1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierachy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 }; 164 165 /* 166 * Partition root states: 167 * 168 * 0 - not a partition root 169 * 170 * 1 - partition root 171 * 172 * -1 - invalid partition root 173 * None of the cpus in cpus_allowed can be put into the parent's 174 * subparts_cpus. In this case, the cpuset is not a real partition 175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 176 * and the cpuset can be restored back to a partition root if the 177 * parent cpuset can give more CPUs back to this child cpuset. 178 */ 179 #define PRS_DISABLED 0 180 #define PRS_ENABLED 1 181 #define PRS_ERROR -1 182 183 /* 184 * Temporary cpumasks for working with partitions that are passed among 185 * functions to avoid memory allocation in inner functions. 186 */ 187 struct tmpmasks { 188 cpumask_var_t addmask, delmask; /* For partition root */ 189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 190 }; 191 192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 193 { 194 return css ? container_of(css, struct cpuset, css) : NULL; 195 } 196 197 /* Retrieve the cpuset for a task */ 198 static inline struct cpuset *task_cs(struct task_struct *task) 199 { 200 return css_cs(task_css(task, cpuset_cgrp_id)); 201 } 202 203 static inline struct cpuset *parent_cs(struct cpuset *cs) 204 { 205 return css_cs(cs->css.parent); 206 } 207 208 /* bits in struct cpuset flags field */ 209 typedef enum { 210 CS_ONLINE, 211 CS_CPU_EXCLUSIVE, 212 CS_MEM_EXCLUSIVE, 213 CS_MEM_HARDWALL, 214 CS_MEMORY_MIGRATE, 215 CS_SCHED_LOAD_BALANCE, 216 CS_SPREAD_PAGE, 217 CS_SPREAD_SLAB, 218 } cpuset_flagbits_t; 219 220 /* convenient tests for these bits */ 221 static inline bool is_cpuset_online(struct cpuset *cs) 222 { 223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 224 } 225 226 static inline int is_cpu_exclusive(const struct cpuset *cs) 227 { 228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 229 } 230 231 static inline int is_mem_exclusive(const struct cpuset *cs) 232 { 233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 234 } 235 236 static inline int is_mem_hardwall(const struct cpuset *cs) 237 { 238 return test_bit(CS_MEM_HARDWALL, &cs->flags); 239 } 240 241 static inline int is_sched_load_balance(const struct cpuset *cs) 242 { 243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 244 } 245 246 static inline int is_memory_migrate(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 249 } 250 251 static inline int is_spread_page(const struct cpuset *cs) 252 { 253 return test_bit(CS_SPREAD_PAGE, &cs->flags); 254 } 255 256 static inline int is_spread_slab(const struct cpuset *cs) 257 { 258 return test_bit(CS_SPREAD_SLAB, &cs->flags); 259 } 260 261 static inline int is_partition_root(const struct cpuset *cs) 262 { 263 return cs->partition_root_state > 0; 264 } 265 266 static struct cpuset top_cpuset = { 267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 268 (1 << CS_MEM_EXCLUSIVE)), 269 .partition_root_state = PRS_ENABLED, 270 }; 271 272 /** 273 * cpuset_for_each_child - traverse online children of a cpuset 274 * @child_cs: loop cursor pointing to the current child 275 * @pos_css: used for iteration 276 * @parent_cs: target cpuset to walk children of 277 * 278 * Walk @child_cs through the online children of @parent_cs. Must be used 279 * with RCU read locked. 280 */ 281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 282 css_for_each_child((pos_css), &(parent_cs)->css) \ 283 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 284 285 /** 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 287 * @des_cs: loop cursor pointing to the current descendant 288 * @pos_css: used for iteration 289 * @root_cs: target cpuset to walk ancestor of 290 * 291 * Walk @des_cs through the online descendants of @root_cs. Must be used 292 * with RCU read locked. The caller may modify @pos_css by calling 293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 294 * iteration and the first node to be visited. 295 */ 296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 298 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 299 300 /* 301 * There are two global locks guarding cpuset structures - cpuset_mutex and 302 * callback_lock. We also require taking task_lock() when dereferencing a 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this 304 * comment. 305 * 306 * A task must hold both locks to modify cpusets. If a task holds 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 308 * is the only task able to also acquire callback_lock and be able to 309 * modify cpusets. It can perform various checks on the cpuset structure 310 * first, knowing nothing will change. It can also allocate memory while 311 * just holding cpuset_mutex. While it is performing these checks, various 312 * callback routines can briefly acquire callback_lock to query cpusets. 313 * Once it is ready to make the changes, it takes callback_lock, blocking 314 * everyone else. 315 * 316 * Calls to the kernel memory allocator can not be made while holding 317 * callback_lock, as that would risk double tripping on callback_lock 318 * from one of the callbacks into the cpuset code from within 319 * __alloc_pages(). 320 * 321 * If a task is only holding callback_lock, then it has read-only 322 * access to cpusets. 323 * 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed 325 * by other task, we use alloc_lock in the task_struct fields to protect 326 * them. 327 * 328 * The cpuset_common_file_read() handlers only hold callback_lock across 329 * small pieces of code, such as when reading out possibly multi-word 330 * cpumasks and nodemasks. 331 * 332 * Accessing a task's cpuset should be done in accordance with the 333 * guidelines for accessing subsystem state in kernel/cgroup.c 334 */ 335 336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 337 338 void cpuset_read_lock(void) 339 { 340 percpu_down_read(&cpuset_rwsem); 341 } 342 343 void cpuset_read_unlock(void) 344 { 345 percpu_up_read(&cpuset_rwsem); 346 } 347 348 static DEFINE_SPINLOCK(callback_lock); 349 350 static struct workqueue_struct *cpuset_migrate_mm_wq; 351 352 /* 353 * CPU / memory hotplug is handled asynchronously. 354 */ 355 static void cpuset_hotplug_workfn(struct work_struct *work); 356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 357 358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 359 360 /* 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 364 * With v2 behavior, "cpus" and "mems" are always what the users have 365 * requested and won't be changed by hotplug events. Only the effective 366 * cpus or mems will be affected. 367 */ 368 static inline bool is_in_v2_mode(void) 369 { 370 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 371 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 372 } 373 374 /* 375 * Return in pmask the portion of a cpusets's cpus_allowed that 376 * are online. If none are online, walk up the cpuset hierarchy 377 * until we find one that does have some online cpus. 378 * 379 * One way or another, we guarantee to return some non-empty subset 380 * of cpu_online_mask. 381 * 382 * Call with callback_lock or cpuset_mutex held. 383 */ 384 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 385 { 386 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 387 cs = parent_cs(cs); 388 if (unlikely(!cs)) { 389 /* 390 * The top cpuset doesn't have any online cpu as a 391 * consequence of a race between cpuset_hotplug_work 392 * and cpu hotplug notifier. But we know the top 393 * cpuset's effective_cpus is on its way to be 394 * identical to cpu_online_mask. 395 */ 396 cpumask_copy(pmask, cpu_online_mask); 397 return; 398 } 399 } 400 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 401 } 402 403 /* 404 * Return in *pmask the portion of a cpusets's mems_allowed that 405 * are online, with memory. If none are online with memory, walk 406 * up the cpuset hierarchy until we find one that does have some 407 * online mems. The top cpuset always has some mems online. 408 * 409 * One way or another, we guarantee to return some non-empty subset 410 * of node_states[N_MEMORY]. 411 * 412 * Call with callback_lock or cpuset_mutex held. 413 */ 414 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 415 { 416 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 417 cs = parent_cs(cs); 418 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 419 } 420 421 /* 422 * update task's spread flag if cpuset's page/slab spread flag is set 423 * 424 * Call with callback_lock or cpuset_mutex held. 425 */ 426 static void cpuset_update_task_spread_flag(struct cpuset *cs, 427 struct task_struct *tsk) 428 { 429 if (is_spread_page(cs)) 430 task_set_spread_page(tsk); 431 else 432 task_clear_spread_page(tsk); 433 434 if (is_spread_slab(cs)) 435 task_set_spread_slab(tsk); 436 else 437 task_clear_spread_slab(tsk); 438 } 439 440 /* 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 442 * 443 * One cpuset is a subset of another if all its allowed CPUs and 444 * Memory Nodes are a subset of the other, and its exclusive flags 445 * are only set if the other's are set. Call holding cpuset_mutex. 446 */ 447 448 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 449 { 450 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 451 nodes_subset(p->mems_allowed, q->mems_allowed) && 452 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 453 is_mem_exclusive(p) <= is_mem_exclusive(q); 454 } 455 456 /** 457 * alloc_cpumasks - allocate three cpumasks for cpuset 458 * @cs: the cpuset that have cpumasks to be allocated. 459 * @tmp: the tmpmasks structure pointer 460 * Return: 0 if successful, -ENOMEM otherwise. 461 * 462 * Only one of the two input arguments should be non-NULL. 463 */ 464 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 465 { 466 cpumask_var_t *pmask1, *pmask2, *pmask3; 467 468 if (cs) { 469 pmask1 = &cs->cpus_allowed; 470 pmask2 = &cs->effective_cpus; 471 pmask3 = &cs->subparts_cpus; 472 } else { 473 pmask1 = &tmp->new_cpus; 474 pmask2 = &tmp->addmask; 475 pmask3 = &tmp->delmask; 476 } 477 478 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 479 return -ENOMEM; 480 481 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 482 goto free_one; 483 484 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 485 goto free_two; 486 487 return 0; 488 489 free_two: 490 free_cpumask_var(*pmask2); 491 free_one: 492 free_cpumask_var(*pmask1); 493 return -ENOMEM; 494 } 495 496 /** 497 * free_cpumasks - free cpumasks in a tmpmasks structure 498 * @cs: the cpuset that have cpumasks to be free. 499 * @tmp: the tmpmasks structure pointer 500 */ 501 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 502 { 503 if (cs) { 504 free_cpumask_var(cs->cpus_allowed); 505 free_cpumask_var(cs->effective_cpus); 506 free_cpumask_var(cs->subparts_cpus); 507 } 508 if (tmp) { 509 free_cpumask_var(tmp->new_cpus); 510 free_cpumask_var(tmp->addmask); 511 free_cpumask_var(tmp->delmask); 512 } 513 } 514 515 /** 516 * alloc_trial_cpuset - allocate a trial cpuset 517 * @cs: the cpuset that the trial cpuset duplicates 518 */ 519 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 520 { 521 struct cpuset *trial; 522 523 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 524 if (!trial) 525 return NULL; 526 527 if (alloc_cpumasks(trial, NULL)) { 528 kfree(trial); 529 return NULL; 530 } 531 532 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 533 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 534 return trial; 535 } 536 537 /** 538 * free_cpuset - free the cpuset 539 * @cs: the cpuset to be freed 540 */ 541 static inline void free_cpuset(struct cpuset *cs) 542 { 543 free_cpumasks(cs, NULL); 544 kfree(cs); 545 } 546 547 /* 548 * validate_change() - Used to validate that any proposed cpuset change 549 * follows the structural rules for cpusets. 550 * 551 * If we replaced the flag and mask values of the current cpuset 552 * (cur) with those values in the trial cpuset (trial), would 553 * our various subset and exclusive rules still be valid? Presumes 554 * cpuset_mutex held. 555 * 556 * 'cur' is the address of an actual, in-use cpuset. Operations 557 * such as list traversal that depend on the actual address of the 558 * cpuset in the list must use cur below, not trial. 559 * 560 * 'trial' is the address of bulk structure copy of cur, with 561 * perhaps one or more of the fields cpus_allowed, mems_allowed, 562 * or flags changed to new, trial values. 563 * 564 * Return 0 if valid, -errno if not. 565 */ 566 567 static int validate_change(struct cpuset *cur, struct cpuset *trial) 568 { 569 struct cgroup_subsys_state *css; 570 struct cpuset *c, *par; 571 int ret; 572 573 rcu_read_lock(); 574 575 /* Each of our child cpusets must be a subset of us */ 576 ret = -EBUSY; 577 cpuset_for_each_child(c, css, cur) 578 if (!is_cpuset_subset(c, trial)) 579 goto out; 580 581 /* Remaining checks don't apply to root cpuset */ 582 ret = 0; 583 if (cur == &top_cpuset) 584 goto out; 585 586 par = parent_cs(cur); 587 588 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 589 ret = -EACCES; 590 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 591 goto out; 592 593 /* 594 * If either I or some sibling (!= me) is exclusive, we can't 595 * overlap 596 */ 597 ret = -EINVAL; 598 cpuset_for_each_child(c, css, par) { 599 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 600 c != cur && 601 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 602 goto out; 603 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 604 c != cur && 605 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 606 goto out; 607 } 608 609 /* 610 * Cpusets with tasks - existing or newly being attached - can't 611 * be changed to have empty cpus_allowed or mems_allowed. 612 */ 613 ret = -ENOSPC; 614 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 615 if (!cpumask_empty(cur->cpus_allowed) && 616 cpumask_empty(trial->cpus_allowed)) 617 goto out; 618 if (!nodes_empty(cur->mems_allowed) && 619 nodes_empty(trial->mems_allowed)) 620 goto out; 621 } 622 623 /* 624 * We can't shrink if we won't have enough room for SCHED_DEADLINE 625 * tasks. 626 */ 627 ret = -EBUSY; 628 if (is_cpu_exclusive(cur) && 629 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 630 trial->cpus_allowed)) 631 goto out; 632 633 ret = 0; 634 out: 635 rcu_read_unlock(); 636 return ret; 637 } 638 639 #ifdef CONFIG_SMP 640 /* 641 * Helper routine for generate_sched_domains(). 642 * Do cpusets a, b have overlapping effective cpus_allowed masks? 643 */ 644 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 645 { 646 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 647 } 648 649 static void 650 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 651 { 652 if (dattr->relax_domain_level < c->relax_domain_level) 653 dattr->relax_domain_level = c->relax_domain_level; 654 return; 655 } 656 657 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 658 struct cpuset *root_cs) 659 { 660 struct cpuset *cp; 661 struct cgroup_subsys_state *pos_css; 662 663 rcu_read_lock(); 664 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 665 /* skip the whole subtree if @cp doesn't have any CPU */ 666 if (cpumask_empty(cp->cpus_allowed)) { 667 pos_css = css_rightmost_descendant(pos_css); 668 continue; 669 } 670 671 if (is_sched_load_balance(cp)) 672 update_domain_attr(dattr, cp); 673 } 674 rcu_read_unlock(); 675 } 676 677 /* Must be called with cpuset_mutex held. */ 678 static inline int nr_cpusets(void) 679 { 680 /* jump label reference count + the top-level cpuset */ 681 return static_key_count(&cpusets_enabled_key.key) + 1; 682 } 683 684 /* 685 * generate_sched_domains() 686 * 687 * This function builds a partial partition of the systems CPUs 688 * A 'partial partition' is a set of non-overlapping subsets whose 689 * union is a subset of that set. 690 * The output of this function needs to be passed to kernel/sched/core.c 691 * partition_sched_domains() routine, which will rebuild the scheduler's 692 * load balancing domains (sched domains) as specified by that partial 693 * partition. 694 * 695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 696 * for a background explanation of this. 697 * 698 * Does not return errors, on the theory that the callers of this 699 * routine would rather not worry about failures to rebuild sched 700 * domains when operating in the severe memory shortage situations 701 * that could cause allocation failures below. 702 * 703 * Must be called with cpuset_mutex held. 704 * 705 * The three key local variables below are: 706 * cp - cpuset pointer, used (together with pos_css) to perform a 707 * top-down scan of all cpusets. For our purposes, rebuilding 708 * the schedulers sched domains, we can ignore !is_sched_load_ 709 * balance cpusets. 710 * csa - (for CpuSet Array) Array of pointers to all the cpusets 711 * that need to be load balanced, for convenient iterative 712 * access by the subsequent code that finds the best partition, 713 * i.e the set of domains (subsets) of CPUs such that the 714 * cpus_allowed of every cpuset marked is_sched_load_balance 715 * is a subset of one of these domains, while there are as 716 * many such domains as possible, each as small as possible. 717 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 718 * the kernel/sched/core.c routine partition_sched_domains() in a 719 * convenient format, that can be easily compared to the prior 720 * value to determine what partition elements (sched domains) 721 * were changed (added or removed.) 722 * 723 * Finding the best partition (set of domains): 724 * The triple nested loops below over i, j, k scan over the 725 * load balanced cpusets (using the array of cpuset pointers in 726 * csa[]) looking for pairs of cpusets that have overlapping 727 * cpus_allowed, but which don't have the same 'pn' partition 728 * number and gives them in the same partition number. It keeps 729 * looping on the 'restart' label until it can no longer find 730 * any such pairs. 731 * 732 * The union of the cpus_allowed masks from the set of 733 * all cpusets having the same 'pn' value then form the one 734 * element of the partition (one sched domain) to be passed to 735 * partition_sched_domains(). 736 */ 737 static int generate_sched_domains(cpumask_var_t **domains, 738 struct sched_domain_attr **attributes) 739 { 740 struct cpuset *cp; /* top-down scan of cpusets */ 741 struct cpuset **csa; /* array of all cpuset ptrs */ 742 int csn; /* how many cpuset ptrs in csa so far */ 743 int i, j, k; /* indices for partition finding loops */ 744 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 745 struct sched_domain_attr *dattr; /* attributes for custom domains */ 746 int ndoms = 0; /* number of sched domains in result */ 747 int nslot; /* next empty doms[] struct cpumask slot */ 748 struct cgroup_subsys_state *pos_css; 749 bool root_load_balance = is_sched_load_balance(&top_cpuset); 750 751 doms = NULL; 752 dattr = NULL; 753 csa = NULL; 754 755 /* Special case for the 99% of systems with one, full, sched domain */ 756 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 757 ndoms = 1; 758 doms = alloc_sched_domains(ndoms); 759 if (!doms) 760 goto done; 761 762 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 763 if (dattr) { 764 *dattr = SD_ATTR_INIT; 765 update_domain_attr_tree(dattr, &top_cpuset); 766 } 767 cpumask_and(doms[0], top_cpuset.effective_cpus, 768 housekeeping_cpumask(HK_FLAG_DOMAIN)); 769 770 goto done; 771 } 772 773 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 774 if (!csa) 775 goto done; 776 csn = 0; 777 778 rcu_read_lock(); 779 if (root_load_balance) 780 csa[csn++] = &top_cpuset; 781 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 782 if (cp == &top_cpuset) 783 continue; 784 /* 785 * Continue traversing beyond @cp iff @cp has some CPUs and 786 * isn't load balancing. The former is obvious. The 787 * latter: All child cpusets contain a subset of the 788 * parent's cpus, so just skip them, and then we call 789 * update_domain_attr_tree() to calc relax_domain_level of 790 * the corresponding sched domain. 791 * 792 * If root is load-balancing, we can skip @cp if it 793 * is a subset of the root's effective_cpus. 794 */ 795 if (!cpumask_empty(cp->cpus_allowed) && 796 !(is_sched_load_balance(cp) && 797 cpumask_intersects(cp->cpus_allowed, 798 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 799 continue; 800 801 if (root_load_balance && 802 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 803 continue; 804 805 if (is_sched_load_balance(cp) && 806 !cpumask_empty(cp->effective_cpus)) 807 csa[csn++] = cp; 808 809 /* skip @cp's subtree if not a partition root */ 810 if (!is_partition_root(cp)) 811 pos_css = css_rightmost_descendant(pos_css); 812 } 813 rcu_read_unlock(); 814 815 for (i = 0; i < csn; i++) 816 csa[i]->pn = i; 817 ndoms = csn; 818 819 restart: 820 /* Find the best partition (set of sched domains) */ 821 for (i = 0; i < csn; i++) { 822 struct cpuset *a = csa[i]; 823 int apn = a->pn; 824 825 for (j = 0; j < csn; j++) { 826 struct cpuset *b = csa[j]; 827 int bpn = b->pn; 828 829 if (apn != bpn && cpusets_overlap(a, b)) { 830 for (k = 0; k < csn; k++) { 831 struct cpuset *c = csa[k]; 832 833 if (c->pn == bpn) 834 c->pn = apn; 835 } 836 ndoms--; /* one less element */ 837 goto restart; 838 } 839 } 840 } 841 842 /* 843 * Now we know how many domains to create. 844 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 845 */ 846 doms = alloc_sched_domains(ndoms); 847 if (!doms) 848 goto done; 849 850 /* 851 * The rest of the code, including the scheduler, can deal with 852 * dattr==NULL case. No need to abort if alloc fails. 853 */ 854 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 855 GFP_KERNEL); 856 857 for (nslot = 0, i = 0; i < csn; i++) { 858 struct cpuset *a = csa[i]; 859 struct cpumask *dp; 860 int apn = a->pn; 861 862 if (apn < 0) { 863 /* Skip completed partitions */ 864 continue; 865 } 866 867 dp = doms[nslot]; 868 869 if (nslot == ndoms) { 870 static int warnings = 10; 871 if (warnings) { 872 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 873 nslot, ndoms, csn, i, apn); 874 warnings--; 875 } 876 continue; 877 } 878 879 cpumask_clear(dp); 880 if (dattr) 881 *(dattr + nslot) = SD_ATTR_INIT; 882 for (j = i; j < csn; j++) { 883 struct cpuset *b = csa[j]; 884 885 if (apn == b->pn) { 886 cpumask_or(dp, dp, b->effective_cpus); 887 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 888 if (dattr) 889 update_domain_attr_tree(dattr + nslot, b); 890 891 /* Done with this partition */ 892 b->pn = -1; 893 } 894 } 895 nslot++; 896 } 897 BUG_ON(nslot != ndoms); 898 899 done: 900 kfree(csa); 901 902 /* 903 * Fallback to the default domain if kmalloc() failed. 904 * See comments in partition_sched_domains(). 905 */ 906 if (doms == NULL) 907 ndoms = 1; 908 909 *domains = doms; 910 *attributes = dattr; 911 return ndoms; 912 } 913 914 static void update_tasks_root_domain(struct cpuset *cs) 915 { 916 struct css_task_iter it; 917 struct task_struct *task; 918 919 css_task_iter_start(&cs->css, 0, &it); 920 921 while ((task = css_task_iter_next(&it))) 922 dl_add_task_root_domain(task); 923 924 css_task_iter_end(&it); 925 } 926 927 static void rebuild_root_domains(void) 928 { 929 struct cpuset *cs = NULL; 930 struct cgroup_subsys_state *pos_css; 931 932 percpu_rwsem_assert_held(&cpuset_rwsem); 933 lockdep_assert_cpus_held(); 934 lockdep_assert_held(&sched_domains_mutex); 935 936 rcu_read_lock(); 937 938 /* 939 * Clear default root domain DL accounting, it will be computed again 940 * if a task belongs to it. 941 */ 942 dl_clear_root_domain(&def_root_domain); 943 944 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 945 946 if (cpumask_empty(cs->effective_cpus)) { 947 pos_css = css_rightmost_descendant(pos_css); 948 continue; 949 } 950 951 css_get(&cs->css); 952 953 rcu_read_unlock(); 954 955 update_tasks_root_domain(cs); 956 957 rcu_read_lock(); 958 css_put(&cs->css); 959 } 960 rcu_read_unlock(); 961 } 962 963 static void 964 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 965 struct sched_domain_attr *dattr_new) 966 { 967 mutex_lock(&sched_domains_mutex); 968 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 969 rebuild_root_domains(); 970 mutex_unlock(&sched_domains_mutex); 971 } 972 973 /* 974 * Rebuild scheduler domains. 975 * 976 * If the flag 'sched_load_balance' of any cpuset with non-empty 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 978 * which has that flag enabled, or if any cpuset with a non-empty 979 * 'cpus' is removed, then call this routine to rebuild the 980 * scheduler's dynamic sched domains. 981 * 982 * Call with cpuset_mutex held. Takes get_online_cpus(). 983 */ 984 static void rebuild_sched_domains_locked(void) 985 { 986 struct sched_domain_attr *attr; 987 cpumask_var_t *doms; 988 int ndoms; 989 990 lockdep_assert_cpus_held(); 991 percpu_rwsem_assert_held(&cpuset_rwsem); 992 993 /* 994 * We have raced with CPU hotplug. Don't do anything to avoid 995 * passing doms with offlined cpu to partition_sched_domains(). 996 * Anyways, hotplug work item will rebuild sched domains. 997 */ 998 if (!top_cpuset.nr_subparts_cpus && 999 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1000 return; 1001 1002 if (top_cpuset.nr_subparts_cpus && 1003 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 1004 return; 1005 1006 /* Generate domain masks and attrs */ 1007 ndoms = generate_sched_domains(&doms, &attr); 1008 1009 /* Have scheduler rebuild the domains */ 1010 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1011 } 1012 #else /* !CONFIG_SMP */ 1013 static void rebuild_sched_domains_locked(void) 1014 { 1015 } 1016 #endif /* CONFIG_SMP */ 1017 1018 void rebuild_sched_domains(void) 1019 { 1020 get_online_cpus(); 1021 percpu_down_write(&cpuset_rwsem); 1022 rebuild_sched_domains_locked(); 1023 percpu_up_write(&cpuset_rwsem); 1024 put_online_cpus(); 1025 } 1026 1027 /** 1028 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1029 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1030 * 1031 * Iterate through each task of @cs updating its cpus_allowed to the 1032 * effective cpuset's. As this function is called with cpuset_mutex held, 1033 * cpuset membership stays stable. 1034 */ 1035 static void update_tasks_cpumask(struct cpuset *cs) 1036 { 1037 struct css_task_iter it; 1038 struct task_struct *task; 1039 1040 css_task_iter_start(&cs->css, 0, &it); 1041 while ((task = css_task_iter_next(&it))) 1042 set_cpus_allowed_ptr(task, cs->effective_cpus); 1043 css_task_iter_end(&it); 1044 } 1045 1046 /** 1047 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1048 * @new_cpus: the temp variable for the new effective_cpus mask 1049 * @cs: the cpuset the need to recompute the new effective_cpus mask 1050 * @parent: the parent cpuset 1051 * 1052 * If the parent has subpartition CPUs, include them in the list of 1053 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1054 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1055 * to mask those out. 1056 */ 1057 static void compute_effective_cpumask(struct cpumask *new_cpus, 1058 struct cpuset *cs, struct cpuset *parent) 1059 { 1060 if (parent->nr_subparts_cpus) { 1061 cpumask_or(new_cpus, parent->effective_cpus, 1062 parent->subparts_cpus); 1063 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1064 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1065 } else { 1066 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1067 } 1068 } 1069 1070 /* 1071 * Commands for update_parent_subparts_cpumask 1072 */ 1073 enum subparts_cmd { 1074 partcmd_enable, /* Enable partition root */ 1075 partcmd_disable, /* Disable partition root */ 1076 partcmd_update, /* Update parent's subparts_cpus */ 1077 }; 1078 1079 /** 1080 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1081 * @cpuset: The cpuset that requests change in partition root state 1082 * @cmd: Partition root state change command 1083 * @newmask: Optional new cpumask for partcmd_update 1084 * @tmp: Temporary addmask and delmask 1085 * Return: 0, 1 or an error code 1086 * 1087 * For partcmd_enable, the cpuset is being transformed from a non-partition 1088 * root to a partition root. The cpus_allowed mask of the given cpuset will 1089 * be put into parent's subparts_cpus and taken away from parent's 1090 * effective_cpus. The function will return 0 if all the CPUs listed in 1091 * cpus_allowed can be granted or an error code will be returned. 1092 * 1093 * For partcmd_disable, the cpuset is being transofrmed from a partition 1094 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1095 * parent's subparts_cpus will be taken away from that cpumask and put back 1096 * into parent's effective_cpus. 0 should always be returned. 1097 * 1098 * For partcmd_update, if the optional newmask is specified, the cpu 1099 * list is to be changed from cpus_allowed to newmask. Otherwise, 1100 * cpus_allowed is assumed to remain the same. The cpuset should either 1101 * be a partition root or an invalid partition root. The partition root 1102 * state may change if newmask is NULL and none of the requested CPUs can 1103 * be granted by the parent. The function will return 1 if changes to 1104 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1105 * Error code should only be returned when newmask is non-NULL. 1106 * 1107 * The partcmd_enable and partcmd_disable commands are used by 1108 * update_prstate(). The partcmd_update command is used by 1109 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1110 * newmask set. 1111 * 1112 * The checking is more strict when enabling partition root than the 1113 * other two commands. 1114 * 1115 * Because of the implicit cpu exclusive nature of a partition root, 1116 * cpumask changes that violates the cpu exclusivity rule will not be 1117 * permitted when checked by validate_change(). The validate_change() 1118 * function will also prevent any changes to the cpu list if it is not 1119 * a superset of children's cpu lists. 1120 */ 1121 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1122 struct cpumask *newmask, 1123 struct tmpmasks *tmp) 1124 { 1125 struct cpuset *parent = parent_cs(cpuset); 1126 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1127 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1128 bool part_error = false; /* Partition error? */ 1129 1130 percpu_rwsem_assert_held(&cpuset_rwsem); 1131 1132 /* 1133 * The parent must be a partition root. 1134 * The new cpumask, if present, or the current cpus_allowed must 1135 * not be empty. 1136 */ 1137 if (!is_partition_root(parent) || 1138 (newmask && cpumask_empty(newmask)) || 1139 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1140 return -EINVAL; 1141 1142 /* 1143 * Enabling/disabling partition root is not allowed if there are 1144 * online children. 1145 */ 1146 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1147 return -EBUSY; 1148 1149 /* 1150 * Enabling partition root is not allowed if not all the CPUs 1151 * can be granted from parent's effective_cpus or at least one 1152 * CPU will be left after that. 1153 */ 1154 if ((cmd == partcmd_enable) && 1155 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1156 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1157 return -EINVAL; 1158 1159 /* 1160 * A cpumask update cannot make parent's effective_cpus become empty. 1161 */ 1162 adding = deleting = false; 1163 if (cmd == partcmd_enable) { 1164 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1165 adding = true; 1166 } else if (cmd == partcmd_disable) { 1167 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1168 parent->subparts_cpus); 1169 } else if (newmask) { 1170 /* 1171 * partcmd_update with newmask: 1172 * 1173 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1174 * addmask = newmask & parent->effective_cpus 1175 * & ~parent->subparts_cpus 1176 */ 1177 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1178 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1179 parent->subparts_cpus); 1180 1181 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1182 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1183 parent->subparts_cpus); 1184 /* 1185 * Return error if the new effective_cpus could become empty. 1186 */ 1187 if (adding && 1188 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1189 if (!deleting) 1190 return -EINVAL; 1191 /* 1192 * As some of the CPUs in subparts_cpus might have 1193 * been offlined, we need to compute the real delmask 1194 * to confirm that. 1195 */ 1196 if (!cpumask_and(tmp->addmask, tmp->delmask, 1197 cpu_active_mask)) 1198 return -EINVAL; 1199 cpumask_copy(tmp->addmask, parent->effective_cpus); 1200 } 1201 } else { 1202 /* 1203 * partcmd_update w/o newmask: 1204 * 1205 * addmask = cpus_allowed & parent->effectiveb_cpus 1206 * 1207 * Note that parent's subparts_cpus may have been 1208 * pre-shrunk in case there is a change in the cpu list. 1209 * So no deletion is needed. 1210 */ 1211 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1212 parent->effective_cpus); 1213 part_error = cpumask_equal(tmp->addmask, 1214 parent->effective_cpus); 1215 } 1216 1217 if (cmd == partcmd_update) { 1218 int prev_prs = cpuset->partition_root_state; 1219 1220 /* 1221 * Check for possible transition between PRS_ENABLED 1222 * and PRS_ERROR. 1223 */ 1224 switch (cpuset->partition_root_state) { 1225 case PRS_ENABLED: 1226 if (part_error) 1227 cpuset->partition_root_state = PRS_ERROR; 1228 break; 1229 case PRS_ERROR: 1230 if (!part_error) 1231 cpuset->partition_root_state = PRS_ENABLED; 1232 break; 1233 } 1234 /* 1235 * Set part_error if previously in invalid state. 1236 */ 1237 part_error = (prev_prs == PRS_ERROR); 1238 } 1239 1240 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1241 return 0; /* Nothing need to be done */ 1242 1243 if (cpuset->partition_root_state == PRS_ERROR) { 1244 /* 1245 * Remove all its cpus from parent's subparts_cpus. 1246 */ 1247 adding = false; 1248 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1249 parent->subparts_cpus); 1250 } 1251 1252 if (!adding && !deleting) 1253 return 0; 1254 1255 /* 1256 * Change the parent's subparts_cpus. 1257 * Newly added CPUs will be removed from effective_cpus and 1258 * newly deleted ones will be added back to effective_cpus. 1259 */ 1260 spin_lock_irq(&callback_lock); 1261 if (adding) { 1262 cpumask_or(parent->subparts_cpus, 1263 parent->subparts_cpus, tmp->addmask); 1264 cpumask_andnot(parent->effective_cpus, 1265 parent->effective_cpus, tmp->addmask); 1266 } 1267 if (deleting) { 1268 cpumask_andnot(parent->subparts_cpus, 1269 parent->subparts_cpus, tmp->delmask); 1270 /* 1271 * Some of the CPUs in subparts_cpus might have been offlined. 1272 */ 1273 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1274 cpumask_or(parent->effective_cpus, 1275 parent->effective_cpus, tmp->delmask); 1276 } 1277 1278 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1279 spin_unlock_irq(&callback_lock); 1280 1281 return cmd == partcmd_update; 1282 } 1283 1284 /* 1285 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1286 * @cs: the cpuset to consider 1287 * @tmp: temp variables for calculating effective_cpus & partition setup 1288 * 1289 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1290 * and all its descendants need to be updated. 1291 * 1292 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1293 * 1294 * Called with cpuset_mutex held 1295 */ 1296 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1297 { 1298 struct cpuset *cp; 1299 struct cgroup_subsys_state *pos_css; 1300 bool need_rebuild_sched_domains = false; 1301 1302 rcu_read_lock(); 1303 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1304 struct cpuset *parent = parent_cs(cp); 1305 1306 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1307 1308 /* 1309 * If it becomes empty, inherit the effective mask of the 1310 * parent, which is guaranteed to have some CPUs. 1311 */ 1312 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1313 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1314 if (!cp->use_parent_ecpus) { 1315 cp->use_parent_ecpus = true; 1316 parent->child_ecpus_count++; 1317 } 1318 } else if (cp->use_parent_ecpus) { 1319 cp->use_parent_ecpus = false; 1320 WARN_ON_ONCE(!parent->child_ecpus_count); 1321 parent->child_ecpus_count--; 1322 } 1323 1324 /* 1325 * Skip the whole subtree if the cpumask remains the same 1326 * and has no partition root state. 1327 */ 1328 if (!cp->partition_root_state && 1329 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1330 pos_css = css_rightmost_descendant(pos_css); 1331 continue; 1332 } 1333 1334 /* 1335 * update_parent_subparts_cpumask() should have been called 1336 * for cs already in update_cpumask(). We should also call 1337 * update_tasks_cpumask() again for tasks in the parent 1338 * cpuset if the parent's subparts_cpus changes. 1339 */ 1340 if ((cp != cs) && cp->partition_root_state) { 1341 switch (parent->partition_root_state) { 1342 case PRS_DISABLED: 1343 /* 1344 * If parent is not a partition root or an 1345 * invalid partition root, clear the state 1346 * state and the CS_CPU_EXCLUSIVE flag. 1347 */ 1348 WARN_ON_ONCE(cp->partition_root_state 1349 != PRS_ERROR); 1350 cp->partition_root_state = 0; 1351 1352 /* 1353 * clear_bit() is an atomic operation and 1354 * readers aren't interested in the state 1355 * of CS_CPU_EXCLUSIVE anyway. So we can 1356 * just update the flag without holding 1357 * the callback_lock. 1358 */ 1359 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1360 break; 1361 1362 case PRS_ENABLED: 1363 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1364 update_tasks_cpumask(parent); 1365 break; 1366 1367 case PRS_ERROR: 1368 /* 1369 * When parent is invalid, it has to be too. 1370 */ 1371 cp->partition_root_state = PRS_ERROR; 1372 if (cp->nr_subparts_cpus) { 1373 cp->nr_subparts_cpus = 0; 1374 cpumask_clear(cp->subparts_cpus); 1375 } 1376 break; 1377 } 1378 } 1379 1380 if (!css_tryget_online(&cp->css)) 1381 continue; 1382 rcu_read_unlock(); 1383 1384 spin_lock_irq(&callback_lock); 1385 1386 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1387 if (cp->nr_subparts_cpus && 1388 (cp->partition_root_state != PRS_ENABLED)) { 1389 cp->nr_subparts_cpus = 0; 1390 cpumask_clear(cp->subparts_cpus); 1391 } else if (cp->nr_subparts_cpus) { 1392 /* 1393 * Make sure that effective_cpus & subparts_cpus 1394 * are mutually exclusive. 1395 * 1396 * In the unlikely event that effective_cpus 1397 * becomes empty. we clear cp->nr_subparts_cpus and 1398 * let its child partition roots to compete for 1399 * CPUs again. 1400 */ 1401 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1402 cp->subparts_cpus); 1403 if (cpumask_empty(cp->effective_cpus)) { 1404 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1405 cpumask_clear(cp->subparts_cpus); 1406 cp->nr_subparts_cpus = 0; 1407 } else if (!cpumask_subset(cp->subparts_cpus, 1408 tmp->new_cpus)) { 1409 cpumask_andnot(cp->subparts_cpus, 1410 cp->subparts_cpus, tmp->new_cpus); 1411 cp->nr_subparts_cpus 1412 = cpumask_weight(cp->subparts_cpus); 1413 } 1414 } 1415 spin_unlock_irq(&callback_lock); 1416 1417 WARN_ON(!is_in_v2_mode() && 1418 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1419 1420 update_tasks_cpumask(cp); 1421 1422 /* 1423 * On legacy hierarchy, if the effective cpumask of any non- 1424 * empty cpuset is changed, we need to rebuild sched domains. 1425 * On default hierarchy, the cpuset needs to be a partition 1426 * root as well. 1427 */ 1428 if (!cpumask_empty(cp->cpus_allowed) && 1429 is_sched_load_balance(cp) && 1430 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1431 is_partition_root(cp))) 1432 need_rebuild_sched_domains = true; 1433 1434 rcu_read_lock(); 1435 css_put(&cp->css); 1436 } 1437 rcu_read_unlock(); 1438 1439 if (need_rebuild_sched_domains) 1440 rebuild_sched_domains_locked(); 1441 } 1442 1443 /** 1444 * update_sibling_cpumasks - Update siblings cpumasks 1445 * @parent: Parent cpuset 1446 * @cs: Current cpuset 1447 * @tmp: Temp variables 1448 */ 1449 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1450 struct tmpmasks *tmp) 1451 { 1452 struct cpuset *sibling; 1453 struct cgroup_subsys_state *pos_css; 1454 1455 /* 1456 * Check all its siblings and call update_cpumasks_hier() 1457 * if their use_parent_ecpus flag is set in order for them 1458 * to use the right effective_cpus value. 1459 */ 1460 rcu_read_lock(); 1461 cpuset_for_each_child(sibling, pos_css, parent) { 1462 if (sibling == cs) 1463 continue; 1464 if (!sibling->use_parent_ecpus) 1465 continue; 1466 1467 update_cpumasks_hier(sibling, tmp); 1468 } 1469 rcu_read_unlock(); 1470 } 1471 1472 /** 1473 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1474 * @cs: the cpuset to consider 1475 * @trialcs: trial cpuset 1476 * @buf: buffer of cpu numbers written to this cpuset 1477 */ 1478 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1479 const char *buf) 1480 { 1481 int retval; 1482 struct tmpmasks tmp; 1483 1484 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1485 if (cs == &top_cpuset) 1486 return -EACCES; 1487 1488 /* 1489 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1490 * Since cpulist_parse() fails on an empty mask, we special case 1491 * that parsing. The validate_change() call ensures that cpusets 1492 * with tasks have cpus. 1493 */ 1494 if (!*buf) { 1495 cpumask_clear(trialcs->cpus_allowed); 1496 } else { 1497 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1498 if (retval < 0) 1499 return retval; 1500 1501 if (!cpumask_subset(trialcs->cpus_allowed, 1502 top_cpuset.cpus_allowed)) 1503 return -EINVAL; 1504 } 1505 1506 /* Nothing to do if the cpus didn't change */ 1507 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1508 return 0; 1509 1510 retval = validate_change(cs, trialcs); 1511 if (retval < 0) 1512 return retval; 1513 1514 #ifdef CONFIG_CPUMASK_OFFSTACK 1515 /* 1516 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1517 * to allocated cpumasks. 1518 */ 1519 tmp.addmask = trialcs->subparts_cpus; 1520 tmp.delmask = trialcs->effective_cpus; 1521 tmp.new_cpus = trialcs->cpus_allowed; 1522 #endif 1523 1524 if (cs->partition_root_state) { 1525 /* Cpumask of a partition root cannot be empty */ 1526 if (cpumask_empty(trialcs->cpus_allowed)) 1527 return -EINVAL; 1528 if (update_parent_subparts_cpumask(cs, partcmd_update, 1529 trialcs->cpus_allowed, &tmp) < 0) 1530 return -EINVAL; 1531 } 1532 1533 spin_lock_irq(&callback_lock); 1534 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1535 1536 /* 1537 * Make sure that subparts_cpus is a subset of cpus_allowed. 1538 */ 1539 if (cs->nr_subparts_cpus) { 1540 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1541 cs->cpus_allowed); 1542 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1543 } 1544 spin_unlock_irq(&callback_lock); 1545 1546 update_cpumasks_hier(cs, &tmp); 1547 1548 if (cs->partition_root_state) { 1549 struct cpuset *parent = parent_cs(cs); 1550 1551 /* 1552 * For partition root, update the cpumasks of sibling 1553 * cpusets if they use parent's effective_cpus. 1554 */ 1555 if (parent->child_ecpus_count) 1556 update_sibling_cpumasks(parent, cs, &tmp); 1557 } 1558 return 0; 1559 } 1560 1561 /* 1562 * Migrate memory region from one set of nodes to another. This is 1563 * performed asynchronously as it can be called from process migration path 1564 * holding locks involved in process management. All mm migrations are 1565 * performed in the queued order and can be waited for by flushing 1566 * cpuset_migrate_mm_wq. 1567 */ 1568 1569 struct cpuset_migrate_mm_work { 1570 struct work_struct work; 1571 struct mm_struct *mm; 1572 nodemask_t from; 1573 nodemask_t to; 1574 }; 1575 1576 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1577 { 1578 struct cpuset_migrate_mm_work *mwork = 1579 container_of(work, struct cpuset_migrate_mm_work, work); 1580 1581 /* on a wq worker, no need to worry about %current's mems_allowed */ 1582 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1583 mmput(mwork->mm); 1584 kfree(mwork); 1585 } 1586 1587 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1588 const nodemask_t *to) 1589 { 1590 struct cpuset_migrate_mm_work *mwork; 1591 1592 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1593 if (mwork) { 1594 mwork->mm = mm; 1595 mwork->from = *from; 1596 mwork->to = *to; 1597 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1598 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1599 } else { 1600 mmput(mm); 1601 } 1602 } 1603 1604 static void cpuset_post_attach(void) 1605 { 1606 flush_workqueue(cpuset_migrate_mm_wq); 1607 } 1608 1609 /* 1610 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1611 * @tsk: the task to change 1612 * @newmems: new nodes that the task will be set 1613 * 1614 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1615 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1616 * parallel, it might temporarily see an empty intersection, which results in 1617 * a seqlock check and retry before OOM or allocation failure. 1618 */ 1619 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1620 nodemask_t *newmems) 1621 { 1622 task_lock(tsk); 1623 1624 local_irq_disable(); 1625 write_seqcount_begin(&tsk->mems_allowed_seq); 1626 1627 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1628 mpol_rebind_task(tsk, newmems); 1629 tsk->mems_allowed = *newmems; 1630 1631 write_seqcount_end(&tsk->mems_allowed_seq); 1632 local_irq_enable(); 1633 1634 task_unlock(tsk); 1635 } 1636 1637 static void *cpuset_being_rebound; 1638 1639 /** 1640 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1641 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1642 * 1643 * Iterate through each task of @cs updating its mems_allowed to the 1644 * effective cpuset's. As this function is called with cpuset_mutex held, 1645 * cpuset membership stays stable. 1646 */ 1647 static void update_tasks_nodemask(struct cpuset *cs) 1648 { 1649 static nodemask_t newmems; /* protected by cpuset_mutex */ 1650 struct css_task_iter it; 1651 struct task_struct *task; 1652 1653 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1654 1655 guarantee_online_mems(cs, &newmems); 1656 1657 /* 1658 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1659 * take while holding tasklist_lock. Forks can happen - the 1660 * mpol_dup() cpuset_being_rebound check will catch such forks, 1661 * and rebind their vma mempolicies too. Because we still hold 1662 * the global cpuset_mutex, we know that no other rebind effort 1663 * will be contending for the global variable cpuset_being_rebound. 1664 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1665 * is idempotent. Also migrate pages in each mm to new nodes. 1666 */ 1667 css_task_iter_start(&cs->css, 0, &it); 1668 while ((task = css_task_iter_next(&it))) { 1669 struct mm_struct *mm; 1670 bool migrate; 1671 1672 cpuset_change_task_nodemask(task, &newmems); 1673 1674 mm = get_task_mm(task); 1675 if (!mm) 1676 continue; 1677 1678 migrate = is_memory_migrate(cs); 1679 1680 mpol_rebind_mm(mm, &cs->mems_allowed); 1681 if (migrate) 1682 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1683 else 1684 mmput(mm); 1685 } 1686 css_task_iter_end(&it); 1687 1688 /* 1689 * All the tasks' nodemasks have been updated, update 1690 * cs->old_mems_allowed. 1691 */ 1692 cs->old_mems_allowed = newmems; 1693 1694 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1695 cpuset_being_rebound = NULL; 1696 } 1697 1698 /* 1699 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1700 * @cs: the cpuset to consider 1701 * @new_mems: a temp variable for calculating new effective_mems 1702 * 1703 * When configured nodemask is changed, the effective nodemasks of this cpuset 1704 * and all its descendants need to be updated. 1705 * 1706 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1707 * 1708 * Called with cpuset_mutex held 1709 */ 1710 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1711 { 1712 struct cpuset *cp; 1713 struct cgroup_subsys_state *pos_css; 1714 1715 rcu_read_lock(); 1716 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1717 struct cpuset *parent = parent_cs(cp); 1718 1719 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1720 1721 /* 1722 * If it becomes empty, inherit the effective mask of the 1723 * parent, which is guaranteed to have some MEMs. 1724 */ 1725 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1726 *new_mems = parent->effective_mems; 1727 1728 /* Skip the whole subtree if the nodemask remains the same. */ 1729 if (nodes_equal(*new_mems, cp->effective_mems)) { 1730 pos_css = css_rightmost_descendant(pos_css); 1731 continue; 1732 } 1733 1734 if (!css_tryget_online(&cp->css)) 1735 continue; 1736 rcu_read_unlock(); 1737 1738 spin_lock_irq(&callback_lock); 1739 cp->effective_mems = *new_mems; 1740 spin_unlock_irq(&callback_lock); 1741 1742 WARN_ON(!is_in_v2_mode() && 1743 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1744 1745 update_tasks_nodemask(cp); 1746 1747 rcu_read_lock(); 1748 css_put(&cp->css); 1749 } 1750 rcu_read_unlock(); 1751 } 1752 1753 /* 1754 * Handle user request to change the 'mems' memory placement 1755 * of a cpuset. Needs to validate the request, update the 1756 * cpusets mems_allowed, and for each task in the cpuset, 1757 * update mems_allowed and rebind task's mempolicy and any vma 1758 * mempolicies and if the cpuset is marked 'memory_migrate', 1759 * migrate the tasks pages to the new memory. 1760 * 1761 * Call with cpuset_mutex held. May take callback_lock during call. 1762 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1763 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1764 * their mempolicies to the cpusets new mems_allowed. 1765 */ 1766 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1767 const char *buf) 1768 { 1769 int retval; 1770 1771 /* 1772 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1773 * it's read-only 1774 */ 1775 if (cs == &top_cpuset) { 1776 retval = -EACCES; 1777 goto done; 1778 } 1779 1780 /* 1781 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1782 * Since nodelist_parse() fails on an empty mask, we special case 1783 * that parsing. The validate_change() call ensures that cpusets 1784 * with tasks have memory. 1785 */ 1786 if (!*buf) { 1787 nodes_clear(trialcs->mems_allowed); 1788 } else { 1789 retval = nodelist_parse(buf, trialcs->mems_allowed); 1790 if (retval < 0) 1791 goto done; 1792 1793 if (!nodes_subset(trialcs->mems_allowed, 1794 top_cpuset.mems_allowed)) { 1795 retval = -EINVAL; 1796 goto done; 1797 } 1798 } 1799 1800 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1801 retval = 0; /* Too easy - nothing to do */ 1802 goto done; 1803 } 1804 retval = validate_change(cs, trialcs); 1805 if (retval < 0) 1806 goto done; 1807 1808 spin_lock_irq(&callback_lock); 1809 cs->mems_allowed = trialcs->mems_allowed; 1810 spin_unlock_irq(&callback_lock); 1811 1812 /* use trialcs->mems_allowed as a temp variable */ 1813 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1814 done: 1815 return retval; 1816 } 1817 1818 bool current_cpuset_is_being_rebound(void) 1819 { 1820 bool ret; 1821 1822 rcu_read_lock(); 1823 ret = task_cs(current) == cpuset_being_rebound; 1824 rcu_read_unlock(); 1825 1826 return ret; 1827 } 1828 1829 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1830 { 1831 #ifdef CONFIG_SMP 1832 if (val < -1 || val >= sched_domain_level_max) 1833 return -EINVAL; 1834 #endif 1835 1836 if (val != cs->relax_domain_level) { 1837 cs->relax_domain_level = val; 1838 if (!cpumask_empty(cs->cpus_allowed) && 1839 is_sched_load_balance(cs)) 1840 rebuild_sched_domains_locked(); 1841 } 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1848 * @cs: the cpuset in which each task's spread flags needs to be changed 1849 * 1850 * Iterate through each task of @cs updating its spread flags. As this 1851 * function is called with cpuset_mutex held, cpuset membership stays 1852 * stable. 1853 */ 1854 static void update_tasks_flags(struct cpuset *cs) 1855 { 1856 struct css_task_iter it; 1857 struct task_struct *task; 1858 1859 css_task_iter_start(&cs->css, 0, &it); 1860 while ((task = css_task_iter_next(&it))) 1861 cpuset_update_task_spread_flag(cs, task); 1862 css_task_iter_end(&it); 1863 } 1864 1865 /* 1866 * update_flag - read a 0 or a 1 in a file and update associated flag 1867 * bit: the bit to update (see cpuset_flagbits_t) 1868 * cs: the cpuset to update 1869 * turning_on: whether the flag is being set or cleared 1870 * 1871 * Call with cpuset_mutex held. 1872 */ 1873 1874 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1875 int turning_on) 1876 { 1877 struct cpuset *trialcs; 1878 int balance_flag_changed; 1879 int spread_flag_changed; 1880 int err; 1881 1882 trialcs = alloc_trial_cpuset(cs); 1883 if (!trialcs) 1884 return -ENOMEM; 1885 1886 if (turning_on) 1887 set_bit(bit, &trialcs->flags); 1888 else 1889 clear_bit(bit, &trialcs->flags); 1890 1891 err = validate_change(cs, trialcs); 1892 if (err < 0) 1893 goto out; 1894 1895 balance_flag_changed = (is_sched_load_balance(cs) != 1896 is_sched_load_balance(trialcs)); 1897 1898 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1899 || (is_spread_page(cs) != is_spread_page(trialcs))); 1900 1901 spin_lock_irq(&callback_lock); 1902 cs->flags = trialcs->flags; 1903 spin_unlock_irq(&callback_lock); 1904 1905 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1906 rebuild_sched_domains_locked(); 1907 1908 if (spread_flag_changed) 1909 update_tasks_flags(cs); 1910 out: 1911 free_cpuset(trialcs); 1912 return err; 1913 } 1914 1915 /* 1916 * update_prstate - update partititon_root_state 1917 * cs: the cpuset to update 1918 * val: 0 - disabled, 1 - enabled 1919 * 1920 * Call with cpuset_mutex held. 1921 */ 1922 static int update_prstate(struct cpuset *cs, int val) 1923 { 1924 int err; 1925 struct cpuset *parent = parent_cs(cs); 1926 struct tmpmasks tmp; 1927 1928 if ((val != 0) && (val != 1)) 1929 return -EINVAL; 1930 if (val == cs->partition_root_state) 1931 return 0; 1932 1933 /* 1934 * Cannot force a partial or invalid partition root to a full 1935 * partition root. 1936 */ 1937 if (val && cs->partition_root_state) 1938 return -EINVAL; 1939 1940 if (alloc_cpumasks(NULL, &tmp)) 1941 return -ENOMEM; 1942 1943 err = -EINVAL; 1944 if (!cs->partition_root_state) { 1945 /* 1946 * Turning on partition root requires setting the 1947 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1948 * cannot be NULL. 1949 */ 1950 if (cpumask_empty(cs->cpus_allowed)) 1951 goto out; 1952 1953 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1954 if (err) 1955 goto out; 1956 1957 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1958 NULL, &tmp); 1959 if (err) { 1960 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1961 goto out; 1962 } 1963 cs->partition_root_state = PRS_ENABLED; 1964 } else { 1965 /* 1966 * Turning off partition root will clear the 1967 * CS_CPU_EXCLUSIVE bit. 1968 */ 1969 if (cs->partition_root_state == PRS_ERROR) { 1970 cs->partition_root_state = 0; 1971 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1972 err = 0; 1973 goto out; 1974 } 1975 1976 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1977 NULL, &tmp); 1978 if (err) 1979 goto out; 1980 1981 cs->partition_root_state = 0; 1982 1983 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1984 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1985 } 1986 1987 /* 1988 * Update cpumask of parent's tasks except when it is the top 1989 * cpuset as some system daemons cannot be mapped to other CPUs. 1990 */ 1991 if (parent != &top_cpuset) 1992 update_tasks_cpumask(parent); 1993 1994 if (parent->child_ecpus_count) 1995 update_sibling_cpumasks(parent, cs, &tmp); 1996 1997 rebuild_sched_domains_locked(); 1998 out: 1999 free_cpumasks(NULL, &tmp); 2000 return err; 2001 } 2002 2003 /* 2004 * Frequency meter - How fast is some event occurring? 2005 * 2006 * These routines manage a digitally filtered, constant time based, 2007 * event frequency meter. There are four routines: 2008 * fmeter_init() - initialize a frequency meter. 2009 * fmeter_markevent() - called each time the event happens. 2010 * fmeter_getrate() - returns the recent rate of such events. 2011 * fmeter_update() - internal routine used to update fmeter. 2012 * 2013 * A common data structure is passed to each of these routines, 2014 * which is used to keep track of the state required to manage the 2015 * frequency meter and its digital filter. 2016 * 2017 * The filter works on the number of events marked per unit time. 2018 * The filter is single-pole low-pass recursive (IIR). The time unit 2019 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2020 * simulate 3 decimal digits of precision (multiplied by 1000). 2021 * 2022 * With an FM_COEF of 933, and a time base of 1 second, the filter 2023 * has a half-life of 10 seconds, meaning that if the events quit 2024 * happening, then the rate returned from the fmeter_getrate() 2025 * will be cut in half each 10 seconds, until it converges to zero. 2026 * 2027 * It is not worth doing a real infinitely recursive filter. If more 2028 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2029 * just compute FM_MAXTICKS ticks worth, by which point the level 2030 * will be stable. 2031 * 2032 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2033 * arithmetic overflow in the fmeter_update() routine. 2034 * 2035 * Given the simple 32 bit integer arithmetic used, this meter works 2036 * best for reporting rates between one per millisecond (msec) and 2037 * one per 32 (approx) seconds. At constant rates faster than one 2038 * per msec it maxes out at values just under 1,000,000. At constant 2039 * rates between one per msec, and one per second it will stabilize 2040 * to a value N*1000, where N is the rate of events per second. 2041 * At constant rates between one per second and one per 32 seconds, 2042 * it will be choppy, moving up on the seconds that have an event, 2043 * and then decaying until the next event. At rates slower than 2044 * about one in 32 seconds, it decays all the way back to zero between 2045 * each event. 2046 */ 2047 2048 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2049 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2050 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2051 #define FM_SCALE 1000 /* faux fixed point scale */ 2052 2053 /* Initialize a frequency meter */ 2054 static void fmeter_init(struct fmeter *fmp) 2055 { 2056 fmp->cnt = 0; 2057 fmp->val = 0; 2058 fmp->time = 0; 2059 spin_lock_init(&fmp->lock); 2060 } 2061 2062 /* Internal meter update - process cnt events and update value */ 2063 static void fmeter_update(struct fmeter *fmp) 2064 { 2065 time64_t now; 2066 u32 ticks; 2067 2068 now = ktime_get_seconds(); 2069 ticks = now - fmp->time; 2070 2071 if (ticks == 0) 2072 return; 2073 2074 ticks = min(FM_MAXTICKS, ticks); 2075 while (ticks-- > 0) 2076 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2077 fmp->time = now; 2078 2079 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2080 fmp->cnt = 0; 2081 } 2082 2083 /* Process any previous ticks, then bump cnt by one (times scale). */ 2084 static void fmeter_markevent(struct fmeter *fmp) 2085 { 2086 spin_lock(&fmp->lock); 2087 fmeter_update(fmp); 2088 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2089 spin_unlock(&fmp->lock); 2090 } 2091 2092 /* Process any previous ticks, then return current value. */ 2093 static int fmeter_getrate(struct fmeter *fmp) 2094 { 2095 int val; 2096 2097 spin_lock(&fmp->lock); 2098 fmeter_update(fmp); 2099 val = fmp->val; 2100 spin_unlock(&fmp->lock); 2101 return val; 2102 } 2103 2104 static struct cpuset *cpuset_attach_old_cs; 2105 2106 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2107 static int cpuset_can_attach(struct cgroup_taskset *tset) 2108 { 2109 struct cgroup_subsys_state *css; 2110 struct cpuset *cs; 2111 struct task_struct *task; 2112 int ret; 2113 2114 /* used later by cpuset_attach() */ 2115 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2116 cs = css_cs(css); 2117 2118 percpu_down_write(&cpuset_rwsem); 2119 2120 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2121 ret = -ENOSPC; 2122 if (!is_in_v2_mode() && 2123 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2124 goto out_unlock; 2125 2126 cgroup_taskset_for_each(task, css, tset) { 2127 ret = task_can_attach(task, cs->cpus_allowed); 2128 if (ret) 2129 goto out_unlock; 2130 ret = security_task_setscheduler(task); 2131 if (ret) 2132 goto out_unlock; 2133 } 2134 2135 /* 2136 * Mark attach is in progress. This makes validate_change() fail 2137 * changes which zero cpus/mems_allowed. 2138 */ 2139 cs->attach_in_progress++; 2140 ret = 0; 2141 out_unlock: 2142 percpu_up_write(&cpuset_rwsem); 2143 return ret; 2144 } 2145 2146 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2147 { 2148 struct cgroup_subsys_state *css; 2149 2150 cgroup_taskset_first(tset, &css); 2151 2152 percpu_down_write(&cpuset_rwsem); 2153 css_cs(css)->attach_in_progress--; 2154 percpu_up_write(&cpuset_rwsem); 2155 } 2156 2157 /* 2158 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2159 * but we can't allocate it dynamically there. Define it global and 2160 * allocate from cpuset_init(). 2161 */ 2162 static cpumask_var_t cpus_attach; 2163 2164 static void cpuset_attach(struct cgroup_taskset *tset) 2165 { 2166 /* static buf protected by cpuset_mutex */ 2167 static nodemask_t cpuset_attach_nodemask_to; 2168 struct task_struct *task; 2169 struct task_struct *leader; 2170 struct cgroup_subsys_state *css; 2171 struct cpuset *cs; 2172 struct cpuset *oldcs = cpuset_attach_old_cs; 2173 2174 cgroup_taskset_first(tset, &css); 2175 cs = css_cs(css); 2176 2177 percpu_down_write(&cpuset_rwsem); 2178 2179 /* prepare for attach */ 2180 if (cs == &top_cpuset) 2181 cpumask_copy(cpus_attach, cpu_possible_mask); 2182 else 2183 guarantee_online_cpus(cs, cpus_attach); 2184 2185 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2186 2187 cgroup_taskset_for_each(task, css, tset) { 2188 /* 2189 * can_attach beforehand should guarantee that this doesn't 2190 * fail. TODO: have a better way to handle failure here 2191 */ 2192 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2193 2194 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2195 cpuset_update_task_spread_flag(cs, task); 2196 } 2197 2198 /* 2199 * Change mm for all threadgroup leaders. This is expensive and may 2200 * sleep and should be moved outside migration path proper. 2201 */ 2202 cpuset_attach_nodemask_to = cs->effective_mems; 2203 cgroup_taskset_for_each_leader(leader, css, tset) { 2204 struct mm_struct *mm = get_task_mm(leader); 2205 2206 if (mm) { 2207 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2208 2209 /* 2210 * old_mems_allowed is the same with mems_allowed 2211 * here, except if this task is being moved 2212 * automatically due to hotplug. In that case 2213 * @mems_allowed has been updated and is empty, so 2214 * @old_mems_allowed is the right nodesets that we 2215 * migrate mm from. 2216 */ 2217 if (is_memory_migrate(cs)) 2218 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2219 &cpuset_attach_nodemask_to); 2220 else 2221 mmput(mm); 2222 } 2223 } 2224 2225 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2226 2227 cs->attach_in_progress--; 2228 if (!cs->attach_in_progress) 2229 wake_up(&cpuset_attach_wq); 2230 2231 percpu_up_write(&cpuset_rwsem); 2232 } 2233 2234 /* The various types of files and directories in a cpuset file system */ 2235 2236 typedef enum { 2237 FILE_MEMORY_MIGRATE, 2238 FILE_CPULIST, 2239 FILE_MEMLIST, 2240 FILE_EFFECTIVE_CPULIST, 2241 FILE_EFFECTIVE_MEMLIST, 2242 FILE_SUBPARTS_CPULIST, 2243 FILE_CPU_EXCLUSIVE, 2244 FILE_MEM_EXCLUSIVE, 2245 FILE_MEM_HARDWALL, 2246 FILE_SCHED_LOAD_BALANCE, 2247 FILE_PARTITION_ROOT, 2248 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2249 FILE_MEMORY_PRESSURE_ENABLED, 2250 FILE_MEMORY_PRESSURE, 2251 FILE_SPREAD_PAGE, 2252 FILE_SPREAD_SLAB, 2253 } cpuset_filetype_t; 2254 2255 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2256 u64 val) 2257 { 2258 struct cpuset *cs = css_cs(css); 2259 cpuset_filetype_t type = cft->private; 2260 int retval = 0; 2261 2262 get_online_cpus(); 2263 percpu_down_write(&cpuset_rwsem); 2264 if (!is_cpuset_online(cs)) { 2265 retval = -ENODEV; 2266 goto out_unlock; 2267 } 2268 2269 switch (type) { 2270 case FILE_CPU_EXCLUSIVE: 2271 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2272 break; 2273 case FILE_MEM_EXCLUSIVE: 2274 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2275 break; 2276 case FILE_MEM_HARDWALL: 2277 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2278 break; 2279 case FILE_SCHED_LOAD_BALANCE: 2280 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2281 break; 2282 case FILE_MEMORY_MIGRATE: 2283 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2284 break; 2285 case FILE_MEMORY_PRESSURE_ENABLED: 2286 cpuset_memory_pressure_enabled = !!val; 2287 break; 2288 case FILE_SPREAD_PAGE: 2289 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2290 break; 2291 case FILE_SPREAD_SLAB: 2292 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2293 break; 2294 default: 2295 retval = -EINVAL; 2296 break; 2297 } 2298 out_unlock: 2299 percpu_up_write(&cpuset_rwsem); 2300 put_online_cpus(); 2301 return retval; 2302 } 2303 2304 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2305 s64 val) 2306 { 2307 struct cpuset *cs = css_cs(css); 2308 cpuset_filetype_t type = cft->private; 2309 int retval = -ENODEV; 2310 2311 get_online_cpus(); 2312 percpu_down_write(&cpuset_rwsem); 2313 if (!is_cpuset_online(cs)) 2314 goto out_unlock; 2315 2316 switch (type) { 2317 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2318 retval = update_relax_domain_level(cs, val); 2319 break; 2320 default: 2321 retval = -EINVAL; 2322 break; 2323 } 2324 out_unlock: 2325 percpu_up_write(&cpuset_rwsem); 2326 put_online_cpus(); 2327 return retval; 2328 } 2329 2330 /* 2331 * Common handling for a write to a "cpus" or "mems" file. 2332 */ 2333 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2334 char *buf, size_t nbytes, loff_t off) 2335 { 2336 struct cpuset *cs = css_cs(of_css(of)); 2337 struct cpuset *trialcs; 2338 int retval = -ENODEV; 2339 2340 buf = strstrip(buf); 2341 2342 /* 2343 * CPU or memory hotunplug may leave @cs w/o any execution 2344 * resources, in which case the hotplug code asynchronously updates 2345 * configuration and transfers all tasks to the nearest ancestor 2346 * which can execute. 2347 * 2348 * As writes to "cpus" or "mems" may restore @cs's execution 2349 * resources, wait for the previously scheduled operations before 2350 * proceeding, so that we don't end up keep removing tasks added 2351 * after execution capability is restored. 2352 * 2353 * cpuset_hotplug_work calls back into cgroup core via 2354 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2355 * operation like this one can lead to a deadlock through kernfs 2356 * active_ref protection. Let's break the protection. Losing the 2357 * protection is okay as we check whether @cs is online after 2358 * grabbing cpuset_mutex anyway. This only happens on the legacy 2359 * hierarchies. 2360 */ 2361 css_get(&cs->css); 2362 kernfs_break_active_protection(of->kn); 2363 flush_work(&cpuset_hotplug_work); 2364 2365 get_online_cpus(); 2366 percpu_down_write(&cpuset_rwsem); 2367 if (!is_cpuset_online(cs)) 2368 goto out_unlock; 2369 2370 trialcs = alloc_trial_cpuset(cs); 2371 if (!trialcs) { 2372 retval = -ENOMEM; 2373 goto out_unlock; 2374 } 2375 2376 switch (of_cft(of)->private) { 2377 case FILE_CPULIST: 2378 retval = update_cpumask(cs, trialcs, buf); 2379 break; 2380 case FILE_MEMLIST: 2381 retval = update_nodemask(cs, trialcs, buf); 2382 break; 2383 default: 2384 retval = -EINVAL; 2385 break; 2386 } 2387 2388 free_cpuset(trialcs); 2389 out_unlock: 2390 percpu_up_write(&cpuset_rwsem); 2391 put_online_cpus(); 2392 kernfs_unbreak_active_protection(of->kn); 2393 css_put(&cs->css); 2394 flush_workqueue(cpuset_migrate_mm_wq); 2395 return retval ?: nbytes; 2396 } 2397 2398 /* 2399 * These ascii lists should be read in a single call, by using a user 2400 * buffer large enough to hold the entire map. If read in smaller 2401 * chunks, there is no guarantee of atomicity. Since the display format 2402 * used, list of ranges of sequential numbers, is variable length, 2403 * and since these maps can change value dynamically, one could read 2404 * gibberish by doing partial reads while a list was changing. 2405 */ 2406 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2407 { 2408 struct cpuset *cs = css_cs(seq_css(sf)); 2409 cpuset_filetype_t type = seq_cft(sf)->private; 2410 int ret = 0; 2411 2412 spin_lock_irq(&callback_lock); 2413 2414 switch (type) { 2415 case FILE_CPULIST: 2416 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2417 break; 2418 case FILE_MEMLIST: 2419 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2420 break; 2421 case FILE_EFFECTIVE_CPULIST: 2422 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2423 break; 2424 case FILE_EFFECTIVE_MEMLIST: 2425 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2426 break; 2427 case FILE_SUBPARTS_CPULIST: 2428 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2429 break; 2430 default: 2431 ret = -EINVAL; 2432 } 2433 2434 spin_unlock_irq(&callback_lock); 2435 return ret; 2436 } 2437 2438 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2439 { 2440 struct cpuset *cs = css_cs(css); 2441 cpuset_filetype_t type = cft->private; 2442 switch (type) { 2443 case FILE_CPU_EXCLUSIVE: 2444 return is_cpu_exclusive(cs); 2445 case FILE_MEM_EXCLUSIVE: 2446 return is_mem_exclusive(cs); 2447 case FILE_MEM_HARDWALL: 2448 return is_mem_hardwall(cs); 2449 case FILE_SCHED_LOAD_BALANCE: 2450 return is_sched_load_balance(cs); 2451 case FILE_MEMORY_MIGRATE: 2452 return is_memory_migrate(cs); 2453 case FILE_MEMORY_PRESSURE_ENABLED: 2454 return cpuset_memory_pressure_enabled; 2455 case FILE_MEMORY_PRESSURE: 2456 return fmeter_getrate(&cs->fmeter); 2457 case FILE_SPREAD_PAGE: 2458 return is_spread_page(cs); 2459 case FILE_SPREAD_SLAB: 2460 return is_spread_slab(cs); 2461 default: 2462 BUG(); 2463 } 2464 2465 /* Unreachable but makes gcc happy */ 2466 return 0; 2467 } 2468 2469 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2470 { 2471 struct cpuset *cs = css_cs(css); 2472 cpuset_filetype_t type = cft->private; 2473 switch (type) { 2474 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2475 return cs->relax_domain_level; 2476 default: 2477 BUG(); 2478 } 2479 2480 /* Unrechable but makes gcc happy */ 2481 return 0; 2482 } 2483 2484 static int sched_partition_show(struct seq_file *seq, void *v) 2485 { 2486 struct cpuset *cs = css_cs(seq_css(seq)); 2487 2488 switch (cs->partition_root_state) { 2489 case PRS_ENABLED: 2490 seq_puts(seq, "root\n"); 2491 break; 2492 case PRS_DISABLED: 2493 seq_puts(seq, "member\n"); 2494 break; 2495 case PRS_ERROR: 2496 seq_puts(seq, "root invalid\n"); 2497 break; 2498 } 2499 return 0; 2500 } 2501 2502 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2503 size_t nbytes, loff_t off) 2504 { 2505 struct cpuset *cs = css_cs(of_css(of)); 2506 int val; 2507 int retval = -ENODEV; 2508 2509 buf = strstrip(buf); 2510 2511 /* 2512 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2513 */ 2514 if (!strcmp(buf, "root")) 2515 val = PRS_ENABLED; 2516 else if (!strcmp(buf, "member")) 2517 val = PRS_DISABLED; 2518 else 2519 return -EINVAL; 2520 2521 css_get(&cs->css); 2522 get_online_cpus(); 2523 percpu_down_write(&cpuset_rwsem); 2524 if (!is_cpuset_online(cs)) 2525 goto out_unlock; 2526 2527 retval = update_prstate(cs, val); 2528 out_unlock: 2529 percpu_up_write(&cpuset_rwsem); 2530 put_online_cpus(); 2531 css_put(&cs->css); 2532 return retval ?: nbytes; 2533 } 2534 2535 /* 2536 * for the common functions, 'private' gives the type of file 2537 */ 2538 2539 static struct cftype legacy_files[] = { 2540 { 2541 .name = "cpus", 2542 .seq_show = cpuset_common_seq_show, 2543 .write = cpuset_write_resmask, 2544 .max_write_len = (100U + 6 * NR_CPUS), 2545 .private = FILE_CPULIST, 2546 }, 2547 2548 { 2549 .name = "mems", 2550 .seq_show = cpuset_common_seq_show, 2551 .write = cpuset_write_resmask, 2552 .max_write_len = (100U + 6 * MAX_NUMNODES), 2553 .private = FILE_MEMLIST, 2554 }, 2555 2556 { 2557 .name = "effective_cpus", 2558 .seq_show = cpuset_common_seq_show, 2559 .private = FILE_EFFECTIVE_CPULIST, 2560 }, 2561 2562 { 2563 .name = "effective_mems", 2564 .seq_show = cpuset_common_seq_show, 2565 .private = FILE_EFFECTIVE_MEMLIST, 2566 }, 2567 2568 { 2569 .name = "cpu_exclusive", 2570 .read_u64 = cpuset_read_u64, 2571 .write_u64 = cpuset_write_u64, 2572 .private = FILE_CPU_EXCLUSIVE, 2573 }, 2574 2575 { 2576 .name = "mem_exclusive", 2577 .read_u64 = cpuset_read_u64, 2578 .write_u64 = cpuset_write_u64, 2579 .private = FILE_MEM_EXCLUSIVE, 2580 }, 2581 2582 { 2583 .name = "mem_hardwall", 2584 .read_u64 = cpuset_read_u64, 2585 .write_u64 = cpuset_write_u64, 2586 .private = FILE_MEM_HARDWALL, 2587 }, 2588 2589 { 2590 .name = "sched_load_balance", 2591 .read_u64 = cpuset_read_u64, 2592 .write_u64 = cpuset_write_u64, 2593 .private = FILE_SCHED_LOAD_BALANCE, 2594 }, 2595 2596 { 2597 .name = "sched_relax_domain_level", 2598 .read_s64 = cpuset_read_s64, 2599 .write_s64 = cpuset_write_s64, 2600 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2601 }, 2602 2603 { 2604 .name = "memory_migrate", 2605 .read_u64 = cpuset_read_u64, 2606 .write_u64 = cpuset_write_u64, 2607 .private = FILE_MEMORY_MIGRATE, 2608 }, 2609 2610 { 2611 .name = "memory_pressure", 2612 .read_u64 = cpuset_read_u64, 2613 .private = FILE_MEMORY_PRESSURE, 2614 }, 2615 2616 { 2617 .name = "memory_spread_page", 2618 .read_u64 = cpuset_read_u64, 2619 .write_u64 = cpuset_write_u64, 2620 .private = FILE_SPREAD_PAGE, 2621 }, 2622 2623 { 2624 .name = "memory_spread_slab", 2625 .read_u64 = cpuset_read_u64, 2626 .write_u64 = cpuset_write_u64, 2627 .private = FILE_SPREAD_SLAB, 2628 }, 2629 2630 { 2631 .name = "memory_pressure_enabled", 2632 .flags = CFTYPE_ONLY_ON_ROOT, 2633 .read_u64 = cpuset_read_u64, 2634 .write_u64 = cpuset_write_u64, 2635 .private = FILE_MEMORY_PRESSURE_ENABLED, 2636 }, 2637 2638 { } /* terminate */ 2639 }; 2640 2641 /* 2642 * This is currently a minimal set for the default hierarchy. It can be 2643 * expanded later on by migrating more features and control files from v1. 2644 */ 2645 static struct cftype dfl_files[] = { 2646 { 2647 .name = "cpus", 2648 .seq_show = cpuset_common_seq_show, 2649 .write = cpuset_write_resmask, 2650 .max_write_len = (100U + 6 * NR_CPUS), 2651 .private = FILE_CPULIST, 2652 .flags = CFTYPE_NOT_ON_ROOT, 2653 }, 2654 2655 { 2656 .name = "mems", 2657 .seq_show = cpuset_common_seq_show, 2658 .write = cpuset_write_resmask, 2659 .max_write_len = (100U + 6 * MAX_NUMNODES), 2660 .private = FILE_MEMLIST, 2661 .flags = CFTYPE_NOT_ON_ROOT, 2662 }, 2663 2664 { 2665 .name = "cpus.effective", 2666 .seq_show = cpuset_common_seq_show, 2667 .private = FILE_EFFECTIVE_CPULIST, 2668 }, 2669 2670 { 2671 .name = "mems.effective", 2672 .seq_show = cpuset_common_seq_show, 2673 .private = FILE_EFFECTIVE_MEMLIST, 2674 }, 2675 2676 { 2677 .name = "cpus.partition", 2678 .seq_show = sched_partition_show, 2679 .write = sched_partition_write, 2680 .private = FILE_PARTITION_ROOT, 2681 .flags = CFTYPE_NOT_ON_ROOT, 2682 }, 2683 2684 { 2685 .name = "cpus.subpartitions", 2686 .seq_show = cpuset_common_seq_show, 2687 .private = FILE_SUBPARTS_CPULIST, 2688 .flags = CFTYPE_DEBUG, 2689 }, 2690 2691 { } /* terminate */ 2692 }; 2693 2694 2695 /* 2696 * cpuset_css_alloc - allocate a cpuset css 2697 * cgrp: control group that the new cpuset will be part of 2698 */ 2699 2700 static struct cgroup_subsys_state * 2701 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2702 { 2703 struct cpuset *cs; 2704 2705 if (!parent_css) 2706 return &top_cpuset.css; 2707 2708 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2709 if (!cs) 2710 return ERR_PTR(-ENOMEM); 2711 2712 if (alloc_cpumasks(cs, NULL)) { 2713 kfree(cs); 2714 return ERR_PTR(-ENOMEM); 2715 } 2716 2717 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2718 nodes_clear(cs->mems_allowed); 2719 nodes_clear(cs->effective_mems); 2720 fmeter_init(&cs->fmeter); 2721 cs->relax_domain_level = -1; 2722 2723 return &cs->css; 2724 } 2725 2726 static int cpuset_css_online(struct cgroup_subsys_state *css) 2727 { 2728 struct cpuset *cs = css_cs(css); 2729 struct cpuset *parent = parent_cs(cs); 2730 struct cpuset *tmp_cs; 2731 struct cgroup_subsys_state *pos_css; 2732 2733 if (!parent) 2734 return 0; 2735 2736 get_online_cpus(); 2737 percpu_down_write(&cpuset_rwsem); 2738 2739 set_bit(CS_ONLINE, &cs->flags); 2740 if (is_spread_page(parent)) 2741 set_bit(CS_SPREAD_PAGE, &cs->flags); 2742 if (is_spread_slab(parent)) 2743 set_bit(CS_SPREAD_SLAB, &cs->flags); 2744 2745 cpuset_inc(); 2746 2747 spin_lock_irq(&callback_lock); 2748 if (is_in_v2_mode()) { 2749 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2750 cs->effective_mems = parent->effective_mems; 2751 cs->use_parent_ecpus = true; 2752 parent->child_ecpus_count++; 2753 } 2754 spin_unlock_irq(&callback_lock); 2755 2756 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2757 goto out_unlock; 2758 2759 /* 2760 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2761 * set. This flag handling is implemented in cgroup core for 2762 * histrical reasons - the flag may be specified during mount. 2763 * 2764 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2765 * refuse to clone the configuration - thereby refusing the task to 2766 * be entered, and as a result refusing the sys_unshare() or 2767 * clone() which initiated it. If this becomes a problem for some 2768 * users who wish to allow that scenario, then this could be 2769 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2770 * (and likewise for mems) to the new cgroup. 2771 */ 2772 rcu_read_lock(); 2773 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2774 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2775 rcu_read_unlock(); 2776 goto out_unlock; 2777 } 2778 } 2779 rcu_read_unlock(); 2780 2781 spin_lock_irq(&callback_lock); 2782 cs->mems_allowed = parent->mems_allowed; 2783 cs->effective_mems = parent->mems_allowed; 2784 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2785 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2786 spin_unlock_irq(&callback_lock); 2787 out_unlock: 2788 percpu_up_write(&cpuset_rwsem); 2789 put_online_cpus(); 2790 return 0; 2791 } 2792 2793 /* 2794 * If the cpuset being removed has its flag 'sched_load_balance' 2795 * enabled, then simulate turning sched_load_balance off, which 2796 * will call rebuild_sched_domains_locked(). That is not needed 2797 * in the default hierarchy where only changes in partition 2798 * will cause repartitioning. 2799 * 2800 * If the cpuset has the 'sched.partition' flag enabled, simulate 2801 * turning 'sched.partition" off. 2802 */ 2803 2804 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2805 { 2806 struct cpuset *cs = css_cs(css); 2807 2808 get_online_cpus(); 2809 percpu_down_write(&cpuset_rwsem); 2810 2811 if (is_partition_root(cs)) 2812 update_prstate(cs, 0); 2813 2814 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2815 is_sched_load_balance(cs)) 2816 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2817 2818 if (cs->use_parent_ecpus) { 2819 struct cpuset *parent = parent_cs(cs); 2820 2821 cs->use_parent_ecpus = false; 2822 parent->child_ecpus_count--; 2823 } 2824 2825 cpuset_dec(); 2826 clear_bit(CS_ONLINE, &cs->flags); 2827 2828 percpu_up_write(&cpuset_rwsem); 2829 put_online_cpus(); 2830 } 2831 2832 static void cpuset_css_free(struct cgroup_subsys_state *css) 2833 { 2834 struct cpuset *cs = css_cs(css); 2835 2836 free_cpuset(cs); 2837 } 2838 2839 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2840 { 2841 percpu_down_write(&cpuset_rwsem); 2842 spin_lock_irq(&callback_lock); 2843 2844 if (is_in_v2_mode()) { 2845 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2846 top_cpuset.mems_allowed = node_possible_map; 2847 } else { 2848 cpumask_copy(top_cpuset.cpus_allowed, 2849 top_cpuset.effective_cpus); 2850 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2851 } 2852 2853 spin_unlock_irq(&callback_lock); 2854 percpu_up_write(&cpuset_rwsem); 2855 } 2856 2857 /* 2858 * Make sure the new task conform to the current state of its parent, 2859 * which could have been changed by cpuset just after it inherits the 2860 * state from the parent and before it sits on the cgroup's task list. 2861 */ 2862 static void cpuset_fork(struct task_struct *task) 2863 { 2864 if (task_css_is_root(task, cpuset_cgrp_id)) 2865 return; 2866 2867 set_cpus_allowed_ptr(task, current->cpus_ptr); 2868 task->mems_allowed = current->mems_allowed; 2869 } 2870 2871 struct cgroup_subsys cpuset_cgrp_subsys = { 2872 .css_alloc = cpuset_css_alloc, 2873 .css_online = cpuset_css_online, 2874 .css_offline = cpuset_css_offline, 2875 .css_free = cpuset_css_free, 2876 .can_attach = cpuset_can_attach, 2877 .cancel_attach = cpuset_cancel_attach, 2878 .attach = cpuset_attach, 2879 .post_attach = cpuset_post_attach, 2880 .bind = cpuset_bind, 2881 .fork = cpuset_fork, 2882 .legacy_cftypes = legacy_files, 2883 .dfl_cftypes = dfl_files, 2884 .early_init = true, 2885 .threaded = true, 2886 }; 2887 2888 /** 2889 * cpuset_init - initialize cpusets at system boot 2890 * 2891 * Description: Initialize top_cpuset 2892 **/ 2893 2894 int __init cpuset_init(void) 2895 { 2896 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2897 2898 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2899 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2900 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2901 2902 cpumask_setall(top_cpuset.cpus_allowed); 2903 nodes_setall(top_cpuset.mems_allowed); 2904 cpumask_setall(top_cpuset.effective_cpus); 2905 nodes_setall(top_cpuset.effective_mems); 2906 2907 fmeter_init(&top_cpuset.fmeter); 2908 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2909 top_cpuset.relax_domain_level = -1; 2910 2911 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2912 2913 return 0; 2914 } 2915 2916 /* 2917 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2918 * or memory nodes, we need to walk over the cpuset hierarchy, 2919 * removing that CPU or node from all cpusets. If this removes the 2920 * last CPU or node from a cpuset, then move the tasks in the empty 2921 * cpuset to its next-highest non-empty parent. 2922 */ 2923 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2924 { 2925 struct cpuset *parent; 2926 2927 /* 2928 * Find its next-highest non-empty parent, (top cpuset 2929 * has online cpus, so can't be empty). 2930 */ 2931 parent = parent_cs(cs); 2932 while (cpumask_empty(parent->cpus_allowed) || 2933 nodes_empty(parent->mems_allowed)) 2934 parent = parent_cs(parent); 2935 2936 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2937 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2938 pr_cont_cgroup_name(cs->css.cgroup); 2939 pr_cont("\n"); 2940 } 2941 } 2942 2943 static void 2944 hotplug_update_tasks_legacy(struct cpuset *cs, 2945 struct cpumask *new_cpus, nodemask_t *new_mems, 2946 bool cpus_updated, bool mems_updated) 2947 { 2948 bool is_empty; 2949 2950 spin_lock_irq(&callback_lock); 2951 cpumask_copy(cs->cpus_allowed, new_cpus); 2952 cpumask_copy(cs->effective_cpus, new_cpus); 2953 cs->mems_allowed = *new_mems; 2954 cs->effective_mems = *new_mems; 2955 spin_unlock_irq(&callback_lock); 2956 2957 /* 2958 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2959 * as the tasks will be migratecd to an ancestor. 2960 */ 2961 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2962 update_tasks_cpumask(cs); 2963 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2964 update_tasks_nodemask(cs); 2965 2966 is_empty = cpumask_empty(cs->cpus_allowed) || 2967 nodes_empty(cs->mems_allowed); 2968 2969 percpu_up_write(&cpuset_rwsem); 2970 2971 /* 2972 * Move tasks to the nearest ancestor with execution resources, 2973 * This is full cgroup operation which will also call back into 2974 * cpuset. Should be done outside any lock. 2975 */ 2976 if (is_empty) 2977 remove_tasks_in_empty_cpuset(cs); 2978 2979 percpu_down_write(&cpuset_rwsem); 2980 } 2981 2982 static void 2983 hotplug_update_tasks(struct cpuset *cs, 2984 struct cpumask *new_cpus, nodemask_t *new_mems, 2985 bool cpus_updated, bool mems_updated) 2986 { 2987 if (cpumask_empty(new_cpus)) 2988 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2989 if (nodes_empty(*new_mems)) 2990 *new_mems = parent_cs(cs)->effective_mems; 2991 2992 spin_lock_irq(&callback_lock); 2993 cpumask_copy(cs->effective_cpus, new_cpus); 2994 cs->effective_mems = *new_mems; 2995 spin_unlock_irq(&callback_lock); 2996 2997 if (cpus_updated) 2998 update_tasks_cpumask(cs); 2999 if (mems_updated) 3000 update_tasks_nodemask(cs); 3001 } 3002 3003 static bool force_rebuild; 3004 3005 void cpuset_force_rebuild(void) 3006 { 3007 force_rebuild = true; 3008 } 3009 3010 /** 3011 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3012 * @cs: cpuset in interest 3013 * @tmp: the tmpmasks structure pointer 3014 * 3015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3016 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3017 * all its tasks are moved to the nearest ancestor with both resources. 3018 */ 3019 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3020 { 3021 static cpumask_t new_cpus; 3022 static nodemask_t new_mems; 3023 bool cpus_updated; 3024 bool mems_updated; 3025 struct cpuset *parent; 3026 retry: 3027 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3028 3029 percpu_down_write(&cpuset_rwsem); 3030 3031 /* 3032 * We have raced with task attaching. We wait until attaching 3033 * is finished, so we won't attach a task to an empty cpuset. 3034 */ 3035 if (cs->attach_in_progress) { 3036 percpu_up_write(&cpuset_rwsem); 3037 goto retry; 3038 } 3039 3040 parent = parent_cs(cs); 3041 compute_effective_cpumask(&new_cpus, cs, parent); 3042 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3043 3044 if (cs->nr_subparts_cpus) 3045 /* 3046 * Make sure that CPUs allocated to child partitions 3047 * do not show up in effective_cpus. 3048 */ 3049 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3050 3051 if (!tmp || !cs->partition_root_state) 3052 goto update_tasks; 3053 3054 /* 3055 * In the unlikely event that a partition root has empty 3056 * effective_cpus or its parent becomes erroneous, we have to 3057 * transition it to the erroneous state. 3058 */ 3059 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3060 (parent->partition_root_state == PRS_ERROR))) { 3061 if (cs->nr_subparts_cpus) { 3062 cs->nr_subparts_cpus = 0; 3063 cpumask_clear(cs->subparts_cpus); 3064 compute_effective_cpumask(&new_cpus, cs, parent); 3065 } 3066 3067 /* 3068 * If the effective_cpus is empty because the child 3069 * partitions take away all the CPUs, we can keep 3070 * the current partition and let the child partitions 3071 * fight for available CPUs. 3072 */ 3073 if ((parent->partition_root_state == PRS_ERROR) || 3074 cpumask_empty(&new_cpus)) { 3075 update_parent_subparts_cpumask(cs, partcmd_disable, 3076 NULL, tmp); 3077 cs->partition_root_state = PRS_ERROR; 3078 } 3079 cpuset_force_rebuild(); 3080 } 3081 3082 /* 3083 * On the other hand, an erroneous partition root may be transitioned 3084 * back to a regular one or a partition root with no CPU allocated 3085 * from the parent may change to erroneous. 3086 */ 3087 if (is_partition_root(parent) && 3088 ((cs->partition_root_state == PRS_ERROR) || 3089 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3090 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3091 cpuset_force_rebuild(); 3092 3093 update_tasks: 3094 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3095 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3096 3097 if (is_in_v2_mode()) 3098 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3099 cpus_updated, mems_updated); 3100 else 3101 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3102 cpus_updated, mems_updated); 3103 3104 percpu_up_write(&cpuset_rwsem); 3105 } 3106 3107 /** 3108 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3109 * 3110 * This function is called after either CPU or memory configuration has 3111 * changed and updates cpuset accordingly. The top_cpuset is always 3112 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3113 * order to make cpusets transparent (of no affect) on systems that are 3114 * actively using CPU hotplug but making no active use of cpusets. 3115 * 3116 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3117 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3118 * all descendants. 3119 * 3120 * Note that CPU offlining during suspend is ignored. We don't modify 3121 * cpusets across suspend/resume cycles at all. 3122 */ 3123 static void cpuset_hotplug_workfn(struct work_struct *work) 3124 { 3125 static cpumask_t new_cpus; 3126 static nodemask_t new_mems; 3127 bool cpus_updated, mems_updated; 3128 bool on_dfl = is_in_v2_mode(); 3129 struct tmpmasks tmp, *ptmp = NULL; 3130 3131 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3132 ptmp = &tmp; 3133 3134 percpu_down_write(&cpuset_rwsem); 3135 3136 /* fetch the available cpus/mems and find out which changed how */ 3137 cpumask_copy(&new_cpus, cpu_active_mask); 3138 new_mems = node_states[N_MEMORY]; 3139 3140 /* 3141 * If subparts_cpus is populated, it is likely that the check below 3142 * will produce a false positive on cpus_updated when the cpu list 3143 * isn't changed. It is extra work, but it is better to be safe. 3144 */ 3145 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3146 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3147 3148 /* synchronize cpus_allowed to cpu_active_mask */ 3149 if (cpus_updated) { 3150 spin_lock_irq(&callback_lock); 3151 if (!on_dfl) 3152 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3153 /* 3154 * Make sure that CPUs allocated to child partitions 3155 * do not show up in effective_cpus. If no CPU is left, 3156 * we clear the subparts_cpus & let the child partitions 3157 * fight for the CPUs again. 3158 */ 3159 if (top_cpuset.nr_subparts_cpus) { 3160 if (cpumask_subset(&new_cpus, 3161 top_cpuset.subparts_cpus)) { 3162 top_cpuset.nr_subparts_cpus = 0; 3163 cpumask_clear(top_cpuset.subparts_cpus); 3164 } else { 3165 cpumask_andnot(&new_cpus, &new_cpus, 3166 top_cpuset.subparts_cpus); 3167 } 3168 } 3169 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3170 spin_unlock_irq(&callback_lock); 3171 /* we don't mess with cpumasks of tasks in top_cpuset */ 3172 } 3173 3174 /* synchronize mems_allowed to N_MEMORY */ 3175 if (mems_updated) { 3176 spin_lock_irq(&callback_lock); 3177 if (!on_dfl) 3178 top_cpuset.mems_allowed = new_mems; 3179 top_cpuset.effective_mems = new_mems; 3180 spin_unlock_irq(&callback_lock); 3181 update_tasks_nodemask(&top_cpuset); 3182 } 3183 3184 percpu_up_write(&cpuset_rwsem); 3185 3186 /* if cpus or mems changed, we need to propagate to descendants */ 3187 if (cpus_updated || mems_updated) { 3188 struct cpuset *cs; 3189 struct cgroup_subsys_state *pos_css; 3190 3191 rcu_read_lock(); 3192 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3193 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3194 continue; 3195 rcu_read_unlock(); 3196 3197 cpuset_hotplug_update_tasks(cs, ptmp); 3198 3199 rcu_read_lock(); 3200 css_put(&cs->css); 3201 } 3202 rcu_read_unlock(); 3203 } 3204 3205 /* rebuild sched domains if cpus_allowed has changed */ 3206 if (cpus_updated || force_rebuild) { 3207 force_rebuild = false; 3208 rebuild_sched_domains(); 3209 } 3210 3211 free_cpumasks(NULL, ptmp); 3212 } 3213 3214 void cpuset_update_active_cpus(void) 3215 { 3216 /* 3217 * We're inside cpu hotplug critical region which usually nests 3218 * inside cgroup synchronization. Bounce actual hotplug processing 3219 * to a work item to avoid reverse locking order. 3220 */ 3221 schedule_work(&cpuset_hotplug_work); 3222 } 3223 3224 void cpuset_wait_for_hotplug(void) 3225 { 3226 flush_work(&cpuset_hotplug_work); 3227 } 3228 3229 /* 3230 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3231 * Call this routine anytime after node_states[N_MEMORY] changes. 3232 * See cpuset_update_active_cpus() for CPU hotplug handling. 3233 */ 3234 static int cpuset_track_online_nodes(struct notifier_block *self, 3235 unsigned long action, void *arg) 3236 { 3237 schedule_work(&cpuset_hotplug_work); 3238 return NOTIFY_OK; 3239 } 3240 3241 static struct notifier_block cpuset_track_online_nodes_nb = { 3242 .notifier_call = cpuset_track_online_nodes, 3243 .priority = 10, /* ??! */ 3244 }; 3245 3246 /** 3247 * cpuset_init_smp - initialize cpus_allowed 3248 * 3249 * Description: Finish top cpuset after cpu, node maps are initialized 3250 */ 3251 void __init cpuset_init_smp(void) 3252 { 3253 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3254 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3255 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3256 3257 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3258 top_cpuset.effective_mems = node_states[N_MEMORY]; 3259 3260 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3261 3262 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3263 BUG_ON(!cpuset_migrate_mm_wq); 3264 } 3265 3266 /** 3267 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3268 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3269 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3270 * 3271 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3272 * attached to the specified @tsk. Guaranteed to return some non-empty 3273 * subset of cpu_online_mask, even if this means going outside the 3274 * tasks cpuset. 3275 **/ 3276 3277 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3278 { 3279 unsigned long flags; 3280 3281 spin_lock_irqsave(&callback_lock, flags); 3282 rcu_read_lock(); 3283 guarantee_online_cpus(task_cs(tsk), pmask); 3284 rcu_read_unlock(); 3285 spin_unlock_irqrestore(&callback_lock, flags); 3286 } 3287 3288 /** 3289 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3290 * @tsk: pointer to task_struct with which the scheduler is struggling 3291 * 3292 * Description: In the case that the scheduler cannot find an allowed cpu in 3293 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3294 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3295 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3296 * This is the absolute last resort for the scheduler and it is only used if 3297 * _every_ other avenue has been traveled. 3298 **/ 3299 3300 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3301 { 3302 rcu_read_lock(); 3303 do_set_cpus_allowed(tsk, is_in_v2_mode() ? 3304 task_cs(tsk)->cpus_allowed : cpu_possible_mask); 3305 rcu_read_unlock(); 3306 3307 /* 3308 * We own tsk->cpus_allowed, nobody can change it under us. 3309 * 3310 * But we used cs && cs->cpus_allowed lockless and thus can 3311 * race with cgroup_attach_task() or update_cpumask() and get 3312 * the wrong tsk->cpus_allowed. However, both cases imply the 3313 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3314 * which takes task_rq_lock(). 3315 * 3316 * If we are called after it dropped the lock we must see all 3317 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3318 * set any mask even if it is not right from task_cs() pov, 3319 * the pending set_cpus_allowed_ptr() will fix things. 3320 * 3321 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3322 * if required. 3323 */ 3324 } 3325 3326 void __init cpuset_init_current_mems_allowed(void) 3327 { 3328 nodes_setall(current->mems_allowed); 3329 } 3330 3331 /** 3332 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3333 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3334 * 3335 * Description: Returns the nodemask_t mems_allowed of the cpuset 3336 * attached to the specified @tsk. Guaranteed to return some non-empty 3337 * subset of node_states[N_MEMORY], even if this means going outside the 3338 * tasks cpuset. 3339 **/ 3340 3341 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3342 { 3343 nodemask_t mask; 3344 unsigned long flags; 3345 3346 spin_lock_irqsave(&callback_lock, flags); 3347 rcu_read_lock(); 3348 guarantee_online_mems(task_cs(tsk), &mask); 3349 rcu_read_unlock(); 3350 spin_unlock_irqrestore(&callback_lock, flags); 3351 3352 return mask; 3353 } 3354 3355 /** 3356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3357 * @nodemask: the nodemask to be checked 3358 * 3359 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3360 */ 3361 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3362 { 3363 return nodes_intersects(*nodemask, current->mems_allowed); 3364 } 3365 3366 /* 3367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3368 * mem_hardwall ancestor to the specified cpuset. Call holding 3369 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3370 * (an unusual configuration), then returns the root cpuset. 3371 */ 3372 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3373 { 3374 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3375 cs = parent_cs(cs); 3376 return cs; 3377 } 3378 3379 /** 3380 * cpuset_node_allowed - Can we allocate on a memory node? 3381 * @node: is this an allowed node? 3382 * @gfp_mask: memory allocation flags 3383 * 3384 * If we're in interrupt, yes, we can always allocate. If @node is set in 3385 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3386 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3387 * yes. If current has access to memory reserves as an oom victim, yes. 3388 * Otherwise, no. 3389 * 3390 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3391 * and do not allow allocations outside the current tasks cpuset 3392 * unless the task has been OOM killed. 3393 * GFP_KERNEL allocations are not so marked, so can escape to the 3394 * nearest enclosing hardwalled ancestor cpuset. 3395 * 3396 * Scanning up parent cpusets requires callback_lock. The 3397 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3398 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3399 * current tasks mems_allowed came up empty on the first pass over 3400 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3401 * cpuset are short of memory, might require taking the callback_lock. 3402 * 3403 * The first call here from mm/page_alloc:get_page_from_freelist() 3404 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3405 * so no allocation on a node outside the cpuset is allowed (unless 3406 * in interrupt, of course). 3407 * 3408 * The second pass through get_page_from_freelist() doesn't even call 3409 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3410 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3411 * in alloc_flags. That logic and the checks below have the combined 3412 * affect that: 3413 * in_interrupt - any node ok (current task context irrelevant) 3414 * GFP_ATOMIC - any node ok 3415 * tsk_is_oom_victim - any node ok 3416 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3417 * GFP_USER - only nodes in current tasks mems allowed ok. 3418 */ 3419 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3420 { 3421 struct cpuset *cs; /* current cpuset ancestors */ 3422 int allowed; /* is allocation in zone z allowed? */ 3423 unsigned long flags; 3424 3425 if (in_interrupt()) 3426 return true; 3427 if (node_isset(node, current->mems_allowed)) 3428 return true; 3429 /* 3430 * Allow tasks that have access to memory reserves because they have 3431 * been OOM killed to get memory anywhere. 3432 */ 3433 if (unlikely(tsk_is_oom_victim(current))) 3434 return true; 3435 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3436 return false; 3437 3438 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3439 return true; 3440 3441 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3442 spin_lock_irqsave(&callback_lock, flags); 3443 3444 rcu_read_lock(); 3445 cs = nearest_hardwall_ancestor(task_cs(current)); 3446 allowed = node_isset(node, cs->mems_allowed); 3447 rcu_read_unlock(); 3448 3449 spin_unlock_irqrestore(&callback_lock, flags); 3450 return allowed; 3451 } 3452 3453 /** 3454 * cpuset_mem_spread_node() - On which node to begin search for a file page 3455 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3456 * 3457 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3458 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3459 * and if the memory allocation used cpuset_mem_spread_node() 3460 * to determine on which node to start looking, as it will for 3461 * certain page cache or slab cache pages such as used for file 3462 * system buffers and inode caches, then instead of starting on the 3463 * local node to look for a free page, rather spread the starting 3464 * node around the tasks mems_allowed nodes. 3465 * 3466 * We don't have to worry about the returned node being offline 3467 * because "it can't happen", and even if it did, it would be ok. 3468 * 3469 * The routines calling guarantee_online_mems() are careful to 3470 * only set nodes in task->mems_allowed that are online. So it 3471 * should not be possible for the following code to return an 3472 * offline node. But if it did, that would be ok, as this routine 3473 * is not returning the node where the allocation must be, only 3474 * the node where the search should start. The zonelist passed to 3475 * __alloc_pages() will include all nodes. If the slab allocator 3476 * is passed an offline node, it will fall back to the local node. 3477 * See kmem_cache_alloc_node(). 3478 */ 3479 3480 static int cpuset_spread_node(int *rotor) 3481 { 3482 return *rotor = next_node_in(*rotor, current->mems_allowed); 3483 } 3484 3485 int cpuset_mem_spread_node(void) 3486 { 3487 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3488 current->cpuset_mem_spread_rotor = 3489 node_random(¤t->mems_allowed); 3490 3491 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3492 } 3493 3494 int cpuset_slab_spread_node(void) 3495 { 3496 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3497 current->cpuset_slab_spread_rotor = 3498 node_random(¤t->mems_allowed); 3499 3500 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3501 } 3502 3503 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3504 3505 /** 3506 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3507 * @tsk1: pointer to task_struct of some task. 3508 * @tsk2: pointer to task_struct of some other task. 3509 * 3510 * Description: Return true if @tsk1's mems_allowed intersects the 3511 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3512 * one of the task's memory usage might impact the memory available 3513 * to the other. 3514 **/ 3515 3516 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3517 const struct task_struct *tsk2) 3518 { 3519 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3520 } 3521 3522 /** 3523 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3524 * 3525 * Description: Prints current's name, cpuset name, and cached copy of its 3526 * mems_allowed to the kernel log. 3527 */ 3528 void cpuset_print_current_mems_allowed(void) 3529 { 3530 struct cgroup *cgrp; 3531 3532 rcu_read_lock(); 3533 3534 cgrp = task_cs(current)->css.cgroup; 3535 pr_cont(",cpuset="); 3536 pr_cont_cgroup_name(cgrp); 3537 pr_cont(",mems_allowed=%*pbl", 3538 nodemask_pr_args(¤t->mems_allowed)); 3539 3540 rcu_read_unlock(); 3541 } 3542 3543 /* 3544 * Collection of memory_pressure is suppressed unless 3545 * this flag is enabled by writing "1" to the special 3546 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3547 */ 3548 3549 int cpuset_memory_pressure_enabled __read_mostly; 3550 3551 /** 3552 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3553 * 3554 * Keep a running average of the rate of synchronous (direct) 3555 * page reclaim efforts initiated by tasks in each cpuset. 3556 * 3557 * This represents the rate at which some task in the cpuset 3558 * ran low on memory on all nodes it was allowed to use, and 3559 * had to enter the kernels page reclaim code in an effort to 3560 * create more free memory by tossing clean pages or swapping 3561 * or writing dirty pages. 3562 * 3563 * Display to user space in the per-cpuset read-only file 3564 * "memory_pressure". Value displayed is an integer 3565 * representing the recent rate of entry into the synchronous 3566 * (direct) page reclaim by any task attached to the cpuset. 3567 **/ 3568 3569 void __cpuset_memory_pressure_bump(void) 3570 { 3571 rcu_read_lock(); 3572 fmeter_markevent(&task_cs(current)->fmeter); 3573 rcu_read_unlock(); 3574 } 3575 3576 #ifdef CONFIG_PROC_PID_CPUSET 3577 /* 3578 * proc_cpuset_show() 3579 * - Print tasks cpuset path into seq_file. 3580 * - Used for /proc/<pid>/cpuset. 3581 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3582 * doesn't really matter if tsk->cpuset changes after we read it, 3583 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3584 * anyway. 3585 */ 3586 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3587 struct pid *pid, struct task_struct *tsk) 3588 { 3589 char *buf; 3590 struct cgroup_subsys_state *css; 3591 int retval; 3592 3593 retval = -ENOMEM; 3594 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3595 if (!buf) 3596 goto out; 3597 3598 css = task_get_css(tsk, cpuset_cgrp_id); 3599 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3600 current->nsproxy->cgroup_ns); 3601 css_put(css); 3602 if (retval >= PATH_MAX) 3603 retval = -ENAMETOOLONG; 3604 if (retval < 0) 3605 goto out_free; 3606 seq_puts(m, buf); 3607 seq_putc(m, '\n'); 3608 retval = 0; 3609 out_free: 3610 kfree(buf); 3611 out: 3612 return retval; 3613 } 3614 #endif /* CONFIG_PROC_PID_CPUSET */ 3615 3616 /* Display task mems_allowed in /proc/<pid>/status file. */ 3617 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3618 { 3619 seq_printf(m, "Mems_allowed:\t%*pb\n", 3620 nodemask_pr_args(&task->mems_allowed)); 3621 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3622 nodemask_pr_args(&task->mems_allowed)); 3623 } 3624