xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision a2818ee4)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66 
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69 
70 /* See "Frequency meter" comments, below. */
71 
72 struct fmeter {
73 	int cnt;		/* unprocessed events count */
74 	int val;		/* most recent output value */
75 	time64_t time;		/* clock (secs) when val computed */
76 	spinlock_t lock;	/* guards read or write of above */
77 };
78 
79 struct cpuset {
80 	struct cgroup_subsys_state css;
81 
82 	unsigned long flags;		/* "unsigned long" so bitops work */
83 
84 	/*
85 	 * On default hierarchy:
86 	 *
87 	 * The user-configured masks can only be changed by writing to
88 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 	 * parent masks.
90 	 *
91 	 * The effective masks is the real masks that apply to the tasks
92 	 * in the cpuset. They may be changed if the configured masks are
93 	 * changed or hotplug happens.
94 	 *
95 	 * effective_mask == configured_mask & parent's effective_mask,
96 	 * and if it ends up empty, it will inherit the parent's mask.
97 	 *
98 	 *
99 	 * On legacy hierachy:
100 	 *
101 	 * The user-configured masks are always the same with effective masks.
102 	 */
103 
104 	/* user-configured CPUs and Memory Nodes allow to tasks */
105 	cpumask_var_t cpus_allowed;
106 	nodemask_t mems_allowed;
107 
108 	/* effective CPUs and Memory Nodes allow to tasks */
109 	cpumask_var_t effective_cpus;
110 	nodemask_t effective_mems;
111 
112 	/*
113 	 * CPUs allocated to child sub-partitions (default hierarchy only)
114 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
115 	 * - effective_cpus and subparts_cpus are mutually exclusive.
116 	 *
117 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
118 	 * may have offlined ones.
119 	 */
120 	cpumask_var_t subparts_cpus;
121 
122 	/*
123 	 * This is old Memory Nodes tasks took on.
124 	 *
125 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
126 	 * - A new cpuset's old_mems_allowed is initialized when some
127 	 *   task is moved into it.
128 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
129 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
130 	 *   then old_mems_allowed is updated to mems_allowed.
131 	 */
132 	nodemask_t old_mems_allowed;
133 
134 	struct fmeter fmeter;		/* memory_pressure filter */
135 
136 	/*
137 	 * Tasks are being attached to this cpuset.  Used to prevent
138 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
139 	 */
140 	int attach_in_progress;
141 
142 	/* partition number for rebuild_sched_domains() */
143 	int pn;
144 
145 	/* for custom sched domain */
146 	int relax_domain_level;
147 
148 	/* number of CPUs in subparts_cpus */
149 	int nr_subparts_cpus;
150 
151 	/* partition root state */
152 	int partition_root_state;
153 
154 	/*
155 	 * Default hierarchy only:
156 	 * use_parent_ecpus - set if using parent's effective_cpus
157 	 * child_ecpus_count - # of children with use_parent_ecpus set
158 	 */
159 	int use_parent_ecpus;
160 	int child_ecpus_count;
161 };
162 
163 /*
164  * Partition root states:
165  *
166  *   0 - not a partition root
167  *
168  *   1 - partition root
169  *
170  *  -1 - invalid partition root
171  *       None of the cpus in cpus_allowed can be put into the parent's
172  *       subparts_cpus. In this case, the cpuset is not a real partition
173  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
174  *       and the cpuset can be restored back to a partition root if the
175  *       parent cpuset can give more CPUs back to this child cpuset.
176  */
177 #define PRS_DISABLED		0
178 #define PRS_ENABLED		1
179 #define PRS_ERROR		-1
180 
181 /*
182  * Temporary cpumasks for working with partitions that are passed among
183  * functions to avoid memory allocation in inner functions.
184  */
185 struct tmpmasks {
186 	cpumask_var_t addmask, delmask;	/* For partition root */
187 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
188 };
189 
190 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
191 {
192 	return css ? container_of(css, struct cpuset, css) : NULL;
193 }
194 
195 /* Retrieve the cpuset for a task */
196 static inline struct cpuset *task_cs(struct task_struct *task)
197 {
198 	return css_cs(task_css(task, cpuset_cgrp_id));
199 }
200 
201 static inline struct cpuset *parent_cs(struct cpuset *cs)
202 {
203 	return css_cs(cs->css.parent);
204 }
205 
206 #ifdef CONFIG_NUMA
207 static inline bool task_has_mempolicy(struct task_struct *task)
208 {
209 	return task->mempolicy;
210 }
211 #else
212 static inline bool task_has_mempolicy(struct task_struct *task)
213 {
214 	return false;
215 }
216 #endif
217 
218 
219 /* bits in struct cpuset flags field */
220 typedef enum {
221 	CS_ONLINE,
222 	CS_CPU_EXCLUSIVE,
223 	CS_MEM_EXCLUSIVE,
224 	CS_MEM_HARDWALL,
225 	CS_MEMORY_MIGRATE,
226 	CS_SCHED_LOAD_BALANCE,
227 	CS_SPREAD_PAGE,
228 	CS_SPREAD_SLAB,
229 } cpuset_flagbits_t;
230 
231 /* convenient tests for these bits */
232 static inline bool is_cpuset_online(struct cpuset *cs)
233 {
234 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
235 }
236 
237 static inline int is_cpu_exclusive(const struct cpuset *cs)
238 {
239 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
240 }
241 
242 static inline int is_mem_exclusive(const struct cpuset *cs)
243 {
244 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
245 }
246 
247 static inline int is_mem_hardwall(const struct cpuset *cs)
248 {
249 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
250 }
251 
252 static inline int is_sched_load_balance(const struct cpuset *cs)
253 {
254 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
255 }
256 
257 static inline int is_memory_migrate(const struct cpuset *cs)
258 {
259 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
260 }
261 
262 static inline int is_spread_page(const struct cpuset *cs)
263 {
264 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
265 }
266 
267 static inline int is_spread_slab(const struct cpuset *cs)
268 {
269 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
270 }
271 
272 static inline int is_partition_root(const struct cpuset *cs)
273 {
274 	return cs->partition_root_state > 0;
275 }
276 
277 static struct cpuset top_cpuset = {
278 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
279 		  (1 << CS_MEM_EXCLUSIVE)),
280 	.partition_root_state = PRS_ENABLED,
281 };
282 
283 /**
284  * cpuset_for_each_child - traverse online children of a cpuset
285  * @child_cs: loop cursor pointing to the current child
286  * @pos_css: used for iteration
287  * @parent_cs: target cpuset to walk children of
288  *
289  * Walk @child_cs through the online children of @parent_cs.  Must be used
290  * with RCU read locked.
291  */
292 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
293 	css_for_each_child((pos_css), &(parent_cs)->css)		\
294 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
295 
296 /**
297  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
298  * @des_cs: loop cursor pointing to the current descendant
299  * @pos_css: used for iteration
300  * @root_cs: target cpuset to walk ancestor of
301  *
302  * Walk @des_cs through the online descendants of @root_cs.  Must be used
303  * with RCU read locked.  The caller may modify @pos_css by calling
304  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
305  * iteration and the first node to be visited.
306  */
307 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
308 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
309 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
310 
311 /*
312  * There are two global locks guarding cpuset structures - cpuset_mutex and
313  * callback_lock. We also require taking task_lock() when dereferencing a
314  * task's cpuset pointer. See "The task_lock() exception", at the end of this
315  * comment.
316  *
317  * A task must hold both locks to modify cpusets.  If a task holds
318  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
319  * is the only task able to also acquire callback_lock and be able to
320  * modify cpusets.  It can perform various checks on the cpuset structure
321  * first, knowing nothing will change.  It can also allocate memory while
322  * just holding cpuset_mutex.  While it is performing these checks, various
323  * callback routines can briefly acquire callback_lock to query cpusets.
324  * Once it is ready to make the changes, it takes callback_lock, blocking
325  * everyone else.
326  *
327  * Calls to the kernel memory allocator can not be made while holding
328  * callback_lock, as that would risk double tripping on callback_lock
329  * from one of the callbacks into the cpuset code from within
330  * __alloc_pages().
331  *
332  * If a task is only holding callback_lock, then it has read-only
333  * access to cpusets.
334  *
335  * Now, the task_struct fields mems_allowed and mempolicy may be changed
336  * by other task, we use alloc_lock in the task_struct fields to protect
337  * them.
338  *
339  * The cpuset_common_file_read() handlers only hold callback_lock across
340  * small pieces of code, such as when reading out possibly multi-word
341  * cpumasks and nodemasks.
342  *
343  * Accessing a task's cpuset should be done in accordance with the
344  * guidelines for accessing subsystem state in kernel/cgroup.c
345  */
346 
347 static DEFINE_MUTEX(cpuset_mutex);
348 static DEFINE_SPINLOCK(callback_lock);
349 
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351 
352 /*
353  * CPU / memory hotplug is handled asynchronously.
354  */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357 
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359 
360 /*
361  * Cgroup v2 behavior is used when on default hierarchy or the
362  * cgroup_v2_mode flag is set.
363  */
364 static inline bool is_in_v2_mode(void)
365 {
366 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
367 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
368 }
369 
370 /*
371  * This is ugly, but preserves the userspace API for existing cpuset
372  * users. If someone tries to mount the "cpuset" filesystem, we
373  * silently switch it to mount "cgroup" instead
374  */
375 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
376 			 int flags, const char *unused_dev_name, void *data)
377 {
378 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
379 	struct dentry *ret = ERR_PTR(-ENODEV);
380 	if (cgroup_fs) {
381 		char mountopts[] =
382 			"cpuset,noprefix,"
383 			"release_agent=/sbin/cpuset_release_agent";
384 		ret = cgroup_fs->mount(cgroup_fs, flags,
385 					   unused_dev_name, mountopts);
386 		put_filesystem(cgroup_fs);
387 	}
388 	return ret;
389 }
390 
391 static struct file_system_type cpuset_fs_type = {
392 	.name = "cpuset",
393 	.mount = cpuset_mount,
394 };
395 
396 /*
397  * Return in pmask the portion of a cpusets's cpus_allowed that
398  * are online.  If none are online, walk up the cpuset hierarchy
399  * until we find one that does have some online cpus.
400  *
401  * One way or another, we guarantee to return some non-empty subset
402  * of cpu_online_mask.
403  *
404  * Call with callback_lock or cpuset_mutex held.
405  */
406 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
407 {
408 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
409 		cs = parent_cs(cs);
410 		if (unlikely(!cs)) {
411 			/*
412 			 * The top cpuset doesn't have any online cpu as a
413 			 * consequence of a race between cpuset_hotplug_work
414 			 * and cpu hotplug notifier.  But we know the top
415 			 * cpuset's effective_cpus is on its way to to be
416 			 * identical to cpu_online_mask.
417 			 */
418 			cpumask_copy(pmask, cpu_online_mask);
419 			return;
420 		}
421 	}
422 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
423 }
424 
425 /*
426  * Return in *pmask the portion of a cpusets's mems_allowed that
427  * are online, with memory.  If none are online with memory, walk
428  * up the cpuset hierarchy until we find one that does have some
429  * online mems.  The top cpuset always has some mems online.
430  *
431  * One way or another, we guarantee to return some non-empty subset
432  * of node_states[N_MEMORY].
433  *
434  * Call with callback_lock or cpuset_mutex held.
435  */
436 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
437 {
438 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
439 		cs = parent_cs(cs);
440 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
441 }
442 
443 /*
444  * update task's spread flag if cpuset's page/slab spread flag is set
445  *
446  * Call with callback_lock or cpuset_mutex held.
447  */
448 static void cpuset_update_task_spread_flag(struct cpuset *cs,
449 					struct task_struct *tsk)
450 {
451 	if (is_spread_page(cs))
452 		task_set_spread_page(tsk);
453 	else
454 		task_clear_spread_page(tsk);
455 
456 	if (is_spread_slab(cs))
457 		task_set_spread_slab(tsk);
458 	else
459 		task_clear_spread_slab(tsk);
460 }
461 
462 /*
463  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
464  *
465  * One cpuset is a subset of another if all its allowed CPUs and
466  * Memory Nodes are a subset of the other, and its exclusive flags
467  * are only set if the other's are set.  Call holding cpuset_mutex.
468  */
469 
470 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
471 {
472 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
473 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
474 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
475 		is_mem_exclusive(p) <= is_mem_exclusive(q);
476 }
477 
478 /**
479  * alloc_cpumasks - allocate three cpumasks for cpuset
480  * @cs:  the cpuset that have cpumasks to be allocated.
481  * @tmp: the tmpmasks structure pointer
482  * Return: 0 if successful, -ENOMEM otherwise.
483  *
484  * Only one of the two input arguments should be non-NULL.
485  */
486 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
487 {
488 	cpumask_var_t *pmask1, *pmask2, *pmask3;
489 
490 	if (cs) {
491 		pmask1 = &cs->cpus_allowed;
492 		pmask2 = &cs->effective_cpus;
493 		pmask3 = &cs->subparts_cpus;
494 	} else {
495 		pmask1 = &tmp->new_cpus;
496 		pmask2 = &tmp->addmask;
497 		pmask3 = &tmp->delmask;
498 	}
499 
500 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
501 		return -ENOMEM;
502 
503 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
504 		goto free_one;
505 
506 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
507 		goto free_two;
508 
509 	return 0;
510 
511 free_two:
512 	free_cpumask_var(*pmask2);
513 free_one:
514 	free_cpumask_var(*pmask1);
515 	return -ENOMEM;
516 }
517 
518 /**
519  * free_cpumasks - free cpumasks in a tmpmasks structure
520  * @cs:  the cpuset that have cpumasks to be free.
521  * @tmp: the tmpmasks structure pointer
522  */
523 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
524 {
525 	if (cs) {
526 		free_cpumask_var(cs->cpus_allowed);
527 		free_cpumask_var(cs->effective_cpus);
528 		free_cpumask_var(cs->subparts_cpus);
529 	}
530 	if (tmp) {
531 		free_cpumask_var(tmp->new_cpus);
532 		free_cpumask_var(tmp->addmask);
533 		free_cpumask_var(tmp->delmask);
534 	}
535 }
536 
537 /**
538  * alloc_trial_cpuset - allocate a trial cpuset
539  * @cs: the cpuset that the trial cpuset duplicates
540  */
541 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
542 {
543 	struct cpuset *trial;
544 
545 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
546 	if (!trial)
547 		return NULL;
548 
549 	if (alloc_cpumasks(trial, NULL)) {
550 		kfree(trial);
551 		return NULL;
552 	}
553 
554 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
555 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
556 	return trial;
557 }
558 
559 /**
560  * free_cpuset - free the cpuset
561  * @cs: the cpuset to be freed
562  */
563 static inline void free_cpuset(struct cpuset *cs)
564 {
565 	free_cpumasks(cs, NULL);
566 	kfree(cs);
567 }
568 
569 /*
570  * validate_change() - Used to validate that any proposed cpuset change
571  *		       follows the structural rules for cpusets.
572  *
573  * If we replaced the flag and mask values of the current cpuset
574  * (cur) with those values in the trial cpuset (trial), would
575  * our various subset and exclusive rules still be valid?  Presumes
576  * cpuset_mutex held.
577  *
578  * 'cur' is the address of an actual, in-use cpuset.  Operations
579  * such as list traversal that depend on the actual address of the
580  * cpuset in the list must use cur below, not trial.
581  *
582  * 'trial' is the address of bulk structure copy of cur, with
583  * perhaps one or more of the fields cpus_allowed, mems_allowed,
584  * or flags changed to new, trial values.
585  *
586  * Return 0 if valid, -errno if not.
587  */
588 
589 static int validate_change(struct cpuset *cur, struct cpuset *trial)
590 {
591 	struct cgroup_subsys_state *css;
592 	struct cpuset *c, *par;
593 	int ret;
594 
595 	rcu_read_lock();
596 
597 	/* Each of our child cpusets must be a subset of us */
598 	ret = -EBUSY;
599 	cpuset_for_each_child(c, css, cur)
600 		if (!is_cpuset_subset(c, trial))
601 			goto out;
602 
603 	/* Remaining checks don't apply to root cpuset */
604 	ret = 0;
605 	if (cur == &top_cpuset)
606 		goto out;
607 
608 	par = parent_cs(cur);
609 
610 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
611 	ret = -EACCES;
612 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
613 		goto out;
614 
615 	/*
616 	 * If either I or some sibling (!= me) is exclusive, we can't
617 	 * overlap
618 	 */
619 	ret = -EINVAL;
620 	cpuset_for_each_child(c, css, par) {
621 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
622 		    c != cur &&
623 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
624 			goto out;
625 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
626 		    c != cur &&
627 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
628 			goto out;
629 	}
630 
631 	/*
632 	 * Cpusets with tasks - existing or newly being attached - can't
633 	 * be changed to have empty cpus_allowed or mems_allowed.
634 	 */
635 	ret = -ENOSPC;
636 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
637 		if (!cpumask_empty(cur->cpus_allowed) &&
638 		    cpumask_empty(trial->cpus_allowed))
639 			goto out;
640 		if (!nodes_empty(cur->mems_allowed) &&
641 		    nodes_empty(trial->mems_allowed))
642 			goto out;
643 	}
644 
645 	/*
646 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
647 	 * tasks.
648 	 */
649 	ret = -EBUSY;
650 	if (is_cpu_exclusive(cur) &&
651 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
652 				       trial->cpus_allowed))
653 		goto out;
654 
655 	ret = 0;
656 out:
657 	rcu_read_unlock();
658 	return ret;
659 }
660 
661 #ifdef CONFIG_SMP
662 /*
663  * Helper routine for generate_sched_domains().
664  * Do cpusets a, b have overlapping effective cpus_allowed masks?
665  */
666 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
667 {
668 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
669 }
670 
671 static void
672 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
673 {
674 	if (dattr->relax_domain_level < c->relax_domain_level)
675 		dattr->relax_domain_level = c->relax_domain_level;
676 	return;
677 }
678 
679 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
680 				    struct cpuset *root_cs)
681 {
682 	struct cpuset *cp;
683 	struct cgroup_subsys_state *pos_css;
684 
685 	rcu_read_lock();
686 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
687 		/* skip the whole subtree if @cp doesn't have any CPU */
688 		if (cpumask_empty(cp->cpus_allowed)) {
689 			pos_css = css_rightmost_descendant(pos_css);
690 			continue;
691 		}
692 
693 		if (is_sched_load_balance(cp))
694 			update_domain_attr(dattr, cp);
695 	}
696 	rcu_read_unlock();
697 }
698 
699 /* Must be called with cpuset_mutex held.  */
700 static inline int nr_cpusets(void)
701 {
702 	/* jump label reference count + the top-level cpuset */
703 	return static_key_count(&cpusets_enabled_key.key) + 1;
704 }
705 
706 /*
707  * generate_sched_domains()
708  *
709  * This function builds a partial partition of the systems CPUs
710  * A 'partial partition' is a set of non-overlapping subsets whose
711  * union is a subset of that set.
712  * The output of this function needs to be passed to kernel/sched/core.c
713  * partition_sched_domains() routine, which will rebuild the scheduler's
714  * load balancing domains (sched domains) as specified by that partial
715  * partition.
716  *
717  * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
718  * for a background explanation of this.
719  *
720  * Does not return errors, on the theory that the callers of this
721  * routine would rather not worry about failures to rebuild sched
722  * domains when operating in the severe memory shortage situations
723  * that could cause allocation failures below.
724  *
725  * Must be called with cpuset_mutex held.
726  *
727  * The three key local variables below are:
728  *    q  - a linked-list queue of cpuset pointers, used to implement a
729  *	   top-down scan of all cpusets.  This scan loads a pointer
730  *	   to each cpuset marked is_sched_load_balance into the
731  *	   array 'csa'.  For our purposes, rebuilding the schedulers
732  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
733  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
734  *	   that need to be load balanced, for convenient iterative
735  *	   access by the subsequent code that finds the best partition,
736  *	   i.e the set of domains (subsets) of CPUs such that the
737  *	   cpus_allowed of every cpuset marked is_sched_load_balance
738  *	   is a subset of one of these domains, while there are as
739  *	   many such domains as possible, each as small as possible.
740  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
741  *	   the kernel/sched/core.c routine partition_sched_domains() in a
742  *	   convenient format, that can be easily compared to the prior
743  *	   value to determine what partition elements (sched domains)
744  *	   were changed (added or removed.)
745  *
746  * Finding the best partition (set of domains):
747  *	The triple nested loops below over i, j, k scan over the
748  *	load balanced cpusets (using the array of cpuset pointers in
749  *	csa[]) looking for pairs of cpusets that have overlapping
750  *	cpus_allowed, but which don't have the same 'pn' partition
751  *	number and gives them in the same partition number.  It keeps
752  *	looping on the 'restart' label until it can no longer find
753  *	any such pairs.
754  *
755  *	The union of the cpus_allowed masks from the set of
756  *	all cpusets having the same 'pn' value then form the one
757  *	element of the partition (one sched domain) to be passed to
758  *	partition_sched_domains().
759  */
760 static int generate_sched_domains(cpumask_var_t **domains,
761 			struct sched_domain_attr **attributes)
762 {
763 	struct cpuset *cp;	/* scans q */
764 	struct cpuset **csa;	/* array of all cpuset ptrs */
765 	int csn;		/* how many cpuset ptrs in csa so far */
766 	int i, j, k;		/* indices for partition finding loops */
767 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
768 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
769 	int ndoms = 0;		/* number of sched domains in result */
770 	int nslot;		/* next empty doms[] struct cpumask slot */
771 	struct cgroup_subsys_state *pos_css;
772 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
773 
774 	doms = NULL;
775 	dattr = NULL;
776 	csa = NULL;
777 
778 	/* Special case for the 99% of systems with one, full, sched domain */
779 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
780 		ndoms = 1;
781 		doms = alloc_sched_domains(ndoms);
782 		if (!doms)
783 			goto done;
784 
785 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
786 		if (dattr) {
787 			*dattr = SD_ATTR_INIT;
788 			update_domain_attr_tree(dattr, &top_cpuset);
789 		}
790 		cpumask_and(doms[0], top_cpuset.effective_cpus,
791 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
792 
793 		goto done;
794 	}
795 
796 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
797 	if (!csa)
798 		goto done;
799 	csn = 0;
800 
801 	rcu_read_lock();
802 	if (root_load_balance)
803 		csa[csn++] = &top_cpuset;
804 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
805 		if (cp == &top_cpuset)
806 			continue;
807 		/*
808 		 * Continue traversing beyond @cp iff @cp has some CPUs and
809 		 * isn't load balancing.  The former is obvious.  The
810 		 * latter: All child cpusets contain a subset of the
811 		 * parent's cpus, so just skip them, and then we call
812 		 * update_domain_attr_tree() to calc relax_domain_level of
813 		 * the corresponding sched domain.
814 		 *
815 		 * If root is load-balancing, we can skip @cp if it
816 		 * is a subset of the root's effective_cpus.
817 		 */
818 		if (!cpumask_empty(cp->cpus_allowed) &&
819 		    !(is_sched_load_balance(cp) &&
820 		      cpumask_intersects(cp->cpus_allowed,
821 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
822 			continue;
823 
824 		if (root_load_balance &&
825 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
826 			continue;
827 
828 		if (is_sched_load_balance(cp))
829 			csa[csn++] = cp;
830 
831 		/* skip @cp's subtree if not a partition root */
832 		if (!is_partition_root(cp))
833 			pos_css = css_rightmost_descendant(pos_css);
834 	}
835 	rcu_read_unlock();
836 
837 	for (i = 0; i < csn; i++)
838 		csa[i]->pn = i;
839 	ndoms = csn;
840 
841 restart:
842 	/* Find the best partition (set of sched domains) */
843 	for (i = 0; i < csn; i++) {
844 		struct cpuset *a = csa[i];
845 		int apn = a->pn;
846 
847 		for (j = 0; j < csn; j++) {
848 			struct cpuset *b = csa[j];
849 			int bpn = b->pn;
850 
851 			if (apn != bpn && cpusets_overlap(a, b)) {
852 				for (k = 0; k < csn; k++) {
853 					struct cpuset *c = csa[k];
854 
855 					if (c->pn == bpn)
856 						c->pn = apn;
857 				}
858 				ndoms--;	/* one less element */
859 				goto restart;
860 			}
861 		}
862 	}
863 
864 	/*
865 	 * Now we know how many domains to create.
866 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
867 	 */
868 	doms = alloc_sched_domains(ndoms);
869 	if (!doms)
870 		goto done;
871 
872 	/*
873 	 * The rest of the code, including the scheduler, can deal with
874 	 * dattr==NULL case. No need to abort if alloc fails.
875 	 */
876 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
877 			      GFP_KERNEL);
878 
879 	for (nslot = 0, i = 0; i < csn; i++) {
880 		struct cpuset *a = csa[i];
881 		struct cpumask *dp;
882 		int apn = a->pn;
883 
884 		if (apn < 0) {
885 			/* Skip completed partitions */
886 			continue;
887 		}
888 
889 		dp = doms[nslot];
890 
891 		if (nslot == ndoms) {
892 			static int warnings = 10;
893 			if (warnings) {
894 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
895 					nslot, ndoms, csn, i, apn);
896 				warnings--;
897 			}
898 			continue;
899 		}
900 
901 		cpumask_clear(dp);
902 		if (dattr)
903 			*(dattr + nslot) = SD_ATTR_INIT;
904 		for (j = i; j < csn; j++) {
905 			struct cpuset *b = csa[j];
906 
907 			if (apn == b->pn) {
908 				cpumask_or(dp, dp, b->effective_cpus);
909 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
910 				if (dattr)
911 					update_domain_attr_tree(dattr + nslot, b);
912 
913 				/* Done with this partition */
914 				b->pn = -1;
915 			}
916 		}
917 		nslot++;
918 	}
919 	BUG_ON(nslot != ndoms);
920 
921 done:
922 	kfree(csa);
923 
924 	/*
925 	 * Fallback to the default domain if kmalloc() failed.
926 	 * See comments in partition_sched_domains().
927 	 */
928 	if (doms == NULL)
929 		ndoms = 1;
930 
931 	*domains    = doms;
932 	*attributes = dattr;
933 	return ndoms;
934 }
935 
936 /*
937  * Rebuild scheduler domains.
938  *
939  * If the flag 'sched_load_balance' of any cpuset with non-empty
940  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
941  * which has that flag enabled, or if any cpuset with a non-empty
942  * 'cpus' is removed, then call this routine to rebuild the
943  * scheduler's dynamic sched domains.
944  *
945  * Call with cpuset_mutex held.  Takes get_online_cpus().
946  */
947 static void rebuild_sched_domains_locked(void)
948 {
949 	struct sched_domain_attr *attr;
950 	cpumask_var_t *doms;
951 	int ndoms;
952 
953 	lockdep_assert_held(&cpuset_mutex);
954 	get_online_cpus();
955 
956 	/*
957 	 * We have raced with CPU hotplug. Don't do anything to avoid
958 	 * passing doms with offlined cpu to partition_sched_domains().
959 	 * Anyways, hotplug work item will rebuild sched domains.
960 	 */
961 	if (!top_cpuset.nr_subparts_cpus &&
962 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
963 		goto out;
964 
965 	if (top_cpuset.nr_subparts_cpus &&
966 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
967 		goto out;
968 
969 	/* Generate domain masks and attrs */
970 	ndoms = generate_sched_domains(&doms, &attr);
971 
972 	/* Have scheduler rebuild the domains */
973 	partition_sched_domains(ndoms, doms, attr);
974 out:
975 	put_online_cpus();
976 }
977 #else /* !CONFIG_SMP */
978 static void rebuild_sched_domains_locked(void)
979 {
980 }
981 #endif /* CONFIG_SMP */
982 
983 void rebuild_sched_domains(void)
984 {
985 	mutex_lock(&cpuset_mutex);
986 	rebuild_sched_domains_locked();
987 	mutex_unlock(&cpuset_mutex);
988 }
989 
990 /**
991  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
992  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
993  *
994  * Iterate through each task of @cs updating its cpus_allowed to the
995  * effective cpuset's.  As this function is called with cpuset_mutex held,
996  * cpuset membership stays stable.
997  */
998 static void update_tasks_cpumask(struct cpuset *cs)
999 {
1000 	struct css_task_iter it;
1001 	struct task_struct *task;
1002 
1003 	css_task_iter_start(&cs->css, 0, &it);
1004 	while ((task = css_task_iter_next(&it)))
1005 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1006 	css_task_iter_end(&it);
1007 }
1008 
1009 /**
1010  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1011  * @new_cpus: the temp variable for the new effective_cpus mask
1012  * @cs: the cpuset the need to recompute the new effective_cpus mask
1013  * @parent: the parent cpuset
1014  *
1015  * If the parent has subpartition CPUs, include them in the list of
1016  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1017  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1018  * to mask those out.
1019  */
1020 static void compute_effective_cpumask(struct cpumask *new_cpus,
1021 				      struct cpuset *cs, struct cpuset *parent)
1022 {
1023 	if (parent->nr_subparts_cpus) {
1024 		cpumask_or(new_cpus, parent->effective_cpus,
1025 			   parent->subparts_cpus);
1026 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1027 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1028 	} else {
1029 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1030 	}
1031 }
1032 
1033 /*
1034  * Commands for update_parent_subparts_cpumask
1035  */
1036 enum subparts_cmd {
1037 	partcmd_enable,		/* Enable partition root	 */
1038 	partcmd_disable,	/* Disable partition root	 */
1039 	partcmd_update,		/* Update parent's subparts_cpus */
1040 };
1041 
1042 /**
1043  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1044  * @cpuset:  The cpuset that requests change in partition root state
1045  * @cmd:     Partition root state change command
1046  * @newmask: Optional new cpumask for partcmd_update
1047  * @tmp:     Temporary addmask and delmask
1048  * Return:   0, 1 or an error code
1049  *
1050  * For partcmd_enable, the cpuset is being transformed from a non-partition
1051  * root to a partition root. The cpus_allowed mask of the given cpuset will
1052  * be put into parent's subparts_cpus and taken away from parent's
1053  * effective_cpus. The function will return 0 if all the CPUs listed in
1054  * cpus_allowed can be granted or an error code will be returned.
1055  *
1056  * For partcmd_disable, the cpuset is being transofrmed from a partition
1057  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1058  * parent's subparts_cpus will be taken away from that cpumask and put back
1059  * into parent's effective_cpus. 0 should always be returned.
1060  *
1061  * For partcmd_update, if the optional newmask is specified, the cpu
1062  * list is to be changed from cpus_allowed to newmask. Otherwise,
1063  * cpus_allowed is assumed to remain the same. The cpuset should either
1064  * be a partition root or an invalid partition root. The partition root
1065  * state may change if newmask is NULL and none of the requested CPUs can
1066  * be granted by the parent. The function will return 1 if changes to
1067  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1068  * Error code should only be returned when newmask is non-NULL.
1069  *
1070  * The partcmd_enable and partcmd_disable commands are used by
1071  * update_prstate(). The partcmd_update command is used by
1072  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1073  * newmask set.
1074  *
1075  * The checking is more strict when enabling partition root than the
1076  * other two commands.
1077  *
1078  * Because of the implicit cpu exclusive nature of a partition root,
1079  * cpumask changes that violates the cpu exclusivity rule will not be
1080  * permitted when checked by validate_change(). The validate_change()
1081  * function will also prevent any changes to the cpu list if it is not
1082  * a superset of children's cpu lists.
1083  */
1084 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1085 					  struct cpumask *newmask,
1086 					  struct tmpmasks *tmp)
1087 {
1088 	struct cpuset *parent = parent_cs(cpuset);
1089 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1090 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1091 	bool part_error = false;	/* Partition error? */
1092 
1093 	lockdep_assert_held(&cpuset_mutex);
1094 
1095 	/*
1096 	 * The parent must be a partition root.
1097 	 * The new cpumask, if present, or the current cpus_allowed must
1098 	 * not be empty.
1099 	 */
1100 	if (!is_partition_root(parent) ||
1101 	   (newmask && cpumask_empty(newmask)) ||
1102 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1103 		return -EINVAL;
1104 
1105 	/*
1106 	 * Enabling/disabling partition root is not allowed if there are
1107 	 * online children.
1108 	 */
1109 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1110 		return -EBUSY;
1111 
1112 	/*
1113 	 * Enabling partition root is not allowed if not all the CPUs
1114 	 * can be granted from parent's effective_cpus or at least one
1115 	 * CPU will be left after that.
1116 	 */
1117 	if ((cmd == partcmd_enable) &&
1118 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1119 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1120 		return -EINVAL;
1121 
1122 	/*
1123 	 * A cpumask update cannot make parent's effective_cpus become empty.
1124 	 */
1125 	adding = deleting = false;
1126 	if (cmd == partcmd_enable) {
1127 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1128 		adding = true;
1129 	} else if (cmd == partcmd_disable) {
1130 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1131 				       parent->subparts_cpus);
1132 	} else if (newmask) {
1133 		/*
1134 		 * partcmd_update with newmask:
1135 		 *
1136 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1137 		 * addmask = newmask & parent->effective_cpus
1138 		 *		     & ~parent->subparts_cpus
1139 		 */
1140 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1141 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1142 				       parent->subparts_cpus);
1143 
1144 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1145 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1146 					parent->subparts_cpus);
1147 		/*
1148 		 * Return error if the new effective_cpus could become empty.
1149 		 */
1150 		if (adding &&
1151 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1152 			if (!deleting)
1153 				return -EINVAL;
1154 			/*
1155 			 * As some of the CPUs in subparts_cpus might have
1156 			 * been offlined, we need to compute the real delmask
1157 			 * to confirm that.
1158 			 */
1159 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1160 					 cpu_active_mask))
1161 				return -EINVAL;
1162 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1163 		}
1164 	} else {
1165 		/*
1166 		 * partcmd_update w/o newmask:
1167 		 *
1168 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1169 		 *
1170 		 * Note that parent's subparts_cpus may have been
1171 		 * pre-shrunk in case there is a change in the cpu list.
1172 		 * So no deletion is needed.
1173 		 */
1174 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1175 				     parent->effective_cpus);
1176 		part_error = cpumask_equal(tmp->addmask,
1177 					   parent->effective_cpus);
1178 	}
1179 
1180 	if (cmd == partcmd_update) {
1181 		int prev_prs = cpuset->partition_root_state;
1182 
1183 		/*
1184 		 * Check for possible transition between PRS_ENABLED
1185 		 * and PRS_ERROR.
1186 		 */
1187 		switch (cpuset->partition_root_state) {
1188 		case PRS_ENABLED:
1189 			if (part_error)
1190 				cpuset->partition_root_state = PRS_ERROR;
1191 			break;
1192 		case PRS_ERROR:
1193 			if (!part_error)
1194 				cpuset->partition_root_state = PRS_ENABLED;
1195 			break;
1196 		}
1197 		/*
1198 		 * Set part_error if previously in invalid state.
1199 		 */
1200 		part_error = (prev_prs == PRS_ERROR);
1201 	}
1202 
1203 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1204 		return 0;	/* Nothing need to be done */
1205 
1206 	if (cpuset->partition_root_state == PRS_ERROR) {
1207 		/*
1208 		 * Remove all its cpus from parent's subparts_cpus.
1209 		 */
1210 		adding = false;
1211 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1212 				       parent->subparts_cpus);
1213 	}
1214 
1215 	if (!adding && !deleting)
1216 		return 0;
1217 
1218 	/*
1219 	 * Change the parent's subparts_cpus.
1220 	 * Newly added CPUs will be removed from effective_cpus and
1221 	 * newly deleted ones will be added back to effective_cpus.
1222 	 */
1223 	spin_lock_irq(&callback_lock);
1224 	if (adding) {
1225 		cpumask_or(parent->subparts_cpus,
1226 			   parent->subparts_cpus, tmp->addmask);
1227 		cpumask_andnot(parent->effective_cpus,
1228 			       parent->effective_cpus, tmp->addmask);
1229 	}
1230 	if (deleting) {
1231 		cpumask_andnot(parent->subparts_cpus,
1232 			       parent->subparts_cpus, tmp->delmask);
1233 		/*
1234 		 * Some of the CPUs in subparts_cpus might have been offlined.
1235 		 */
1236 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1237 		cpumask_or(parent->effective_cpus,
1238 			   parent->effective_cpus, tmp->delmask);
1239 	}
1240 
1241 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1242 	spin_unlock_irq(&callback_lock);
1243 
1244 	return cmd == partcmd_update;
1245 }
1246 
1247 /*
1248  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1249  * @cs:  the cpuset to consider
1250  * @tmp: temp variables for calculating effective_cpus & partition setup
1251  *
1252  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1253  * and all its descendants need to be updated.
1254  *
1255  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1256  *
1257  * Called with cpuset_mutex held
1258  */
1259 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1260 {
1261 	struct cpuset *cp;
1262 	struct cgroup_subsys_state *pos_css;
1263 	bool need_rebuild_sched_domains = false;
1264 
1265 	rcu_read_lock();
1266 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1267 		struct cpuset *parent = parent_cs(cp);
1268 
1269 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1270 
1271 		/*
1272 		 * If it becomes empty, inherit the effective mask of the
1273 		 * parent, which is guaranteed to have some CPUs.
1274 		 */
1275 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1276 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1277 			if (!cp->use_parent_ecpus) {
1278 				cp->use_parent_ecpus = true;
1279 				parent->child_ecpus_count++;
1280 			}
1281 		} else if (cp->use_parent_ecpus) {
1282 			cp->use_parent_ecpus = false;
1283 			WARN_ON_ONCE(!parent->child_ecpus_count);
1284 			parent->child_ecpus_count--;
1285 		}
1286 
1287 		/*
1288 		 * Skip the whole subtree if the cpumask remains the same
1289 		 * and has no partition root state.
1290 		 */
1291 		if (!cp->partition_root_state &&
1292 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1293 			pos_css = css_rightmost_descendant(pos_css);
1294 			continue;
1295 		}
1296 
1297 		/*
1298 		 * update_parent_subparts_cpumask() should have been called
1299 		 * for cs already in update_cpumask(). We should also call
1300 		 * update_tasks_cpumask() again for tasks in the parent
1301 		 * cpuset if the parent's subparts_cpus changes.
1302 		 */
1303 		if ((cp != cs) && cp->partition_root_state) {
1304 			switch (parent->partition_root_state) {
1305 			case PRS_DISABLED:
1306 				/*
1307 				 * If parent is not a partition root or an
1308 				 * invalid partition root, clear the state
1309 				 * state and the CS_CPU_EXCLUSIVE flag.
1310 				 */
1311 				WARN_ON_ONCE(cp->partition_root_state
1312 					     != PRS_ERROR);
1313 				cp->partition_root_state = 0;
1314 
1315 				/*
1316 				 * clear_bit() is an atomic operation and
1317 				 * readers aren't interested in the state
1318 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1319 				 * just update the flag without holding
1320 				 * the callback_lock.
1321 				 */
1322 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1323 				break;
1324 
1325 			case PRS_ENABLED:
1326 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1327 					update_tasks_cpumask(parent);
1328 				break;
1329 
1330 			case PRS_ERROR:
1331 				/*
1332 				 * When parent is invalid, it has to be too.
1333 				 */
1334 				cp->partition_root_state = PRS_ERROR;
1335 				if (cp->nr_subparts_cpus) {
1336 					cp->nr_subparts_cpus = 0;
1337 					cpumask_clear(cp->subparts_cpus);
1338 				}
1339 				break;
1340 			}
1341 		}
1342 
1343 		if (!css_tryget_online(&cp->css))
1344 			continue;
1345 		rcu_read_unlock();
1346 
1347 		spin_lock_irq(&callback_lock);
1348 
1349 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1350 		if (cp->nr_subparts_cpus &&
1351 		   (cp->partition_root_state != PRS_ENABLED)) {
1352 			cp->nr_subparts_cpus = 0;
1353 			cpumask_clear(cp->subparts_cpus);
1354 		} else if (cp->nr_subparts_cpus) {
1355 			/*
1356 			 * Make sure that effective_cpus & subparts_cpus
1357 			 * are mutually exclusive.
1358 			 *
1359 			 * In the unlikely event that effective_cpus
1360 			 * becomes empty. we clear cp->nr_subparts_cpus and
1361 			 * let its child partition roots to compete for
1362 			 * CPUs again.
1363 			 */
1364 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1365 				       cp->subparts_cpus);
1366 			if (cpumask_empty(cp->effective_cpus)) {
1367 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1368 				cpumask_clear(cp->subparts_cpus);
1369 				cp->nr_subparts_cpus = 0;
1370 			} else if (!cpumask_subset(cp->subparts_cpus,
1371 						   tmp->new_cpus)) {
1372 				cpumask_andnot(cp->subparts_cpus,
1373 					cp->subparts_cpus, tmp->new_cpus);
1374 				cp->nr_subparts_cpus
1375 					= cpumask_weight(cp->subparts_cpus);
1376 			}
1377 		}
1378 		spin_unlock_irq(&callback_lock);
1379 
1380 		WARN_ON(!is_in_v2_mode() &&
1381 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1382 
1383 		update_tasks_cpumask(cp);
1384 
1385 		/*
1386 		 * On legacy hierarchy, if the effective cpumask of any non-
1387 		 * empty cpuset is changed, we need to rebuild sched domains.
1388 		 * On default hierarchy, the cpuset needs to be a partition
1389 		 * root as well.
1390 		 */
1391 		if (!cpumask_empty(cp->cpus_allowed) &&
1392 		    is_sched_load_balance(cp) &&
1393 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1394 		    is_partition_root(cp)))
1395 			need_rebuild_sched_domains = true;
1396 
1397 		rcu_read_lock();
1398 		css_put(&cp->css);
1399 	}
1400 	rcu_read_unlock();
1401 
1402 	if (need_rebuild_sched_domains)
1403 		rebuild_sched_domains_locked();
1404 }
1405 
1406 /**
1407  * update_sibling_cpumasks - Update siblings cpumasks
1408  * @parent:  Parent cpuset
1409  * @cs:      Current cpuset
1410  * @tmp:     Temp variables
1411  */
1412 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1413 				    struct tmpmasks *tmp)
1414 {
1415 	struct cpuset *sibling;
1416 	struct cgroup_subsys_state *pos_css;
1417 
1418 	/*
1419 	 * Check all its siblings and call update_cpumasks_hier()
1420 	 * if their use_parent_ecpus flag is set in order for them
1421 	 * to use the right effective_cpus value.
1422 	 */
1423 	rcu_read_lock();
1424 	cpuset_for_each_child(sibling, pos_css, parent) {
1425 		if (sibling == cs)
1426 			continue;
1427 		if (!sibling->use_parent_ecpus)
1428 			continue;
1429 
1430 		update_cpumasks_hier(sibling, tmp);
1431 	}
1432 	rcu_read_unlock();
1433 }
1434 
1435 /**
1436  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1437  * @cs: the cpuset to consider
1438  * @trialcs: trial cpuset
1439  * @buf: buffer of cpu numbers written to this cpuset
1440  */
1441 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1442 			  const char *buf)
1443 {
1444 	int retval;
1445 	struct tmpmasks tmp;
1446 
1447 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1448 	if (cs == &top_cpuset)
1449 		return -EACCES;
1450 
1451 	/*
1452 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1453 	 * Since cpulist_parse() fails on an empty mask, we special case
1454 	 * that parsing.  The validate_change() call ensures that cpusets
1455 	 * with tasks have cpus.
1456 	 */
1457 	if (!*buf) {
1458 		cpumask_clear(trialcs->cpus_allowed);
1459 	} else {
1460 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1461 		if (retval < 0)
1462 			return retval;
1463 
1464 		if (!cpumask_subset(trialcs->cpus_allowed,
1465 				    top_cpuset.cpus_allowed))
1466 			return -EINVAL;
1467 	}
1468 
1469 	/* Nothing to do if the cpus didn't change */
1470 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1471 		return 0;
1472 
1473 	retval = validate_change(cs, trialcs);
1474 	if (retval < 0)
1475 		return retval;
1476 
1477 #ifdef CONFIG_CPUMASK_OFFSTACK
1478 	/*
1479 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1480 	 * to allocated cpumasks.
1481 	 */
1482 	tmp.addmask  = trialcs->subparts_cpus;
1483 	tmp.delmask  = trialcs->effective_cpus;
1484 	tmp.new_cpus = trialcs->cpus_allowed;
1485 #endif
1486 
1487 	if (cs->partition_root_state) {
1488 		/* Cpumask of a partition root cannot be empty */
1489 		if (cpumask_empty(trialcs->cpus_allowed))
1490 			return -EINVAL;
1491 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1492 					trialcs->cpus_allowed, &tmp) < 0)
1493 			return -EINVAL;
1494 	}
1495 
1496 	spin_lock_irq(&callback_lock);
1497 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1498 
1499 	/*
1500 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1501 	 */
1502 	if (cs->nr_subparts_cpus) {
1503 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1504 			       cs->cpus_allowed);
1505 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1506 	}
1507 	spin_unlock_irq(&callback_lock);
1508 
1509 	update_cpumasks_hier(cs, &tmp);
1510 
1511 	if (cs->partition_root_state) {
1512 		struct cpuset *parent = parent_cs(cs);
1513 
1514 		/*
1515 		 * For partition root, update the cpumasks of sibling
1516 		 * cpusets if they use parent's effective_cpus.
1517 		 */
1518 		if (parent->child_ecpus_count)
1519 			update_sibling_cpumasks(parent, cs, &tmp);
1520 	}
1521 	return 0;
1522 }
1523 
1524 /*
1525  * Migrate memory region from one set of nodes to another.  This is
1526  * performed asynchronously as it can be called from process migration path
1527  * holding locks involved in process management.  All mm migrations are
1528  * performed in the queued order and can be waited for by flushing
1529  * cpuset_migrate_mm_wq.
1530  */
1531 
1532 struct cpuset_migrate_mm_work {
1533 	struct work_struct	work;
1534 	struct mm_struct	*mm;
1535 	nodemask_t		from;
1536 	nodemask_t		to;
1537 };
1538 
1539 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1540 {
1541 	struct cpuset_migrate_mm_work *mwork =
1542 		container_of(work, struct cpuset_migrate_mm_work, work);
1543 
1544 	/* on a wq worker, no need to worry about %current's mems_allowed */
1545 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1546 	mmput(mwork->mm);
1547 	kfree(mwork);
1548 }
1549 
1550 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1551 							const nodemask_t *to)
1552 {
1553 	struct cpuset_migrate_mm_work *mwork;
1554 
1555 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1556 	if (mwork) {
1557 		mwork->mm = mm;
1558 		mwork->from = *from;
1559 		mwork->to = *to;
1560 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1561 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1562 	} else {
1563 		mmput(mm);
1564 	}
1565 }
1566 
1567 static void cpuset_post_attach(void)
1568 {
1569 	flush_workqueue(cpuset_migrate_mm_wq);
1570 }
1571 
1572 /*
1573  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1574  * @tsk: the task to change
1575  * @newmems: new nodes that the task will be set
1576  *
1577  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1578  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1579  * parallel, it might temporarily see an empty intersection, which results in
1580  * a seqlock check and retry before OOM or allocation failure.
1581  */
1582 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1583 					nodemask_t *newmems)
1584 {
1585 	task_lock(tsk);
1586 
1587 	local_irq_disable();
1588 	write_seqcount_begin(&tsk->mems_allowed_seq);
1589 
1590 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1591 	mpol_rebind_task(tsk, newmems);
1592 	tsk->mems_allowed = *newmems;
1593 
1594 	write_seqcount_end(&tsk->mems_allowed_seq);
1595 	local_irq_enable();
1596 
1597 	task_unlock(tsk);
1598 }
1599 
1600 static void *cpuset_being_rebound;
1601 
1602 /**
1603  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1604  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1605  *
1606  * Iterate through each task of @cs updating its mems_allowed to the
1607  * effective cpuset's.  As this function is called with cpuset_mutex held,
1608  * cpuset membership stays stable.
1609  */
1610 static void update_tasks_nodemask(struct cpuset *cs)
1611 {
1612 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1613 	struct css_task_iter it;
1614 	struct task_struct *task;
1615 
1616 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1617 
1618 	guarantee_online_mems(cs, &newmems);
1619 
1620 	/*
1621 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1622 	 * take while holding tasklist_lock.  Forks can happen - the
1623 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1624 	 * and rebind their vma mempolicies too.  Because we still hold
1625 	 * the global cpuset_mutex, we know that no other rebind effort
1626 	 * will be contending for the global variable cpuset_being_rebound.
1627 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1628 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1629 	 */
1630 	css_task_iter_start(&cs->css, 0, &it);
1631 	while ((task = css_task_iter_next(&it))) {
1632 		struct mm_struct *mm;
1633 		bool migrate;
1634 
1635 		cpuset_change_task_nodemask(task, &newmems);
1636 
1637 		mm = get_task_mm(task);
1638 		if (!mm)
1639 			continue;
1640 
1641 		migrate = is_memory_migrate(cs);
1642 
1643 		mpol_rebind_mm(mm, &cs->mems_allowed);
1644 		if (migrate)
1645 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1646 		else
1647 			mmput(mm);
1648 	}
1649 	css_task_iter_end(&it);
1650 
1651 	/*
1652 	 * All the tasks' nodemasks have been updated, update
1653 	 * cs->old_mems_allowed.
1654 	 */
1655 	cs->old_mems_allowed = newmems;
1656 
1657 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1658 	cpuset_being_rebound = NULL;
1659 }
1660 
1661 /*
1662  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1663  * @cs: the cpuset to consider
1664  * @new_mems: a temp variable for calculating new effective_mems
1665  *
1666  * When configured nodemask is changed, the effective nodemasks of this cpuset
1667  * and all its descendants need to be updated.
1668  *
1669  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1670  *
1671  * Called with cpuset_mutex held
1672  */
1673 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1674 {
1675 	struct cpuset *cp;
1676 	struct cgroup_subsys_state *pos_css;
1677 
1678 	rcu_read_lock();
1679 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1680 		struct cpuset *parent = parent_cs(cp);
1681 
1682 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1683 
1684 		/*
1685 		 * If it becomes empty, inherit the effective mask of the
1686 		 * parent, which is guaranteed to have some MEMs.
1687 		 */
1688 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1689 			*new_mems = parent->effective_mems;
1690 
1691 		/* Skip the whole subtree if the nodemask remains the same. */
1692 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1693 			pos_css = css_rightmost_descendant(pos_css);
1694 			continue;
1695 		}
1696 
1697 		if (!css_tryget_online(&cp->css))
1698 			continue;
1699 		rcu_read_unlock();
1700 
1701 		spin_lock_irq(&callback_lock);
1702 		cp->effective_mems = *new_mems;
1703 		spin_unlock_irq(&callback_lock);
1704 
1705 		WARN_ON(!is_in_v2_mode() &&
1706 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1707 
1708 		update_tasks_nodemask(cp);
1709 
1710 		rcu_read_lock();
1711 		css_put(&cp->css);
1712 	}
1713 	rcu_read_unlock();
1714 }
1715 
1716 /*
1717  * Handle user request to change the 'mems' memory placement
1718  * of a cpuset.  Needs to validate the request, update the
1719  * cpusets mems_allowed, and for each task in the cpuset,
1720  * update mems_allowed and rebind task's mempolicy and any vma
1721  * mempolicies and if the cpuset is marked 'memory_migrate',
1722  * migrate the tasks pages to the new memory.
1723  *
1724  * Call with cpuset_mutex held. May take callback_lock during call.
1725  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1726  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1727  * their mempolicies to the cpusets new mems_allowed.
1728  */
1729 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1730 			   const char *buf)
1731 {
1732 	int retval;
1733 
1734 	/*
1735 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1736 	 * it's read-only
1737 	 */
1738 	if (cs == &top_cpuset) {
1739 		retval = -EACCES;
1740 		goto done;
1741 	}
1742 
1743 	/*
1744 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1745 	 * Since nodelist_parse() fails on an empty mask, we special case
1746 	 * that parsing.  The validate_change() call ensures that cpusets
1747 	 * with tasks have memory.
1748 	 */
1749 	if (!*buf) {
1750 		nodes_clear(trialcs->mems_allowed);
1751 	} else {
1752 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1753 		if (retval < 0)
1754 			goto done;
1755 
1756 		if (!nodes_subset(trialcs->mems_allowed,
1757 				  top_cpuset.mems_allowed)) {
1758 			retval = -EINVAL;
1759 			goto done;
1760 		}
1761 	}
1762 
1763 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1764 		retval = 0;		/* Too easy - nothing to do */
1765 		goto done;
1766 	}
1767 	retval = validate_change(cs, trialcs);
1768 	if (retval < 0)
1769 		goto done;
1770 
1771 	spin_lock_irq(&callback_lock);
1772 	cs->mems_allowed = trialcs->mems_allowed;
1773 	spin_unlock_irq(&callback_lock);
1774 
1775 	/* use trialcs->mems_allowed as a temp variable */
1776 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1777 done:
1778 	return retval;
1779 }
1780 
1781 bool current_cpuset_is_being_rebound(void)
1782 {
1783 	bool ret;
1784 
1785 	rcu_read_lock();
1786 	ret = task_cs(current) == cpuset_being_rebound;
1787 	rcu_read_unlock();
1788 
1789 	return ret;
1790 }
1791 
1792 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1793 {
1794 #ifdef CONFIG_SMP
1795 	if (val < -1 || val >= sched_domain_level_max)
1796 		return -EINVAL;
1797 #endif
1798 
1799 	if (val != cs->relax_domain_level) {
1800 		cs->relax_domain_level = val;
1801 		if (!cpumask_empty(cs->cpus_allowed) &&
1802 		    is_sched_load_balance(cs))
1803 			rebuild_sched_domains_locked();
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 /**
1810  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1811  * @cs: the cpuset in which each task's spread flags needs to be changed
1812  *
1813  * Iterate through each task of @cs updating its spread flags.  As this
1814  * function is called with cpuset_mutex held, cpuset membership stays
1815  * stable.
1816  */
1817 static void update_tasks_flags(struct cpuset *cs)
1818 {
1819 	struct css_task_iter it;
1820 	struct task_struct *task;
1821 
1822 	css_task_iter_start(&cs->css, 0, &it);
1823 	while ((task = css_task_iter_next(&it)))
1824 		cpuset_update_task_spread_flag(cs, task);
1825 	css_task_iter_end(&it);
1826 }
1827 
1828 /*
1829  * update_flag - read a 0 or a 1 in a file and update associated flag
1830  * bit:		the bit to update (see cpuset_flagbits_t)
1831  * cs:		the cpuset to update
1832  * turning_on: 	whether the flag is being set or cleared
1833  *
1834  * Call with cpuset_mutex held.
1835  */
1836 
1837 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1838 		       int turning_on)
1839 {
1840 	struct cpuset *trialcs;
1841 	int balance_flag_changed;
1842 	int spread_flag_changed;
1843 	int err;
1844 
1845 	trialcs = alloc_trial_cpuset(cs);
1846 	if (!trialcs)
1847 		return -ENOMEM;
1848 
1849 	if (turning_on)
1850 		set_bit(bit, &trialcs->flags);
1851 	else
1852 		clear_bit(bit, &trialcs->flags);
1853 
1854 	err = validate_change(cs, trialcs);
1855 	if (err < 0)
1856 		goto out;
1857 
1858 	balance_flag_changed = (is_sched_load_balance(cs) !=
1859 				is_sched_load_balance(trialcs));
1860 
1861 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1862 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1863 
1864 	spin_lock_irq(&callback_lock);
1865 	cs->flags = trialcs->flags;
1866 	spin_unlock_irq(&callback_lock);
1867 
1868 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1869 		rebuild_sched_domains_locked();
1870 
1871 	if (spread_flag_changed)
1872 		update_tasks_flags(cs);
1873 out:
1874 	free_cpuset(trialcs);
1875 	return err;
1876 }
1877 
1878 /*
1879  * update_prstate - update partititon_root_state
1880  * cs:	the cpuset to update
1881  * val: 0 - disabled, 1 - enabled
1882  *
1883  * Call with cpuset_mutex held.
1884  */
1885 static int update_prstate(struct cpuset *cs, int val)
1886 {
1887 	int err;
1888 	struct cpuset *parent = parent_cs(cs);
1889 	struct tmpmasks tmp;
1890 
1891 	if ((val != 0) && (val != 1))
1892 		return -EINVAL;
1893 	if (val == cs->partition_root_state)
1894 		return 0;
1895 
1896 	/*
1897 	 * Cannot force a partial or invalid partition root to a full
1898 	 * partition root.
1899 	 */
1900 	if (val && cs->partition_root_state)
1901 		return -EINVAL;
1902 
1903 	if (alloc_cpumasks(NULL, &tmp))
1904 		return -ENOMEM;
1905 
1906 	err = -EINVAL;
1907 	if (!cs->partition_root_state) {
1908 		/*
1909 		 * Turning on partition root requires setting the
1910 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1911 		 * cannot be NULL.
1912 		 */
1913 		if (cpumask_empty(cs->cpus_allowed))
1914 			goto out;
1915 
1916 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1917 		if (err)
1918 			goto out;
1919 
1920 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1921 						     NULL, &tmp);
1922 		if (err) {
1923 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1924 			goto out;
1925 		}
1926 		cs->partition_root_state = PRS_ENABLED;
1927 	} else {
1928 		/*
1929 		 * Turning off partition root will clear the
1930 		 * CS_CPU_EXCLUSIVE bit.
1931 		 */
1932 		if (cs->partition_root_state == PRS_ERROR) {
1933 			cs->partition_root_state = 0;
1934 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1935 			err = 0;
1936 			goto out;
1937 		}
1938 
1939 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1940 						     NULL, &tmp);
1941 		if (err)
1942 			goto out;
1943 
1944 		cs->partition_root_state = 0;
1945 
1946 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1947 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1948 	}
1949 
1950 	/*
1951 	 * Update cpumask of parent's tasks except when it is the top
1952 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1953 	 */
1954 	if (parent != &top_cpuset)
1955 		update_tasks_cpumask(parent);
1956 
1957 	if (parent->child_ecpus_count)
1958 		update_sibling_cpumasks(parent, cs, &tmp);
1959 
1960 	rebuild_sched_domains_locked();
1961 out:
1962 	free_cpumasks(NULL, &tmp);
1963 	return err;
1964 }
1965 
1966 /*
1967  * Frequency meter - How fast is some event occurring?
1968  *
1969  * These routines manage a digitally filtered, constant time based,
1970  * event frequency meter.  There are four routines:
1971  *   fmeter_init() - initialize a frequency meter.
1972  *   fmeter_markevent() - called each time the event happens.
1973  *   fmeter_getrate() - returns the recent rate of such events.
1974  *   fmeter_update() - internal routine used to update fmeter.
1975  *
1976  * A common data structure is passed to each of these routines,
1977  * which is used to keep track of the state required to manage the
1978  * frequency meter and its digital filter.
1979  *
1980  * The filter works on the number of events marked per unit time.
1981  * The filter is single-pole low-pass recursive (IIR).  The time unit
1982  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1983  * simulate 3 decimal digits of precision (multiplied by 1000).
1984  *
1985  * With an FM_COEF of 933, and a time base of 1 second, the filter
1986  * has a half-life of 10 seconds, meaning that if the events quit
1987  * happening, then the rate returned from the fmeter_getrate()
1988  * will be cut in half each 10 seconds, until it converges to zero.
1989  *
1990  * It is not worth doing a real infinitely recursive filter.  If more
1991  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1992  * just compute FM_MAXTICKS ticks worth, by which point the level
1993  * will be stable.
1994  *
1995  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1996  * arithmetic overflow in the fmeter_update() routine.
1997  *
1998  * Given the simple 32 bit integer arithmetic used, this meter works
1999  * best for reporting rates between one per millisecond (msec) and
2000  * one per 32 (approx) seconds.  At constant rates faster than one
2001  * per msec it maxes out at values just under 1,000,000.  At constant
2002  * rates between one per msec, and one per second it will stabilize
2003  * to a value N*1000, where N is the rate of events per second.
2004  * At constant rates between one per second and one per 32 seconds,
2005  * it will be choppy, moving up on the seconds that have an event,
2006  * and then decaying until the next event.  At rates slower than
2007  * about one in 32 seconds, it decays all the way back to zero between
2008  * each event.
2009  */
2010 
2011 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2012 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2013 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2014 #define FM_SCALE 1000		/* faux fixed point scale */
2015 
2016 /* Initialize a frequency meter */
2017 static void fmeter_init(struct fmeter *fmp)
2018 {
2019 	fmp->cnt = 0;
2020 	fmp->val = 0;
2021 	fmp->time = 0;
2022 	spin_lock_init(&fmp->lock);
2023 }
2024 
2025 /* Internal meter update - process cnt events and update value */
2026 static void fmeter_update(struct fmeter *fmp)
2027 {
2028 	time64_t now;
2029 	u32 ticks;
2030 
2031 	now = ktime_get_seconds();
2032 	ticks = now - fmp->time;
2033 
2034 	if (ticks == 0)
2035 		return;
2036 
2037 	ticks = min(FM_MAXTICKS, ticks);
2038 	while (ticks-- > 0)
2039 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2040 	fmp->time = now;
2041 
2042 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2043 	fmp->cnt = 0;
2044 }
2045 
2046 /* Process any previous ticks, then bump cnt by one (times scale). */
2047 static void fmeter_markevent(struct fmeter *fmp)
2048 {
2049 	spin_lock(&fmp->lock);
2050 	fmeter_update(fmp);
2051 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2052 	spin_unlock(&fmp->lock);
2053 }
2054 
2055 /* Process any previous ticks, then return current value. */
2056 static int fmeter_getrate(struct fmeter *fmp)
2057 {
2058 	int val;
2059 
2060 	spin_lock(&fmp->lock);
2061 	fmeter_update(fmp);
2062 	val = fmp->val;
2063 	spin_unlock(&fmp->lock);
2064 	return val;
2065 }
2066 
2067 static struct cpuset *cpuset_attach_old_cs;
2068 
2069 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2070 static int cpuset_can_attach(struct cgroup_taskset *tset)
2071 {
2072 	struct cgroup_subsys_state *css;
2073 	struct cpuset *cs;
2074 	struct task_struct *task;
2075 	int ret;
2076 
2077 	/* used later by cpuset_attach() */
2078 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2079 	cs = css_cs(css);
2080 
2081 	mutex_lock(&cpuset_mutex);
2082 
2083 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2084 	ret = -ENOSPC;
2085 	if (!is_in_v2_mode() &&
2086 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2087 		goto out_unlock;
2088 
2089 	cgroup_taskset_for_each(task, css, tset) {
2090 		ret = task_can_attach(task, cs->cpus_allowed);
2091 		if (ret)
2092 			goto out_unlock;
2093 		ret = security_task_setscheduler(task);
2094 		if (ret)
2095 			goto out_unlock;
2096 	}
2097 
2098 	/*
2099 	 * Mark attach is in progress.  This makes validate_change() fail
2100 	 * changes which zero cpus/mems_allowed.
2101 	 */
2102 	cs->attach_in_progress++;
2103 	ret = 0;
2104 out_unlock:
2105 	mutex_unlock(&cpuset_mutex);
2106 	return ret;
2107 }
2108 
2109 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2110 {
2111 	struct cgroup_subsys_state *css;
2112 
2113 	cgroup_taskset_first(tset, &css);
2114 
2115 	mutex_lock(&cpuset_mutex);
2116 	css_cs(css)->attach_in_progress--;
2117 	mutex_unlock(&cpuset_mutex);
2118 }
2119 
2120 /*
2121  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2122  * but we can't allocate it dynamically there.  Define it global and
2123  * allocate from cpuset_init().
2124  */
2125 static cpumask_var_t cpus_attach;
2126 
2127 static void cpuset_attach(struct cgroup_taskset *tset)
2128 {
2129 	/* static buf protected by cpuset_mutex */
2130 	static nodemask_t cpuset_attach_nodemask_to;
2131 	struct task_struct *task;
2132 	struct task_struct *leader;
2133 	struct cgroup_subsys_state *css;
2134 	struct cpuset *cs;
2135 	struct cpuset *oldcs = cpuset_attach_old_cs;
2136 
2137 	cgroup_taskset_first(tset, &css);
2138 	cs = css_cs(css);
2139 
2140 	mutex_lock(&cpuset_mutex);
2141 
2142 	/* prepare for attach */
2143 	if (cs == &top_cpuset)
2144 		cpumask_copy(cpus_attach, cpu_possible_mask);
2145 	else
2146 		guarantee_online_cpus(cs, cpus_attach);
2147 
2148 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2149 
2150 	cgroup_taskset_for_each(task, css, tset) {
2151 		/*
2152 		 * can_attach beforehand should guarantee that this doesn't
2153 		 * fail.  TODO: have a better way to handle failure here
2154 		 */
2155 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2156 
2157 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2158 		cpuset_update_task_spread_flag(cs, task);
2159 	}
2160 
2161 	/*
2162 	 * Change mm for all threadgroup leaders. This is expensive and may
2163 	 * sleep and should be moved outside migration path proper.
2164 	 */
2165 	cpuset_attach_nodemask_to = cs->effective_mems;
2166 	cgroup_taskset_for_each_leader(leader, css, tset) {
2167 		struct mm_struct *mm = get_task_mm(leader);
2168 
2169 		if (mm) {
2170 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2171 
2172 			/*
2173 			 * old_mems_allowed is the same with mems_allowed
2174 			 * here, except if this task is being moved
2175 			 * automatically due to hotplug.  In that case
2176 			 * @mems_allowed has been updated and is empty, so
2177 			 * @old_mems_allowed is the right nodesets that we
2178 			 * migrate mm from.
2179 			 */
2180 			if (is_memory_migrate(cs))
2181 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2182 						  &cpuset_attach_nodemask_to);
2183 			else
2184 				mmput(mm);
2185 		}
2186 	}
2187 
2188 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2189 
2190 	cs->attach_in_progress--;
2191 	if (!cs->attach_in_progress)
2192 		wake_up(&cpuset_attach_wq);
2193 
2194 	mutex_unlock(&cpuset_mutex);
2195 }
2196 
2197 /* The various types of files and directories in a cpuset file system */
2198 
2199 typedef enum {
2200 	FILE_MEMORY_MIGRATE,
2201 	FILE_CPULIST,
2202 	FILE_MEMLIST,
2203 	FILE_EFFECTIVE_CPULIST,
2204 	FILE_EFFECTIVE_MEMLIST,
2205 	FILE_SUBPARTS_CPULIST,
2206 	FILE_CPU_EXCLUSIVE,
2207 	FILE_MEM_EXCLUSIVE,
2208 	FILE_MEM_HARDWALL,
2209 	FILE_SCHED_LOAD_BALANCE,
2210 	FILE_PARTITION_ROOT,
2211 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2212 	FILE_MEMORY_PRESSURE_ENABLED,
2213 	FILE_MEMORY_PRESSURE,
2214 	FILE_SPREAD_PAGE,
2215 	FILE_SPREAD_SLAB,
2216 } cpuset_filetype_t;
2217 
2218 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2219 			    u64 val)
2220 {
2221 	struct cpuset *cs = css_cs(css);
2222 	cpuset_filetype_t type = cft->private;
2223 	int retval = 0;
2224 
2225 	mutex_lock(&cpuset_mutex);
2226 	if (!is_cpuset_online(cs)) {
2227 		retval = -ENODEV;
2228 		goto out_unlock;
2229 	}
2230 
2231 	switch (type) {
2232 	case FILE_CPU_EXCLUSIVE:
2233 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2234 		break;
2235 	case FILE_MEM_EXCLUSIVE:
2236 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2237 		break;
2238 	case FILE_MEM_HARDWALL:
2239 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2240 		break;
2241 	case FILE_SCHED_LOAD_BALANCE:
2242 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2243 		break;
2244 	case FILE_MEMORY_MIGRATE:
2245 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2246 		break;
2247 	case FILE_MEMORY_PRESSURE_ENABLED:
2248 		cpuset_memory_pressure_enabled = !!val;
2249 		break;
2250 	case FILE_SPREAD_PAGE:
2251 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2252 		break;
2253 	case FILE_SPREAD_SLAB:
2254 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2255 		break;
2256 	default:
2257 		retval = -EINVAL;
2258 		break;
2259 	}
2260 out_unlock:
2261 	mutex_unlock(&cpuset_mutex);
2262 	return retval;
2263 }
2264 
2265 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2266 			    s64 val)
2267 {
2268 	struct cpuset *cs = css_cs(css);
2269 	cpuset_filetype_t type = cft->private;
2270 	int retval = -ENODEV;
2271 
2272 	mutex_lock(&cpuset_mutex);
2273 	if (!is_cpuset_online(cs))
2274 		goto out_unlock;
2275 
2276 	switch (type) {
2277 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2278 		retval = update_relax_domain_level(cs, val);
2279 		break;
2280 	default:
2281 		retval = -EINVAL;
2282 		break;
2283 	}
2284 out_unlock:
2285 	mutex_unlock(&cpuset_mutex);
2286 	return retval;
2287 }
2288 
2289 /*
2290  * Common handling for a write to a "cpus" or "mems" file.
2291  */
2292 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2293 				    char *buf, size_t nbytes, loff_t off)
2294 {
2295 	struct cpuset *cs = css_cs(of_css(of));
2296 	struct cpuset *trialcs;
2297 	int retval = -ENODEV;
2298 
2299 	buf = strstrip(buf);
2300 
2301 	/*
2302 	 * CPU or memory hotunplug may leave @cs w/o any execution
2303 	 * resources, in which case the hotplug code asynchronously updates
2304 	 * configuration and transfers all tasks to the nearest ancestor
2305 	 * which can execute.
2306 	 *
2307 	 * As writes to "cpus" or "mems" may restore @cs's execution
2308 	 * resources, wait for the previously scheduled operations before
2309 	 * proceeding, so that we don't end up keep removing tasks added
2310 	 * after execution capability is restored.
2311 	 *
2312 	 * cpuset_hotplug_work calls back into cgroup core via
2313 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2314 	 * operation like this one can lead to a deadlock through kernfs
2315 	 * active_ref protection.  Let's break the protection.  Losing the
2316 	 * protection is okay as we check whether @cs is online after
2317 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2318 	 * hierarchies.
2319 	 */
2320 	css_get(&cs->css);
2321 	kernfs_break_active_protection(of->kn);
2322 	flush_work(&cpuset_hotplug_work);
2323 
2324 	mutex_lock(&cpuset_mutex);
2325 	if (!is_cpuset_online(cs))
2326 		goto out_unlock;
2327 
2328 	trialcs = alloc_trial_cpuset(cs);
2329 	if (!trialcs) {
2330 		retval = -ENOMEM;
2331 		goto out_unlock;
2332 	}
2333 
2334 	switch (of_cft(of)->private) {
2335 	case FILE_CPULIST:
2336 		retval = update_cpumask(cs, trialcs, buf);
2337 		break;
2338 	case FILE_MEMLIST:
2339 		retval = update_nodemask(cs, trialcs, buf);
2340 		break;
2341 	default:
2342 		retval = -EINVAL;
2343 		break;
2344 	}
2345 
2346 	free_cpuset(trialcs);
2347 out_unlock:
2348 	mutex_unlock(&cpuset_mutex);
2349 	kernfs_unbreak_active_protection(of->kn);
2350 	css_put(&cs->css);
2351 	flush_workqueue(cpuset_migrate_mm_wq);
2352 	return retval ?: nbytes;
2353 }
2354 
2355 /*
2356  * These ascii lists should be read in a single call, by using a user
2357  * buffer large enough to hold the entire map.  If read in smaller
2358  * chunks, there is no guarantee of atomicity.  Since the display format
2359  * used, list of ranges of sequential numbers, is variable length,
2360  * and since these maps can change value dynamically, one could read
2361  * gibberish by doing partial reads while a list was changing.
2362  */
2363 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2364 {
2365 	struct cpuset *cs = css_cs(seq_css(sf));
2366 	cpuset_filetype_t type = seq_cft(sf)->private;
2367 	int ret = 0;
2368 
2369 	spin_lock_irq(&callback_lock);
2370 
2371 	switch (type) {
2372 	case FILE_CPULIST:
2373 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2374 		break;
2375 	case FILE_MEMLIST:
2376 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2377 		break;
2378 	case FILE_EFFECTIVE_CPULIST:
2379 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2380 		break;
2381 	case FILE_EFFECTIVE_MEMLIST:
2382 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2383 		break;
2384 	case FILE_SUBPARTS_CPULIST:
2385 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2386 		break;
2387 	default:
2388 		ret = -EINVAL;
2389 	}
2390 
2391 	spin_unlock_irq(&callback_lock);
2392 	return ret;
2393 }
2394 
2395 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2396 {
2397 	struct cpuset *cs = css_cs(css);
2398 	cpuset_filetype_t type = cft->private;
2399 	switch (type) {
2400 	case FILE_CPU_EXCLUSIVE:
2401 		return is_cpu_exclusive(cs);
2402 	case FILE_MEM_EXCLUSIVE:
2403 		return is_mem_exclusive(cs);
2404 	case FILE_MEM_HARDWALL:
2405 		return is_mem_hardwall(cs);
2406 	case FILE_SCHED_LOAD_BALANCE:
2407 		return is_sched_load_balance(cs);
2408 	case FILE_MEMORY_MIGRATE:
2409 		return is_memory_migrate(cs);
2410 	case FILE_MEMORY_PRESSURE_ENABLED:
2411 		return cpuset_memory_pressure_enabled;
2412 	case FILE_MEMORY_PRESSURE:
2413 		return fmeter_getrate(&cs->fmeter);
2414 	case FILE_SPREAD_PAGE:
2415 		return is_spread_page(cs);
2416 	case FILE_SPREAD_SLAB:
2417 		return is_spread_slab(cs);
2418 	default:
2419 		BUG();
2420 	}
2421 
2422 	/* Unreachable but makes gcc happy */
2423 	return 0;
2424 }
2425 
2426 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2427 {
2428 	struct cpuset *cs = css_cs(css);
2429 	cpuset_filetype_t type = cft->private;
2430 	switch (type) {
2431 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2432 		return cs->relax_domain_level;
2433 	default:
2434 		BUG();
2435 	}
2436 
2437 	/* Unrechable but makes gcc happy */
2438 	return 0;
2439 }
2440 
2441 static int sched_partition_show(struct seq_file *seq, void *v)
2442 {
2443 	struct cpuset *cs = css_cs(seq_css(seq));
2444 
2445 	switch (cs->partition_root_state) {
2446 	case PRS_ENABLED:
2447 		seq_puts(seq, "root\n");
2448 		break;
2449 	case PRS_DISABLED:
2450 		seq_puts(seq, "member\n");
2451 		break;
2452 	case PRS_ERROR:
2453 		seq_puts(seq, "root invalid\n");
2454 		break;
2455 	}
2456 	return 0;
2457 }
2458 
2459 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2460 				     size_t nbytes, loff_t off)
2461 {
2462 	struct cpuset *cs = css_cs(of_css(of));
2463 	int val;
2464 	int retval = -ENODEV;
2465 
2466 	buf = strstrip(buf);
2467 
2468 	/*
2469 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2470 	 */
2471 	if (!strcmp(buf, "root"))
2472 		val = PRS_ENABLED;
2473 	else if (!strcmp(buf, "member"))
2474 		val = PRS_DISABLED;
2475 	else
2476 		return -EINVAL;
2477 
2478 	css_get(&cs->css);
2479 	mutex_lock(&cpuset_mutex);
2480 	if (!is_cpuset_online(cs))
2481 		goto out_unlock;
2482 
2483 	retval = update_prstate(cs, val);
2484 out_unlock:
2485 	mutex_unlock(&cpuset_mutex);
2486 	css_put(&cs->css);
2487 	return retval ?: nbytes;
2488 }
2489 
2490 /*
2491  * for the common functions, 'private' gives the type of file
2492  */
2493 
2494 static struct cftype legacy_files[] = {
2495 	{
2496 		.name = "cpus",
2497 		.seq_show = cpuset_common_seq_show,
2498 		.write = cpuset_write_resmask,
2499 		.max_write_len = (100U + 6 * NR_CPUS),
2500 		.private = FILE_CPULIST,
2501 	},
2502 
2503 	{
2504 		.name = "mems",
2505 		.seq_show = cpuset_common_seq_show,
2506 		.write = cpuset_write_resmask,
2507 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2508 		.private = FILE_MEMLIST,
2509 	},
2510 
2511 	{
2512 		.name = "effective_cpus",
2513 		.seq_show = cpuset_common_seq_show,
2514 		.private = FILE_EFFECTIVE_CPULIST,
2515 	},
2516 
2517 	{
2518 		.name = "effective_mems",
2519 		.seq_show = cpuset_common_seq_show,
2520 		.private = FILE_EFFECTIVE_MEMLIST,
2521 	},
2522 
2523 	{
2524 		.name = "cpu_exclusive",
2525 		.read_u64 = cpuset_read_u64,
2526 		.write_u64 = cpuset_write_u64,
2527 		.private = FILE_CPU_EXCLUSIVE,
2528 	},
2529 
2530 	{
2531 		.name = "mem_exclusive",
2532 		.read_u64 = cpuset_read_u64,
2533 		.write_u64 = cpuset_write_u64,
2534 		.private = FILE_MEM_EXCLUSIVE,
2535 	},
2536 
2537 	{
2538 		.name = "mem_hardwall",
2539 		.read_u64 = cpuset_read_u64,
2540 		.write_u64 = cpuset_write_u64,
2541 		.private = FILE_MEM_HARDWALL,
2542 	},
2543 
2544 	{
2545 		.name = "sched_load_balance",
2546 		.read_u64 = cpuset_read_u64,
2547 		.write_u64 = cpuset_write_u64,
2548 		.private = FILE_SCHED_LOAD_BALANCE,
2549 	},
2550 
2551 	{
2552 		.name = "sched_relax_domain_level",
2553 		.read_s64 = cpuset_read_s64,
2554 		.write_s64 = cpuset_write_s64,
2555 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2556 	},
2557 
2558 	{
2559 		.name = "memory_migrate",
2560 		.read_u64 = cpuset_read_u64,
2561 		.write_u64 = cpuset_write_u64,
2562 		.private = FILE_MEMORY_MIGRATE,
2563 	},
2564 
2565 	{
2566 		.name = "memory_pressure",
2567 		.read_u64 = cpuset_read_u64,
2568 		.private = FILE_MEMORY_PRESSURE,
2569 	},
2570 
2571 	{
2572 		.name = "memory_spread_page",
2573 		.read_u64 = cpuset_read_u64,
2574 		.write_u64 = cpuset_write_u64,
2575 		.private = FILE_SPREAD_PAGE,
2576 	},
2577 
2578 	{
2579 		.name = "memory_spread_slab",
2580 		.read_u64 = cpuset_read_u64,
2581 		.write_u64 = cpuset_write_u64,
2582 		.private = FILE_SPREAD_SLAB,
2583 	},
2584 
2585 	{
2586 		.name = "memory_pressure_enabled",
2587 		.flags = CFTYPE_ONLY_ON_ROOT,
2588 		.read_u64 = cpuset_read_u64,
2589 		.write_u64 = cpuset_write_u64,
2590 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2591 	},
2592 
2593 	{ }	/* terminate */
2594 };
2595 
2596 /*
2597  * This is currently a minimal set for the default hierarchy. It can be
2598  * expanded later on by migrating more features and control files from v1.
2599  */
2600 static struct cftype dfl_files[] = {
2601 	{
2602 		.name = "cpus",
2603 		.seq_show = cpuset_common_seq_show,
2604 		.write = cpuset_write_resmask,
2605 		.max_write_len = (100U + 6 * NR_CPUS),
2606 		.private = FILE_CPULIST,
2607 		.flags = CFTYPE_NOT_ON_ROOT,
2608 	},
2609 
2610 	{
2611 		.name = "mems",
2612 		.seq_show = cpuset_common_seq_show,
2613 		.write = cpuset_write_resmask,
2614 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2615 		.private = FILE_MEMLIST,
2616 		.flags = CFTYPE_NOT_ON_ROOT,
2617 	},
2618 
2619 	{
2620 		.name = "cpus.effective",
2621 		.seq_show = cpuset_common_seq_show,
2622 		.private = FILE_EFFECTIVE_CPULIST,
2623 	},
2624 
2625 	{
2626 		.name = "mems.effective",
2627 		.seq_show = cpuset_common_seq_show,
2628 		.private = FILE_EFFECTIVE_MEMLIST,
2629 	},
2630 
2631 	{
2632 		.name = "cpus.partition",
2633 		.seq_show = sched_partition_show,
2634 		.write = sched_partition_write,
2635 		.private = FILE_PARTITION_ROOT,
2636 		.flags = CFTYPE_NOT_ON_ROOT,
2637 	},
2638 
2639 	{
2640 		.name = "cpus.subpartitions",
2641 		.seq_show = cpuset_common_seq_show,
2642 		.private = FILE_SUBPARTS_CPULIST,
2643 		.flags = CFTYPE_DEBUG,
2644 	},
2645 
2646 	{ }	/* terminate */
2647 };
2648 
2649 
2650 /*
2651  *	cpuset_css_alloc - allocate a cpuset css
2652  *	cgrp:	control group that the new cpuset will be part of
2653  */
2654 
2655 static struct cgroup_subsys_state *
2656 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2657 {
2658 	struct cpuset *cs;
2659 
2660 	if (!parent_css)
2661 		return &top_cpuset.css;
2662 
2663 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2664 	if (!cs)
2665 		return ERR_PTR(-ENOMEM);
2666 
2667 	if (alloc_cpumasks(cs, NULL)) {
2668 		kfree(cs);
2669 		return ERR_PTR(-ENOMEM);
2670 	}
2671 
2672 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2673 	nodes_clear(cs->mems_allowed);
2674 	nodes_clear(cs->effective_mems);
2675 	fmeter_init(&cs->fmeter);
2676 	cs->relax_domain_level = -1;
2677 
2678 	return &cs->css;
2679 }
2680 
2681 static int cpuset_css_online(struct cgroup_subsys_state *css)
2682 {
2683 	struct cpuset *cs = css_cs(css);
2684 	struct cpuset *parent = parent_cs(cs);
2685 	struct cpuset *tmp_cs;
2686 	struct cgroup_subsys_state *pos_css;
2687 
2688 	if (!parent)
2689 		return 0;
2690 
2691 	mutex_lock(&cpuset_mutex);
2692 
2693 	set_bit(CS_ONLINE, &cs->flags);
2694 	if (is_spread_page(parent))
2695 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2696 	if (is_spread_slab(parent))
2697 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2698 
2699 	cpuset_inc();
2700 
2701 	spin_lock_irq(&callback_lock);
2702 	if (is_in_v2_mode()) {
2703 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2704 		cs->effective_mems = parent->effective_mems;
2705 		cs->use_parent_ecpus = true;
2706 		parent->child_ecpus_count++;
2707 	}
2708 	spin_unlock_irq(&callback_lock);
2709 
2710 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2711 		goto out_unlock;
2712 
2713 	/*
2714 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2715 	 * set.  This flag handling is implemented in cgroup core for
2716 	 * histrical reasons - the flag may be specified during mount.
2717 	 *
2718 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2719 	 * refuse to clone the configuration - thereby refusing the task to
2720 	 * be entered, and as a result refusing the sys_unshare() or
2721 	 * clone() which initiated it.  If this becomes a problem for some
2722 	 * users who wish to allow that scenario, then this could be
2723 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2724 	 * (and likewise for mems) to the new cgroup.
2725 	 */
2726 	rcu_read_lock();
2727 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2728 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2729 			rcu_read_unlock();
2730 			goto out_unlock;
2731 		}
2732 	}
2733 	rcu_read_unlock();
2734 
2735 	spin_lock_irq(&callback_lock);
2736 	cs->mems_allowed = parent->mems_allowed;
2737 	cs->effective_mems = parent->mems_allowed;
2738 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2739 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2740 	spin_unlock_irq(&callback_lock);
2741 out_unlock:
2742 	mutex_unlock(&cpuset_mutex);
2743 	return 0;
2744 }
2745 
2746 /*
2747  * If the cpuset being removed has its flag 'sched_load_balance'
2748  * enabled, then simulate turning sched_load_balance off, which
2749  * will call rebuild_sched_domains_locked(). That is not needed
2750  * in the default hierarchy where only changes in partition
2751  * will cause repartitioning.
2752  *
2753  * If the cpuset has the 'sched.partition' flag enabled, simulate
2754  * turning 'sched.partition" off.
2755  */
2756 
2757 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2758 {
2759 	struct cpuset *cs = css_cs(css);
2760 
2761 	mutex_lock(&cpuset_mutex);
2762 
2763 	if (is_partition_root(cs))
2764 		update_prstate(cs, 0);
2765 
2766 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2767 	    is_sched_load_balance(cs))
2768 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2769 
2770 	if (cs->use_parent_ecpus) {
2771 		struct cpuset *parent = parent_cs(cs);
2772 
2773 		cs->use_parent_ecpus = false;
2774 		parent->child_ecpus_count--;
2775 	}
2776 
2777 	cpuset_dec();
2778 	clear_bit(CS_ONLINE, &cs->flags);
2779 
2780 	mutex_unlock(&cpuset_mutex);
2781 }
2782 
2783 static void cpuset_css_free(struct cgroup_subsys_state *css)
2784 {
2785 	struct cpuset *cs = css_cs(css);
2786 
2787 	free_cpuset(cs);
2788 }
2789 
2790 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2791 {
2792 	mutex_lock(&cpuset_mutex);
2793 	spin_lock_irq(&callback_lock);
2794 
2795 	if (is_in_v2_mode()) {
2796 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2797 		top_cpuset.mems_allowed = node_possible_map;
2798 	} else {
2799 		cpumask_copy(top_cpuset.cpus_allowed,
2800 			     top_cpuset.effective_cpus);
2801 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2802 	}
2803 
2804 	spin_unlock_irq(&callback_lock);
2805 	mutex_unlock(&cpuset_mutex);
2806 }
2807 
2808 /*
2809  * Make sure the new task conform to the current state of its parent,
2810  * which could have been changed by cpuset just after it inherits the
2811  * state from the parent and before it sits on the cgroup's task list.
2812  */
2813 static void cpuset_fork(struct task_struct *task)
2814 {
2815 	if (task_css_is_root(task, cpuset_cgrp_id))
2816 		return;
2817 
2818 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2819 	task->mems_allowed = current->mems_allowed;
2820 }
2821 
2822 struct cgroup_subsys cpuset_cgrp_subsys = {
2823 	.css_alloc	= cpuset_css_alloc,
2824 	.css_online	= cpuset_css_online,
2825 	.css_offline	= cpuset_css_offline,
2826 	.css_free	= cpuset_css_free,
2827 	.can_attach	= cpuset_can_attach,
2828 	.cancel_attach	= cpuset_cancel_attach,
2829 	.attach		= cpuset_attach,
2830 	.post_attach	= cpuset_post_attach,
2831 	.bind		= cpuset_bind,
2832 	.fork		= cpuset_fork,
2833 	.legacy_cftypes	= legacy_files,
2834 	.dfl_cftypes	= dfl_files,
2835 	.early_init	= true,
2836 	.threaded	= true,
2837 };
2838 
2839 /**
2840  * cpuset_init - initialize cpusets at system boot
2841  *
2842  * Description: Initialize top_cpuset and the cpuset internal file system,
2843  **/
2844 
2845 int __init cpuset_init(void)
2846 {
2847 	int err = 0;
2848 
2849 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2850 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2851 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2852 
2853 	cpumask_setall(top_cpuset.cpus_allowed);
2854 	nodes_setall(top_cpuset.mems_allowed);
2855 	cpumask_setall(top_cpuset.effective_cpus);
2856 	nodes_setall(top_cpuset.effective_mems);
2857 
2858 	fmeter_init(&top_cpuset.fmeter);
2859 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2860 	top_cpuset.relax_domain_level = -1;
2861 
2862 	err = register_filesystem(&cpuset_fs_type);
2863 	if (err < 0)
2864 		return err;
2865 
2866 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2867 
2868 	return 0;
2869 }
2870 
2871 /*
2872  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2873  * or memory nodes, we need to walk over the cpuset hierarchy,
2874  * removing that CPU or node from all cpusets.  If this removes the
2875  * last CPU or node from a cpuset, then move the tasks in the empty
2876  * cpuset to its next-highest non-empty parent.
2877  */
2878 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2879 {
2880 	struct cpuset *parent;
2881 
2882 	/*
2883 	 * Find its next-highest non-empty parent, (top cpuset
2884 	 * has online cpus, so can't be empty).
2885 	 */
2886 	parent = parent_cs(cs);
2887 	while (cpumask_empty(parent->cpus_allowed) ||
2888 			nodes_empty(parent->mems_allowed))
2889 		parent = parent_cs(parent);
2890 
2891 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2892 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2893 		pr_cont_cgroup_name(cs->css.cgroup);
2894 		pr_cont("\n");
2895 	}
2896 }
2897 
2898 static void
2899 hotplug_update_tasks_legacy(struct cpuset *cs,
2900 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2901 			    bool cpus_updated, bool mems_updated)
2902 {
2903 	bool is_empty;
2904 
2905 	spin_lock_irq(&callback_lock);
2906 	cpumask_copy(cs->cpus_allowed, new_cpus);
2907 	cpumask_copy(cs->effective_cpus, new_cpus);
2908 	cs->mems_allowed = *new_mems;
2909 	cs->effective_mems = *new_mems;
2910 	spin_unlock_irq(&callback_lock);
2911 
2912 	/*
2913 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2914 	 * as the tasks will be migratecd to an ancestor.
2915 	 */
2916 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2917 		update_tasks_cpumask(cs);
2918 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2919 		update_tasks_nodemask(cs);
2920 
2921 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2922 		   nodes_empty(cs->mems_allowed);
2923 
2924 	mutex_unlock(&cpuset_mutex);
2925 
2926 	/*
2927 	 * Move tasks to the nearest ancestor with execution resources,
2928 	 * This is full cgroup operation which will also call back into
2929 	 * cpuset. Should be done outside any lock.
2930 	 */
2931 	if (is_empty)
2932 		remove_tasks_in_empty_cpuset(cs);
2933 
2934 	mutex_lock(&cpuset_mutex);
2935 }
2936 
2937 static void
2938 hotplug_update_tasks(struct cpuset *cs,
2939 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2940 		     bool cpus_updated, bool mems_updated)
2941 {
2942 	if (cpumask_empty(new_cpus))
2943 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2944 	if (nodes_empty(*new_mems))
2945 		*new_mems = parent_cs(cs)->effective_mems;
2946 
2947 	spin_lock_irq(&callback_lock);
2948 	cpumask_copy(cs->effective_cpus, new_cpus);
2949 	cs->effective_mems = *new_mems;
2950 	spin_unlock_irq(&callback_lock);
2951 
2952 	if (cpus_updated)
2953 		update_tasks_cpumask(cs);
2954 	if (mems_updated)
2955 		update_tasks_nodemask(cs);
2956 }
2957 
2958 static bool force_rebuild;
2959 
2960 void cpuset_force_rebuild(void)
2961 {
2962 	force_rebuild = true;
2963 }
2964 
2965 /**
2966  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2967  * @cs: cpuset in interest
2968  * @tmp: the tmpmasks structure pointer
2969  *
2970  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2971  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2972  * all its tasks are moved to the nearest ancestor with both resources.
2973  */
2974 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2975 {
2976 	static cpumask_t new_cpus;
2977 	static nodemask_t new_mems;
2978 	bool cpus_updated;
2979 	bool mems_updated;
2980 	struct cpuset *parent;
2981 retry:
2982 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2983 
2984 	mutex_lock(&cpuset_mutex);
2985 
2986 	/*
2987 	 * We have raced with task attaching. We wait until attaching
2988 	 * is finished, so we won't attach a task to an empty cpuset.
2989 	 */
2990 	if (cs->attach_in_progress) {
2991 		mutex_unlock(&cpuset_mutex);
2992 		goto retry;
2993 	}
2994 
2995 	parent =  parent_cs(cs);
2996 	compute_effective_cpumask(&new_cpus, cs, parent);
2997 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
2998 
2999 	if (cs->nr_subparts_cpus)
3000 		/*
3001 		 * Make sure that CPUs allocated to child partitions
3002 		 * do not show up in effective_cpus.
3003 		 */
3004 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3005 
3006 	if (!tmp || !cs->partition_root_state)
3007 		goto update_tasks;
3008 
3009 	/*
3010 	 * In the unlikely event that a partition root has empty
3011 	 * effective_cpus or its parent becomes erroneous, we have to
3012 	 * transition it to the erroneous state.
3013 	 */
3014 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3015 	   (parent->partition_root_state == PRS_ERROR))) {
3016 		if (cs->nr_subparts_cpus) {
3017 			cs->nr_subparts_cpus = 0;
3018 			cpumask_clear(cs->subparts_cpus);
3019 			compute_effective_cpumask(&new_cpus, cs, parent);
3020 		}
3021 
3022 		/*
3023 		 * If the effective_cpus is empty because the child
3024 		 * partitions take away all the CPUs, we can keep
3025 		 * the current partition and let the child partitions
3026 		 * fight for available CPUs.
3027 		 */
3028 		if ((parent->partition_root_state == PRS_ERROR) ||
3029 		     cpumask_empty(&new_cpus)) {
3030 			update_parent_subparts_cpumask(cs, partcmd_disable,
3031 						       NULL, tmp);
3032 			cs->partition_root_state = PRS_ERROR;
3033 		}
3034 		cpuset_force_rebuild();
3035 	}
3036 
3037 	/*
3038 	 * On the other hand, an erroneous partition root may be transitioned
3039 	 * back to a regular one or a partition root with no CPU allocated
3040 	 * from the parent may change to erroneous.
3041 	 */
3042 	if (is_partition_root(parent) &&
3043 	   ((cs->partition_root_state == PRS_ERROR) ||
3044 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3045 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3046 		cpuset_force_rebuild();
3047 
3048 update_tasks:
3049 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3050 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3051 
3052 	if (is_in_v2_mode())
3053 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3054 				     cpus_updated, mems_updated);
3055 	else
3056 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3057 					    cpus_updated, mems_updated);
3058 
3059 	mutex_unlock(&cpuset_mutex);
3060 }
3061 
3062 /**
3063  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3064  *
3065  * This function is called after either CPU or memory configuration has
3066  * changed and updates cpuset accordingly.  The top_cpuset is always
3067  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3068  * order to make cpusets transparent (of no affect) on systems that are
3069  * actively using CPU hotplug but making no active use of cpusets.
3070  *
3071  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3072  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3073  * all descendants.
3074  *
3075  * Note that CPU offlining during suspend is ignored.  We don't modify
3076  * cpusets across suspend/resume cycles at all.
3077  */
3078 static void cpuset_hotplug_workfn(struct work_struct *work)
3079 {
3080 	static cpumask_t new_cpus;
3081 	static nodemask_t new_mems;
3082 	bool cpus_updated, mems_updated;
3083 	bool on_dfl = is_in_v2_mode();
3084 	struct tmpmasks tmp, *ptmp = NULL;
3085 
3086 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3087 		ptmp = &tmp;
3088 
3089 	mutex_lock(&cpuset_mutex);
3090 
3091 	/* fetch the available cpus/mems and find out which changed how */
3092 	cpumask_copy(&new_cpus, cpu_active_mask);
3093 	new_mems = node_states[N_MEMORY];
3094 
3095 	/*
3096 	 * If subparts_cpus is populated, it is likely that the check below
3097 	 * will produce a false positive on cpus_updated when the cpu list
3098 	 * isn't changed. It is extra work, but it is better to be safe.
3099 	 */
3100 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3101 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3102 
3103 	/* synchronize cpus_allowed to cpu_active_mask */
3104 	if (cpus_updated) {
3105 		spin_lock_irq(&callback_lock);
3106 		if (!on_dfl)
3107 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3108 		/*
3109 		 * Make sure that CPUs allocated to child partitions
3110 		 * do not show up in effective_cpus. If no CPU is left,
3111 		 * we clear the subparts_cpus & let the child partitions
3112 		 * fight for the CPUs again.
3113 		 */
3114 		if (top_cpuset.nr_subparts_cpus) {
3115 			if (cpumask_subset(&new_cpus,
3116 					   top_cpuset.subparts_cpus)) {
3117 				top_cpuset.nr_subparts_cpus = 0;
3118 				cpumask_clear(top_cpuset.subparts_cpus);
3119 			} else {
3120 				cpumask_andnot(&new_cpus, &new_cpus,
3121 					       top_cpuset.subparts_cpus);
3122 			}
3123 		}
3124 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3125 		spin_unlock_irq(&callback_lock);
3126 		/* we don't mess with cpumasks of tasks in top_cpuset */
3127 	}
3128 
3129 	/* synchronize mems_allowed to N_MEMORY */
3130 	if (mems_updated) {
3131 		spin_lock_irq(&callback_lock);
3132 		if (!on_dfl)
3133 			top_cpuset.mems_allowed = new_mems;
3134 		top_cpuset.effective_mems = new_mems;
3135 		spin_unlock_irq(&callback_lock);
3136 		update_tasks_nodemask(&top_cpuset);
3137 	}
3138 
3139 	mutex_unlock(&cpuset_mutex);
3140 
3141 	/* if cpus or mems changed, we need to propagate to descendants */
3142 	if (cpus_updated || mems_updated) {
3143 		struct cpuset *cs;
3144 		struct cgroup_subsys_state *pos_css;
3145 
3146 		rcu_read_lock();
3147 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3148 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3149 				continue;
3150 			rcu_read_unlock();
3151 
3152 			cpuset_hotplug_update_tasks(cs, ptmp);
3153 
3154 			rcu_read_lock();
3155 			css_put(&cs->css);
3156 		}
3157 		rcu_read_unlock();
3158 	}
3159 
3160 	/* rebuild sched domains if cpus_allowed has changed */
3161 	if (cpus_updated || force_rebuild) {
3162 		force_rebuild = false;
3163 		rebuild_sched_domains();
3164 	}
3165 
3166 	free_cpumasks(NULL, ptmp);
3167 }
3168 
3169 void cpuset_update_active_cpus(void)
3170 {
3171 	/*
3172 	 * We're inside cpu hotplug critical region which usually nests
3173 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3174 	 * to a work item to avoid reverse locking order.
3175 	 */
3176 	schedule_work(&cpuset_hotplug_work);
3177 }
3178 
3179 void cpuset_wait_for_hotplug(void)
3180 {
3181 	flush_work(&cpuset_hotplug_work);
3182 }
3183 
3184 /*
3185  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3186  * Call this routine anytime after node_states[N_MEMORY] changes.
3187  * See cpuset_update_active_cpus() for CPU hotplug handling.
3188  */
3189 static int cpuset_track_online_nodes(struct notifier_block *self,
3190 				unsigned long action, void *arg)
3191 {
3192 	schedule_work(&cpuset_hotplug_work);
3193 	return NOTIFY_OK;
3194 }
3195 
3196 static struct notifier_block cpuset_track_online_nodes_nb = {
3197 	.notifier_call = cpuset_track_online_nodes,
3198 	.priority = 10,		/* ??! */
3199 };
3200 
3201 /**
3202  * cpuset_init_smp - initialize cpus_allowed
3203  *
3204  * Description: Finish top cpuset after cpu, node maps are initialized
3205  */
3206 void __init cpuset_init_smp(void)
3207 {
3208 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3209 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3210 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3211 
3212 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3213 	top_cpuset.effective_mems = node_states[N_MEMORY];
3214 
3215 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3216 
3217 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3218 	BUG_ON(!cpuset_migrate_mm_wq);
3219 }
3220 
3221 /**
3222  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3223  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3224  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3225  *
3226  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3227  * attached to the specified @tsk.  Guaranteed to return some non-empty
3228  * subset of cpu_online_mask, even if this means going outside the
3229  * tasks cpuset.
3230  **/
3231 
3232 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3233 {
3234 	unsigned long flags;
3235 
3236 	spin_lock_irqsave(&callback_lock, flags);
3237 	rcu_read_lock();
3238 	guarantee_online_cpus(task_cs(tsk), pmask);
3239 	rcu_read_unlock();
3240 	spin_unlock_irqrestore(&callback_lock, flags);
3241 }
3242 
3243 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3244 {
3245 	rcu_read_lock();
3246 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
3247 	rcu_read_unlock();
3248 
3249 	/*
3250 	 * We own tsk->cpus_allowed, nobody can change it under us.
3251 	 *
3252 	 * But we used cs && cs->cpus_allowed lockless and thus can
3253 	 * race with cgroup_attach_task() or update_cpumask() and get
3254 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3255 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3256 	 * which takes task_rq_lock().
3257 	 *
3258 	 * If we are called after it dropped the lock we must see all
3259 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3260 	 * set any mask even if it is not right from task_cs() pov,
3261 	 * the pending set_cpus_allowed_ptr() will fix things.
3262 	 *
3263 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3264 	 * if required.
3265 	 */
3266 }
3267 
3268 void __init cpuset_init_current_mems_allowed(void)
3269 {
3270 	nodes_setall(current->mems_allowed);
3271 }
3272 
3273 /**
3274  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3275  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3276  *
3277  * Description: Returns the nodemask_t mems_allowed of the cpuset
3278  * attached to the specified @tsk.  Guaranteed to return some non-empty
3279  * subset of node_states[N_MEMORY], even if this means going outside the
3280  * tasks cpuset.
3281  **/
3282 
3283 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3284 {
3285 	nodemask_t mask;
3286 	unsigned long flags;
3287 
3288 	spin_lock_irqsave(&callback_lock, flags);
3289 	rcu_read_lock();
3290 	guarantee_online_mems(task_cs(tsk), &mask);
3291 	rcu_read_unlock();
3292 	spin_unlock_irqrestore(&callback_lock, flags);
3293 
3294 	return mask;
3295 }
3296 
3297 /**
3298  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3299  * @nodemask: the nodemask to be checked
3300  *
3301  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3302  */
3303 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3304 {
3305 	return nodes_intersects(*nodemask, current->mems_allowed);
3306 }
3307 
3308 /*
3309  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3310  * mem_hardwall ancestor to the specified cpuset.  Call holding
3311  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3312  * (an unusual configuration), then returns the root cpuset.
3313  */
3314 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3315 {
3316 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3317 		cs = parent_cs(cs);
3318 	return cs;
3319 }
3320 
3321 /**
3322  * cpuset_node_allowed - Can we allocate on a memory node?
3323  * @node: is this an allowed node?
3324  * @gfp_mask: memory allocation flags
3325  *
3326  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3327  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3328  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3329  * yes.  If current has access to memory reserves as an oom victim, yes.
3330  * Otherwise, no.
3331  *
3332  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3333  * and do not allow allocations outside the current tasks cpuset
3334  * unless the task has been OOM killed.
3335  * GFP_KERNEL allocations are not so marked, so can escape to the
3336  * nearest enclosing hardwalled ancestor cpuset.
3337  *
3338  * Scanning up parent cpusets requires callback_lock.  The
3339  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3340  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3341  * current tasks mems_allowed came up empty on the first pass over
3342  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3343  * cpuset are short of memory, might require taking the callback_lock.
3344  *
3345  * The first call here from mm/page_alloc:get_page_from_freelist()
3346  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3347  * so no allocation on a node outside the cpuset is allowed (unless
3348  * in interrupt, of course).
3349  *
3350  * The second pass through get_page_from_freelist() doesn't even call
3351  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3352  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3353  * in alloc_flags.  That logic and the checks below have the combined
3354  * affect that:
3355  *	in_interrupt - any node ok (current task context irrelevant)
3356  *	GFP_ATOMIC   - any node ok
3357  *	tsk_is_oom_victim   - any node ok
3358  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3359  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3360  */
3361 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3362 {
3363 	struct cpuset *cs;		/* current cpuset ancestors */
3364 	int allowed;			/* is allocation in zone z allowed? */
3365 	unsigned long flags;
3366 
3367 	if (in_interrupt())
3368 		return true;
3369 	if (node_isset(node, current->mems_allowed))
3370 		return true;
3371 	/*
3372 	 * Allow tasks that have access to memory reserves because they have
3373 	 * been OOM killed to get memory anywhere.
3374 	 */
3375 	if (unlikely(tsk_is_oom_victim(current)))
3376 		return true;
3377 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3378 		return false;
3379 
3380 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3381 		return true;
3382 
3383 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3384 	spin_lock_irqsave(&callback_lock, flags);
3385 
3386 	rcu_read_lock();
3387 	cs = nearest_hardwall_ancestor(task_cs(current));
3388 	allowed = node_isset(node, cs->mems_allowed);
3389 	rcu_read_unlock();
3390 
3391 	spin_unlock_irqrestore(&callback_lock, flags);
3392 	return allowed;
3393 }
3394 
3395 /**
3396  * cpuset_mem_spread_node() - On which node to begin search for a file page
3397  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3398  *
3399  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3400  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3401  * and if the memory allocation used cpuset_mem_spread_node()
3402  * to determine on which node to start looking, as it will for
3403  * certain page cache or slab cache pages such as used for file
3404  * system buffers and inode caches, then instead of starting on the
3405  * local node to look for a free page, rather spread the starting
3406  * node around the tasks mems_allowed nodes.
3407  *
3408  * We don't have to worry about the returned node being offline
3409  * because "it can't happen", and even if it did, it would be ok.
3410  *
3411  * The routines calling guarantee_online_mems() are careful to
3412  * only set nodes in task->mems_allowed that are online.  So it
3413  * should not be possible for the following code to return an
3414  * offline node.  But if it did, that would be ok, as this routine
3415  * is not returning the node where the allocation must be, only
3416  * the node where the search should start.  The zonelist passed to
3417  * __alloc_pages() will include all nodes.  If the slab allocator
3418  * is passed an offline node, it will fall back to the local node.
3419  * See kmem_cache_alloc_node().
3420  */
3421 
3422 static int cpuset_spread_node(int *rotor)
3423 {
3424 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3425 }
3426 
3427 int cpuset_mem_spread_node(void)
3428 {
3429 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3430 		current->cpuset_mem_spread_rotor =
3431 			node_random(&current->mems_allowed);
3432 
3433 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3434 }
3435 
3436 int cpuset_slab_spread_node(void)
3437 {
3438 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3439 		current->cpuset_slab_spread_rotor =
3440 			node_random(&current->mems_allowed);
3441 
3442 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3443 }
3444 
3445 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3446 
3447 /**
3448  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3449  * @tsk1: pointer to task_struct of some task.
3450  * @tsk2: pointer to task_struct of some other task.
3451  *
3452  * Description: Return true if @tsk1's mems_allowed intersects the
3453  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3454  * one of the task's memory usage might impact the memory available
3455  * to the other.
3456  **/
3457 
3458 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3459 				   const struct task_struct *tsk2)
3460 {
3461 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3462 }
3463 
3464 /**
3465  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3466  *
3467  * Description: Prints current's name, cpuset name, and cached copy of its
3468  * mems_allowed to the kernel log.
3469  */
3470 void cpuset_print_current_mems_allowed(void)
3471 {
3472 	struct cgroup *cgrp;
3473 
3474 	rcu_read_lock();
3475 
3476 	cgrp = task_cs(current)->css.cgroup;
3477 	pr_cont(",cpuset=");
3478 	pr_cont_cgroup_name(cgrp);
3479 	pr_cont(",mems_allowed=%*pbl",
3480 		nodemask_pr_args(&current->mems_allowed));
3481 
3482 	rcu_read_unlock();
3483 }
3484 
3485 /*
3486  * Collection of memory_pressure is suppressed unless
3487  * this flag is enabled by writing "1" to the special
3488  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3489  */
3490 
3491 int cpuset_memory_pressure_enabled __read_mostly;
3492 
3493 /**
3494  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3495  *
3496  * Keep a running average of the rate of synchronous (direct)
3497  * page reclaim efforts initiated by tasks in each cpuset.
3498  *
3499  * This represents the rate at which some task in the cpuset
3500  * ran low on memory on all nodes it was allowed to use, and
3501  * had to enter the kernels page reclaim code in an effort to
3502  * create more free memory by tossing clean pages or swapping
3503  * or writing dirty pages.
3504  *
3505  * Display to user space in the per-cpuset read-only file
3506  * "memory_pressure".  Value displayed is an integer
3507  * representing the recent rate of entry into the synchronous
3508  * (direct) page reclaim by any task attached to the cpuset.
3509  **/
3510 
3511 void __cpuset_memory_pressure_bump(void)
3512 {
3513 	rcu_read_lock();
3514 	fmeter_markevent(&task_cs(current)->fmeter);
3515 	rcu_read_unlock();
3516 }
3517 
3518 #ifdef CONFIG_PROC_PID_CPUSET
3519 /*
3520  * proc_cpuset_show()
3521  *  - Print tasks cpuset path into seq_file.
3522  *  - Used for /proc/<pid>/cpuset.
3523  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3524  *    doesn't really matter if tsk->cpuset changes after we read it,
3525  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3526  *    anyway.
3527  */
3528 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3529 		     struct pid *pid, struct task_struct *tsk)
3530 {
3531 	char *buf;
3532 	struct cgroup_subsys_state *css;
3533 	int retval;
3534 
3535 	retval = -ENOMEM;
3536 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3537 	if (!buf)
3538 		goto out;
3539 
3540 	css = task_get_css(tsk, cpuset_cgrp_id);
3541 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3542 				current->nsproxy->cgroup_ns);
3543 	css_put(css);
3544 	if (retval >= PATH_MAX)
3545 		retval = -ENAMETOOLONG;
3546 	if (retval < 0)
3547 		goto out_free;
3548 	seq_puts(m, buf);
3549 	seq_putc(m, '\n');
3550 	retval = 0;
3551 out_free:
3552 	kfree(buf);
3553 out:
3554 	return retval;
3555 }
3556 #endif /* CONFIG_PROC_PID_CPUSET */
3557 
3558 /* Display task mems_allowed in /proc/<pid>/status file. */
3559 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3560 {
3561 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3562 		   nodemask_pr_args(&task->mems_allowed));
3563 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3564 		   nodemask_pr_args(&task->mems_allowed));
3565 }
3566