130 		ptmp = &tmp;
3131 
3132 	percpu_down_write(&cpuset_rwsem);
3133 
3134 	/* fetch the available cpus/mems and find out which changed how */
3135 	cpumask_copy(&new_cpus, cpu_active_mask);
3136 	new_mems = node_states[N_MEMORY];
3137 
3138 	/*
3139 	 * If subparts_cpus is populated, it is likely that the check below
3140 	 * will produce a false positive on cpus_updated when the cpu list
3141 	 * isn't changed. It is extra work, but it is better to be safe.
3142 	 */
3143 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3144 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3145 
3146 	/* synchronize cpus_allowed to cpu_active_mask */
3147 	if (cpus_updated) {
3148 		spin_lock_irq(&callback_lock);
3149 		if (!on_dfl)
3150 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3151 		/*
3152 		 * Make sure that CPUs allocated to child partitions
3153 		 * do not show up in effective_cpus. If no CPU is left,
3154 		 * we clear the subparts_cpus & let the child partitions
3155 		 * fight for the CPUs again.
3156 		 */
3157 		if (top_cpuset.nr_subparts_cpus) {
3158 			if (cpumask_subset(&new_cpus,
3159 					   top_cpuset.subparts_cpus)) {
3160 				top_cpuset.nr_subparts_cpus = 0;
3161 				cpumask_clear(top_cpuset.subparts_cpus);
3162 			} else {
3163 				cpumask_andnot(&new_cpus, &new_cpus,
3164 					       top_cpuset.subparts_cpus);
3165 			}
3166 		}
3167 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3168 		spin_unlock_irq(&callback_lock);
3169 		/* we don't mess with cpumasks of tasks in top_cpuset */
3170 	}
3171 
3172 	/* synchronize mems_allowed to N_MEMORY */
3173 	if (mems_updated) {
3174 		spin_lock_irq(&callback_lock);
3175 		if (!on_dfl)
3176 			top_cpuset.mems_allowed = new_mems;
3177 		top_cpuset.effective_mems = new_mems;
3178 		spin_unlock_irq(&callback_lock);
3179 		update_tasks_nodemask(&top_cpuset);
3180 	}
3181 
3182 	percpu_up_write(&cpuset_rwsem);
3183 
3184 	/* if cpus or mems changed, we need to propagate to descendants */
3185 	if (cpus_updated || mems_updated) {
3186 		struct cpuset *cs;
3187 		struct cgroup_subsys_state *pos_css;
3188 
3189 		rcu_read_lock();
3190 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3191 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3192 				continue;
3193 			rcu_read_unlock();
3194 
3195 			cpuset_hotplug_update_tasks(cs, ptmp);
3196 
3197 			rcu_read_lock();
3198 			css_put(&cs->css);
3199 		}
3200 		rcu_read_unlock();
3201 	}
3202 
3203 	/* rebuild sched domains if cpus_allowed has changed */
3204 	if (cpus_updated || force_rebuild) {
3205 		force_rebuild = false;
3206 		rebuild_sched_domains();
3207 	}
3208 
3209 	free_cpumasks(NULL, ptmp);
3210 }
3211 
3212 void cpuset_update_active_cpus(void)
3213 {
3214 	/*
3215 	 * We're inside cpu hotplug critical region which usually nests
3216 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3217 	 * to a work item to avoid reverse locking order.
3218 	 */
3219 	schedule_work(&cpuset_hotplug_work);
3220 }
3221 
3222 void cpuset_wait_for_hotplug(void)
3223 {
3224 	flush_work(&cpuset_hotplug_work);
3225 }
3226 
3227 /*
3228  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3229  * Call this routine anytime after node_states[N_MEMORY] changes.
3230  * See cpuset_update_active_cpus() for CPU hotplug handling.
3231  */
3232 static int cpuset_track_online_nodes(struct notifier_block *self,
3233 				unsigned long action, void *arg)
3234 {
3235 	schedule_work(&cpuset_hotplug_work);
3236 	return NOTIFY_OK;
3237 }
3238 
3239 static struct notifier_block cpuset_track_online_nodes_nb = {
3240 	.notifier_call = cpuset_track_online_nodes,
3241 	.priority = 10,		/* ??! */
3242 };
3243 
3244 /**
3245  * cpuset_init_smp - initialize cpus_allowed
3246  *
3247  * Description: Finish top cpuset after cpu, node maps are initialized
3248  */
3249 void __init cpuset_init_smp(void)
3250 {
3251 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3252 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3253 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3254 
3255 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3256 	top_cpuset.effective_mems = node_states[N_MEMORY];
3257 
3258 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3259 
3260 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3261 	BUG_ON(!cpuset_migrate_mm_wq);
3262 }
3263 
3264 /**
3265  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3266  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3267  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3268  *
3269  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3270  * attached to the specified @tsk.  Guaranteed to return some non-empty
3271  * subset of cpu_online_mask, even if this means going outside the
3272  * tasks cpuset.
3273  **/
3274 
3275 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3276 {
3277 	unsigned long flags;
3278 
3279 	spin_lock_irqsave(&callback_lock, flags);
3280 	rcu_read_lock();
3281 	guarantee_online_cpus(task_cs(tsk), pmask);
3282 	rcu_read_unlock();
3283 	spin_unlock_irqrestore(&callback_lock, flags);
3284 }
3285 
3286 /**
3287  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3288  * @tsk: pointer to task_struct with which the scheduler is struggling
3289  *
3290  * Description: In the case that the scheduler cannot find an allowed cpu in
3291  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3292  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3293  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3294  * This is the absolute last resort for the scheduler and it is only used if
3295  * _every_ other avenue has been traveled.
3296  **/
3297 
3298 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3299 {
3300 	rcu_read_lock();
3301 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3302 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3303 	rcu_read_unlock();
3304 
3305 	/*
3306 	 * We own tsk->cpus_allowed, nobody can change it under us.
3307 	 *
3308 	 * But we used cs && cs->cpus_allowed lockless and thus can
3309 	 * race with cgroup_attach_task() or update_cpumask() and get
3310 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3311 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3312 	 * which takes task_rq_lock().
3313 	 *
3314 	 * If we are called after it dropped the lock we must see all
3315 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3316 	 * set any mask even if it is not right from task_cs() pov,
3317 	 * the pending set_cpus_allowed_ptr() will fix things.
3318 	 *
3319 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3320 	 * if required.
3321 	 */
3322 }
3323 
3324 void __init cpuset_init_current_mems_allowed(void)
3325 {
3326 	nodes_setall(current->mems_allowed);
3327 }
3328 
3329 /**
3330  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3331  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3332  *
3333  * Description: Returns the nodemask_t mems_allowed of the cpuset
3334  * attached to the specified @tsk.  Guaranteed to return some non-empty
3335  * subset of node_states[N_MEMORY], even if this means going outside the
3336  * tasks cpuset.
3337  **/
3338 
3339 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3340 {
3341 	nodemask_t mask;
3342 	unsigned long flags;
3343 
3344 	spin_lock_irqsave(&callback_lock, flags);
3345 	rcu_read_lock();
3346 	guarantee_online_mems(task_cs(tsk), &mask);
3347 	rcu_read_unlock();
3348 	spin_unlock_irqrestore(&callback_lock, flags);
3349 
3350 	return mask;
3351 }
3352 
3353 /**
3354  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3355  * @nodemask: the nodemask to be checked
3356  *
3357  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3358  */
3359 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3360 {
3361 	return nodes_intersects(*nodemask, current->mems_allowed);
3362 }
3363 
3364 /*
3365  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3366  * mem_hardwall ancestor to the specified cpuset.  Call holding
3367  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3368  * (an unusual configuration), then returns the root cpuset.
3369  */
3370 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3371 {
3372 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3373 		cs = parent_cs(cs);
3374 	return cs;
3375 }
3376 
3377 /**
3378  * cpuset_node_allowed - Can we allocate on a memory node?
3379  * @node: is this an allowed node?
3380  * @gfp_mask: memory allocation flags
3381  *
3382  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3383  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3384  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3385  * yes.  If current has access to memory reserves as an oom victim, yes.
3386  * Otherwise, no.
3387  *
3388  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3389  * and do not allow allocations outside the current tasks cpuset
3390  * unless the task has been OOM killed.
3391  * GFP_KERNEL allocations are not so marked, so can escape to the
3392  * nearest enclosing hardwalled ancestor cpuset.
3393  *
3394  * Scanning up parent cpusets requires callback_lock.  The
3395  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3396  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3397  * current tasks mems_allowed came up empty on the first pass over
3398  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3399  * cpuset are short of memory, might require taking the callback_lock.
3400  *
3401  * The first call here from mm/page_alloc:get_page_from_freelist()
3402  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3403  * so no allocation on a node outside the cpuset is allowed (unless
3404  * in interrupt, of course).
3405  *
3406  * The second pass through get_page_from_freelist() doesn't even call
3407  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3408  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3409  * in alloc_flags.  That logic and the checks below have the combined
3410  * affect that:
3411  *	in_interrupt - any node ok (current task context irrelevant)
3412  *	GFP_ATOMIC   - any node ok
3413  *	tsk_is_oom_victim   - any node ok
3414  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3415  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3416  */
3417 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3418 {
3419 	struct cpuset *cs;		/* current cpuset ancestors */
3420 	int allowed;			/* is allocation in zone z allowed? */
3421 	unsigned long flags;
3422 
3423 	if (in_interrupt())
3424 		return true;
3425 	if (node_isset(node, current->mems_allowed))
3426 		return true;
3427 	/*
3428 	 * Allow tasks that have access to memory reserves because they have
3429 	 * been OOM killed to get memory anywhere.
3430 	 */
3431 	if (unlikely(tsk_is_oom_victim(current)))
3432 		return true;
3433 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3434 		return false;
3435 
3436 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3437 		return true;
3438 
3439 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3440 	spin_lock_irqsave(&callback_lock, flags);
3441 
3442 	rcu_read_lock();
3443 	cs = nearest_hardwall_ancestor(task_cs(current));
3444 	allowed = node_isset(node, cs->mems_allowed);
3445 	rcu_read_unlock();
3446 
3447 	spin_unlock_irqrestore(&callback_lock, flags);
3448 	return allowed;
3449 }
3450 
3451 /**
3452  * cpuset_mem_spread_node() - On which node to begin search for a file page
3453  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3454  *
3455  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3456  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3457  * and if the memory allocation used cpuset_mem_spread_node()
3458  * to determine on which node to start looking, as it will for
3459  * certain page cache or slab cache pages such as used for file
3460  * system buffers and inode caches, then instead of starting on the
3461  * local node to look for a free page, rather spread the starting
3462  * node around the tasks mems_allowed nodes.
3463  *
3464  * We don't have to worry about the returned node being offline
3465  * because "it can't happen", and even if it did, it would be ok.
3466  *
3467  * The routines calling guarantee_online_mems() are careful to
3468  * only set nodes in task->mems_allowed that are online.  So it
3469  * should not be possible for the following code to return an
3470  * offline node.  But if it did, that would be ok, as this routine
3471  * is not returning the node where the allocation must be, only
3472  * the node where the search should start.  The zonelist passed to
3473  * __alloc_pages() will include all nodes.  If the slab allocator
3474  * is passed an offline node, it will fall back to the local node.
3475  * See kmem_cache_alloc_node().
3476  */
3477 
3478 static int cpuset_spread_node(int *rotor)
3479 {
3480 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3481 }
3482 
3483 int cpuset_mem_spread_node(void)
3484 {
3485 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3486 		current->cpuset_mem_spread_rotor =
3487 			node_random(&current->mems_allowed);
3488 
3489 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3490 }
3491 
3492 int cpuset_slab_spread_node(void)
3493 {
3494 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3495 		current->cpuset_slab_spread_rotor =
3496 			node_random(&current->mems_allowed);
3497 
3498 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3499 }
3500 
3501 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3502 
3503 /**
3504  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3505  * @tsk1: pointer to task_struct of some task.
3506  * @tsk2: pointer to task_struct of some other task.
3507  *
3508  * Description: Return true if @tsk1's mems_allowed intersects the
3509  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3510  * one of the task's memory usage might impact the memory available
3511  * to the other.
3512  **/
3513 
3514 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3515 				   const struct task_struct *tsk2)
3516 {
3517 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3518 }
3519 
3520 /**
3521  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3522  *
3523  * Description: Prints current's name, cpuset name, and cached copy of its
3524  * mems_allowed to the kernel log.
3525  */
3526 void cpuset_print_current_mems_allowed(void)
3527 {
3528 	struct cgroup *cgrp;
3529 
3530 	rcu_read_lock();
3531 
3532 	cgrp = task_cs(current)->css.cgroup;
3533 	pr_cont(",cpuset=");
3534 	pr_cont_cgroup_name(cgrp);
3535 	pr_cont(",mems_allowed=%*pbl",
3536 		nodemask_pr_args(&current->mems_allowed));
3537 
3538 	rcu_read_unlock();
3539 }
3540 
3541 /*
3542  * Collection of memory_pressure is suppressed unless
3543  * this flag is enabled by writing "1" to the special
3544  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3545  */
3546 
3547 int cpuset_memory_pressure_enabled __read_mostly;
3548 
3549 /**
3550  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3551  *
3552  * Keep a running average of the rate of synchronous (direct)
3553  * page reclaim efforts initiated by tasks in each cpuset.
3554  *
3555  * This represents the rate at which some task in the cpuset
3556  * ran low on memory on all nodes it was allowed to use, and
3557  * had to enter the kernels page reclaim code in an effort to
3558  * create more free memory by tossing clean pages or swapping
3559  * or writing dirty pages.
3560  *
3561  * Display to user space in the per-cpuset read-only file
3562  * "memory_pressure".  Value displayed is an integer
3563  * representing the recent rate of entry into the synchronous
3564  * (direct) page reclaim by any task attached to the cpuset.
3565  **/
3566 
3567 void __cpuset_memory_pressure_bump(void)
3568 {
3569 	rcu_read_lock();
3570 	fmeter_markevent(&task_cs(current)->fmeter);
3571 	rcu_read_unlock();
3572 }
3573 
3574 #ifdef CONFIG_PROC_PID_CPUSET
3575 /*
3576  * proc_cpuset_show()
3577  *  - Print tasks cpuset path into seq_file.
3578  *  - Used for /proc/<pid>/cpuset.
3579  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3580  *    doesn't really matter if tsk->cpuset changes after we read it,
3581  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3582  *    anyway.
3583  */
3584 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3585 		     struct pid *pid, struct task_struct *tsk)
3586 {
3587 	char *buf;
3588 	struct cgroup_subsys_state *css;
3589 	int retval;
3590 
3591 	retval = -ENOMEM;
3592 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3593 	if (!buf)
3594 		goto out;
3595 
3596 	css = task_get_css(tsk, cpuset_cgrp_id);
3597 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3598 				current->nsproxy->cgroup_ns);
3599 	css_put(css);
3600 	if (retval >= PATH_MAX)
3601 		retval = -ENAMETOOLONG;
3602 	if (retval < 0)
3603 		goto out_free;
3604 	seq_puts(m, buf);
3605 	seq_putc(m, '\n');
3606 	retval = 0;
3607 out_free:
3608 	kfree(buf);
3609 out:
3610 	return retval;
3611 }
3612 #endif /* CONFIG_PROC_PID_CPUSET */
3613 
3614 /* Display task mems_allowed in /proc/<pid>/status file. */
3615 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3616 {
3617 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3618 		   nodemask_pr_args(&task->mems_allowed));
3619 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3620 		   nodemask_pr_args(&task->mems_allowed));
3621 }
3622