xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 9e3bd0f6)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierachy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	nodemask_t mems_allowed;
109 
110 	/* effective CPUs and Memory Nodes allow to tasks */
111 	cpumask_var_t effective_cpus;
112 	nodemask_t effective_mems;
113 
114 	/*
115 	 * CPUs allocated to child sub-partitions (default hierarchy only)
116 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 	 * - effective_cpus and subparts_cpus are mutually exclusive.
118 	 *
119 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 	 * may have offlined ones.
121 	 */
122 	cpumask_var_t subparts_cpus;
123 
124 	/*
125 	 * This is old Memory Nodes tasks took on.
126 	 *
127 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 	 * - A new cpuset's old_mems_allowed is initialized when some
129 	 *   task is moved into it.
130 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
132 	 *   then old_mems_allowed is updated to mems_allowed.
133 	 */
134 	nodemask_t old_mems_allowed;
135 
136 	struct fmeter fmeter;		/* memory_pressure filter */
137 
138 	/*
139 	 * Tasks are being attached to this cpuset.  Used to prevent
140 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 	 */
142 	int attach_in_progress;
143 
144 	/* partition number for rebuild_sched_domains() */
145 	int pn;
146 
147 	/* for custom sched domain */
148 	int relax_domain_level;
149 
150 	/* number of CPUs in subparts_cpus */
151 	int nr_subparts_cpus;
152 
153 	/* partition root state */
154 	int partition_root_state;
155 
156 	/*
157 	 * Default hierarchy only:
158 	 * use_parent_ecpus - set if using parent's effective_cpus
159 	 * child_ecpus_count - # of children with use_parent_ecpus set
160 	 */
161 	int use_parent_ecpus;
162 	int child_ecpus_count;
163 };
164 
165 /*
166  * Partition root states:
167  *
168  *   0 - not a partition root
169  *
170  *   1 - partition root
171  *
172  *  -1 - invalid partition root
173  *       None of the cpus in cpus_allowed can be put into the parent's
174  *       subparts_cpus. In this case, the cpuset is not a real partition
175  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
176  *       and the cpuset can be restored back to a partition root if the
177  *       parent cpuset can give more CPUs back to this child cpuset.
178  */
179 #define PRS_DISABLED		0
180 #define PRS_ENABLED		1
181 #define PRS_ERROR		-1
182 
183 /*
184  * Temporary cpumasks for working with partitions that are passed among
185  * functions to avoid memory allocation in inner functions.
186  */
187 struct tmpmasks {
188 	cpumask_var_t addmask, delmask;	/* For partition root */
189 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
190 };
191 
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 	return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196 
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 	return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202 
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 	return css_cs(cs->css.parent);
206 }
207 
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 	CS_ONLINE,
211 	CS_CPU_EXCLUSIVE,
212 	CS_MEM_EXCLUSIVE,
213 	CS_MEM_HARDWALL,
214 	CS_MEMORY_MIGRATE,
215 	CS_SCHED_LOAD_BALANCE,
216 	CS_SPREAD_PAGE,
217 	CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219 
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225 
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230 
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235 
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240 
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245 
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250 
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255 
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260 
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 	return cs->partition_root_state > 0;
264 }
265 
266 static struct cpuset top_cpuset = {
267 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 		  (1 << CS_MEM_EXCLUSIVE)),
269 	.partition_root_state = PRS_ENABLED,
270 };
271 
272 /**
273  * cpuset_for_each_child - traverse online children of a cpuset
274  * @child_cs: loop cursor pointing to the current child
275  * @pos_css: used for iteration
276  * @parent_cs: target cpuset to walk children of
277  *
278  * Walk @child_cs through the online children of @parent_cs.  Must be used
279  * with RCU read locked.
280  */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
282 	css_for_each_child((pos_css), &(parent_cs)->css)		\
283 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284 
285 /**
286  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287  * @des_cs: loop cursor pointing to the current descendant
288  * @pos_css: used for iteration
289  * @root_cs: target cpuset to walk ancestor of
290  *
291  * Walk @des_cs through the online descendants of @root_cs.  Must be used
292  * with RCU read locked.  The caller may modify @pos_css by calling
293  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
294  * iteration and the first node to be visited.
295  */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
297 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
298 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299 
300 /*
301  * There are two global locks guarding cpuset structures - cpuset_mutex and
302  * callback_lock. We also require taking task_lock() when dereferencing a
303  * task's cpuset pointer. See "The task_lock() exception", at the end of this
304  * comment.
305  *
306  * A task must hold both locks to modify cpusets.  If a task holds
307  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308  * is the only task able to also acquire callback_lock and be able to
309  * modify cpusets.  It can perform various checks on the cpuset structure
310  * first, knowing nothing will change.  It can also allocate memory while
311  * just holding cpuset_mutex.  While it is performing these checks, various
312  * callback routines can briefly acquire callback_lock to query cpusets.
313  * Once it is ready to make the changes, it takes callback_lock, blocking
314  * everyone else.
315  *
316  * Calls to the kernel memory allocator can not be made while holding
317  * callback_lock, as that would risk double tripping on callback_lock
318  * from one of the callbacks into the cpuset code from within
319  * __alloc_pages().
320  *
321  * If a task is only holding callback_lock, then it has read-only
322  * access to cpusets.
323  *
324  * Now, the task_struct fields mems_allowed and mempolicy may be changed
325  * by other task, we use alloc_lock in the task_struct fields to protect
326  * them.
327  *
328  * The cpuset_common_file_read() handlers only hold callback_lock across
329  * small pieces of code, such as when reading out possibly multi-word
330  * cpumasks and nodemasks.
331  *
332  * Accessing a task's cpuset should be done in accordance with the
333  * guidelines for accessing subsystem state in kernel/cgroup.c
334  */
335 
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337 
338 void cpuset_read_lock(void)
339 {
340 	percpu_down_read(&cpuset_rwsem);
341 }
342 
343 void cpuset_read_unlock(void)
344 {
345 	percpu_up_read(&cpuset_rwsem);
346 }
347 
348 static DEFINE_SPINLOCK(callback_lock);
349 
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351 
352 /*
353  * CPU / memory hotplug is handled asynchronously.
354  */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357 
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359 
360 /*
361  * Cgroup v2 behavior is used when on default hierarchy or the
362  * cgroup_v2_mode flag is set.
363  */
364 static inline bool is_in_v2_mode(void)
365 {
366 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
367 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
368 }
369 
370 /*
371  * Return in pmask the portion of a cpusets's cpus_allowed that
372  * are online.  If none are online, walk up the cpuset hierarchy
373  * until we find one that does have some online cpus.
374  *
375  * One way or another, we guarantee to return some non-empty subset
376  * of cpu_online_mask.
377  *
378  * Call with callback_lock or cpuset_mutex held.
379  */
380 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
381 {
382 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
383 		cs = parent_cs(cs);
384 		if (unlikely(!cs)) {
385 			/*
386 			 * The top cpuset doesn't have any online cpu as a
387 			 * consequence of a race between cpuset_hotplug_work
388 			 * and cpu hotplug notifier.  But we know the top
389 			 * cpuset's effective_cpus is on its way to to be
390 			 * identical to cpu_online_mask.
391 			 */
392 			cpumask_copy(pmask, cpu_online_mask);
393 			return;
394 		}
395 	}
396 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
397 }
398 
399 /*
400  * Return in *pmask the portion of a cpusets's mems_allowed that
401  * are online, with memory.  If none are online with memory, walk
402  * up the cpuset hierarchy until we find one that does have some
403  * online mems.  The top cpuset always has some mems online.
404  *
405  * One way or another, we guarantee to return some non-empty subset
406  * of node_states[N_MEMORY].
407  *
408  * Call with callback_lock or cpuset_mutex held.
409  */
410 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
411 {
412 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
413 		cs = parent_cs(cs);
414 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
415 }
416 
417 /*
418  * update task's spread flag if cpuset's page/slab spread flag is set
419  *
420  * Call with callback_lock or cpuset_mutex held.
421  */
422 static void cpuset_update_task_spread_flag(struct cpuset *cs,
423 					struct task_struct *tsk)
424 {
425 	if (is_spread_page(cs))
426 		task_set_spread_page(tsk);
427 	else
428 		task_clear_spread_page(tsk);
429 
430 	if (is_spread_slab(cs))
431 		task_set_spread_slab(tsk);
432 	else
433 		task_clear_spread_slab(tsk);
434 }
435 
436 /*
437  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
438  *
439  * One cpuset is a subset of another if all its allowed CPUs and
440  * Memory Nodes are a subset of the other, and its exclusive flags
441  * are only set if the other's are set.  Call holding cpuset_mutex.
442  */
443 
444 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
445 {
446 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
447 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
448 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
449 		is_mem_exclusive(p) <= is_mem_exclusive(q);
450 }
451 
452 /**
453  * alloc_cpumasks - allocate three cpumasks for cpuset
454  * @cs:  the cpuset that have cpumasks to be allocated.
455  * @tmp: the tmpmasks structure pointer
456  * Return: 0 if successful, -ENOMEM otherwise.
457  *
458  * Only one of the two input arguments should be non-NULL.
459  */
460 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
461 {
462 	cpumask_var_t *pmask1, *pmask2, *pmask3;
463 
464 	if (cs) {
465 		pmask1 = &cs->cpus_allowed;
466 		pmask2 = &cs->effective_cpus;
467 		pmask3 = &cs->subparts_cpus;
468 	} else {
469 		pmask1 = &tmp->new_cpus;
470 		pmask2 = &tmp->addmask;
471 		pmask3 = &tmp->delmask;
472 	}
473 
474 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
475 		return -ENOMEM;
476 
477 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
478 		goto free_one;
479 
480 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
481 		goto free_two;
482 
483 	return 0;
484 
485 free_two:
486 	free_cpumask_var(*pmask2);
487 free_one:
488 	free_cpumask_var(*pmask1);
489 	return -ENOMEM;
490 }
491 
492 /**
493  * free_cpumasks - free cpumasks in a tmpmasks structure
494  * @cs:  the cpuset that have cpumasks to be free.
495  * @tmp: the tmpmasks structure pointer
496  */
497 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
498 {
499 	if (cs) {
500 		free_cpumask_var(cs->cpus_allowed);
501 		free_cpumask_var(cs->effective_cpus);
502 		free_cpumask_var(cs->subparts_cpus);
503 	}
504 	if (tmp) {
505 		free_cpumask_var(tmp->new_cpus);
506 		free_cpumask_var(tmp->addmask);
507 		free_cpumask_var(tmp->delmask);
508 	}
509 }
510 
511 /**
512  * alloc_trial_cpuset - allocate a trial cpuset
513  * @cs: the cpuset that the trial cpuset duplicates
514  */
515 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
516 {
517 	struct cpuset *trial;
518 
519 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
520 	if (!trial)
521 		return NULL;
522 
523 	if (alloc_cpumasks(trial, NULL)) {
524 		kfree(trial);
525 		return NULL;
526 	}
527 
528 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
529 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
530 	return trial;
531 }
532 
533 /**
534  * free_cpuset - free the cpuset
535  * @cs: the cpuset to be freed
536  */
537 static inline void free_cpuset(struct cpuset *cs)
538 {
539 	free_cpumasks(cs, NULL);
540 	kfree(cs);
541 }
542 
543 /*
544  * validate_change() - Used to validate that any proposed cpuset change
545  *		       follows the structural rules for cpusets.
546  *
547  * If we replaced the flag and mask values of the current cpuset
548  * (cur) with those values in the trial cpuset (trial), would
549  * our various subset and exclusive rules still be valid?  Presumes
550  * cpuset_mutex held.
551  *
552  * 'cur' is the address of an actual, in-use cpuset.  Operations
553  * such as list traversal that depend on the actual address of the
554  * cpuset in the list must use cur below, not trial.
555  *
556  * 'trial' is the address of bulk structure copy of cur, with
557  * perhaps one or more of the fields cpus_allowed, mems_allowed,
558  * or flags changed to new, trial values.
559  *
560  * Return 0 if valid, -errno if not.
561  */
562 
563 static int validate_change(struct cpuset *cur, struct cpuset *trial)
564 {
565 	struct cgroup_subsys_state *css;
566 	struct cpuset *c, *par;
567 	int ret;
568 
569 	rcu_read_lock();
570 
571 	/* Each of our child cpusets must be a subset of us */
572 	ret = -EBUSY;
573 	cpuset_for_each_child(c, css, cur)
574 		if (!is_cpuset_subset(c, trial))
575 			goto out;
576 
577 	/* Remaining checks don't apply to root cpuset */
578 	ret = 0;
579 	if (cur == &top_cpuset)
580 		goto out;
581 
582 	par = parent_cs(cur);
583 
584 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
585 	ret = -EACCES;
586 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
587 		goto out;
588 
589 	/*
590 	 * If either I or some sibling (!= me) is exclusive, we can't
591 	 * overlap
592 	 */
593 	ret = -EINVAL;
594 	cpuset_for_each_child(c, css, par) {
595 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
596 		    c != cur &&
597 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
598 			goto out;
599 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
600 		    c != cur &&
601 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
602 			goto out;
603 	}
604 
605 	/*
606 	 * Cpusets with tasks - existing or newly being attached - can't
607 	 * be changed to have empty cpus_allowed or mems_allowed.
608 	 */
609 	ret = -ENOSPC;
610 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
611 		if (!cpumask_empty(cur->cpus_allowed) &&
612 		    cpumask_empty(trial->cpus_allowed))
613 			goto out;
614 		if (!nodes_empty(cur->mems_allowed) &&
615 		    nodes_empty(trial->mems_allowed))
616 			goto out;
617 	}
618 
619 	/*
620 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
621 	 * tasks.
622 	 */
623 	ret = -EBUSY;
624 	if (is_cpu_exclusive(cur) &&
625 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
626 				       trial->cpus_allowed))
627 		goto out;
628 
629 	ret = 0;
630 out:
631 	rcu_read_unlock();
632 	return ret;
633 }
634 
635 #ifdef CONFIG_SMP
636 /*
637  * Helper routine for generate_sched_domains().
638  * Do cpusets a, b have overlapping effective cpus_allowed masks?
639  */
640 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
641 {
642 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
643 }
644 
645 static void
646 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
647 {
648 	if (dattr->relax_domain_level < c->relax_domain_level)
649 		dattr->relax_domain_level = c->relax_domain_level;
650 	return;
651 }
652 
653 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
654 				    struct cpuset *root_cs)
655 {
656 	struct cpuset *cp;
657 	struct cgroup_subsys_state *pos_css;
658 
659 	rcu_read_lock();
660 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
661 		/* skip the whole subtree if @cp doesn't have any CPU */
662 		if (cpumask_empty(cp->cpus_allowed)) {
663 			pos_css = css_rightmost_descendant(pos_css);
664 			continue;
665 		}
666 
667 		if (is_sched_load_balance(cp))
668 			update_domain_attr(dattr, cp);
669 	}
670 	rcu_read_unlock();
671 }
672 
673 /* Must be called with cpuset_mutex held.  */
674 static inline int nr_cpusets(void)
675 {
676 	/* jump label reference count + the top-level cpuset */
677 	return static_key_count(&cpusets_enabled_key.key) + 1;
678 }
679 
680 /*
681  * generate_sched_domains()
682  *
683  * This function builds a partial partition of the systems CPUs
684  * A 'partial partition' is a set of non-overlapping subsets whose
685  * union is a subset of that set.
686  * The output of this function needs to be passed to kernel/sched/core.c
687  * partition_sched_domains() routine, which will rebuild the scheduler's
688  * load balancing domains (sched domains) as specified by that partial
689  * partition.
690  *
691  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
692  * for a background explanation of this.
693  *
694  * Does not return errors, on the theory that the callers of this
695  * routine would rather not worry about failures to rebuild sched
696  * domains when operating in the severe memory shortage situations
697  * that could cause allocation failures below.
698  *
699  * Must be called with cpuset_mutex held.
700  *
701  * The three key local variables below are:
702  *    cp - cpuset pointer, used (together with pos_css) to perform a
703  *	   top-down scan of all cpusets. For our purposes, rebuilding
704  *	   the schedulers sched domains, we can ignore !is_sched_load_
705  *	   balance cpusets.
706  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
707  *	   that need to be load balanced, for convenient iterative
708  *	   access by the subsequent code that finds the best partition,
709  *	   i.e the set of domains (subsets) of CPUs such that the
710  *	   cpus_allowed of every cpuset marked is_sched_load_balance
711  *	   is a subset of one of these domains, while there are as
712  *	   many such domains as possible, each as small as possible.
713  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
714  *	   the kernel/sched/core.c routine partition_sched_domains() in a
715  *	   convenient format, that can be easily compared to the prior
716  *	   value to determine what partition elements (sched domains)
717  *	   were changed (added or removed.)
718  *
719  * Finding the best partition (set of domains):
720  *	The triple nested loops below over i, j, k scan over the
721  *	load balanced cpusets (using the array of cpuset pointers in
722  *	csa[]) looking for pairs of cpusets that have overlapping
723  *	cpus_allowed, but which don't have the same 'pn' partition
724  *	number and gives them in the same partition number.  It keeps
725  *	looping on the 'restart' label until it can no longer find
726  *	any such pairs.
727  *
728  *	The union of the cpus_allowed masks from the set of
729  *	all cpusets having the same 'pn' value then form the one
730  *	element of the partition (one sched domain) to be passed to
731  *	partition_sched_domains().
732  */
733 static int generate_sched_domains(cpumask_var_t **domains,
734 			struct sched_domain_attr **attributes)
735 {
736 	struct cpuset *cp;	/* top-down scan of cpusets */
737 	struct cpuset **csa;	/* array of all cpuset ptrs */
738 	int csn;		/* how many cpuset ptrs in csa so far */
739 	int i, j, k;		/* indices for partition finding loops */
740 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
741 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
742 	int ndoms = 0;		/* number of sched domains in result */
743 	int nslot;		/* next empty doms[] struct cpumask slot */
744 	struct cgroup_subsys_state *pos_css;
745 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
746 
747 	doms = NULL;
748 	dattr = NULL;
749 	csa = NULL;
750 
751 	/* Special case for the 99% of systems with one, full, sched domain */
752 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
753 		ndoms = 1;
754 		doms = alloc_sched_domains(ndoms);
755 		if (!doms)
756 			goto done;
757 
758 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
759 		if (dattr) {
760 			*dattr = SD_ATTR_INIT;
761 			update_domain_attr_tree(dattr, &top_cpuset);
762 		}
763 		cpumask_and(doms[0], top_cpuset.effective_cpus,
764 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
765 
766 		goto done;
767 	}
768 
769 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
770 	if (!csa)
771 		goto done;
772 	csn = 0;
773 
774 	rcu_read_lock();
775 	if (root_load_balance)
776 		csa[csn++] = &top_cpuset;
777 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
778 		if (cp == &top_cpuset)
779 			continue;
780 		/*
781 		 * Continue traversing beyond @cp iff @cp has some CPUs and
782 		 * isn't load balancing.  The former is obvious.  The
783 		 * latter: All child cpusets contain a subset of the
784 		 * parent's cpus, so just skip them, and then we call
785 		 * update_domain_attr_tree() to calc relax_domain_level of
786 		 * the corresponding sched domain.
787 		 *
788 		 * If root is load-balancing, we can skip @cp if it
789 		 * is a subset of the root's effective_cpus.
790 		 */
791 		if (!cpumask_empty(cp->cpus_allowed) &&
792 		    !(is_sched_load_balance(cp) &&
793 		      cpumask_intersects(cp->cpus_allowed,
794 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
795 			continue;
796 
797 		if (root_load_balance &&
798 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
799 			continue;
800 
801 		if (is_sched_load_balance(cp))
802 			csa[csn++] = cp;
803 
804 		/* skip @cp's subtree if not a partition root */
805 		if (!is_partition_root(cp))
806 			pos_css = css_rightmost_descendant(pos_css);
807 	}
808 	rcu_read_unlock();
809 
810 	for (i = 0; i < csn; i++)
811 		csa[i]->pn = i;
812 	ndoms = csn;
813 
814 restart:
815 	/* Find the best partition (set of sched domains) */
816 	for (i = 0; i < csn; i++) {
817 		struct cpuset *a = csa[i];
818 		int apn = a->pn;
819 
820 		for (j = 0; j < csn; j++) {
821 			struct cpuset *b = csa[j];
822 			int bpn = b->pn;
823 
824 			if (apn != bpn && cpusets_overlap(a, b)) {
825 				for (k = 0; k < csn; k++) {
826 					struct cpuset *c = csa[k];
827 
828 					if (c->pn == bpn)
829 						c->pn = apn;
830 				}
831 				ndoms--;	/* one less element */
832 				goto restart;
833 			}
834 		}
835 	}
836 
837 	/*
838 	 * Now we know how many domains to create.
839 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
840 	 */
841 	doms = alloc_sched_domains(ndoms);
842 	if (!doms)
843 		goto done;
844 
845 	/*
846 	 * The rest of the code, including the scheduler, can deal with
847 	 * dattr==NULL case. No need to abort if alloc fails.
848 	 */
849 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
850 			      GFP_KERNEL);
851 
852 	for (nslot = 0, i = 0; i < csn; i++) {
853 		struct cpuset *a = csa[i];
854 		struct cpumask *dp;
855 		int apn = a->pn;
856 
857 		if (apn < 0) {
858 			/* Skip completed partitions */
859 			continue;
860 		}
861 
862 		dp = doms[nslot];
863 
864 		if (nslot == ndoms) {
865 			static int warnings = 10;
866 			if (warnings) {
867 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
868 					nslot, ndoms, csn, i, apn);
869 				warnings--;
870 			}
871 			continue;
872 		}
873 
874 		cpumask_clear(dp);
875 		if (dattr)
876 			*(dattr + nslot) = SD_ATTR_INIT;
877 		for (j = i; j < csn; j++) {
878 			struct cpuset *b = csa[j];
879 
880 			if (apn == b->pn) {
881 				cpumask_or(dp, dp, b->effective_cpus);
882 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
883 				if (dattr)
884 					update_domain_attr_tree(dattr + nslot, b);
885 
886 				/* Done with this partition */
887 				b->pn = -1;
888 			}
889 		}
890 		nslot++;
891 	}
892 	BUG_ON(nslot != ndoms);
893 
894 done:
895 	kfree(csa);
896 
897 	/*
898 	 * Fallback to the default domain if kmalloc() failed.
899 	 * See comments in partition_sched_domains().
900 	 */
901 	if (doms == NULL)
902 		ndoms = 1;
903 
904 	*domains    = doms;
905 	*attributes = dattr;
906 	return ndoms;
907 }
908 
909 static void update_tasks_root_domain(struct cpuset *cs)
910 {
911 	struct css_task_iter it;
912 	struct task_struct *task;
913 
914 	css_task_iter_start(&cs->css, 0, &it);
915 
916 	while ((task = css_task_iter_next(&it)))
917 		dl_add_task_root_domain(task);
918 
919 	css_task_iter_end(&it);
920 }
921 
922 static void rebuild_root_domains(void)
923 {
924 	struct cpuset *cs = NULL;
925 	struct cgroup_subsys_state *pos_css;
926 
927 	percpu_rwsem_assert_held(&cpuset_rwsem);
928 	lockdep_assert_cpus_held();
929 	lockdep_assert_held(&sched_domains_mutex);
930 
931 	cgroup_enable_task_cg_lists();
932 
933 	rcu_read_lock();
934 
935 	/*
936 	 * Clear default root domain DL accounting, it will be computed again
937 	 * if a task belongs to it.
938 	 */
939 	dl_clear_root_domain(&def_root_domain);
940 
941 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
942 
943 		if (cpumask_empty(cs->effective_cpus)) {
944 			pos_css = css_rightmost_descendant(pos_css);
945 			continue;
946 		}
947 
948 		css_get(&cs->css);
949 
950 		rcu_read_unlock();
951 
952 		update_tasks_root_domain(cs);
953 
954 		rcu_read_lock();
955 		css_put(&cs->css);
956 	}
957 	rcu_read_unlock();
958 }
959 
960 static void
961 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
962 				    struct sched_domain_attr *dattr_new)
963 {
964 	mutex_lock(&sched_domains_mutex);
965 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
966 	rebuild_root_domains();
967 	mutex_unlock(&sched_domains_mutex);
968 }
969 
970 /*
971  * Rebuild scheduler domains.
972  *
973  * If the flag 'sched_load_balance' of any cpuset with non-empty
974  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
975  * which has that flag enabled, or if any cpuset with a non-empty
976  * 'cpus' is removed, then call this routine to rebuild the
977  * scheduler's dynamic sched domains.
978  *
979  * Call with cpuset_mutex held.  Takes get_online_cpus().
980  */
981 static void rebuild_sched_domains_locked(void)
982 {
983 	struct sched_domain_attr *attr;
984 	cpumask_var_t *doms;
985 	int ndoms;
986 
987 	lockdep_assert_cpus_held();
988 	percpu_rwsem_assert_held(&cpuset_rwsem);
989 
990 	/*
991 	 * We have raced with CPU hotplug. Don't do anything to avoid
992 	 * passing doms with offlined cpu to partition_sched_domains().
993 	 * Anyways, hotplug work item will rebuild sched domains.
994 	 */
995 	if (!top_cpuset.nr_subparts_cpus &&
996 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
997 		return;
998 
999 	if (top_cpuset.nr_subparts_cpus &&
1000 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1001 		return;
1002 
1003 	/* Generate domain masks and attrs */
1004 	ndoms = generate_sched_domains(&doms, &attr);
1005 
1006 	/* Have scheduler rebuild the domains */
1007 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1008 }
1009 #else /* !CONFIG_SMP */
1010 static void rebuild_sched_domains_locked(void)
1011 {
1012 }
1013 #endif /* CONFIG_SMP */
1014 
1015 void rebuild_sched_domains(void)
1016 {
1017 	get_online_cpus();
1018 	percpu_down_write(&cpuset_rwsem);
1019 	rebuild_sched_domains_locked();
1020 	percpu_up_write(&cpuset_rwsem);
1021 	put_online_cpus();
1022 }
1023 
1024 /**
1025  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1026  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1027  *
1028  * Iterate through each task of @cs updating its cpus_allowed to the
1029  * effective cpuset's.  As this function is called with cpuset_mutex held,
1030  * cpuset membership stays stable.
1031  */
1032 static void update_tasks_cpumask(struct cpuset *cs)
1033 {
1034 	struct css_task_iter it;
1035 	struct task_struct *task;
1036 
1037 	css_task_iter_start(&cs->css, 0, &it);
1038 	while ((task = css_task_iter_next(&it)))
1039 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1040 	css_task_iter_end(&it);
1041 }
1042 
1043 /**
1044  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1045  * @new_cpus: the temp variable for the new effective_cpus mask
1046  * @cs: the cpuset the need to recompute the new effective_cpus mask
1047  * @parent: the parent cpuset
1048  *
1049  * If the parent has subpartition CPUs, include them in the list of
1050  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1051  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1052  * to mask those out.
1053  */
1054 static void compute_effective_cpumask(struct cpumask *new_cpus,
1055 				      struct cpuset *cs, struct cpuset *parent)
1056 {
1057 	if (parent->nr_subparts_cpus) {
1058 		cpumask_or(new_cpus, parent->effective_cpus,
1059 			   parent->subparts_cpus);
1060 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1061 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1062 	} else {
1063 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1064 	}
1065 }
1066 
1067 /*
1068  * Commands for update_parent_subparts_cpumask
1069  */
1070 enum subparts_cmd {
1071 	partcmd_enable,		/* Enable partition root	 */
1072 	partcmd_disable,	/* Disable partition root	 */
1073 	partcmd_update,		/* Update parent's subparts_cpus */
1074 };
1075 
1076 /**
1077  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1078  * @cpuset:  The cpuset that requests change in partition root state
1079  * @cmd:     Partition root state change command
1080  * @newmask: Optional new cpumask for partcmd_update
1081  * @tmp:     Temporary addmask and delmask
1082  * Return:   0, 1 or an error code
1083  *
1084  * For partcmd_enable, the cpuset is being transformed from a non-partition
1085  * root to a partition root. The cpus_allowed mask of the given cpuset will
1086  * be put into parent's subparts_cpus and taken away from parent's
1087  * effective_cpus. The function will return 0 if all the CPUs listed in
1088  * cpus_allowed can be granted or an error code will be returned.
1089  *
1090  * For partcmd_disable, the cpuset is being transofrmed from a partition
1091  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1092  * parent's subparts_cpus will be taken away from that cpumask and put back
1093  * into parent's effective_cpus. 0 should always be returned.
1094  *
1095  * For partcmd_update, if the optional newmask is specified, the cpu
1096  * list is to be changed from cpus_allowed to newmask. Otherwise,
1097  * cpus_allowed is assumed to remain the same. The cpuset should either
1098  * be a partition root or an invalid partition root. The partition root
1099  * state may change if newmask is NULL and none of the requested CPUs can
1100  * be granted by the parent. The function will return 1 if changes to
1101  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1102  * Error code should only be returned when newmask is non-NULL.
1103  *
1104  * The partcmd_enable and partcmd_disable commands are used by
1105  * update_prstate(). The partcmd_update command is used by
1106  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1107  * newmask set.
1108  *
1109  * The checking is more strict when enabling partition root than the
1110  * other two commands.
1111  *
1112  * Because of the implicit cpu exclusive nature of a partition root,
1113  * cpumask changes that violates the cpu exclusivity rule will not be
1114  * permitted when checked by validate_change(). The validate_change()
1115  * function will also prevent any changes to the cpu list if it is not
1116  * a superset of children's cpu lists.
1117  */
1118 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1119 					  struct cpumask *newmask,
1120 					  struct tmpmasks *tmp)
1121 {
1122 	struct cpuset *parent = parent_cs(cpuset);
1123 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1124 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1125 	bool part_error = false;	/* Partition error? */
1126 
1127 	percpu_rwsem_assert_held(&cpuset_rwsem);
1128 
1129 	/*
1130 	 * The parent must be a partition root.
1131 	 * The new cpumask, if present, or the current cpus_allowed must
1132 	 * not be empty.
1133 	 */
1134 	if (!is_partition_root(parent) ||
1135 	   (newmask && cpumask_empty(newmask)) ||
1136 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1137 		return -EINVAL;
1138 
1139 	/*
1140 	 * Enabling/disabling partition root is not allowed if there are
1141 	 * online children.
1142 	 */
1143 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1144 		return -EBUSY;
1145 
1146 	/*
1147 	 * Enabling partition root is not allowed if not all the CPUs
1148 	 * can be granted from parent's effective_cpus or at least one
1149 	 * CPU will be left after that.
1150 	 */
1151 	if ((cmd == partcmd_enable) &&
1152 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1153 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1154 		return -EINVAL;
1155 
1156 	/*
1157 	 * A cpumask update cannot make parent's effective_cpus become empty.
1158 	 */
1159 	adding = deleting = false;
1160 	if (cmd == partcmd_enable) {
1161 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1162 		adding = true;
1163 	} else if (cmd == partcmd_disable) {
1164 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1165 				       parent->subparts_cpus);
1166 	} else if (newmask) {
1167 		/*
1168 		 * partcmd_update with newmask:
1169 		 *
1170 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1171 		 * addmask = newmask & parent->effective_cpus
1172 		 *		     & ~parent->subparts_cpus
1173 		 */
1174 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1175 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1176 				       parent->subparts_cpus);
1177 
1178 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1179 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1180 					parent->subparts_cpus);
1181 		/*
1182 		 * Return error if the new effective_cpus could become empty.
1183 		 */
1184 		if (adding &&
1185 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1186 			if (!deleting)
1187 				return -EINVAL;
1188 			/*
1189 			 * As some of the CPUs in subparts_cpus might have
1190 			 * been offlined, we need to compute the real delmask
1191 			 * to confirm that.
1192 			 */
1193 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1194 					 cpu_active_mask))
1195 				return -EINVAL;
1196 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1197 		}
1198 	} else {
1199 		/*
1200 		 * partcmd_update w/o newmask:
1201 		 *
1202 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1203 		 *
1204 		 * Note that parent's subparts_cpus may have been
1205 		 * pre-shrunk in case there is a change in the cpu list.
1206 		 * So no deletion is needed.
1207 		 */
1208 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1209 				     parent->effective_cpus);
1210 		part_error = cpumask_equal(tmp->addmask,
1211 					   parent->effective_cpus);
1212 	}
1213 
1214 	if (cmd == partcmd_update) {
1215 		int prev_prs = cpuset->partition_root_state;
1216 
1217 		/*
1218 		 * Check for possible transition between PRS_ENABLED
1219 		 * and PRS_ERROR.
1220 		 */
1221 		switch (cpuset->partition_root_state) {
1222 		case PRS_ENABLED:
1223 			if (part_error)
1224 				cpuset->partition_root_state = PRS_ERROR;
1225 			break;
1226 		case PRS_ERROR:
1227 			if (!part_error)
1228 				cpuset->partition_root_state = PRS_ENABLED;
1229 			break;
1230 		}
1231 		/*
1232 		 * Set part_error if previously in invalid state.
1233 		 */
1234 		part_error = (prev_prs == PRS_ERROR);
1235 	}
1236 
1237 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1238 		return 0;	/* Nothing need to be done */
1239 
1240 	if (cpuset->partition_root_state == PRS_ERROR) {
1241 		/*
1242 		 * Remove all its cpus from parent's subparts_cpus.
1243 		 */
1244 		adding = false;
1245 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1246 				       parent->subparts_cpus);
1247 	}
1248 
1249 	if (!adding && !deleting)
1250 		return 0;
1251 
1252 	/*
1253 	 * Change the parent's subparts_cpus.
1254 	 * Newly added CPUs will be removed from effective_cpus and
1255 	 * newly deleted ones will be added back to effective_cpus.
1256 	 */
1257 	spin_lock_irq(&callback_lock);
1258 	if (adding) {
1259 		cpumask_or(parent->subparts_cpus,
1260 			   parent->subparts_cpus, tmp->addmask);
1261 		cpumask_andnot(parent->effective_cpus,
1262 			       parent->effective_cpus, tmp->addmask);
1263 	}
1264 	if (deleting) {
1265 		cpumask_andnot(parent->subparts_cpus,
1266 			       parent->subparts_cpus, tmp->delmask);
1267 		/*
1268 		 * Some of the CPUs in subparts_cpus might have been offlined.
1269 		 */
1270 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1271 		cpumask_or(parent->effective_cpus,
1272 			   parent->effective_cpus, tmp->delmask);
1273 	}
1274 
1275 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1276 	spin_unlock_irq(&callback_lock);
1277 
1278 	return cmd == partcmd_update;
1279 }
1280 
1281 /*
1282  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1283  * @cs:  the cpuset to consider
1284  * @tmp: temp variables for calculating effective_cpus & partition setup
1285  *
1286  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1287  * and all its descendants need to be updated.
1288  *
1289  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1290  *
1291  * Called with cpuset_mutex held
1292  */
1293 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1294 {
1295 	struct cpuset *cp;
1296 	struct cgroup_subsys_state *pos_css;
1297 	bool need_rebuild_sched_domains = false;
1298 
1299 	rcu_read_lock();
1300 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1301 		struct cpuset *parent = parent_cs(cp);
1302 
1303 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1304 
1305 		/*
1306 		 * If it becomes empty, inherit the effective mask of the
1307 		 * parent, which is guaranteed to have some CPUs.
1308 		 */
1309 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1310 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1311 			if (!cp->use_parent_ecpus) {
1312 				cp->use_parent_ecpus = true;
1313 				parent->child_ecpus_count++;
1314 			}
1315 		} else if (cp->use_parent_ecpus) {
1316 			cp->use_parent_ecpus = false;
1317 			WARN_ON_ONCE(!parent->child_ecpus_count);
1318 			parent->child_ecpus_count--;
1319 		}
1320 
1321 		/*
1322 		 * Skip the whole subtree if the cpumask remains the same
1323 		 * and has no partition root state.
1324 		 */
1325 		if (!cp->partition_root_state &&
1326 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1327 			pos_css = css_rightmost_descendant(pos_css);
1328 			continue;
1329 		}
1330 
1331 		/*
1332 		 * update_parent_subparts_cpumask() should have been called
1333 		 * for cs already in update_cpumask(). We should also call
1334 		 * update_tasks_cpumask() again for tasks in the parent
1335 		 * cpuset if the parent's subparts_cpus changes.
1336 		 */
1337 		if ((cp != cs) && cp->partition_root_state) {
1338 			switch (parent->partition_root_state) {
1339 			case PRS_DISABLED:
1340 				/*
1341 				 * If parent is not a partition root or an
1342 				 * invalid partition root, clear the state
1343 				 * state and the CS_CPU_EXCLUSIVE flag.
1344 				 */
1345 				WARN_ON_ONCE(cp->partition_root_state
1346 					     != PRS_ERROR);
1347 				cp->partition_root_state = 0;
1348 
1349 				/*
1350 				 * clear_bit() is an atomic operation and
1351 				 * readers aren't interested in the state
1352 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1353 				 * just update the flag without holding
1354 				 * the callback_lock.
1355 				 */
1356 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1357 				break;
1358 
1359 			case PRS_ENABLED:
1360 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1361 					update_tasks_cpumask(parent);
1362 				break;
1363 
1364 			case PRS_ERROR:
1365 				/*
1366 				 * When parent is invalid, it has to be too.
1367 				 */
1368 				cp->partition_root_state = PRS_ERROR;
1369 				if (cp->nr_subparts_cpus) {
1370 					cp->nr_subparts_cpus = 0;
1371 					cpumask_clear(cp->subparts_cpus);
1372 				}
1373 				break;
1374 			}
1375 		}
1376 
1377 		if (!css_tryget_online(&cp->css))
1378 			continue;
1379 		rcu_read_unlock();
1380 
1381 		spin_lock_irq(&callback_lock);
1382 
1383 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1384 		if (cp->nr_subparts_cpus &&
1385 		   (cp->partition_root_state != PRS_ENABLED)) {
1386 			cp->nr_subparts_cpus = 0;
1387 			cpumask_clear(cp->subparts_cpus);
1388 		} else if (cp->nr_subparts_cpus) {
1389 			/*
1390 			 * Make sure that effective_cpus & subparts_cpus
1391 			 * are mutually exclusive.
1392 			 *
1393 			 * In the unlikely event that effective_cpus
1394 			 * becomes empty. we clear cp->nr_subparts_cpus and
1395 			 * let its child partition roots to compete for
1396 			 * CPUs again.
1397 			 */
1398 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1399 				       cp->subparts_cpus);
1400 			if (cpumask_empty(cp->effective_cpus)) {
1401 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1402 				cpumask_clear(cp->subparts_cpus);
1403 				cp->nr_subparts_cpus = 0;
1404 			} else if (!cpumask_subset(cp->subparts_cpus,
1405 						   tmp->new_cpus)) {
1406 				cpumask_andnot(cp->subparts_cpus,
1407 					cp->subparts_cpus, tmp->new_cpus);
1408 				cp->nr_subparts_cpus
1409 					= cpumask_weight(cp->subparts_cpus);
1410 			}
1411 		}
1412 		spin_unlock_irq(&callback_lock);
1413 
1414 		WARN_ON(!is_in_v2_mode() &&
1415 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1416 
1417 		update_tasks_cpumask(cp);
1418 
1419 		/*
1420 		 * On legacy hierarchy, if the effective cpumask of any non-
1421 		 * empty cpuset is changed, we need to rebuild sched domains.
1422 		 * On default hierarchy, the cpuset needs to be a partition
1423 		 * root as well.
1424 		 */
1425 		if (!cpumask_empty(cp->cpus_allowed) &&
1426 		    is_sched_load_balance(cp) &&
1427 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1428 		    is_partition_root(cp)))
1429 			need_rebuild_sched_domains = true;
1430 
1431 		rcu_read_lock();
1432 		css_put(&cp->css);
1433 	}
1434 	rcu_read_unlock();
1435 
1436 	if (need_rebuild_sched_domains)
1437 		rebuild_sched_domains_locked();
1438 }
1439 
1440 /**
1441  * update_sibling_cpumasks - Update siblings cpumasks
1442  * @parent:  Parent cpuset
1443  * @cs:      Current cpuset
1444  * @tmp:     Temp variables
1445  */
1446 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1447 				    struct tmpmasks *tmp)
1448 {
1449 	struct cpuset *sibling;
1450 	struct cgroup_subsys_state *pos_css;
1451 
1452 	/*
1453 	 * Check all its siblings and call update_cpumasks_hier()
1454 	 * if their use_parent_ecpus flag is set in order for them
1455 	 * to use the right effective_cpus value.
1456 	 */
1457 	rcu_read_lock();
1458 	cpuset_for_each_child(sibling, pos_css, parent) {
1459 		if (sibling == cs)
1460 			continue;
1461 		if (!sibling->use_parent_ecpus)
1462 			continue;
1463 
1464 		update_cpumasks_hier(sibling, tmp);
1465 	}
1466 	rcu_read_unlock();
1467 }
1468 
1469 /**
1470  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1471  * @cs: the cpuset to consider
1472  * @trialcs: trial cpuset
1473  * @buf: buffer of cpu numbers written to this cpuset
1474  */
1475 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1476 			  const char *buf)
1477 {
1478 	int retval;
1479 	struct tmpmasks tmp;
1480 
1481 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1482 	if (cs == &top_cpuset)
1483 		return -EACCES;
1484 
1485 	/*
1486 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1487 	 * Since cpulist_parse() fails on an empty mask, we special case
1488 	 * that parsing.  The validate_change() call ensures that cpusets
1489 	 * with tasks have cpus.
1490 	 */
1491 	if (!*buf) {
1492 		cpumask_clear(trialcs->cpus_allowed);
1493 	} else {
1494 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1495 		if (retval < 0)
1496 			return retval;
1497 
1498 		if (!cpumask_subset(trialcs->cpus_allowed,
1499 				    top_cpuset.cpus_allowed))
1500 			return -EINVAL;
1501 	}
1502 
1503 	/* Nothing to do if the cpus didn't change */
1504 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1505 		return 0;
1506 
1507 	retval = validate_change(cs, trialcs);
1508 	if (retval < 0)
1509 		return retval;
1510 
1511 #ifdef CONFIG_CPUMASK_OFFSTACK
1512 	/*
1513 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1514 	 * to allocated cpumasks.
1515 	 */
1516 	tmp.addmask  = trialcs->subparts_cpus;
1517 	tmp.delmask  = trialcs->effective_cpus;
1518 	tmp.new_cpus = trialcs->cpus_allowed;
1519 #endif
1520 
1521 	if (cs->partition_root_state) {
1522 		/* Cpumask of a partition root cannot be empty */
1523 		if (cpumask_empty(trialcs->cpus_allowed))
1524 			return -EINVAL;
1525 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1526 					trialcs->cpus_allowed, &tmp) < 0)
1527 			return -EINVAL;
1528 	}
1529 
1530 	spin_lock_irq(&callback_lock);
1531 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1532 
1533 	/*
1534 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1535 	 */
1536 	if (cs->nr_subparts_cpus) {
1537 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1538 			       cs->cpus_allowed);
1539 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1540 	}
1541 	spin_unlock_irq(&callback_lock);
1542 
1543 	update_cpumasks_hier(cs, &tmp);
1544 
1545 	if (cs->partition_root_state) {
1546 		struct cpuset *parent = parent_cs(cs);
1547 
1548 		/*
1549 		 * For partition root, update the cpumasks of sibling
1550 		 * cpusets if they use parent's effective_cpus.
1551 		 */
1552 		if (parent->child_ecpus_count)
1553 			update_sibling_cpumasks(parent, cs, &tmp);
1554 	}
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Migrate memory region from one set of nodes to another.  This is
1560  * performed asynchronously as it can be called from process migration path
1561  * holding locks involved in process management.  All mm migrations are
1562  * performed in the queued order and can be waited for by flushing
1563  * cpuset_migrate_mm_wq.
1564  */
1565 
1566 struct cpuset_migrate_mm_work {
1567 	struct work_struct	work;
1568 	struct mm_struct	*mm;
1569 	nodemask_t		from;
1570 	nodemask_t		to;
1571 };
1572 
1573 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1574 {
1575 	struct cpuset_migrate_mm_work *mwork =
1576 		container_of(work, struct cpuset_migrate_mm_work, work);
1577 
1578 	/* on a wq worker, no need to worry about %current's mems_allowed */
1579 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1580 	mmput(mwork->mm);
1581 	kfree(mwork);
1582 }
1583 
1584 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1585 							const nodemask_t *to)
1586 {
1587 	struct cpuset_migrate_mm_work *mwork;
1588 
1589 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1590 	if (mwork) {
1591 		mwork->mm = mm;
1592 		mwork->from = *from;
1593 		mwork->to = *to;
1594 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1595 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1596 	} else {
1597 		mmput(mm);
1598 	}
1599 }
1600 
1601 static void cpuset_post_attach(void)
1602 {
1603 	flush_workqueue(cpuset_migrate_mm_wq);
1604 }
1605 
1606 /*
1607  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1608  * @tsk: the task to change
1609  * @newmems: new nodes that the task will be set
1610  *
1611  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1612  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1613  * parallel, it might temporarily see an empty intersection, which results in
1614  * a seqlock check and retry before OOM or allocation failure.
1615  */
1616 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1617 					nodemask_t *newmems)
1618 {
1619 	task_lock(tsk);
1620 
1621 	local_irq_disable();
1622 	write_seqcount_begin(&tsk->mems_allowed_seq);
1623 
1624 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1625 	mpol_rebind_task(tsk, newmems);
1626 	tsk->mems_allowed = *newmems;
1627 
1628 	write_seqcount_end(&tsk->mems_allowed_seq);
1629 	local_irq_enable();
1630 
1631 	task_unlock(tsk);
1632 }
1633 
1634 static void *cpuset_being_rebound;
1635 
1636 /**
1637  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1638  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1639  *
1640  * Iterate through each task of @cs updating its mems_allowed to the
1641  * effective cpuset's.  As this function is called with cpuset_mutex held,
1642  * cpuset membership stays stable.
1643  */
1644 static void update_tasks_nodemask(struct cpuset *cs)
1645 {
1646 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1647 	struct css_task_iter it;
1648 	struct task_struct *task;
1649 
1650 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1651 
1652 	guarantee_online_mems(cs, &newmems);
1653 
1654 	/*
1655 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1656 	 * take while holding tasklist_lock.  Forks can happen - the
1657 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1658 	 * and rebind their vma mempolicies too.  Because we still hold
1659 	 * the global cpuset_mutex, we know that no other rebind effort
1660 	 * will be contending for the global variable cpuset_being_rebound.
1661 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1662 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1663 	 */
1664 	css_task_iter_start(&cs->css, 0, &it);
1665 	while ((task = css_task_iter_next(&it))) {
1666 		struct mm_struct *mm;
1667 		bool migrate;
1668 
1669 		cpuset_change_task_nodemask(task, &newmems);
1670 
1671 		mm = get_task_mm(task);
1672 		if (!mm)
1673 			continue;
1674 
1675 		migrate = is_memory_migrate(cs);
1676 
1677 		mpol_rebind_mm(mm, &cs->mems_allowed);
1678 		if (migrate)
1679 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1680 		else
1681 			mmput(mm);
1682 	}
1683 	css_task_iter_end(&it);
1684 
1685 	/*
1686 	 * All the tasks' nodemasks have been updated, update
1687 	 * cs->old_mems_allowed.
1688 	 */
1689 	cs->old_mems_allowed = newmems;
1690 
1691 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1692 	cpuset_being_rebound = NULL;
1693 }
1694 
1695 /*
1696  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1697  * @cs: the cpuset to consider
1698  * @new_mems: a temp variable for calculating new effective_mems
1699  *
1700  * When configured nodemask is changed, the effective nodemasks of this cpuset
1701  * and all its descendants need to be updated.
1702  *
1703  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1704  *
1705  * Called with cpuset_mutex held
1706  */
1707 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1708 {
1709 	struct cpuset *cp;
1710 	struct cgroup_subsys_state *pos_css;
1711 
1712 	rcu_read_lock();
1713 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1714 		struct cpuset *parent = parent_cs(cp);
1715 
1716 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1717 
1718 		/*
1719 		 * If it becomes empty, inherit the effective mask of the
1720 		 * parent, which is guaranteed to have some MEMs.
1721 		 */
1722 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1723 			*new_mems = parent->effective_mems;
1724 
1725 		/* Skip the whole subtree if the nodemask remains the same. */
1726 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1727 			pos_css = css_rightmost_descendant(pos_css);
1728 			continue;
1729 		}
1730 
1731 		if (!css_tryget_online(&cp->css))
1732 			continue;
1733 		rcu_read_unlock();
1734 
1735 		spin_lock_irq(&callback_lock);
1736 		cp->effective_mems = *new_mems;
1737 		spin_unlock_irq(&callback_lock);
1738 
1739 		WARN_ON(!is_in_v2_mode() &&
1740 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1741 
1742 		update_tasks_nodemask(cp);
1743 
1744 		rcu_read_lock();
1745 		css_put(&cp->css);
1746 	}
1747 	rcu_read_unlock();
1748 }
1749 
1750 /*
1751  * Handle user request to change the 'mems' memory placement
1752  * of a cpuset.  Needs to validate the request, update the
1753  * cpusets mems_allowed, and for each task in the cpuset,
1754  * update mems_allowed and rebind task's mempolicy and any vma
1755  * mempolicies and if the cpuset is marked 'memory_migrate',
1756  * migrate the tasks pages to the new memory.
1757  *
1758  * Call with cpuset_mutex held. May take callback_lock during call.
1759  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1760  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1761  * their mempolicies to the cpusets new mems_allowed.
1762  */
1763 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1764 			   const char *buf)
1765 {
1766 	int retval;
1767 
1768 	/*
1769 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1770 	 * it's read-only
1771 	 */
1772 	if (cs == &top_cpuset) {
1773 		retval = -EACCES;
1774 		goto done;
1775 	}
1776 
1777 	/*
1778 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1779 	 * Since nodelist_parse() fails on an empty mask, we special case
1780 	 * that parsing.  The validate_change() call ensures that cpusets
1781 	 * with tasks have memory.
1782 	 */
1783 	if (!*buf) {
1784 		nodes_clear(trialcs->mems_allowed);
1785 	} else {
1786 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1787 		if (retval < 0)
1788 			goto done;
1789 
1790 		if (!nodes_subset(trialcs->mems_allowed,
1791 				  top_cpuset.mems_allowed)) {
1792 			retval = -EINVAL;
1793 			goto done;
1794 		}
1795 	}
1796 
1797 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1798 		retval = 0;		/* Too easy - nothing to do */
1799 		goto done;
1800 	}
1801 	retval = validate_change(cs, trialcs);
1802 	if (retval < 0)
1803 		goto done;
1804 
1805 	spin_lock_irq(&callback_lock);
1806 	cs->mems_allowed = trialcs->mems_allowed;
1807 	spin_unlock_irq(&callback_lock);
1808 
1809 	/* use trialcs->mems_allowed as a temp variable */
1810 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1811 done:
1812 	return retval;
1813 }
1814 
1815 bool current_cpuset_is_being_rebound(void)
1816 {
1817 	bool ret;
1818 
1819 	rcu_read_lock();
1820 	ret = task_cs(current) == cpuset_being_rebound;
1821 	rcu_read_unlock();
1822 
1823 	return ret;
1824 }
1825 
1826 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1827 {
1828 #ifdef CONFIG_SMP
1829 	if (val < -1 || val >= sched_domain_level_max)
1830 		return -EINVAL;
1831 #endif
1832 
1833 	if (val != cs->relax_domain_level) {
1834 		cs->relax_domain_level = val;
1835 		if (!cpumask_empty(cs->cpus_allowed) &&
1836 		    is_sched_load_balance(cs))
1837 			rebuild_sched_domains_locked();
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1845  * @cs: the cpuset in which each task's spread flags needs to be changed
1846  *
1847  * Iterate through each task of @cs updating its spread flags.  As this
1848  * function is called with cpuset_mutex held, cpuset membership stays
1849  * stable.
1850  */
1851 static void update_tasks_flags(struct cpuset *cs)
1852 {
1853 	struct css_task_iter it;
1854 	struct task_struct *task;
1855 
1856 	css_task_iter_start(&cs->css, 0, &it);
1857 	while ((task = css_task_iter_next(&it)))
1858 		cpuset_update_task_spread_flag(cs, task);
1859 	css_task_iter_end(&it);
1860 }
1861 
1862 /*
1863  * update_flag - read a 0 or a 1 in a file and update associated flag
1864  * bit:		the bit to update (see cpuset_flagbits_t)
1865  * cs:		the cpuset to update
1866  * turning_on: 	whether the flag is being set or cleared
1867  *
1868  * Call with cpuset_mutex held.
1869  */
1870 
1871 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1872 		       int turning_on)
1873 {
1874 	struct cpuset *trialcs;
1875 	int balance_flag_changed;
1876 	int spread_flag_changed;
1877 	int err;
1878 
1879 	trialcs = alloc_trial_cpuset(cs);
1880 	if (!trialcs)
1881 		return -ENOMEM;
1882 
1883 	if (turning_on)
1884 		set_bit(bit, &trialcs->flags);
1885 	else
1886 		clear_bit(bit, &trialcs->flags);
1887 
1888 	err = validate_change(cs, trialcs);
1889 	if (err < 0)
1890 		goto out;
1891 
1892 	balance_flag_changed = (is_sched_load_balance(cs) !=
1893 				is_sched_load_balance(trialcs));
1894 
1895 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1896 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1897 
1898 	spin_lock_irq(&callback_lock);
1899 	cs->flags = trialcs->flags;
1900 	spin_unlock_irq(&callback_lock);
1901 
1902 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1903 		rebuild_sched_domains_locked();
1904 
1905 	if (spread_flag_changed)
1906 		update_tasks_flags(cs);
1907 out:
1908 	free_cpuset(trialcs);
1909 	return err;
1910 }
1911 
1912 /*
1913  * update_prstate - update partititon_root_state
1914  * cs:	the cpuset to update
1915  * val: 0 - disabled, 1 - enabled
1916  *
1917  * Call with cpuset_mutex held.
1918  */
1919 static int update_prstate(struct cpuset *cs, int val)
1920 {
1921 	int err;
1922 	struct cpuset *parent = parent_cs(cs);
1923 	struct tmpmasks tmp;
1924 
1925 	if ((val != 0) && (val != 1))
1926 		return -EINVAL;
1927 	if (val == cs->partition_root_state)
1928 		return 0;
1929 
1930 	/*
1931 	 * Cannot force a partial or invalid partition root to a full
1932 	 * partition root.
1933 	 */
1934 	if (val && cs->partition_root_state)
1935 		return -EINVAL;
1936 
1937 	if (alloc_cpumasks(NULL, &tmp))
1938 		return -ENOMEM;
1939 
1940 	err = -EINVAL;
1941 	if (!cs->partition_root_state) {
1942 		/*
1943 		 * Turning on partition root requires setting the
1944 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1945 		 * cannot be NULL.
1946 		 */
1947 		if (cpumask_empty(cs->cpus_allowed))
1948 			goto out;
1949 
1950 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1951 		if (err)
1952 			goto out;
1953 
1954 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1955 						     NULL, &tmp);
1956 		if (err) {
1957 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1958 			goto out;
1959 		}
1960 		cs->partition_root_state = PRS_ENABLED;
1961 	} else {
1962 		/*
1963 		 * Turning off partition root will clear the
1964 		 * CS_CPU_EXCLUSIVE bit.
1965 		 */
1966 		if (cs->partition_root_state == PRS_ERROR) {
1967 			cs->partition_root_state = 0;
1968 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1969 			err = 0;
1970 			goto out;
1971 		}
1972 
1973 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1974 						     NULL, &tmp);
1975 		if (err)
1976 			goto out;
1977 
1978 		cs->partition_root_state = 0;
1979 
1980 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1981 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1982 	}
1983 
1984 	/*
1985 	 * Update cpumask of parent's tasks except when it is the top
1986 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1987 	 */
1988 	if (parent != &top_cpuset)
1989 		update_tasks_cpumask(parent);
1990 
1991 	if (parent->child_ecpus_count)
1992 		update_sibling_cpumasks(parent, cs, &tmp);
1993 
1994 	rebuild_sched_domains_locked();
1995 out:
1996 	free_cpumasks(NULL, &tmp);
1997 	return err;
1998 }
1999 
2000 /*
2001  * Frequency meter - How fast is some event occurring?
2002  *
2003  * These routines manage a digitally filtered, constant time based,
2004  * event frequency meter.  There are four routines:
2005  *   fmeter_init() - initialize a frequency meter.
2006  *   fmeter_markevent() - called each time the event happens.
2007  *   fmeter_getrate() - returns the recent rate of such events.
2008  *   fmeter_update() - internal routine used to update fmeter.
2009  *
2010  * A common data structure is passed to each of these routines,
2011  * which is used to keep track of the state required to manage the
2012  * frequency meter and its digital filter.
2013  *
2014  * The filter works on the number of events marked per unit time.
2015  * The filter is single-pole low-pass recursive (IIR).  The time unit
2016  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2017  * simulate 3 decimal digits of precision (multiplied by 1000).
2018  *
2019  * With an FM_COEF of 933, and a time base of 1 second, the filter
2020  * has a half-life of 10 seconds, meaning that if the events quit
2021  * happening, then the rate returned from the fmeter_getrate()
2022  * will be cut in half each 10 seconds, until it converges to zero.
2023  *
2024  * It is not worth doing a real infinitely recursive filter.  If more
2025  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2026  * just compute FM_MAXTICKS ticks worth, by which point the level
2027  * will be stable.
2028  *
2029  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2030  * arithmetic overflow in the fmeter_update() routine.
2031  *
2032  * Given the simple 32 bit integer arithmetic used, this meter works
2033  * best for reporting rates between one per millisecond (msec) and
2034  * one per 32 (approx) seconds.  At constant rates faster than one
2035  * per msec it maxes out at values just under 1,000,000.  At constant
2036  * rates between one per msec, and one per second it will stabilize
2037  * to a value N*1000, where N is the rate of events per second.
2038  * At constant rates between one per second and one per 32 seconds,
2039  * it will be choppy, moving up on the seconds that have an event,
2040  * and then decaying until the next event.  At rates slower than
2041  * about one in 32 seconds, it decays all the way back to zero between
2042  * each event.
2043  */
2044 
2045 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2046 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2047 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2048 #define FM_SCALE 1000		/* faux fixed point scale */
2049 
2050 /* Initialize a frequency meter */
2051 static void fmeter_init(struct fmeter *fmp)
2052 {
2053 	fmp->cnt = 0;
2054 	fmp->val = 0;
2055 	fmp->time = 0;
2056 	spin_lock_init(&fmp->lock);
2057 }
2058 
2059 /* Internal meter update - process cnt events and update value */
2060 static void fmeter_update(struct fmeter *fmp)
2061 {
2062 	time64_t now;
2063 	u32 ticks;
2064 
2065 	now = ktime_get_seconds();
2066 	ticks = now - fmp->time;
2067 
2068 	if (ticks == 0)
2069 		return;
2070 
2071 	ticks = min(FM_MAXTICKS, ticks);
2072 	while (ticks-- > 0)
2073 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2074 	fmp->time = now;
2075 
2076 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2077 	fmp->cnt = 0;
2078 }
2079 
2080 /* Process any previous ticks, then bump cnt by one (times scale). */
2081 static void fmeter_markevent(struct fmeter *fmp)
2082 {
2083 	spin_lock(&fmp->lock);
2084 	fmeter_update(fmp);
2085 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2086 	spin_unlock(&fmp->lock);
2087 }
2088 
2089 /* Process any previous ticks, then return current value. */
2090 static int fmeter_getrate(struct fmeter *fmp)
2091 {
2092 	int val;
2093 
2094 	spin_lock(&fmp->lock);
2095 	fmeter_update(fmp);
2096 	val = fmp->val;
2097 	spin_unlock(&fmp->lock);
2098 	return val;
2099 }
2100 
2101 static struct cpuset *cpuset_attach_old_cs;
2102 
2103 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2104 static int cpuset_can_attach(struct cgroup_taskset *tset)
2105 {
2106 	struct cgroup_subsys_state *css;
2107 	struct cpuset *cs;
2108 	struct task_struct *task;
2109 	int ret;
2110 
2111 	/* used later by cpuset_attach() */
2112 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2113 	cs = css_cs(css);
2114 
2115 	percpu_down_write(&cpuset_rwsem);
2116 
2117 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2118 	ret = -ENOSPC;
2119 	if (!is_in_v2_mode() &&
2120 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2121 		goto out_unlock;
2122 
2123 	cgroup_taskset_for_each(task, css, tset) {
2124 		ret = task_can_attach(task, cs->cpus_allowed);
2125 		if (ret)
2126 			goto out_unlock;
2127 		ret = security_task_setscheduler(task);
2128 		if (ret)
2129 			goto out_unlock;
2130 	}
2131 
2132 	/*
2133 	 * Mark attach is in progress.  This makes validate_change() fail
2134 	 * changes which zero cpus/mems_allowed.
2135 	 */
2136 	cs->attach_in_progress++;
2137 	ret = 0;
2138 out_unlock:
2139 	percpu_up_write(&cpuset_rwsem);
2140 	return ret;
2141 }
2142 
2143 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2144 {
2145 	struct cgroup_subsys_state *css;
2146 
2147 	cgroup_taskset_first(tset, &css);
2148 
2149 	percpu_down_write(&cpuset_rwsem);
2150 	css_cs(css)->attach_in_progress--;
2151 	percpu_up_write(&cpuset_rwsem);
2152 }
2153 
2154 /*
2155  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2156  * but we can't allocate it dynamically there.  Define it global and
2157  * allocate from cpuset_init().
2158  */
2159 static cpumask_var_t cpus_attach;
2160 
2161 static void cpuset_attach(struct cgroup_taskset *tset)
2162 {
2163 	/* static buf protected by cpuset_mutex */
2164 	static nodemask_t cpuset_attach_nodemask_to;
2165 	struct task_struct *task;
2166 	struct task_struct *leader;
2167 	struct cgroup_subsys_state *css;
2168 	struct cpuset *cs;
2169 	struct cpuset *oldcs = cpuset_attach_old_cs;
2170 
2171 	cgroup_taskset_first(tset, &css);
2172 	cs = css_cs(css);
2173 
2174 	percpu_down_write(&cpuset_rwsem);
2175 
2176 	/* prepare for attach */
2177 	if (cs == &top_cpuset)
2178 		cpumask_copy(cpus_attach, cpu_possible_mask);
2179 	else
2180 		guarantee_online_cpus(cs, cpus_attach);
2181 
2182 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2183 
2184 	cgroup_taskset_for_each(task, css, tset) {
2185 		/*
2186 		 * can_attach beforehand should guarantee that this doesn't
2187 		 * fail.  TODO: have a better way to handle failure here
2188 		 */
2189 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2190 
2191 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2192 		cpuset_update_task_spread_flag(cs, task);
2193 	}
2194 
2195 	/*
2196 	 * Change mm for all threadgroup leaders. This is expensive and may
2197 	 * sleep and should be moved outside migration path proper.
2198 	 */
2199 	cpuset_attach_nodemask_to = cs->effective_mems;
2200 	cgroup_taskset_for_each_leader(leader, css, tset) {
2201 		struct mm_struct *mm = get_task_mm(leader);
2202 
2203 		if (mm) {
2204 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2205 
2206 			/*
2207 			 * old_mems_allowed is the same with mems_allowed
2208 			 * here, except if this task is being moved
2209 			 * automatically due to hotplug.  In that case
2210 			 * @mems_allowed has been updated and is empty, so
2211 			 * @old_mems_allowed is the right nodesets that we
2212 			 * migrate mm from.
2213 			 */
2214 			if (is_memory_migrate(cs))
2215 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2216 						  &cpuset_attach_nodemask_to);
2217 			else
2218 				mmput(mm);
2219 		}
2220 	}
2221 
2222 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2223 
2224 	cs->attach_in_progress--;
2225 	if (!cs->attach_in_progress)
2226 		wake_up(&cpuset_attach_wq);
2227 
2228 	percpu_up_write(&cpuset_rwsem);
2229 }
2230 
2231 /* The various types of files and directories in a cpuset file system */
2232 
2233 typedef enum {
2234 	FILE_MEMORY_MIGRATE,
2235 	FILE_CPULIST,
2236 	FILE_MEMLIST,
2237 	FILE_EFFECTIVE_CPULIST,
2238 	FILE_EFFECTIVE_MEMLIST,
2239 	FILE_SUBPARTS_CPULIST,
2240 	FILE_CPU_EXCLUSIVE,
2241 	FILE_MEM_EXCLUSIVE,
2242 	FILE_MEM_HARDWALL,
2243 	FILE_SCHED_LOAD_BALANCE,
2244 	FILE_PARTITION_ROOT,
2245 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2246 	FILE_MEMORY_PRESSURE_ENABLED,
2247 	FILE_MEMORY_PRESSURE,
2248 	FILE_SPREAD_PAGE,
2249 	FILE_SPREAD_SLAB,
2250 } cpuset_filetype_t;
2251 
2252 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2253 			    u64 val)
2254 {
2255 	struct cpuset *cs = css_cs(css);
2256 	cpuset_filetype_t type = cft->private;
2257 	int retval = 0;
2258 
2259 	get_online_cpus();
2260 	percpu_down_write(&cpuset_rwsem);
2261 	if (!is_cpuset_online(cs)) {
2262 		retval = -ENODEV;
2263 		goto out_unlock;
2264 	}
2265 
2266 	switch (type) {
2267 	case FILE_CPU_EXCLUSIVE:
2268 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2269 		break;
2270 	case FILE_MEM_EXCLUSIVE:
2271 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2272 		break;
2273 	case FILE_MEM_HARDWALL:
2274 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2275 		break;
2276 	case FILE_SCHED_LOAD_BALANCE:
2277 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2278 		break;
2279 	case FILE_MEMORY_MIGRATE:
2280 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2281 		break;
2282 	case FILE_MEMORY_PRESSURE_ENABLED:
2283 		cpuset_memory_pressure_enabled = !!val;
2284 		break;
2285 	case FILE_SPREAD_PAGE:
2286 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2287 		break;
2288 	case FILE_SPREAD_SLAB:
2289 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2290 		break;
2291 	default:
2292 		retval = -EINVAL;
2293 		break;
2294 	}
2295 out_unlock:
2296 	percpu_up_write(&cpuset_rwsem);
2297 	put_online_cpus();
2298 	return retval;
2299 }
2300 
2301 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2302 			    s64 val)
2303 {
2304 	struct cpuset *cs = css_cs(css);
2305 	cpuset_filetype_t type = cft->private;
2306 	int retval = -ENODEV;
2307 
2308 	get_online_cpus();
2309 	percpu_down_write(&cpuset_rwsem);
2310 	if (!is_cpuset_online(cs))
2311 		goto out_unlock;
2312 
2313 	switch (type) {
2314 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2315 		retval = update_relax_domain_level(cs, val);
2316 		break;
2317 	default:
2318 		retval = -EINVAL;
2319 		break;
2320 	}
2321 out_unlock:
2322 	percpu_up_write(&cpuset_rwsem);
2323 	put_online_cpus();
2324 	return retval;
2325 }
2326 
2327 /*
2328  * Common handling for a write to a "cpus" or "mems" file.
2329  */
2330 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2331 				    char *buf, size_t nbytes, loff_t off)
2332 {
2333 	struct cpuset *cs = css_cs(of_css(of));
2334 	struct cpuset *trialcs;
2335 	int retval = -ENODEV;
2336 
2337 	buf = strstrip(buf);
2338 
2339 	/*
2340 	 * CPU or memory hotunplug may leave @cs w/o any execution
2341 	 * resources, in which case the hotplug code asynchronously updates
2342 	 * configuration and transfers all tasks to the nearest ancestor
2343 	 * which can execute.
2344 	 *
2345 	 * As writes to "cpus" or "mems" may restore @cs's execution
2346 	 * resources, wait for the previously scheduled operations before
2347 	 * proceeding, so that we don't end up keep removing tasks added
2348 	 * after execution capability is restored.
2349 	 *
2350 	 * cpuset_hotplug_work calls back into cgroup core via
2351 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2352 	 * operation like this one can lead to a deadlock through kernfs
2353 	 * active_ref protection.  Let's break the protection.  Losing the
2354 	 * protection is okay as we check whether @cs is online after
2355 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2356 	 * hierarchies.
2357 	 */
2358 	css_get(&cs->css);
2359 	kernfs_break_active_protection(of->kn);
2360 	flush_work(&cpuset_hotplug_work);
2361 
2362 	get_online_cpus();
2363 	percpu_down_write(&cpuset_rwsem);
2364 	if (!is_cpuset_online(cs))
2365 		goto out_unlock;
2366 
2367 	trialcs = alloc_trial_cpuset(cs);
2368 	if (!trialcs) {
2369 		retval = -ENOMEM;
2370 		goto out_unlock;
2371 	}
2372 
2373 	switch (of_cft(of)->private) {
2374 	case FILE_CPULIST:
2375 		retval = update_cpumask(cs, trialcs, buf);
2376 		break;
2377 	case FILE_MEMLIST:
2378 		retval = update_nodemask(cs, trialcs, buf);
2379 		break;
2380 	default:
2381 		retval = -EINVAL;
2382 		break;
2383 	}
2384 
2385 	free_cpuset(trialcs);
2386 out_unlock:
2387 	percpu_up_write(&cpuset_rwsem);
2388 	put_online_cpus();
2389 	kernfs_unbreak_active_protection(of->kn);
2390 	css_put(&cs->css);
2391 	flush_workqueue(cpuset_migrate_mm_wq);
2392 	return retval ?: nbytes;
2393 }
2394 
2395 /*
2396  * These ascii lists should be read in a single call, by using a user
2397  * buffer large enough to hold the entire map.  If read in smaller
2398  * chunks, there is no guarantee of atomicity.  Since the display format
2399  * used, list of ranges of sequential numbers, is variable length,
2400  * and since these maps can change value dynamically, one could read
2401  * gibberish by doing partial reads while a list was changing.
2402  */
2403 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2404 {
2405 	struct cpuset *cs = css_cs(seq_css(sf));
2406 	cpuset_filetype_t type = seq_cft(sf)->private;
2407 	int ret = 0;
2408 
2409 	spin_lock_irq(&callback_lock);
2410 
2411 	switch (type) {
2412 	case FILE_CPULIST:
2413 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2414 		break;
2415 	case FILE_MEMLIST:
2416 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2417 		break;
2418 	case FILE_EFFECTIVE_CPULIST:
2419 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2420 		break;
2421 	case FILE_EFFECTIVE_MEMLIST:
2422 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2423 		break;
2424 	case FILE_SUBPARTS_CPULIST:
2425 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2426 		break;
2427 	default:
2428 		ret = -EINVAL;
2429 	}
2430 
2431 	spin_unlock_irq(&callback_lock);
2432 	return ret;
2433 }
2434 
2435 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2436 {
2437 	struct cpuset *cs = css_cs(css);
2438 	cpuset_filetype_t type = cft->private;
2439 	switch (type) {
2440 	case FILE_CPU_EXCLUSIVE:
2441 		return is_cpu_exclusive(cs);
2442 	case FILE_MEM_EXCLUSIVE:
2443 		return is_mem_exclusive(cs);
2444 	case FILE_MEM_HARDWALL:
2445 		return is_mem_hardwall(cs);
2446 	case FILE_SCHED_LOAD_BALANCE:
2447 		return is_sched_load_balance(cs);
2448 	case FILE_MEMORY_MIGRATE:
2449 		return is_memory_migrate(cs);
2450 	case FILE_MEMORY_PRESSURE_ENABLED:
2451 		return cpuset_memory_pressure_enabled;
2452 	case FILE_MEMORY_PRESSURE:
2453 		return fmeter_getrate(&cs->fmeter);
2454 	case FILE_SPREAD_PAGE:
2455 		return is_spread_page(cs);
2456 	case FILE_SPREAD_SLAB:
2457 		return is_spread_slab(cs);
2458 	default:
2459 		BUG();
2460 	}
2461 
2462 	/* Unreachable but makes gcc happy */
2463 	return 0;
2464 }
2465 
2466 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2467 {
2468 	struct cpuset *cs = css_cs(css);
2469 	cpuset_filetype_t type = cft->private;
2470 	switch (type) {
2471 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2472 		return cs->relax_domain_level;
2473 	default:
2474 		BUG();
2475 	}
2476 
2477 	/* Unrechable but makes gcc happy */
2478 	return 0;
2479 }
2480 
2481 static int sched_partition_show(struct seq_file *seq, void *v)
2482 {
2483 	struct cpuset *cs = css_cs(seq_css(seq));
2484 
2485 	switch (cs->partition_root_state) {
2486 	case PRS_ENABLED:
2487 		seq_puts(seq, "root\n");
2488 		break;
2489 	case PRS_DISABLED:
2490 		seq_puts(seq, "member\n");
2491 		break;
2492 	case PRS_ERROR:
2493 		seq_puts(seq, "root invalid\n");
2494 		break;
2495 	}
2496 	return 0;
2497 }
2498 
2499 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2500 				     size_t nbytes, loff_t off)
2501 {
2502 	struct cpuset *cs = css_cs(of_css(of));
2503 	int val;
2504 	int retval = -ENODEV;
2505 
2506 	buf = strstrip(buf);
2507 
2508 	/*
2509 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2510 	 */
2511 	if (!strcmp(buf, "root"))
2512 		val = PRS_ENABLED;
2513 	else if (!strcmp(buf, "member"))
2514 		val = PRS_DISABLED;
2515 	else
2516 		return -EINVAL;
2517 
2518 	css_get(&cs->css);
2519 	get_online_cpus();
2520 	percpu_down_write(&cpuset_rwsem);
2521 	if (!is_cpuset_online(cs))
2522 		goto out_unlock;
2523 
2524 	retval = update_prstate(cs, val);
2525 out_unlock:
2526 	percpu_up_write(&cpuset_rwsem);
2527 	put_online_cpus();
2528 	css_put(&cs->css);
2529 	return retval ?: nbytes;
2530 }
2531 
2532 /*
2533  * for the common functions, 'private' gives the type of file
2534  */
2535 
2536 static struct cftype legacy_files[] = {
2537 	{
2538 		.name = "cpus",
2539 		.seq_show = cpuset_common_seq_show,
2540 		.write = cpuset_write_resmask,
2541 		.max_write_len = (100U + 6 * NR_CPUS),
2542 		.private = FILE_CPULIST,
2543 	},
2544 
2545 	{
2546 		.name = "mems",
2547 		.seq_show = cpuset_common_seq_show,
2548 		.write = cpuset_write_resmask,
2549 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2550 		.private = FILE_MEMLIST,
2551 	},
2552 
2553 	{
2554 		.name = "effective_cpus",
2555 		.seq_show = cpuset_common_seq_show,
2556 		.private = FILE_EFFECTIVE_CPULIST,
2557 	},
2558 
2559 	{
2560 		.name = "effective_mems",
2561 		.seq_show = cpuset_common_seq_show,
2562 		.private = FILE_EFFECTIVE_MEMLIST,
2563 	},
2564 
2565 	{
2566 		.name = "cpu_exclusive",
2567 		.read_u64 = cpuset_read_u64,
2568 		.write_u64 = cpuset_write_u64,
2569 		.private = FILE_CPU_EXCLUSIVE,
2570 	},
2571 
2572 	{
2573 		.name = "mem_exclusive",
2574 		.read_u64 = cpuset_read_u64,
2575 		.write_u64 = cpuset_write_u64,
2576 		.private = FILE_MEM_EXCLUSIVE,
2577 	},
2578 
2579 	{
2580 		.name = "mem_hardwall",
2581 		.read_u64 = cpuset_read_u64,
2582 		.write_u64 = cpuset_write_u64,
2583 		.private = FILE_MEM_HARDWALL,
2584 	},
2585 
2586 	{
2587 		.name = "sched_load_balance",
2588 		.read_u64 = cpuset_read_u64,
2589 		.write_u64 = cpuset_write_u64,
2590 		.private = FILE_SCHED_LOAD_BALANCE,
2591 	},
2592 
2593 	{
2594 		.name = "sched_relax_domain_level",
2595 		.read_s64 = cpuset_read_s64,
2596 		.write_s64 = cpuset_write_s64,
2597 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2598 	},
2599 
2600 	{
2601 		.name = "memory_migrate",
2602 		.read_u64 = cpuset_read_u64,
2603 		.write_u64 = cpuset_write_u64,
2604 		.private = FILE_MEMORY_MIGRATE,
2605 	},
2606 
2607 	{
2608 		.name = "memory_pressure",
2609 		.read_u64 = cpuset_read_u64,
2610 		.private = FILE_MEMORY_PRESSURE,
2611 	},
2612 
2613 	{
2614 		.name = "memory_spread_page",
2615 		.read_u64 = cpuset_read_u64,
2616 		.write_u64 = cpuset_write_u64,
2617 		.private = FILE_SPREAD_PAGE,
2618 	},
2619 
2620 	{
2621 		.name = "memory_spread_slab",
2622 		.read_u64 = cpuset_read_u64,
2623 		.write_u64 = cpuset_write_u64,
2624 		.private = FILE_SPREAD_SLAB,
2625 	},
2626 
2627 	{
2628 		.name = "memory_pressure_enabled",
2629 		.flags = CFTYPE_ONLY_ON_ROOT,
2630 		.read_u64 = cpuset_read_u64,
2631 		.write_u64 = cpuset_write_u64,
2632 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2633 	},
2634 
2635 	{ }	/* terminate */
2636 };
2637 
2638 /*
2639  * This is currently a minimal set for the default hierarchy. It can be
2640  * expanded later on by migrating more features and control files from v1.
2641  */
2642 static struct cftype dfl_files[] = {
2643 	{
2644 		.name = "cpus",
2645 		.seq_show = cpuset_common_seq_show,
2646 		.write = cpuset_write_resmask,
2647 		.max_write_len = (100U + 6 * NR_CPUS),
2648 		.private = FILE_CPULIST,
2649 		.flags = CFTYPE_NOT_ON_ROOT,
2650 	},
2651 
2652 	{
2653 		.name = "mems",
2654 		.seq_show = cpuset_common_seq_show,
2655 		.write = cpuset_write_resmask,
2656 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2657 		.private = FILE_MEMLIST,
2658 		.flags = CFTYPE_NOT_ON_ROOT,
2659 	},
2660 
2661 	{
2662 		.name = "cpus.effective",
2663 		.seq_show = cpuset_common_seq_show,
2664 		.private = FILE_EFFECTIVE_CPULIST,
2665 	},
2666 
2667 	{
2668 		.name = "mems.effective",
2669 		.seq_show = cpuset_common_seq_show,
2670 		.private = FILE_EFFECTIVE_MEMLIST,
2671 	},
2672 
2673 	{
2674 		.name = "cpus.partition",
2675 		.seq_show = sched_partition_show,
2676 		.write = sched_partition_write,
2677 		.private = FILE_PARTITION_ROOT,
2678 		.flags = CFTYPE_NOT_ON_ROOT,
2679 	},
2680 
2681 	{
2682 		.name = "cpus.subpartitions",
2683 		.seq_show = cpuset_common_seq_show,
2684 		.private = FILE_SUBPARTS_CPULIST,
2685 		.flags = CFTYPE_DEBUG,
2686 	},
2687 
2688 	{ }	/* terminate */
2689 };
2690 
2691 
2692 /*
2693  *	cpuset_css_alloc - allocate a cpuset css
2694  *	cgrp:	control group that the new cpuset will be part of
2695  */
2696 
2697 static struct cgroup_subsys_state *
2698 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2699 {
2700 	struct cpuset *cs;
2701 
2702 	if (!parent_css)
2703 		return &top_cpuset.css;
2704 
2705 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2706 	if (!cs)
2707 		return ERR_PTR(-ENOMEM);
2708 
2709 	if (alloc_cpumasks(cs, NULL)) {
2710 		kfree(cs);
2711 		return ERR_PTR(-ENOMEM);
2712 	}
2713 
2714 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2715 	nodes_clear(cs->mems_allowed);
2716 	nodes_clear(cs->effective_mems);
2717 	fmeter_init(&cs->fmeter);
2718 	cs->relax_domain_level = -1;
2719 
2720 	return &cs->css;
2721 }
2722 
2723 static int cpuset_css_online(struct cgroup_subsys_state *css)
2724 {
2725 	struct cpuset *cs = css_cs(css);
2726 	struct cpuset *parent = parent_cs(cs);
2727 	struct cpuset *tmp_cs;
2728 	struct cgroup_subsys_state *pos_css;
2729 
2730 	if (!parent)
2731 		return 0;
2732 
2733 	get_online_cpus();
2734 	percpu_down_write(&cpuset_rwsem);
2735 
2736 	set_bit(CS_ONLINE, &cs->flags);
2737 	if (is_spread_page(parent))
2738 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2739 	if (is_spread_slab(parent))
2740 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2741 
2742 	cpuset_inc();
2743 
2744 	spin_lock_irq(&callback_lock);
2745 	if (is_in_v2_mode()) {
2746 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2747 		cs->effective_mems = parent->effective_mems;
2748 		cs->use_parent_ecpus = true;
2749 		parent->child_ecpus_count++;
2750 	}
2751 	spin_unlock_irq(&callback_lock);
2752 
2753 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2754 		goto out_unlock;
2755 
2756 	/*
2757 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2758 	 * set.  This flag handling is implemented in cgroup core for
2759 	 * histrical reasons - the flag may be specified during mount.
2760 	 *
2761 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2762 	 * refuse to clone the configuration - thereby refusing the task to
2763 	 * be entered, and as a result refusing the sys_unshare() or
2764 	 * clone() which initiated it.  If this becomes a problem for some
2765 	 * users who wish to allow that scenario, then this could be
2766 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2767 	 * (and likewise for mems) to the new cgroup.
2768 	 */
2769 	rcu_read_lock();
2770 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2771 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2772 			rcu_read_unlock();
2773 			goto out_unlock;
2774 		}
2775 	}
2776 	rcu_read_unlock();
2777 
2778 	spin_lock_irq(&callback_lock);
2779 	cs->mems_allowed = parent->mems_allowed;
2780 	cs->effective_mems = parent->mems_allowed;
2781 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2782 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2783 	spin_unlock_irq(&callback_lock);
2784 out_unlock:
2785 	percpu_up_write(&cpuset_rwsem);
2786 	put_online_cpus();
2787 	return 0;
2788 }
2789 
2790 /*
2791  * If the cpuset being removed has its flag 'sched_load_balance'
2792  * enabled, then simulate turning sched_load_balance off, which
2793  * will call rebuild_sched_domains_locked(). That is not needed
2794  * in the default hierarchy where only changes in partition
2795  * will cause repartitioning.
2796  *
2797  * If the cpuset has the 'sched.partition' flag enabled, simulate
2798  * turning 'sched.partition" off.
2799  */
2800 
2801 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2802 {
2803 	struct cpuset *cs = css_cs(css);
2804 
2805 	get_online_cpus();
2806 	percpu_down_write(&cpuset_rwsem);
2807 
2808 	if (is_partition_root(cs))
2809 		update_prstate(cs, 0);
2810 
2811 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2812 	    is_sched_load_balance(cs))
2813 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2814 
2815 	if (cs->use_parent_ecpus) {
2816 		struct cpuset *parent = parent_cs(cs);
2817 
2818 		cs->use_parent_ecpus = false;
2819 		parent->child_ecpus_count--;
2820 	}
2821 
2822 	cpuset_dec();
2823 	clear_bit(CS_ONLINE, &cs->flags);
2824 
2825 	percpu_up_write(&cpuset_rwsem);
2826 	put_online_cpus();
2827 }
2828 
2829 static void cpuset_css_free(struct cgroup_subsys_state *css)
2830 {
2831 	struct cpuset *cs = css_cs(css);
2832 
2833 	free_cpuset(cs);
2834 }
2835 
2836 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2837 {
2838 	percpu_down_write(&cpuset_rwsem);
2839 	spin_lock_irq(&callback_lock);
2840 
2841 	if (is_in_v2_mode()) {
2842 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2843 		top_cpuset.mems_allowed = node_possible_map;
2844 	} else {
2845 		cpumask_copy(top_cpuset.cpus_allowed,
2846 			     top_cpuset.effective_cpus);
2847 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2848 	}
2849 
2850 	spin_unlock_irq(&callback_lock);
2851 	percpu_up_write(&cpuset_rwsem);
2852 }
2853 
2854 /*
2855  * Make sure the new task conform to the current state of its parent,
2856  * which could have been changed by cpuset just after it inherits the
2857  * state from the parent and before it sits on the cgroup's task list.
2858  */
2859 static void cpuset_fork(struct task_struct *task)
2860 {
2861 	if (task_css_is_root(task, cpuset_cgrp_id))
2862 		return;
2863 
2864 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2865 	task->mems_allowed = current->mems_allowed;
2866 }
2867 
2868 struct cgroup_subsys cpuset_cgrp_subsys = {
2869 	.css_alloc	= cpuset_css_alloc,
2870 	.css_online	= cpuset_css_online,
2871 	.css_offline	= cpuset_css_offline,
2872 	.css_free	= cpuset_css_free,
2873 	.can_attach	= cpuset_can_attach,
2874 	.cancel_attach	= cpuset_cancel_attach,
2875 	.attach		= cpuset_attach,
2876 	.post_attach	= cpuset_post_attach,
2877 	.bind		= cpuset_bind,
2878 	.fork		= cpuset_fork,
2879 	.legacy_cftypes	= legacy_files,
2880 	.dfl_cftypes	= dfl_files,
2881 	.early_init	= true,
2882 	.threaded	= true,
2883 };
2884 
2885 /**
2886  * cpuset_init - initialize cpusets at system boot
2887  *
2888  * Description: Initialize top_cpuset
2889  **/
2890 
2891 int __init cpuset_init(void)
2892 {
2893 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2894 
2895 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2896 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2897 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2898 
2899 	cpumask_setall(top_cpuset.cpus_allowed);
2900 	nodes_setall(top_cpuset.mems_allowed);
2901 	cpumask_setall(top_cpuset.effective_cpus);
2902 	nodes_setall(top_cpuset.effective_mems);
2903 
2904 	fmeter_init(&top_cpuset.fmeter);
2905 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2906 	top_cpuset.relax_domain_level = -1;
2907 
2908 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2909 
2910 	return 0;
2911 }
2912 
2913 /*
2914  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2915  * or memory nodes, we need to walk over the cpuset hierarchy,
2916  * removing that CPU or node from all cpusets.  If this removes the
2917  * last CPU or node from a cpuset, then move the tasks in the empty
2918  * cpuset to its next-highest non-empty parent.
2919  */
2920 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2921 {
2922 	struct cpuset *parent;
2923 
2924 	/*
2925 	 * Find its next-highest non-empty parent, (top cpuset
2926 	 * has online cpus, so can't be empty).
2927 	 */
2928 	parent = parent_cs(cs);
2929 	while (cpumask_empty(parent->cpus_allowed) ||
2930 			nodes_empty(parent->mems_allowed))
2931 		parent = parent_cs(parent);
2932 
2933 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2934 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2935 		pr_cont_cgroup_name(cs->css.cgroup);
2936 		pr_cont("\n");
2937 	}
2938 }
2939 
2940 static void
2941 hotplug_update_tasks_legacy(struct cpuset *cs,
2942 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2943 			    bool cpus_updated, bool mems_updated)
2944 {
2945 	bool is_empty;
2946 
2947 	spin_lock_irq(&callback_lock);
2948 	cpumask_copy(cs->cpus_allowed, new_cpus);
2949 	cpumask_copy(cs->effective_cpus, new_cpus);
2950 	cs->mems_allowed = *new_mems;
2951 	cs->effective_mems = *new_mems;
2952 	spin_unlock_irq(&callback_lock);
2953 
2954 	/*
2955 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2956 	 * as the tasks will be migratecd to an ancestor.
2957 	 */
2958 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2959 		update_tasks_cpumask(cs);
2960 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2961 		update_tasks_nodemask(cs);
2962 
2963 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2964 		   nodes_empty(cs->mems_allowed);
2965 
2966 	percpu_up_write(&cpuset_rwsem);
2967 
2968 	/*
2969 	 * Move tasks to the nearest ancestor with execution resources,
2970 	 * This is full cgroup operation which will also call back into
2971 	 * cpuset. Should be done outside any lock.
2972 	 */
2973 	if (is_empty)
2974 		remove_tasks_in_empty_cpuset(cs);
2975 
2976 	percpu_down_write(&cpuset_rwsem);
2977 }
2978 
2979 static void
2980 hotplug_update_tasks(struct cpuset *cs,
2981 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2982 		     bool cpus_updated, bool mems_updated)
2983 {
2984 	if (cpumask_empty(new_cpus))
2985 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2986 	if (nodes_empty(*new_mems))
2987 		*new_mems = parent_cs(cs)->effective_mems;
2988 
2989 	spin_lock_irq(&callback_lock);
2990 	cpumask_copy(cs->effective_cpus, new_cpus);
2991 	cs->effective_mems = *new_mems;
2992 	spin_unlock_irq(&callback_lock);
2993 
2994 	if (cpus_updated)
2995 		update_tasks_cpumask(cs);
2996 	if (mems_updated)
2997 		update_tasks_nodemask(cs);
2998 }
2999 
3000 static bool force_rebuild;
3001 
3002 void cpuset_force_rebuild(void)
3003 {
3004 	force_rebuild = true;
3005 }
3006 
3007 /**
3008  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3009  * @cs: cpuset in interest
3010  * @tmp: the tmpmasks structure pointer
3011  *
3012  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3013  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3014  * all its tasks are moved to the nearest ancestor with both resources.
3015  */
3016 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3017 {
3018 	static cpumask_t new_cpus;
3019 	static nodemask_t new_mems;
3020 	bool cpus_updated;
3021 	bool mems_updated;
3022 	struct cpuset *parent;
3023 retry:
3024 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3025 
3026 	percpu_down_write(&cpuset_rwsem);
3027 
3028 	/*
3029 	 * We have raced with task attaching. We wait until attaching
3030 	 * is finished, so we won't attach a task to an empty cpuset.
3031 	 */
3032 	if (cs->attach_in_progress) {
3033 		percpu_up_write(&cpuset_rwsem);
3034 		goto retry;
3035 	}
3036 
3037 	parent =  parent_cs(cs);
3038 	compute_effective_cpumask(&new_cpus, cs, parent);
3039 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3040 
3041 	if (cs->nr_subparts_cpus)
3042 		/*
3043 		 * Make sure that CPUs allocated to child partitions
3044 		 * do not show up in effective_cpus.
3045 		 */
3046 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3047 
3048 	if (!tmp || !cs->partition_root_state)
3049 		goto update_tasks;
3050 
3051 	/*
3052 	 * In the unlikely event that a partition root has empty
3053 	 * effective_cpus or its parent becomes erroneous, we have to
3054 	 * transition it to the erroneous state.
3055 	 */
3056 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3057 	   (parent->partition_root_state == PRS_ERROR))) {
3058 		if (cs->nr_subparts_cpus) {
3059 			cs->nr_subparts_cpus = 0;
3060 			cpumask_clear(cs->subparts_cpus);
3061 			compute_effective_cpumask(&new_cpus, cs, parent);
3062 		}
3063 
3064 		/*
3065 		 * If the effective_cpus is empty because the child
3066 		 * partitions take away all the CPUs, we can keep
3067 		 * the current partition and let the child partitions
3068 		 * fight for available CPUs.
3069 		 */
3070 		if ((parent->partition_root_state == PRS_ERROR) ||
3071 		     cpumask_empty(&new_cpus)) {
3072 			update_parent_subparts_cpumask(cs, partcmd_disable,
3073 						       NULL, tmp);
3074 			cs->partition_root_state = PRS_ERROR;
3075 		}
3076 		cpuset_force_rebuild();
3077 	}
3078 
3079 	/*
3080 	 * On the other hand, an erroneous partition root may be transitioned
3081 	 * back to a regular one or a partition root with no CPU allocated
3082 	 * from the parent may change to erroneous.
3083 	 */
3084 	if (is_partition_root(parent) &&
3085 	   ((cs->partition_root_state == PRS_ERROR) ||
3086 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3087 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3088 		cpuset_force_rebuild();
3089 
3090 update_tasks:
3091 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3092 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3093 
3094 	if (is_in_v2_mode())
3095 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3096 				     cpus_updated, mems_updated);
3097 	else
3098 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3099 					    cpus_updated, mems_updated);
3100 
3101 	percpu_up_write(&cpuset_rwsem);
3102 }
3103 
3104 /**
3105  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3106  *
3107  * This function is called after either CPU or memory configuration has
3108  * changed and updates cpuset accordingly.  The top_cpuset is always
3109  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3110  * order to make cpusets transparent (of no affect) on systems that are
3111  * actively using CPU hotplug but making no active use of cpusets.
3112  *
3113  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3114  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3115  * all descendants.
3116  *
3117  * Note that CPU offlining during suspend is ignored.  We don't modify
3118  * cpusets across suspend/resume cycles at all.
3119  */
3120 static void cpuset_hotplug_workfn(struct work_struct *work)
3121 {
3122 	static cpumask_t new_cpus;
3123 	static nodemask_t new_mems;
3124 	bool cpus_updated, mems_updated;
3125 	bool on_dfl = is_in_v2_mode();
3126 	struct tmpmasks tmp, *ptmp = NULL;
3127 
3128 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3129 		ptmp = &tmp;
3130 
3131 	percpu_down_write(&cpuset_rwsem);
3132 
3133 	/* fetch the available cpus/mems and find out which changed how */
3134 	cpumask_copy(&new_cpus, cpu_active_mask);
3135 	new_mems = node_states[N_MEMORY];
3136 
3137 	/*
3138 	 * If subparts_cpus is populated, it is likely that the check below
3139 	 * will produce a false positive on cpus_updated when the cpu list
3140 	 * isn't changed. It is extra work, but it is better to be safe.
3141 	 */
3142 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3143 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3144 
3145 	/* synchronize cpus_allowed to cpu_active_mask */
3146 	if (cpus_updated) {
3147 		spin_lock_irq(&callback_lock);
3148 		if (!on_dfl)
3149 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3150 		/*
3151 		 * Make sure that CPUs allocated to child partitions
3152 		 * do not show up in effective_cpus. If no CPU is left,
3153 		 * we clear the subparts_cpus & let the child partitions
3154 		 * fight for the CPUs again.
3155 		 */
3156 		if (top_cpuset.nr_subparts_cpus) {
3157 			if (cpumask_subset(&new_cpus,
3158 					   top_cpuset.subparts_cpus)) {
3159 				top_cpuset.nr_subparts_cpus = 0;
3160 				cpumask_clear(top_cpuset.subparts_cpus);
3161 			} else {
3162 				cpumask_andnot(&new_cpus, &new_cpus,
3163 					       top_cpuset.subparts_cpus);
3164 			}
3165 		}
3166 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3167 		spin_unlock_irq(&callback_lock);
3168 		/* we don't mess with cpumasks of tasks in top_cpuset */
3169 	}
3170 
3171 	/* synchronize mems_allowed to N_MEMORY */
3172 	if (mems_updated) {
3173 		spin_lock_irq(&callback_lock);
3174 		if (!on_dfl)
3175 			top_cpuset.mems_allowed = new_mems;
3176 		top_cpuset.effective_mems = new_mems;
3177 		spin_unlock_irq(&callback_lock);
3178 		update_tasks_nodemask(&top_cpuset);
3179 	}
3180 
3181 	percpu_up_write(&cpuset_rwsem);
3182 
3183 	/* if cpus or mems changed, we need to propagate to descendants */
3184 	if (cpus_updated || mems_updated) {
3185 		struct cpuset *cs;
3186 		struct cgroup_subsys_state *pos_css;
3187 
3188 		rcu_read_lock();
3189 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3190 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3191 				continue;
3192 			rcu_read_unlock();
3193 
3194 			cpuset_hotplug_update_tasks(cs, ptmp);
3195 
3196 			rcu_read_lock();
3197 			css_put(&cs->css);
3198 		}
3199 		rcu_read_unlock();
3200 	}
3201 
3202 	/* rebuild sched domains if cpus_allowed has changed */
3203 	if (cpus_updated || force_rebuild) {
3204 		force_rebuild = false;
3205 		rebuild_sched_domains();
3206 	}
3207 
3208 	free_cpumasks(NULL, ptmp);
3209 }
3210 
3211 void cpuset_update_active_cpus(void)
3212 {
3213 	/*
3214 	 * We're inside cpu hotplug critical region which usually nests
3215 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3216 	 * to a work item to avoid reverse locking order.
3217 	 */
3218 	schedule_work(&cpuset_hotplug_work);
3219 }
3220 
3221 void cpuset_wait_for_hotplug(void)
3222 {
3223 	flush_work(&cpuset_hotplug_work);
3224 }
3225 
3226 /*
3227  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3228  * Call this routine anytime after node_states[N_MEMORY] changes.
3229  * See cpuset_update_active_cpus() for CPU hotplug handling.
3230  */
3231 static int cpuset_track_online_nodes(struct notifier_block *self,
3232 				unsigned long action, void *arg)
3233 {
3234 	schedule_work(&cpuset_hotplug_work);
3235 	return NOTIFY_OK;
3236 }
3237 
3238 static struct notifier_block cpuset_track_online_nodes_nb = {
3239 	.notifier_call = cpuset_track_online_nodes,
3240 	.priority = 10,		/* ??! */
3241 };
3242 
3243 /**
3244  * cpuset_init_smp - initialize cpus_allowed
3245  *
3246  * Description: Finish top cpuset after cpu, node maps are initialized
3247  */
3248 void __init cpuset_init_smp(void)
3249 {
3250 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3251 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3252 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3253 
3254 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3255 	top_cpuset.effective_mems = node_states[N_MEMORY];
3256 
3257 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3258 
3259 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3260 	BUG_ON(!cpuset_migrate_mm_wq);
3261 }
3262 
3263 /**
3264  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3265  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3266  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3267  *
3268  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3269  * attached to the specified @tsk.  Guaranteed to return some non-empty
3270  * subset of cpu_online_mask, even if this means going outside the
3271  * tasks cpuset.
3272  **/
3273 
3274 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3275 {
3276 	unsigned long flags;
3277 
3278 	spin_lock_irqsave(&callback_lock, flags);
3279 	rcu_read_lock();
3280 	guarantee_online_cpus(task_cs(tsk), pmask);
3281 	rcu_read_unlock();
3282 	spin_unlock_irqrestore(&callback_lock, flags);
3283 }
3284 
3285 /**
3286  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3287  * @tsk: pointer to task_struct with which the scheduler is struggling
3288  *
3289  * Description: In the case that the scheduler cannot find an allowed cpu in
3290  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3291  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3292  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3293  * This is the absolute last resort for the scheduler and it is only used if
3294  * _every_ other avenue has been traveled.
3295  **/
3296 
3297 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3298 {
3299 	rcu_read_lock();
3300 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3301 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3302 	rcu_read_unlock();
3303 
3304 	/*
3305 	 * We own tsk->cpus_allowed, nobody can change it under us.
3306 	 *
3307 	 * But we used cs && cs->cpus_allowed lockless and thus can
3308 	 * race with cgroup_attach_task() or update_cpumask() and get
3309 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3310 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3311 	 * which takes task_rq_lock().
3312 	 *
3313 	 * If we are called after it dropped the lock we must see all
3314 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3315 	 * set any mask even if it is not right from task_cs() pov,
3316 	 * the pending set_cpus_allowed_ptr() will fix things.
3317 	 *
3318 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3319 	 * if required.
3320 	 */
3321 }
3322 
3323 void __init cpuset_init_current_mems_allowed(void)
3324 {
3325 	nodes_setall(current->mems_allowed);
3326 }
3327 
3328 /**
3329  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3330  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3331  *
3332  * Description: Returns the nodemask_t mems_allowed of the cpuset
3333  * attached to the specified @tsk.  Guaranteed to return some non-empty
3334  * subset of node_states[N_MEMORY], even if this means going outside the
3335  * tasks cpuset.
3336  **/
3337 
3338 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3339 {
3340 	nodemask_t mask;
3341 	unsigned long flags;
3342 
3343 	spin_lock_irqsave(&callback_lock, flags);
3344 	rcu_read_lock();
3345 	guarantee_online_mems(task_cs(tsk), &mask);
3346 	rcu_read_unlock();
3347 	spin_unlock_irqrestore(&callback_lock, flags);
3348 
3349 	return mask;
3350 }
3351 
3352 /**
3353  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3354  * @nodemask: the nodemask to be checked
3355  *
3356  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3357  */
3358 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3359 {
3360 	return nodes_intersects(*nodemask, current->mems_allowed);
3361 }
3362 
3363 /*
3364  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3365  * mem_hardwall ancestor to the specified cpuset.  Call holding
3366  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3367  * (an unusual configuration), then returns the root cpuset.
3368  */
3369 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3370 {
3371 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3372 		cs = parent_cs(cs);
3373 	return cs;
3374 }
3375 
3376 /**
3377  * cpuset_node_allowed - Can we allocate on a memory node?
3378  * @node: is this an allowed node?
3379  * @gfp_mask: memory allocation flags
3380  *
3381  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3382  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3383  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3384  * yes.  If current has access to memory reserves as an oom victim, yes.
3385  * Otherwise, no.
3386  *
3387  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3388  * and do not allow allocations outside the current tasks cpuset
3389  * unless the task has been OOM killed.
3390  * GFP_KERNEL allocations are not so marked, so can escape to the
3391  * nearest enclosing hardwalled ancestor cpuset.
3392  *
3393  * Scanning up parent cpusets requires callback_lock.  The
3394  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3395  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3396  * current tasks mems_allowed came up empty on the first pass over
3397  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3398  * cpuset are short of memory, might require taking the callback_lock.
3399  *
3400  * The first call here from mm/page_alloc:get_page_from_freelist()
3401  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3402  * so no allocation on a node outside the cpuset is allowed (unless
3403  * in interrupt, of course).
3404  *
3405  * The second pass through get_page_from_freelist() doesn't even call
3406  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3407  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3408  * in alloc_flags.  That logic and the checks below have the combined
3409  * affect that:
3410  *	in_interrupt - any node ok (current task context irrelevant)
3411  *	GFP_ATOMIC   - any node ok
3412  *	tsk_is_oom_victim   - any node ok
3413  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3414  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3415  */
3416 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3417 {
3418 	struct cpuset *cs;		/* current cpuset ancestors */
3419 	int allowed;			/* is allocation in zone z allowed? */
3420 	unsigned long flags;
3421 
3422 	if (in_interrupt())
3423 		return true;
3424 	if (node_isset(node, current->mems_allowed))
3425 		return true;
3426 	/*
3427 	 * Allow tasks that have access to memory reserves because they have
3428 	 * been OOM killed to get memory anywhere.
3429 	 */
3430 	if (unlikely(tsk_is_oom_victim(current)))
3431 		return true;
3432 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3433 		return false;
3434 
3435 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3436 		return true;
3437 
3438 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3439 	spin_lock_irqsave(&callback_lock, flags);
3440 
3441 	rcu_read_lock();
3442 	cs = nearest_hardwall_ancestor(task_cs(current));
3443 	allowed = node_isset(node, cs->mems_allowed);
3444 	rcu_read_unlock();
3445 
3446 	spin_unlock_irqrestore(&callback_lock, flags);
3447 	return allowed;
3448 }
3449 
3450 /**
3451  * cpuset_mem_spread_node() - On which node to begin search for a file page
3452  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3453  *
3454  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3455  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3456  * and if the memory allocation used cpuset_mem_spread_node()
3457  * to determine on which node to start looking, as it will for
3458  * certain page cache or slab cache pages such as used for file
3459  * system buffers and inode caches, then instead of starting on the
3460  * local node to look for a free page, rather spread the starting
3461  * node around the tasks mems_allowed nodes.
3462  *
3463  * We don't have to worry about the returned node being offline
3464  * because "it can't happen", and even if it did, it would be ok.
3465  *
3466  * The routines calling guarantee_online_mems() are careful to
3467  * only set nodes in task->mems_allowed that are online.  So it
3468  * should not be possible for the following code to return an
3469  * offline node.  But if it did, that would be ok, as this routine
3470  * is not returning the node where the allocation must be, only
3471  * the node where the search should start.  The zonelist passed to
3472  * __alloc_pages() will include all nodes.  If the slab allocator
3473  * is passed an offline node, it will fall back to the local node.
3474  * See kmem_cache_alloc_node().
3475  */
3476 
3477 static int cpuset_spread_node(int *rotor)
3478 {
3479 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3480 }
3481 
3482 int cpuset_mem_spread_node(void)
3483 {
3484 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3485 		current->cpuset_mem_spread_rotor =
3486 			node_random(&current->mems_allowed);
3487 
3488 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3489 }
3490 
3491 int cpuset_slab_spread_node(void)
3492 {
3493 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3494 		current->cpuset_slab_spread_rotor =
3495 			node_random(&current->mems_allowed);
3496 
3497 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3498 }
3499 
3500 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3501 
3502 /**
3503  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3504  * @tsk1: pointer to task_struct of some task.
3505  * @tsk2: pointer to task_struct of some other task.
3506  *
3507  * Description: Return true if @tsk1's mems_allowed intersects the
3508  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3509  * one of the task's memory usage might impact the memory available
3510  * to the other.
3511  **/
3512 
3513 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3514 				   const struct task_struct *tsk2)
3515 {
3516 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3517 }
3518 
3519 /**
3520  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3521  *
3522  * Description: Prints current's name, cpuset name, and cached copy of its
3523  * mems_allowed to the kernel log.
3524  */
3525 void cpuset_print_current_mems_allowed(void)
3526 {
3527 	struct cgroup *cgrp;
3528 
3529 	rcu_read_lock();
3530 
3531 	cgrp = task_cs(current)->css.cgroup;
3532 	pr_cont(",cpuset=");
3533 	pr_cont_cgroup_name(cgrp);
3534 	pr_cont(",mems_allowed=%*pbl",
3535 		nodemask_pr_args(&current->mems_allowed));
3536 
3537 	rcu_read_unlock();
3538 }
3539 
3540 /*
3541  * Collection of memory_pressure is suppressed unless
3542  * this flag is enabled by writing "1" to the special
3543  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3544  */
3545 
3546 int cpuset_memory_pressure_enabled __read_mostly;
3547 
3548 /**
3549  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3550  *
3551  * Keep a running average of the rate of synchronous (direct)
3552  * page reclaim efforts initiated by tasks in each cpuset.
3553  *
3554  * This represents the rate at which some task in the cpuset
3555  * ran low on memory on all nodes it was allowed to use, and
3556  * had to enter the kernels page reclaim code in an effort to
3557  * create more free memory by tossing clean pages or swapping
3558  * or writing dirty pages.
3559  *
3560  * Display to user space in the per-cpuset read-only file
3561  * "memory_pressure".  Value displayed is an integer
3562  * representing the recent rate of entry into the synchronous
3563  * (direct) page reclaim by any task attached to the cpuset.
3564  **/
3565 
3566 void __cpuset_memory_pressure_bump(void)
3567 {
3568 	rcu_read_lock();
3569 	fmeter_markevent(&task_cs(current)->fmeter);
3570 	rcu_read_unlock();
3571 }
3572 
3573 #ifdef CONFIG_PROC_PID_CPUSET
3574 /*
3575  * proc_cpuset_show()
3576  *  - Print tasks cpuset path into seq_file.
3577  *  - Used for /proc/<pid>/cpuset.
3578  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3579  *    doesn't really matter if tsk->cpuset changes after we read it,
3580  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3581  *    anyway.
3582  */
3583 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3584 		     struct pid *pid, struct task_struct *tsk)
3585 {
3586 	char *buf;
3587 	struct cgroup_subsys_state *css;
3588 	int retval;
3589 
3590 	retval = -ENOMEM;
3591 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3592 	if (!buf)
3593 		goto out;
3594 
3595 	css = task_get_css(tsk, cpuset_cgrp_id);
3596 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3597 				current->nsproxy->cgroup_ns);
3598 	css_put(css);
3599 	if (retval >= PATH_MAX)
3600 		retval = -ENAMETOOLONG;
3601 	if (retval < 0)
3602 		goto out_free;
3603 	seq_puts(m, buf);
3604 	seq_putc(m, '\n');
3605 	retval = 0;
3606 out_free:
3607 	kfree(buf);
3608 out:
3609 	return retval;
3610 }
3611 #endif /* CONFIG_PROC_PID_CPUSET */
3612 
3613 /* Display task mems_allowed in /proc/<pid>/status file. */
3614 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3615 {
3616 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3617 		   nodemask_pr_args(&task->mems_allowed));
3618 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3619 		   nodemask_pr_args(&task->mems_allowed));
3620 }
3621