xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 74ee0477)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66 
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69 
70 /* See "Frequency meter" comments, below. */
71 
72 struct fmeter {
73 	int cnt;		/* unprocessed events count */
74 	int val;		/* most recent output value */
75 	time64_t time;		/* clock (secs) when val computed */
76 	spinlock_t lock;	/* guards read or write of above */
77 };
78 
79 struct cpuset {
80 	struct cgroup_subsys_state css;
81 
82 	unsigned long flags;		/* "unsigned long" so bitops work */
83 
84 	/*
85 	 * On default hierarchy:
86 	 *
87 	 * The user-configured masks can only be changed by writing to
88 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 	 * parent masks.
90 	 *
91 	 * The effective masks is the real masks that apply to the tasks
92 	 * in the cpuset. They may be changed if the configured masks are
93 	 * changed or hotplug happens.
94 	 *
95 	 * effective_mask == configured_mask & parent's effective_mask,
96 	 * and if it ends up empty, it will inherit the parent's mask.
97 	 *
98 	 *
99 	 * On legacy hierachy:
100 	 *
101 	 * The user-configured masks are always the same with effective masks.
102 	 */
103 
104 	/* user-configured CPUs and Memory Nodes allow to tasks */
105 	cpumask_var_t cpus_allowed;
106 	nodemask_t mems_allowed;
107 
108 	/* effective CPUs and Memory Nodes allow to tasks */
109 	cpumask_var_t effective_cpus;
110 	nodemask_t effective_mems;
111 
112 	/*
113 	 * This is old Memory Nodes tasks took on.
114 	 *
115 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
116 	 * - A new cpuset's old_mems_allowed is initialized when some
117 	 *   task is moved into it.
118 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
119 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
120 	 *   then old_mems_allowed is updated to mems_allowed.
121 	 */
122 	nodemask_t old_mems_allowed;
123 
124 	struct fmeter fmeter;		/* memory_pressure filter */
125 
126 	/*
127 	 * Tasks are being attached to this cpuset.  Used to prevent
128 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 	 */
130 	int attach_in_progress;
131 
132 	/* partition number for rebuild_sched_domains() */
133 	int pn;
134 
135 	/* for custom sched domain */
136 	int relax_domain_level;
137 };
138 
139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140 {
141 	return css ? container_of(css, struct cpuset, css) : NULL;
142 }
143 
144 /* Retrieve the cpuset for a task */
145 static inline struct cpuset *task_cs(struct task_struct *task)
146 {
147 	return css_cs(task_css(task, cpuset_cgrp_id));
148 }
149 
150 static inline struct cpuset *parent_cs(struct cpuset *cs)
151 {
152 	return css_cs(cs->css.parent);
153 }
154 
155 #ifdef CONFIG_NUMA
156 static inline bool task_has_mempolicy(struct task_struct *task)
157 {
158 	return task->mempolicy;
159 }
160 #else
161 static inline bool task_has_mempolicy(struct task_struct *task)
162 {
163 	return false;
164 }
165 #endif
166 
167 
168 /* bits in struct cpuset flags field */
169 typedef enum {
170 	CS_ONLINE,
171 	CS_CPU_EXCLUSIVE,
172 	CS_MEM_EXCLUSIVE,
173 	CS_MEM_HARDWALL,
174 	CS_MEMORY_MIGRATE,
175 	CS_SCHED_LOAD_BALANCE,
176 	CS_SPREAD_PAGE,
177 	CS_SPREAD_SLAB,
178 } cpuset_flagbits_t;
179 
180 /* convenient tests for these bits */
181 static inline bool is_cpuset_online(struct cpuset *cs)
182 {
183 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
184 }
185 
186 static inline int is_cpu_exclusive(const struct cpuset *cs)
187 {
188 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
189 }
190 
191 static inline int is_mem_exclusive(const struct cpuset *cs)
192 {
193 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
194 }
195 
196 static inline int is_mem_hardwall(const struct cpuset *cs)
197 {
198 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
199 }
200 
201 static inline int is_sched_load_balance(const struct cpuset *cs)
202 {
203 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
204 }
205 
206 static inline int is_memory_migrate(const struct cpuset *cs)
207 {
208 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 }
210 
211 static inline int is_spread_page(const struct cpuset *cs)
212 {
213 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
214 }
215 
216 static inline int is_spread_slab(const struct cpuset *cs)
217 {
218 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
219 }
220 
221 static struct cpuset top_cpuset = {
222 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
223 		  (1 << CS_MEM_EXCLUSIVE)),
224 };
225 
226 /**
227  * cpuset_for_each_child - traverse online children of a cpuset
228  * @child_cs: loop cursor pointing to the current child
229  * @pos_css: used for iteration
230  * @parent_cs: target cpuset to walk children of
231  *
232  * Walk @child_cs through the online children of @parent_cs.  Must be used
233  * with RCU read locked.
234  */
235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
236 	css_for_each_child((pos_css), &(parent_cs)->css)		\
237 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238 
239 /**
240  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
241  * @des_cs: loop cursor pointing to the current descendant
242  * @pos_css: used for iteration
243  * @root_cs: target cpuset to walk ancestor of
244  *
245  * Walk @des_cs through the online descendants of @root_cs.  Must be used
246  * with RCU read locked.  The caller may modify @pos_css by calling
247  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
248  * iteration and the first node to be visited.
249  */
250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
251 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
252 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253 
254 /*
255  * There are two global locks guarding cpuset structures - cpuset_mutex and
256  * callback_lock. We also require taking task_lock() when dereferencing a
257  * task's cpuset pointer. See "The task_lock() exception", at the end of this
258  * comment.
259  *
260  * A task must hold both locks to modify cpusets.  If a task holds
261  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262  * is the only task able to also acquire callback_lock and be able to
263  * modify cpusets.  It can perform various checks on the cpuset structure
264  * first, knowing nothing will change.  It can also allocate memory while
265  * just holding cpuset_mutex.  While it is performing these checks, various
266  * callback routines can briefly acquire callback_lock to query cpusets.
267  * Once it is ready to make the changes, it takes callback_lock, blocking
268  * everyone else.
269  *
270  * Calls to the kernel memory allocator can not be made while holding
271  * callback_lock, as that would risk double tripping on callback_lock
272  * from one of the callbacks into the cpuset code from within
273  * __alloc_pages().
274  *
275  * If a task is only holding callback_lock, then it has read-only
276  * access to cpusets.
277  *
278  * Now, the task_struct fields mems_allowed and mempolicy may be changed
279  * by other task, we use alloc_lock in the task_struct fields to protect
280  * them.
281  *
282  * The cpuset_common_file_read() handlers only hold callback_lock across
283  * small pieces of code, such as when reading out possibly multi-word
284  * cpumasks and nodemasks.
285  *
286  * Accessing a task's cpuset should be done in accordance with the
287  * guidelines for accessing subsystem state in kernel/cgroup.c
288  */
289 
290 static DEFINE_MUTEX(cpuset_mutex);
291 static DEFINE_SPINLOCK(callback_lock);
292 
293 static struct workqueue_struct *cpuset_migrate_mm_wq;
294 
295 /*
296  * CPU / memory hotplug is handled asynchronously.
297  */
298 static void cpuset_hotplug_workfn(struct work_struct *work);
299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
300 
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302 
303 /*
304  * Cgroup v2 behavior is used when on default hierarchy or the
305  * cgroup_v2_mode flag is set.
306  */
307 static inline bool is_in_v2_mode(void)
308 {
309 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
310 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
311 }
312 
313 /*
314  * This is ugly, but preserves the userspace API for existing cpuset
315  * users. If someone tries to mount the "cpuset" filesystem, we
316  * silently switch it to mount "cgroup" instead
317  */
318 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
319 			 int flags, const char *unused_dev_name, void *data)
320 {
321 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
322 	struct dentry *ret = ERR_PTR(-ENODEV);
323 	if (cgroup_fs) {
324 		char mountopts[] =
325 			"cpuset,noprefix,"
326 			"release_agent=/sbin/cpuset_release_agent";
327 		ret = cgroup_fs->mount(cgroup_fs, flags,
328 					   unused_dev_name, mountopts);
329 		put_filesystem(cgroup_fs);
330 	}
331 	return ret;
332 }
333 
334 static struct file_system_type cpuset_fs_type = {
335 	.name = "cpuset",
336 	.mount = cpuset_mount,
337 };
338 
339 /*
340  * Return in pmask the portion of a cpusets's cpus_allowed that
341  * are online.  If none are online, walk up the cpuset hierarchy
342  * until we find one that does have some online cpus.
343  *
344  * One way or another, we guarantee to return some non-empty subset
345  * of cpu_online_mask.
346  *
347  * Call with callback_lock or cpuset_mutex held.
348  */
349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
350 {
351 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
352 		cs = parent_cs(cs);
353 		if (unlikely(!cs)) {
354 			/*
355 			 * The top cpuset doesn't have any online cpu as a
356 			 * consequence of a race between cpuset_hotplug_work
357 			 * and cpu hotplug notifier.  But we know the top
358 			 * cpuset's effective_cpus is on its way to to be
359 			 * identical to cpu_online_mask.
360 			 */
361 			cpumask_copy(pmask, cpu_online_mask);
362 			return;
363 		}
364 	}
365 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
366 }
367 
368 /*
369  * Return in *pmask the portion of a cpusets's mems_allowed that
370  * are online, with memory.  If none are online with memory, walk
371  * up the cpuset hierarchy until we find one that does have some
372  * online mems.  The top cpuset always has some mems online.
373  *
374  * One way or another, we guarantee to return some non-empty subset
375  * of node_states[N_MEMORY].
376  *
377  * Call with callback_lock or cpuset_mutex held.
378  */
379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
380 {
381 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
382 		cs = parent_cs(cs);
383 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
384 }
385 
386 /*
387  * update task's spread flag if cpuset's page/slab spread flag is set
388  *
389  * Call with callback_lock or cpuset_mutex held.
390  */
391 static void cpuset_update_task_spread_flag(struct cpuset *cs,
392 					struct task_struct *tsk)
393 {
394 	if (is_spread_page(cs))
395 		task_set_spread_page(tsk);
396 	else
397 		task_clear_spread_page(tsk);
398 
399 	if (is_spread_slab(cs))
400 		task_set_spread_slab(tsk);
401 	else
402 		task_clear_spread_slab(tsk);
403 }
404 
405 /*
406  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407  *
408  * One cpuset is a subset of another if all its allowed CPUs and
409  * Memory Nodes are a subset of the other, and its exclusive flags
410  * are only set if the other's are set.  Call holding cpuset_mutex.
411  */
412 
413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414 {
415 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
416 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 		is_mem_exclusive(p) <= is_mem_exclusive(q);
419 }
420 
421 /**
422  * alloc_trial_cpuset - allocate a trial cpuset
423  * @cs: the cpuset that the trial cpuset duplicates
424  */
425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426 {
427 	struct cpuset *trial;
428 
429 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 	if (!trial)
431 		return NULL;
432 
433 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
434 		goto free_cs;
435 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
436 		goto free_cpus;
437 
438 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
439 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440 	return trial;
441 
442 free_cpus:
443 	free_cpumask_var(trial->cpus_allowed);
444 free_cs:
445 	kfree(trial);
446 	return NULL;
447 }
448 
449 /**
450  * free_trial_cpuset - free the trial cpuset
451  * @trial: the trial cpuset to be freed
452  */
453 static void free_trial_cpuset(struct cpuset *trial)
454 {
455 	free_cpumask_var(trial->effective_cpus);
456 	free_cpumask_var(trial->cpus_allowed);
457 	kfree(trial);
458 }
459 
460 /*
461  * validate_change() - Used to validate that any proposed cpuset change
462  *		       follows the structural rules for cpusets.
463  *
464  * If we replaced the flag and mask values of the current cpuset
465  * (cur) with those values in the trial cpuset (trial), would
466  * our various subset and exclusive rules still be valid?  Presumes
467  * cpuset_mutex held.
468  *
469  * 'cur' is the address of an actual, in-use cpuset.  Operations
470  * such as list traversal that depend on the actual address of the
471  * cpuset in the list must use cur below, not trial.
472  *
473  * 'trial' is the address of bulk structure copy of cur, with
474  * perhaps one or more of the fields cpus_allowed, mems_allowed,
475  * or flags changed to new, trial values.
476  *
477  * Return 0 if valid, -errno if not.
478  */
479 
480 static int validate_change(struct cpuset *cur, struct cpuset *trial)
481 {
482 	struct cgroup_subsys_state *css;
483 	struct cpuset *c, *par;
484 	int ret;
485 
486 	rcu_read_lock();
487 
488 	/* Each of our child cpusets must be a subset of us */
489 	ret = -EBUSY;
490 	cpuset_for_each_child(c, css, cur)
491 		if (!is_cpuset_subset(c, trial))
492 			goto out;
493 
494 	/* Remaining checks don't apply to root cpuset */
495 	ret = 0;
496 	if (cur == &top_cpuset)
497 		goto out;
498 
499 	par = parent_cs(cur);
500 
501 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
502 	ret = -EACCES;
503 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504 		goto out;
505 
506 	/*
507 	 * If either I or some sibling (!= me) is exclusive, we can't
508 	 * overlap
509 	 */
510 	ret = -EINVAL;
511 	cpuset_for_each_child(c, css, par) {
512 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
513 		    c != cur &&
514 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515 			goto out;
516 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
517 		    c != cur &&
518 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
519 			goto out;
520 	}
521 
522 	/*
523 	 * Cpusets with tasks - existing or newly being attached - can't
524 	 * be changed to have empty cpus_allowed or mems_allowed.
525 	 */
526 	ret = -ENOSPC;
527 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 		if (!cpumask_empty(cur->cpus_allowed) &&
529 		    cpumask_empty(trial->cpus_allowed))
530 			goto out;
531 		if (!nodes_empty(cur->mems_allowed) &&
532 		    nodes_empty(trial->mems_allowed))
533 			goto out;
534 	}
535 
536 	/*
537 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
538 	 * tasks.
539 	 */
540 	ret = -EBUSY;
541 	if (is_cpu_exclusive(cur) &&
542 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
543 				       trial->cpus_allowed))
544 		goto out;
545 
546 	ret = 0;
547 out:
548 	rcu_read_unlock();
549 	return ret;
550 }
551 
552 #ifdef CONFIG_SMP
553 /*
554  * Helper routine for generate_sched_domains().
555  * Do cpusets a, b have overlapping effective cpus_allowed masks?
556  */
557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
558 {
559 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
560 }
561 
562 static void
563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
564 {
565 	if (dattr->relax_domain_level < c->relax_domain_level)
566 		dattr->relax_domain_level = c->relax_domain_level;
567 	return;
568 }
569 
570 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
571 				    struct cpuset *root_cs)
572 {
573 	struct cpuset *cp;
574 	struct cgroup_subsys_state *pos_css;
575 
576 	rcu_read_lock();
577 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 		/* skip the whole subtree if @cp doesn't have any CPU */
579 		if (cpumask_empty(cp->cpus_allowed)) {
580 			pos_css = css_rightmost_descendant(pos_css);
581 			continue;
582 		}
583 
584 		if (is_sched_load_balance(cp))
585 			update_domain_attr(dattr, cp);
586 	}
587 	rcu_read_unlock();
588 }
589 
590 /* Must be called with cpuset_mutex held.  */
591 static inline int nr_cpusets(void)
592 {
593 	/* jump label reference count + the top-level cpuset */
594 	return static_key_count(&cpusets_enabled_key.key) + 1;
595 }
596 
597 /*
598  * generate_sched_domains()
599  *
600  * This function builds a partial partition of the systems CPUs
601  * A 'partial partition' is a set of non-overlapping subsets whose
602  * union is a subset of that set.
603  * The output of this function needs to be passed to kernel/sched/core.c
604  * partition_sched_domains() routine, which will rebuild the scheduler's
605  * load balancing domains (sched domains) as specified by that partial
606  * partition.
607  *
608  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
609  * for a background explanation of this.
610  *
611  * Does not return errors, on the theory that the callers of this
612  * routine would rather not worry about failures to rebuild sched
613  * domains when operating in the severe memory shortage situations
614  * that could cause allocation failures below.
615  *
616  * Must be called with cpuset_mutex held.
617  *
618  * The three key local variables below are:
619  *    q  - a linked-list queue of cpuset pointers, used to implement a
620  *	   top-down scan of all cpusets.  This scan loads a pointer
621  *	   to each cpuset marked is_sched_load_balance into the
622  *	   array 'csa'.  For our purposes, rebuilding the schedulers
623  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
624  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
625  *	   that need to be load balanced, for convenient iterative
626  *	   access by the subsequent code that finds the best partition,
627  *	   i.e the set of domains (subsets) of CPUs such that the
628  *	   cpus_allowed of every cpuset marked is_sched_load_balance
629  *	   is a subset of one of these domains, while there are as
630  *	   many such domains as possible, each as small as possible.
631  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
632  *	   the kernel/sched/core.c routine partition_sched_domains() in a
633  *	   convenient format, that can be easily compared to the prior
634  *	   value to determine what partition elements (sched domains)
635  *	   were changed (added or removed.)
636  *
637  * Finding the best partition (set of domains):
638  *	The triple nested loops below over i, j, k scan over the
639  *	load balanced cpusets (using the array of cpuset pointers in
640  *	csa[]) looking for pairs of cpusets that have overlapping
641  *	cpus_allowed, but which don't have the same 'pn' partition
642  *	number and gives them in the same partition number.  It keeps
643  *	looping on the 'restart' label until it can no longer find
644  *	any such pairs.
645  *
646  *	The union of the cpus_allowed masks from the set of
647  *	all cpusets having the same 'pn' value then form the one
648  *	element of the partition (one sched domain) to be passed to
649  *	partition_sched_domains().
650  */
651 static int generate_sched_domains(cpumask_var_t **domains,
652 			struct sched_domain_attr **attributes)
653 {
654 	struct cpuset *cp;	/* scans q */
655 	struct cpuset **csa;	/* array of all cpuset ptrs */
656 	int csn;		/* how many cpuset ptrs in csa so far */
657 	int i, j, k;		/* indices for partition finding loops */
658 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
659 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
660 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
661 	int ndoms = 0;		/* number of sched domains in result */
662 	int nslot;		/* next empty doms[] struct cpumask slot */
663 	struct cgroup_subsys_state *pos_css;
664 
665 	doms = NULL;
666 	dattr = NULL;
667 	csa = NULL;
668 
669 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
670 		goto done;
671 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
672 
673 	/* Special case for the 99% of systems with one, full, sched domain */
674 	if (is_sched_load_balance(&top_cpuset)) {
675 		ndoms = 1;
676 		doms = alloc_sched_domains(ndoms);
677 		if (!doms)
678 			goto done;
679 
680 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
681 		if (dattr) {
682 			*dattr = SD_ATTR_INIT;
683 			update_domain_attr_tree(dattr, &top_cpuset);
684 		}
685 		cpumask_and(doms[0], top_cpuset.effective_cpus,
686 				     non_isolated_cpus);
687 
688 		goto done;
689 	}
690 
691 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
692 	if (!csa)
693 		goto done;
694 	csn = 0;
695 
696 	rcu_read_lock();
697 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
698 		if (cp == &top_cpuset)
699 			continue;
700 		/*
701 		 * Continue traversing beyond @cp iff @cp has some CPUs and
702 		 * isn't load balancing.  The former is obvious.  The
703 		 * latter: All child cpusets contain a subset of the
704 		 * parent's cpus, so just skip them, and then we call
705 		 * update_domain_attr_tree() to calc relax_domain_level of
706 		 * the corresponding sched domain.
707 		 */
708 		if (!cpumask_empty(cp->cpus_allowed) &&
709 		    !(is_sched_load_balance(cp) &&
710 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
711 			continue;
712 
713 		if (is_sched_load_balance(cp))
714 			csa[csn++] = cp;
715 
716 		/* skip @cp's subtree */
717 		pos_css = css_rightmost_descendant(pos_css);
718 	}
719 	rcu_read_unlock();
720 
721 	for (i = 0; i < csn; i++)
722 		csa[i]->pn = i;
723 	ndoms = csn;
724 
725 restart:
726 	/* Find the best partition (set of sched domains) */
727 	for (i = 0; i < csn; i++) {
728 		struct cpuset *a = csa[i];
729 		int apn = a->pn;
730 
731 		for (j = 0; j < csn; j++) {
732 			struct cpuset *b = csa[j];
733 			int bpn = b->pn;
734 
735 			if (apn != bpn && cpusets_overlap(a, b)) {
736 				for (k = 0; k < csn; k++) {
737 					struct cpuset *c = csa[k];
738 
739 					if (c->pn == bpn)
740 						c->pn = apn;
741 				}
742 				ndoms--;	/* one less element */
743 				goto restart;
744 			}
745 		}
746 	}
747 
748 	/*
749 	 * Now we know how many domains to create.
750 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
751 	 */
752 	doms = alloc_sched_domains(ndoms);
753 	if (!doms)
754 		goto done;
755 
756 	/*
757 	 * The rest of the code, including the scheduler, can deal with
758 	 * dattr==NULL case. No need to abort if alloc fails.
759 	 */
760 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
761 
762 	for (nslot = 0, i = 0; i < csn; i++) {
763 		struct cpuset *a = csa[i];
764 		struct cpumask *dp;
765 		int apn = a->pn;
766 
767 		if (apn < 0) {
768 			/* Skip completed partitions */
769 			continue;
770 		}
771 
772 		dp = doms[nslot];
773 
774 		if (nslot == ndoms) {
775 			static int warnings = 10;
776 			if (warnings) {
777 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
778 					nslot, ndoms, csn, i, apn);
779 				warnings--;
780 			}
781 			continue;
782 		}
783 
784 		cpumask_clear(dp);
785 		if (dattr)
786 			*(dattr + nslot) = SD_ATTR_INIT;
787 		for (j = i; j < csn; j++) {
788 			struct cpuset *b = csa[j];
789 
790 			if (apn == b->pn) {
791 				cpumask_or(dp, dp, b->effective_cpus);
792 				cpumask_and(dp, dp, non_isolated_cpus);
793 				if (dattr)
794 					update_domain_attr_tree(dattr + nslot, b);
795 
796 				/* Done with this partition */
797 				b->pn = -1;
798 			}
799 		}
800 		nslot++;
801 	}
802 	BUG_ON(nslot != ndoms);
803 
804 done:
805 	free_cpumask_var(non_isolated_cpus);
806 	kfree(csa);
807 
808 	/*
809 	 * Fallback to the default domain if kmalloc() failed.
810 	 * See comments in partition_sched_domains().
811 	 */
812 	if (doms == NULL)
813 		ndoms = 1;
814 
815 	*domains    = doms;
816 	*attributes = dattr;
817 	return ndoms;
818 }
819 
820 /*
821  * Rebuild scheduler domains.
822  *
823  * If the flag 'sched_load_balance' of any cpuset with non-empty
824  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
825  * which has that flag enabled, or if any cpuset with a non-empty
826  * 'cpus' is removed, then call this routine to rebuild the
827  * scheduler's dynamic sched domains.
828  *
829  * Call with cpuset_mutex held.  Takes get_online_cpus().
830  */
831 static void rebuild_sched_domains_locked(void)
832 {
833 	struct sched_domain_attr *attr;
834 	cpumask_var_t *doms;
835 	int ndoms;
836 
837 	lockdep_assert_held(&cpuset_mutex);
838 	get_online_cpus();
839 
840 	/*
841 	 * We have raced with CPU hotplug. Don't do anything to avoid
842 	 * passing doms with offlined cpu to partition_sched_domains().
843 	 * Anyways, hotplug work item will rebuild sched domains.
844 	 */
845 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
846 		goto out;
847 
848 	/* Generate domain masks and attrs */
849 	ndoms = generate_sched_domains(&doms, &attr);
850 
851 	/* Have scheduler rebuild the domains */
852 	partition_sched_domains(ndoms, doms, attr);
853 out:
854 	put_online_cpus();
855 }
856 #else /* !CONFIG_SMP */
857 static void rebuild_sched_domains_locked(void)
858 {
859 }
860 #endif /* CONFIG_SMP */
861 
862 void rebuild_sched_domains(void)
863 {
864 	mutex_lock(&cpuset_mutex);
865 	rebuild_sched_domains_locked();
866 	mutex_unlock(&cpuset_mutex);
867 }
868 
869 /**
870  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
871  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
872  *
873  * Iterate through each task of @cs updating its cpus_allowed to the
874  * effective cpuset's.  As this function is called with cpuset_mutex held,
875  * cpuset membership stays stable.
876  */
877 static void update_tasks_cpumask(struct cpuset *cs)
878 {
879 	struct css_task_iter it;
880 	struct task_struct *task;
881 
882 	css_task_iter_start(&cs->css, 0, &it);
883 	while ((task = css_task_iter_next(&it)))
884 		set_cpus_allowed_ptr(task, cs->effective_cpus);
885 	css_task_iter_end(&it);
886 }
887 
888 /*
889  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
890  * @cs: the cpuset to consider
891  * @new_cpus: temp variable for calculating new effective_cpus
892  *
893  * When congifured cpumask is changed, the effective cpumasks of this cpuset
894  * and all its descendants need to be updated.
895  *
896  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
897  *
898  * Called with cpuset_mutex held
899  */
900 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
901 {
902 	struct cpuset *cp;
903 	struct cgroup_subsys_state *pos_css;
904 	bool need_rebuild_sched_domains = false;
905 
906 	rcu_read_lock();
907 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
908 		struct cpuset *parent = parent_cs(cp);
909 
910 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
911 
912 		/*
913 		 * If it becomes empty, inherit the effective mask of the
914 		 * parent, which is guaranteed to have some CPUs.
915 		 */
916 		if (is_in_v2_mode() && cpumask_empty(new_cpus))
917 			cpumask_copy(new_cpus, parent->effective_cpus);
918 
919 		/* Skip the whole subtree if the cpumask remains the same. */
920 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
921 			pos_css = css_rightmost_descendant(pos_css);
922 			continue;
923 		}
924 
925 		if (!css_tryget_online(&cp->css))
926 			continue;
927 		rcu_read_unlock();
928 
929 		spin_lock_irq(&callback_lock);
930 		cpumask_copy(cp->effective_cpus, new_cpus);
931 		spin_unlock_irq(&callback_lock);
932 
933 		WARN_ON(!is_in_v2_mode() &&
934 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
935 
936 		update_tasks_cpumask(cp);
937 
938 		/*
939 		 * If the effective cpumask of any non-empty cpuset is changed,
940 		 * we need to rebuild sched domains.
941 		 */
942 		if (!cpumask_empty(cp->cpus_allowed) &&
943 		    is_sched_load_balance(cp))
944 			need_rebuild_sched_domains = true;
945 
946 		rcu_read_lock();
947 		css_put(&cp->css);
948 	}
949 	rcu_read_unlock();
950 
951 	if (need_rebuild_sched_domains)
952 		rebuild_sched_domains_locked();
953 }
954 
955 /**
956  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
957  * @cs: the cpuset to consider
958  * @trialcs: trial cpuset
959  * @buf: buffer of cpu numbers written to this cpuset
960  */
961 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
962 			  const char *buf)
963 {
964 	int retval;
965 
966 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
967 	if (cs == &top_cpuset)
968 		return -EACCES;
969 
970 	/*
971 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
972 	 * Since cpulist_parse() fails on an empty mask, we special case
973 	 * that parsing.  The validate_change() call ensures that cpusets
974 	 * with tasks have cpus.
975 	 */
976 	if (!*buf) {
977 		cpumask_clear(trialcs->cpus_allowed);
978 	} else {
979 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
980 		if (retval < 0)
981 			return retval;
982 
983 		if (!cpumask_subset(trialcs->cpus_allowed,
984 				    top_cpuset.cpus_allowed))
985 			return -EINVAL;
986 	}
987 
988 	/* Nothing to do if the cpus didn't change */
989 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
990 		return 0;
991 
992 	retval = validate_change(cs, trialcs);
993 	if (retval < 0)
994 		return retval;
995 
996 	spin_lock_irq(&callback_lock);
997 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
998 	spin_unlock_irq(&callback_lock);
999 
1000 	/* use trialcs->cpus_allowed as a temp variable */
1001 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Migrate memory region from one set of nodes to another.  This is
1007  * performed asynchronously as it can be called from process migration path
1008  * holding locks involved in process management.  All mm migrations are
1009  * performed in the queued order and can be waited for by flushing
1010  * cpuset_migrate_mm_wq.
1011  */
1012 
1013 struct cpuset_migrate_mm_work {
1014 	struct work_struct	work;
1015 	struct mm_struct	*mm;
1016 	nodemask_t		from;
1017 	nodemask_t		to;
1018 };
1019 
1020 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1021 {
1022 	struct cpuset_migrate_mm_work *mwork =
1023 		container_of(work, struct cpuset_migrate_mm_work, work);
1024 
1025 	/* on a wq worker, no need to worry about %current's mems_allowed */
1026 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1027 	mmput(mwork->mm);
1028 	kfree(mwork);
1029 }
1030 
1031 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1032 							const nodemask_t *to)
1033 {
1034 	struct cpuset_migrate_mm_work *mwork;
1035 
1036 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1037 	if (mwork) {
1038 		mwork->mm = mm;
1039 		mwork->from = *from;
1040 		mwork->to = *to;
1041 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1042 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1043 	} else {
1044 		mmput(mm);
1045 	}
1046 }
1047 
1048 static void cpuset_post_attach(void)
1049 {
1050 	flush_workqueue(cpuset_migrate_mm_wq);
1051 }
1052 
1053 /*
1054  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1055  * @tsk: the task to change
1056  * @newmems: new nodes that the task will be set
1057  *
1058  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1059  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1060  * parallel, it might temporarily see an empty intersection, which results in
1061  * a seqlock check and retry before OOM or allocation failure.
1062  */
1063 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1064 					nodemask_t *newmems)
1065 {
1066 	task_lock(tsk);
1067 
1068 	local_irq_disable();
1069 	write_seqcount_begin(&tsk->mems_allowed_seq);
1070 
1071 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1072 	mpol_rebind_task(tsk, newmems);
1073 	tsk->mems_allowed = *newmems;
1074 
1075 	write_seqcount_end(&tsk->mems_allowed_seq);
1076 	local_irq_enable();
1077 
1078 	task_unlock(tsk);
1079 }
1080 
1081 static void *cpuset_being_rebound;
1082 
1083 /**
1084  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1085  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1086  *
1087  * Iterate through each task of @cs updating its mems_allowed to the
1088  * effective cpuset's.  As this function is called with cpuset_mutex held,
1089  * cpuset membership stays stable.
1090  */
1091 static void update_tasks_nodemask(struct cpuset *cs)
1092 {
1093 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1094 	struct css_task_iter it;
1095 	struct task_struct *task;
1096 
1097 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1098 
1099 	guarantee_online_mems(cs, &newmems);
1100 
1101 	/*
1102 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1103 	 * take while holding tasklist_lock.  Forks can happen - the
1104 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1105 	 * and rebind their vma mempolicies too.  Because we still hold
1106 	 * the global cpuset_mutex, we know that no other rebind effort
1107 	 * will be contending for the global variable cpuset_being_rebound.
1108 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1109 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1110 	 */
1111 	css_task_iter_start(&cs->css, 0, &it);
1112 	while ((task = css_task_iter_next(&it))) {
1113 		struct mm_struct *mm;
1114 		bool migrate;
1115 
1116 		cpuset_change_task_nodemask(task, &newmems);
1117 
1118 		mm = get_task_mm(task);
1119 		if (!mm)
1120 			continue;
1121 
1122 		migrate = is_memory_migrate(cs);
1123 
1124 		mpol_rebind_mm(mm, &cs->mems_allowed);
1125 		if (migrate)
1126 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1127 		else
1128 			mmput(mm);
1129 	}
1130 	css_task_iter_end(&it);
1131 
1132 	/*
1133 	 * All the tasks' nodemasks have been updated, update
1134 	 * cs->old_mems_allowed.
1135 	 */
1136 	cs->old_mems_allowed = newmems;
1137 
1138 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1139 	cpuset_being_rebound = NULL;
1140 }
1141 
1142 /*
1143  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1144  * @cs: the cpuset to consider
1145  * @new_mems: a temp variable for calculating new effective_mems
1146  *
1147  * When configured nodemask is changed, the effective nodemasks of this cpuset
1148  * and all its descendants need to be updated.
1149  *
1150  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1151  *
1152  * Called with cpuset_mutex held
1153  */
1154 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1155 {
1156 	struct cpuset *cp;
1157 	struct cgroup_subsys_state *pos_css;
1158 
1159 	rcu_read_lock();
1160 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1161 		struct cpuset *parent = parent_cs(cp);
1162 
1163 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1164 
1165 		/*
1166 		 * If it becomes empty, inherit the effective mask of the
1167 		 * parent, which is guaranteed to have some MEMs.
1168 		 */
1169 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1170 			*new_mems = parent->effective_mems;
1171 
1172 		/* Skip the whole subtree if the nodemask remains the same. */
1173 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1174 			pos_css = css_rightmost_descendant(pos_css);
1175 			continue;
1176 		}
1177 
1178 		if (!css_tryget_online(&cp->css))
1179 			continue;
1180 		rcu_read_unlock();
1181 
1182 		spin_lock_irq(&callback_lock);
1183 		cp->effective_mems = *new_mems;
1184 		spin_unlock_irq(&callback_lock);
1185 
1186 		WARN_ON(!is_in_v2_mode() &&
1187 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1188 
1189 		update_tasks_nodemask(cp);
1190 
1191 		rcu_read_lock();
1192 		css_put(&cp->css);
1193 	}
1194 	rcu_read_unlock();
1195 }
1196 
1197 /*
1198  * Handle user request to change the 'mems' memory placement
1199  * of a cpuset.  Needs to validate the request, update the
1200  * cpusets mems_allowed, and for each task in the cpuset,
1201  * update mems_allowed and rebind task's mempolicy and any vma
1202  * mempolicies and if the cpuset is marked 'memory_migrate',
1203  * migrate the tasks pages to the new memory.
1204  *
1205  * Call with cpuset_mutex held. May take callback_lock during call.
1206  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1207  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1208  * their mempolicies to the cpusets new mems_allowed.
1209  */
1210 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1211 			   const char *buf)
1212 {
1213 	int retval;
1214 
1215 	/*
1216 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1217 	 * it's read-only
1218 	 */
1219 	if (cs == &top_cpuset) {
1220 		retval = -EACCES;
1221 		goto done;
1222 	}
1223 
1224 	/*
1225 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1226 	 * Since nodelist_parse() fails on an empty mask, we special case
1227 	 * that parsing.  The validate_change() call ensures that cpusets
1228 	 * with tasks have memory.
1229 	 */
1230 	if (!*buf) {
1231 		nodes_clear(trialcs->mems_allowed);
1232 	} else {
1233 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1234 		if (retval < 0)
1235 			goto done;
1236 
1237 		if (!nodes_subset(trialcs->mems_allowed,
1238 				  top_cpuset.mems_allowed)) {
1239 			retval = -EINVAL;
1240 			goto done;
1241 		}
1242 	}
1243 
1244 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1245 		retval = 0;		/* Too easy - nothing to do */
1246 		goto done;
1247 	}
1248 	retval = validate_change(cs, trialcs);
1249 	if (retval < 0)
1250 		goto done;
1251 
1252 	spin_lock_irq(&callback_lock);
1253 	cs->mems_allowed = trialcs->mems_allowed;
1254 	spin_unlock_irq(&callback_lock);
1255 
1256 	/* use trialcs->mems_allowed as a temp variable */
1257 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1258 done:
1259 	return retval;
1260 }
1261 
1262 int current_cpuset_is_being_rebound(void)
1263 {
1264 	int ret;
1265 
1266 	rcu_read_lock();
1267 	ret = task_cs(current) == cpuset_being_rebound;
1268 	rcu_read_unlock();
1269 
1270 	return ret;
1271 }
1272 
1273 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1274 {
1275 #ifdef CONFIG_SMP
1276 	if (val < -1 || val >= sched_domain_level_max)
1277 		return -EINVAL;
1278 #endif
1279 
1280 	if (val != cs->relax_domain_level) {
1281 		cs->relax_domain_level = val;
1282 		if (!cpumask_empty(cs->cpus_allowed) &&
1283 		    is_sched_load_balance(cs))
1284 			rebuild_sched_domains_locked();
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /**
1291  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1292  * @cs: the cpuset in which each task's spread flags needs to be changed
1293  *
1294  * Iterate through each task of @cs updating its spread flags.  As this
1295  * function is called with cpuset_mutex held, cpuset membership stays
1296  * stable.
1297  */
1298 static void update_tasks_flags(struct cpuset *cs)
1299 {
1300 	struct css_task_iter it;
1301 	struct task_struct *task;
1302 
1303 	css_task_iter_start(&cs->css, 0, &it);
1304 	while ((task = css_task_iter_next(&it)))
1305 		cpuset_update_task_spread_flag(cs, task);
1306 	css_task_iter_end(&it);
1307 }
1308 
1309 /*
1310  * update_flag - read a 0 or a 1 in a file and update associated flag
1311  * bit:		the bit to update (see cpuset_flagbits_t)
1312  * cs:		the cpuset to update
1313  * turning_on: 	whether the flag is being set or cleared
1314  *
1315  * Call with cpuset_mutex held.
1316  */
1317 
1318 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1319 		       int turning_on)
1320 {
1321 	struct cpuset *trialcs;
1322 	int balance_flag_changed;
1323 	int spread_flag_changed;
1324 	int err;
1325 
1326 	trialcs = alloc_trial_cpuset(cs);
1327 	if (!trialcs)
1328 		return -ENOMEM;
1329 
1330 	if (turning_on)
1331 		set_bit(bit, &trialcs->flags);
1332 	else
1333 		clear_bit(bit, &trialcs->flags);
1334 
1335 	err = validate_change(cs, trialcs);
1336 	if (err < 0)
1337 		goto out;
1338 
1339 	balance_flag_changed = (is_sched_load_balance(cs) !=
1340 				is_sched_load_balance(trialcs));
1341 
1342 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1343 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1344 
1345 	spin_lock_irq(&callback_lock);
1346 	cs->flags = trialcs->flags;
1347 	spin_unlock_irq(&callback_lock);
1348 
1349 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1350 		rebuild_sched_domains_locked();
1351 
1352 	if (spread_flag_changed)
1353 		update_tasks_flags(cs);
1354 out:
1355 	free_trial_cpuset(trialcs);
1356 	return err;
1357 }
1358 
1359 /*
1360  * Frequency meter - How fast is some event occurring?
1361  *
1362  * These routines manage a digitally filtered, constant time based,
1363  * event frequency meter.  There are four routines:
1364  *   fmeter_init() - initialize a frequency meter.
1365  *   fmeter_markevent() - called each time the event happens.
1366  *   fmeter_getrate() - returns the recent rate of such events.
1367  *   fmeter_update() - internal routine used to update fmeter.
1368  *
1369  * A common data structure is passed to each of these routines,
1370  * which is used to keep track of the state required to manage the
1371  * frequency meter and its digital filter.
1372  *
1373  * The filter works on the number of events marked per unit time.
1374  * The filter is single-pole low-pass recursive (IIR).  The time unit
1375  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1376  * simulate 3 decimal digits of precision (multiplied by 1000).
1377  *
1378  * With an FM_COEF of 933, and a time base of 1 second, the filter
1379  * has a half-life of 10 seconds, meaning that if the events quit
1380  * happening, then the rate returned from the fmeter_getrate()
1381  * will be cut in half each 10 seconds, until it converges to zero.
1382  *
1383  * It is not worth doing a real infinitely recursive filter.  If more
1384  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1385  * just compute FM_MAXTICKS ticks worth, by which point the level
1386  * will be stable.
1387  *
1388  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1389  * arithmetic overflow in the fmeter_update() routine.
1390  *
1391  * Given the simple 32 bit integer arithmetic used, this meter works
1392  * best for reporting rates between one per millisecond (msec) and
1393  * one per 32 (approx) seconds.  At constant rates faster than one
1394  * per msec it maxes out at values just under 1,000,000.  At constant
1395  * rates between one per msec, and one per second it will stabilize
1396  * to a value N*1000, where N is the rate of events per second.
1397  * At constant rates between one per second and one per 32 seconds,
1398  * it will be choppy, moving up on the seconds that have an event,
1399  * and then decaying until the next event.  At rates slower than
1400  * about one in 32 seconds, it decays all the way back to zero between
1401  * each event.
1402  */
1403 
1404 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1405 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1406 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1407 #define FM_SCALE 1000		/* faux fixed point scale */
1408 
1409 /* Initialize a frequency meter */
1410 static void fmeter_init(struct fmeter *fmp)
1411 {
1412 	fmp->cnt = 0;
1413 	fmp->val = 0;
1414 	fmp->time = 0;
1415 	spin_lock_init(&fmp->lock);
1416 }
1417 
1418 /* Internal meter update - process cnt events and update value */
1419 static void fmeter_update(struct fmeter *fmp)
1420 {
1421 	time64_t now;
1422 	u32 ticks;
1423 
1424 	now = ktime_get_seconds();
1425 	ticks = now - fmp->time;
1426 
1427 	if (ticks == 0)
1428 		return;
1429 
1430 	ticks = min(FM_MAXTICKS, ticks);
1431 	while (ticks-- > 0)
1432 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1433 	fmp->time = now;
1434 
1435 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1436 	fmp->cnt = 0;
1437 }
1438 
1439 /* Process any previous ticks, then bump cnt by one (times scale). */
1440 static void fmeter_markevent(struct fmeter *fmp)
1441 {
1442 	spin_lock(&fmp->lock);
1443 	fmeter_update(fmp);
1444 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1445 	spin_unlock(&fmp->lock);
1446 }
1447 
1448 /* Process any previous ticks, then return current value. */
1449 static int fmeter_getrate(struct fmeter *fmp)
1450 {
1451 	int val;
1452 
1453 	spin_lock(&fmp->lock);
1454 	fmeter_update(fmp);
1455 	val = fmp->val;
1456 	spin_unlock(&fmp->lock);
1457 	return val;
1458 }
1459 
1460 static struct cpuset *cpuset_attach_old_cs;
1461 
1462 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1463 static int cpuset_can_attach(struct cgroup_taskset *tset)
1464 {
1465 	struct cgroup_subsys_state *css;
1466 	struct cpuset *cs;
1467 	struct task_struct *task;
1468 	int ret;
1469 
1470 	/* used later by cpuset_attach() */
1471 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1472 	cs = css_cs(css);
1473 
1474 	mutex_lock(&cpuset_mutex);
1475 
1476 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1477 	ret = -ENOSPC;
1478 	if (!is_in_v2_mode() &&
1479 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1480 		goto out_unlock;
1481 
1482 	cgroup_taskset_for_each(task, css, tset) {
1483 		ret = task_can_attach(task, cs->cpus_allowed);
1484 		if (ret)
1485 			goto out_unlock;
1486 		ret = security_task_setscheduler(task);
1487 		if (ret)
1488 			goto out_unlock;
1489 	}
1490 
1491 	/*
1492 	 * Mark attach is in progress.  This makes validate_change() fail
1493 	 * changes which zero cpus/mems_allowed.
1494 	 */
1495 	cs->attach_in_progress++;
1496 	ret = 0;
1497 out_unlock:
1498 	mutex_unlock(&cpuset_mutex);
1499 	return ret;
1500 }
1501 
1502 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1503 {
1504 	struct cgroup_subsys_state *css;
1505 	struct cpuset *cs;
1506 
1507 	cgroup_taskset_first(tset, &css);
1508 	cs = css_cs(css);
1509 
1510 	mutex_lock(&cpuset_mutex);
1511 	css_cs(css)->attach_in_progress--;
1512 	mutex_unlock(&cpuset_mutex);
1513 }
1514 
1515 /*
1516  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1517  * but we can't allocate it dynamically there.  Define it global and
1518  * allocate from cpuset_init().
1519  */
1520 static cpumask_var_t cpus_attach;
1521 
1522 static void cpuset_attach(struct cgroup_taskset *tset)
1523 {
1524 	/* static buf protected by cpuset_mutex */
1525 	static nodemask_t cpuset_attach_nodemask_to;
1526 	struct task_struct *task;
1527 	struct task_struct *leader;
1528 	struct cgroup_subsys_state *css;
1529 	struct cpuset *cs;
1530 	struct cpuset *oldcs = cpuset_attach_old_cs;
1531 
1532 	cgroup_taskset_first(tset, &css);
1533 	cs = css_cs(css);
1534 
1535 	mutex_lock(&cpuset_mutex);
1536 
1537 	/* prepare for attach */
1538 	if (cs == &top_cpuset)
1539 		cpumask_copy(cpus_attach, cpu_possible_mask);
1540 	else
1541 		guarantee_online_cpus(cs, cpus_attach);
1542 
1543 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1544 
1545 	cgroup_taskset_for_each(task, css, tset) {
1546 		/*
1547 		 * can_attach beforehand should guarantee that this doesn't
1548 		 * fail.  TODO: have a better way to handle failure here
1549 		 */
1550 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1551 
1552 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1553 		cpuset_update_task_spread_flag(cs, task);
1554 	}
1555 
1556 	/*
1557 	 * Change mm for all threadgroup leaders. This is expensive and may
1558 	 * sleep and should be moved outside migration path proper.
1559 	 */
1560 	cpuset_attach_nodemask_to = cs->effective_mems;
1561 	cgroup_taskset_for_each_leader(leader, css, tset) {
1562 		struct mm_struct *mm = get_task_mm(leader);
1563 
1564 		if (mm) {
1565 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1566 
1567 			/*
1568 			 * old_mems_allowed is the same with mems_allowed
1569 			 * here, except if this task is being moved
1570 			 * automatically due to hotplug.  In that case
1571 			 * @mems_allowed has been updated and is empty, so
1572 			 * @old_mems_allowed is the right nodesets that we
1573 			 * migrate mm from.
1574 			 */
1575 			if (is_memory_migrate(cs))
1576 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1577 						  &cpuset_attach_nodemask_to);
1578 			else
1579 				mmput(mm);
1580 		}
1581 	}
1582 
1583 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1584 
1585 	cs->attach_in_progress--;
1586 	if (!cs->attach_in_progress)
1587 		wake_up(&cpuset_attach_wq);
1588 
1589 	mutex_unlock(&cpuset_mutex);
1590 }
1591 
1592 /* The various types of files and directories in a cpuset file system */
1593 
1594 typedef enum {
1595 	FILE_MEMORY_MIGRATE,
1596 	FILE_CPULIST,
1597 	FILE_MEMLIST,
1598 	FILE_EFFECTIVE_CPULIST,
1599 	FILE_EFFECTIVE_MEMLIST,
1600 	FILE_CPU_EXCLUSIVE,
1601 	FILE_MEM_EXCLUSIVE,
1602 	FILE_MEM_HARDWALL,
1603 	FILE_SCHED_LOAD_BALANCE,
1604 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1605 	FILE_MEMORY_PRESSURE_ENABLED,
1606 	FILE_MEMORY_PRESSURE,
1607 	FILE_SPREAD_PAGE,
1608 	FILE_SPREAD_SLAB,
1609 } cpuset_filetype_t;
1610 
1611 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1612 			    u64 val)
1613 {
1614 	struct cpuset *cs = css_cs(css);
1615 	cpuset_filetype_t type = cft->private;
1616 	int retval = 0;
1617 
1618 	mutex_lock(&cpuset_mutex);
1619 	if (!is_cpuset_online(cs)) {
1620 		retval = -ENODEV;
1621 		goto out_unlock;
1622 	}
1623 
1624 	switch (type) {
1625 	case FILE_CPU_EXCLUSIVE:
1626 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1627 		break;
1628 	case FILE_MEM_EXCLUSIVE:
1629 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1630 		break;
1631 	case FILE_MEM_HARDWALL:
1632 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1633 		break;
1634 	case FILE_SCHED_LOAD_BALANCE:
1635 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1636 		break;
1637 	case FILE_MEMORY_MIGRATE:
1638 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1639 		break;
1640 	case FILE_MEMORY_PRESSURE_ENABLED:
1641 		cpuset_memory_pressure_enabled = !!val;
1642 		break;
1643 	case FILE_SPREAD_PAGE:
1644 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1645 		break;
1646 	case FILE_SPREAD_SLAB:
1647 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1648 		break;
1649 	default:
1650 		retval = -EINVAL;
1651 		break;
1652 	}
1653 out_unlock:
1654 	mutex_unlock(&cpuset_mutex);
1655 	return retval;
1656 }
1657 
1658 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1659 			    s64 val)
1660 {
1661 	struct cpuset *cs = css_cs(css);
1662 	cpuset_filetype_t type = cft->private;
1663 	int retval = -ENODEV;
1664 
1665 	mutex_lock(&cpuset_mutex);
1666 	if (!is_cpuset_online(cs))
1667 		goto out_unlock;
1668 
1669 	switch (type) {
1670 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1671 		retval = update_relax_domain_level(cs, val);
1672 		break;
1673 	default:
1674 		retval = -EINVAL;
1675 		break;
1676 	}
1677 out_unlock:
1678 	mutex_unlock(&cpuset_mutex);
1679 	return retval;
1680 }
1681 
1682 /*
1683  * Common handling for a write to a "cpus" or "mems" file.
1684  */
1685 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1686 				    char *buf, size_t nbytes, loff_t off)
1687 {
1688 	struct cpuset *cs = css_cs(of_css(of));
1689 	struct cpuset *trialcs;
1690 	int retval = -ENODEV;
1691 
1692 	buf = strstrip(buf);
1693 
1694 	/*
1695 	 * CPU or memory hotunplug may leave @cs w/o any execution
1696 	 * resources, in which case the hotplug code asynchronously updates
1697 	 * configuration and transfers all tasks to the nearest ancestor
1698 	 * which can execute.
1699 	 *
1700 	 * As writes to "cpus" or "mems" may restore @cs's execution
1701 	 * resources, wait for the previously scheduled operations before
1702 	 * proceeding, so that we don't end up keep removing tasks added
1703 	 * after execution capability is restored.
1704 	 *
1705 	 * cpuset_hotplug_work calls back into cgroup core via
1706 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1707 	 * operation like this one can lead to a deadlock through kernfs
1708 	 * active_ref protection.  Let's break the protection.  Losing the
1709 	 * protection is okay as we check whether @cs is online after
1710 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1711 	 * hierarchies.
1712 	 */
1713 	css_get(&cs->css);
1714 	kernfs_break_active_protection(of->kn);
1715 	flush_work(&cpuset_hotplug_work);
1716 
1717 	mutex_lock(&cpuset_mutex);
1718 	if (!is_cpuset_online(cs))
1719 		goto out_unlock;
1720 
1721 	trialcs = alloc_trial_cpuset(cs);
1722 	if (!trialcs) {
1723 		retval = -ENOMEM;
1724 		goto out_unlock;
1725 	}
1726 
1727 	switch (of_cft(of)->private) {
1728 	case FILE_CPULIST:
1729 		retval = update_cpumask(cs, trialcs, buf);
1730 		break;
1731 	case FILE_MEMLIST:
1732 		retval = update_nodemask(cs, trialcs, buf);
1733 		break;
1734 	default:
1735 		retval = -EINVAL;
1736 		break;
1737 	}
1738 
1739 	free_trial_cpuset(trialcs);
1740 out_unlock:
1741 	mutex_unlock(&cpuset_mutex);
1742 	kernfs_unbreak_active_protection(of->kn);
1743 	css_put(&cs->css);
1744 	flush_workqueue(cpuset_migrate_mm_wq);
1745 	return retval ?: nbytes;
1746 }
1747 
1748 /*
1749  * These ascii lists should be read in a single call, by using a user
1750  * buffer large enough to hold the entire map.  If read in smaller
1751  * chunks, there is no guarantee of atomicity.  Since the display format
1752  * used, list of ranges of sequential numbers, is variable length,
1753  * and since these maps can change value dynamically, one could read
1754  * gibberish by doing partial reads while a list was changing.
1755  */
1756 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1757 {
1758 	struct cpuset *cs = css_cs(seq_css(sf));
1759 	cpuset_filetype_t type = seq_cft(sf)->private;
1760 	int ret = 0;
1761 
1762 	spin_lock_irq(&callback_lock);
1763 
1764 	switch (type) {
1765 	case FILE_CPULIST:
1766 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1767 		break;
1768 	case FILE_MEMLIST:
1769 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1770 		break;
1771 	case FILE_EFFECTIVE_CPULIST:
1772 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1773 		break;
1774 	case FILE_EFFECTIVE_MEMLIST:
1775 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1776 		break;
1777 	default:
1778 		ret = -EINVAL;
1779 	}
1780 
1781 	spin_unlock_irq(&callback_lock);
1782 	return ret;
1783 }
1784 
1785 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1786 {
1787 	struct cpuset *cs = css_cs(css);
1788 	cpuset_filetype_t type = cft->private;
1789 	switch (type) {
1790 	case FILE_CPU_EXCLUSIVE:
1791 		return is_cpu_exclusive(cs);
1792 	case FILE_MEM_EXCLUSIVE:
1793 		return is_mem_exclusive(cs);
1794 	case FILE_MEM_HARDWALL:
1795 		return is_mem_hardwall(cs);
1796 	case FILE_SCHED_LOAD_BALANCE:
1797 		return is_sched_load_balance(cs);
1798 	case FILE_MEMORY_MIGRATE:
1799 		return is_memory_migrate(cs);
1800 	case FILE_MEMORY_PRESSURE_ENABLED:
1801 		return cpuset_memory_pressure_enabled;
1802 	case FILE_MEMORY_PRESSURE:
1803 		return fmeter_getrate(&cs->fmeter);
1804 	case FILE_SPREAD_PAGE:
1805 		return is_spread_page(cs);
1806 	case FILE_SPREAD_SLAB:
1807 		return is_spread_slab(cs);
1808 	default:
1809 		BUG();
1810 	}
1811 
1812 	/* Unreachable but makes gcc happy */
1813 	return 0;
1814 }
1815 
1816 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1817 {
1818 	struct cpuset *cs = css_cs(css);
1819 	cpuset_filetype_t type = cft->private;
1820 	switch (type) {
1821 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1822 		return cs->relax_domain_level;
1823 	default:
1824 		BUG();
1825 	}
1826 
1827 	/* Unrechable but makes gcc happy */
1828 	return 0;
1829 }
1830 
1831 
1832 /*
1833  * for the common functions, 'private' gives the type of file
1834  */
1835 
1836 static struct cftype files[] = {
1837 	{
1838 		.name = "cpus",
1839 		.seq_show = cpuset_common_seq_show,
1840 		.write = cpuset_write_resmask,
1841 		.max_write_len = (100U + 6 * NR_CPUS),
1842 		.private = FILE_CPULIST,
1843 	},
1844 
1845 	{
1846 		.name = "mems",
1847 		.seq_show = cpuset_common_seq_show,
1848 		.write = cpuset_write_resmask,
1849 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1850 		.private = FILE_MEMLIST,
1851 	},
1852 
1853 	{
1854 		.name = "effective_cpus",
1855 		.seq_show = cpuset_common_seq_show,
1856 		.private = FILE_EFFECTIVE_CPULIST,
1857 	},
1858 
1859 	{
1860 		.name = "effective_mems",
1861 		.seq_show = cpuset_common_seq_show,
1862 		.private = FILE_EFFECTIVE_MEMLIST,
1863 	},
1864 
1865 	{
1866 		.name = "cpu_exclusive",
1867 		.read_u64 = cpuset_read_u64,
1868 		.write_u64 = cpuset_write_u64,
1869 		.private = FILE_CPU_EXCLUSIVE,
1870 	},
1871 
1872 	{
1873 		.name = "mem_exclusive",
1874 		.read_u64 = cpuset_read_u64,
1875 		.write_u64 = cpuset_write_u64,
1876 		.private = FILE_MEM_EXCLUSIVE,
1877 	},
1878 
1879 	{
1880 		.name = "mem_hardwall",
1881 		.read_u64 = cpuset_read_u64,
1882 		.write_u64 = cpuset_write_u64,
1883 		.private = FILE_MEM_HARDWALL,
1884 	},
1885 
1886 	{
1887 		.name = "sched_load_balance",
1888 		.read_u64 = cpuset_read_u64,
1889 		.write_u64 = cpuset_write_u64,
1890 		.private = FILE_SCHED_LOAD_BALANCE,
1891 	},
1892 
1893 	{
1894 		.name = "sched_relax_domain_level",
1895 		.read_s64 = cpuset_read_s64,
1896 		.write_s64 = cpuset_write_s64,
1897 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1898 	},
1899 
1900 	{
1901 		.name = "memory_migrate",
1902 		.read_u64 = cpuset_read_u64,
1903 		.write_u64 = cpuset_write_u64,
1904 		.private = FILE_MEMORY_MIGRATE,
1905 	},
1906 
1907 	{
1908 		.name = "memory_pressure",
1909 		.read_u64 = cpuset_read_u64,
1910 		.private = FILE_MEMORY_PRESSURE,
1911 	},
1912 
1913 	{
1914 		.name = "memory_spread_page",
1915 		.read_u64 = cpuset_read_u64,
1916 		.write_u64 = cpuset_write_u64,
1917 		.private = FILE_SPREAD_PAGE,
1918 	},
1919 
1920 	{
1921 		.name = "memory_spread_slab",
1922 		.read_u64 = cpuset_read_u64,
1923 		.write_u64 = cpuset_write_u64,
1924 		.private = FILE_SPREAD_SLAB,
1925 	},
1926 
1927 	{
1928 		.name = "memory_pressure_enabled",
1929 		.flags = CFTYPE_ONLY_ON_ROOT,
1930 		.read_u64 = cpuset_read_u64,
1931 		.write_u64 = cpuset_write_u64,
1932 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1933 	},
1934 
1935 	{ }	/* terminate */
1936 };
1937 
1938 /*
1939  *	cpuset_css_alloc - allocate a cpuset css
1940  *	cgrp:	control group that the new cpuset will be part of
1941  */
1942 
1943 static struct cgroup_subsys_state *
1944 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1945 {
1946 	struct cpuset *cs;
1947 
1948 	if (!parent_css)
1949 		return &top_cpuset.css;
1950 
1951 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1952 	if (!cs)
1953 		return ERR_PTR(-ENOMEM);
1954 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1955 		goto free_cs;
1956 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1957 		goto free_cpus;
1958 
1959 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1960 	cpumask_clear(cs->cpus_allowed);
1961 	nodes_clear(cs->mems_allowed);
1962 	cpumask_clear(cs->effective_cpus);
1963 	nodes_clear(cs->effective_mems);
1964 	fmeter_init(&cs->fmeter);
1965 	cs->relax_domain_level = -1;
1966 
1967 	return &cs->css;
1968 
1969 free_cpus:
1970 	free_cpumask_var(cs->cpus_allowed);
1971 free_cs:
1972 	kfree(cs);
1973 	return ERR_PTR(-ENOMEM);
1974 }
1975 
1976 static int cpuset_css_online(struct cgroup_subsys_state *css)
1977 {
1978 	struct cpuset *cs = css_cs(css);
1979 	struct cpuset *parent = parent_cs(cs);
1980 	struct cpuset *tmp_cs;
1981 	struct cgroup_subsys_state *pos_css;
1982 
1983 	if (!parent)
1984 		return 0;
1985 
1986 	mutex_lock(&cpuset_mutex);
1987 
1988 	set_bit(CS_ONLINE, &cs->flags);
1989 	if (is_spread_page(parent))
1990 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1991 	if (is_spread_slab(parent))
1992 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1993 
1994 	cpuset_inc();
1995 
1996 	spin_lock_irq(&callback_lock);
1997 	if (is_in_v2_mode()) {
1998 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1999 		cs->effective_mems = parent->effective_mems;
2000 	}
2001 	spin_unlock_irq(&callback_lock);
2002 
2003 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2004 		goto out_unlock;
2005 
2006 	/*
2007 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2008 	 * set.  This flag handling is implemented in cgroup core for
2009 	 * histrical reasons - the flag may be specified during mount.
2010 	 *
2011 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2012 	 * refuse to clone the configuration - thereby refusing the task to
2013 	 * be entered, and as a result refusing the sys_unshare() or
2014 	 * clone() which initiated it.  If this becomes a problem for some
2015 	 * users who wish to allow that scenario, then this could be
2016 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2017 	 * (and likewise for mems) to the new cgroup.
2018 	 */
2019 	rcu_read_lock();
2020 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2021 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2022 			rcu_read_unlock();
2023 			goto out_unlock;
2024 		}
2025 	}
2026 	rcu_read_unlock();
2027 
2028 	spin_lock_irq(&callback_lock);
2029 	cs->mems_allowed = parent->mems_allowed;
2030 	cs->effective_mems = parent->mems_allowed;
2031 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2032 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2033 	spin_unlock_irq(&callback_lock);
2034 out_unlock:
2035 	mutex_unlock(&cpuset_mutex);
2036 	return 0;
2037 }
2038 
2039 /*
2040  * If the cpuset being removed has its flag 'sched_load_balance'
2041  * enabled, then simulate turning sched_load_balance off, which
2042  * will call rebuild_sched_domains_locked().
2043  */
2044 
2045 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2046 {
2047 	struct cpuset *cs = css_cs(css);
2048 
2049 	mutex_lock(&cpuset_mutex);
2050 
2051 	if (is_sched_load_balance(cs))
2052 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2053 
2054 	cpuset_dec();
2055 	clear_bit(CS_ONLINE, &cs->flags);
2056 
2057 	mutex_unlock(&cpuset_mutex);
2058 }
2059 
2060 static void cpuset_css_free(struct cgroup_subsys_state *css)
2061 {
2062 	struct cpuset *cs = css_cs(css);
2063 
2064 	free_cpumask_var(cs->effective_cpus);
2065 	free_cpumask_var(cs->cpus_allowed);
2066 	kfree(cs);
2067 }
2068 
2069 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2070 {
2071 	mutex_lock(&cpuset_mutex);
2072 	spin_lock_irq(&callback_lock);
2073 
2074 	if (is_in_v2_mode()) {
2075 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2076 		top_cpuset.mems_allowed = node_possible_map;
2077 	} else {
2078 		cpumask_copy(top_cpuset.cpus_allowed,
2079 			     top_cpuset.effective_cpus);
2080 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2081 	}
2082 
2083 	spin_unlock_irq(&callback_lock);
2084 	mutex_unlock(&cpuset_mutex);
2085 }
2086 
2087 /*
2088  * Make sure the new task conform to the current state of its parent,
2089  * which could have been changed by cpuset just after it inherits the
2090  * state from the parent and before it sits on the cgroup's task list.
2091  */
2092 static void cpuset_fork(struct task_struct *task)
2093 {
2094 	if (task_css_is_root(task, cpuset_cgrp_id))
2095 		return;
2096 
2097 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2098 	task->mems_allowed = current->mems_allowed;
2099 }
2100 
2101 struct cgroup_subsys cpuset_cgrp_subsys = {
2102 	.css_alloc	= cpuset_css_alloc,
2103 	.css_online	= cpuset_css_online,
2104 	.css_offline	= cpuset_css_offline,
2105 	.css_free	= cpuset_css_free,
2106 	.can_attach	= cpuset_can_attach,
2107 	.cancel_attach	= cpuset_cancel_attach,
2108 	.attach		= cpuset_attach,
2109 	.post_attach	= cpuset_post_attach,
2110 	.bind		= cpuset_bind,
2111 	.fork		= cpuset_fork,
2112 	.legacy_cftypes	= files,
2113 	.early_init	= true,
2114 };
2115 
2116 /**
2117  * cpuset_init - initialize cpusets at system boot
2118  *
2119  * Description: Initialize top_cpuset and the cpuset internal file system,
2120  **/
2121 
2122 int __init cpuset_init(void)
2123 {
2124 	int err = 0;
2125 
2126 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2127 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2128 
2129 	cpumask_setall(top_cpuset.cpus_allowed);
2130 	nodes_setall(top_cpuset.mems_allowed);
2131 	cpumask_setall(top_cpuset.effective_cpus);
2132 	nodes_setall(top_cpuset.effective_mems);
2133 
2134 	fmeter_init(&top_cpuset.fmeter);
2135 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2136 	top_cpuset.relax_domain_level = -1;
2137 
2138 	err = register_filesystem(&cpuset_fs_type);
2139 	if (err < 0)
2140 		return err;
2141 
2142 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2143 
2144 	return 0;
2145 }
2146 
2147 /*
2148  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2149  * or memory nodes, we need to walk over the cpuset hierarchy,
2150  * removing that CPU or node from all cpusets.  If this removes the
2151  * last CPU or node from a cpuset, then move the tasks in the empty
2152  * cpuset to its next-highest non-empty parent.
2153  */
2154 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2155 {
2156 	struct cpuset *parent;
2157 
2158 	/*
2159 	 * Find its next-highest non-empty parent, (top cpuset
2160 	 * has online cpus, so can't be empty).
2161 	 */
2162 	parent = parent_cs(cs);
2163 	while (cpumask_empty(parent->cpus_allowed) ||
2164 			nodes_empty(parent->mems_allowed))
2165 		parent = parent_cs(parent);
2166 
2167 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2168 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2169 		pr_cont_cgroup_name(cs->css.cgroup);
2170 		pr_cont("\n");
2171 	}
2172 }
2173 
2174 static void
2175 hotplug_update_tasks_legacy(struct cpuset *cs,
2176 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2177 			    bool cpus_updated, bool mems_updated)
2178 {
2179 	bool is_empty;
2180 
2181 	spin_lock_irq(&callback_lock);
2182 	cpumask_copy(cs->cpus_allowed, new_cpus);
2183 	cpumask_copy(cs->effective_cpus, new_cpus);
2184 	cs->mems_allowed = *new_mems;
2185 	cs->effective_mems = *new_mems;
2186 	spin_unlock_irq(&callback_lock);
2187 
2188 	/*
2189 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2190 	 * as the tasks will be migratecd to an ancestor.
2191 	 */
2192 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2193 		update_tasks_cpumask(cs);
2194 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2195 		update_tasks_nodemask(cs);
2196 
2197 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2198 		   nodes_empty(cs->mems_allowed);
2199 
2200 	mutex_unlock(&cpuset_mutex);
2201 
2202 	/*
2203 	 * Move tasks to the nearest ancestor with execution resources,
2204 	 * This is full cgroup operation which will also call back into
2205 	 * cpuset. Should be done outside any lock.
2206 	 */
2207 	if (is_empty)
2208 		remove_tasks_in_empty_cpuset(cs);
2209 
2210 	mutex_lock(&cpuset_mutex);
2211 }
2212 
2213 static void
2214 hotplug_update_tasks(struct cpuset *cs,
2215 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2216 		     bool cpus_updated, bool mems_updated)
2217 {
2218 	if (cpumask_empty(new_cpus))
2219 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2220 	if (nodes_empty(*new_mems))
2221 		*new_mems = parent_cs(cs)->effective_mems;
2222 
2223 	spin_lock_irq(&callback_lock);
2224 	cpumask_copy(cs->effective_cpus, new_cpus);
2225 	cs->effective_mems = *new_mems;
2226 	spin_unlock_irq(&callback_lock);
2227 
2228 	if (cpus_updated)
2229 		update_tasks_cpumask(cs);
2230 	if (mems_updated)
2231 		update_tasks_nodemask(cs);
2232 }
2233 
2234 /**
2235  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2236  * @cs: cpuset in interest
2237  *
2238  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2239  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2240  * all its tasks are moved to the nearest ancestor with both resources.
2241  */
2242 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2243 {
2244 	static cpumask_t new_cpus;
2245 	static nodemask_t new_mems;
2246 	bool cpus_updated;
2247 	bool mems_updated;
2248 retry:
2249 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2250 
2251 	mutex_lock(&cpuset_mutex);
2252 
2253 	/*
2254 	 * We have raced with task attaching. We wait until attaching
2255 	 * is finished, so we won't attach a task to an empty cpuset.
2256 	 */
2257 	if (cs->attach_in_progress) {
2258 		mutex_unlock(&cpuset_mutex);
2259 		goto retry;
2260 	}
2261 
2262 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2263 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2264 
2265 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2266 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2267 
2268 	if (is_in_v2_mode())
2269 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2270 				     cpus_updated, mems_updated);
2271 	else
2272 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2273 					    cpus_updated, mems_updated);
2274 
2275 	mutex_unlock(&cpuset_mutex);
2276 }
2277 
2278 static bool force_rebuild;
2279 
2280 void cpuset_force_rebuild(void)
2281 {
2282 	force_rebuild = true;
2283 }
2284 
2285 /**
2286  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2287  *
2288  * This function is called after either CPU or memory configuration has
2289  * changed and updates cpuset accordingly.  The top_cpuset is always
2290  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2291  * order to make cpusets transparent (of no affect) on systems that are
2292  * actively using CPU hotplug but making no active use of cpusets.
2293  *
2294  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2295  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2296  * all descendants.
2297  *
2298  * Note that CPU offlining during suspend is ignored.  We don't modify
2299  * cpusets across suspend/resume cycles at all.
2300  */
2301 static void cpuset_hotplug_workfn(struct work_struct *work)
2302 {
2303 	static cpumask_t new_cpus;
2304 	static nodemask_t new_mems;
2305 	bool cpus_updated, mems_updated;
2306 	bool on_dfl = is_in_v2_mode();
2307 
2308 	mutex_lock(&cpuset_mutex);
2309 
2310 	/* fetch the available cpus/mems and find out which changed how */
2311 	cpumask_copy(&new_cpus, cpu_active_mask);
2312 	new_mems = node_states[N_MEMORY];
2313 
2314 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2315 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2316 
2317 	/* synchronize cpus_allowed to cpu_active_mask */
2318 	if (cpus_updated) {
2319 		spin_lock_irq(&callback_lock);
2320 		if (!on_dfl)
2321 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2322 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2323 		spin_unlock_irq(&callback_lock);
2324 		/* we don't mess with cpumasks of tasks in top_cpuset */
2325 	}
2326 
2327 	/* synchronize mems_allowed to N_MEMORY */
2328 	if (mems_updated) {
2329 		spin_lock_irq(&callback_lock);
2330 		if (!on_dfl)
2331 			top_cpuset.mems_allowed = new_mems;
2332 		top_cpuset.effective_mems = new_mems;
2333 		spin_unlock_irq(&callback_lock);
2334 		update_tasks_nodemask(&top_cpuset);
2335 	}
2336 
2337 	mutex_unlock(&cpuset_mutex);
2338 
2339 	/* if cpus or mems changed, we need to propagate to descendants */
2340 	if (cpus_updated || mems_updated) {
2341 		struct cpuset *cs;
2342 		struct cgroup_subsys_state *pos_css;
2343 
2344 		rcu_read_lock();
2345 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2346 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2347 				continue;
2348 			rcu_read_unlock();
2349 
2350 			cpuset_hotplug_update_tasks(cs);
2351 
2352 			rcu_read_lock();
2353 			css_put(&cs->css);
2354 		}
2355 		rcu_read_unlock();
2356 	}
2357 
2358 	/* rebuild sched domains if cpus_allowed has changed */
2359 	if (cpus_updated || force_rebuild) {
2360 		force_rebuild = false;
2361 		rebuild_sched_domains();
2362 	}
2363 }
2364 
2365 void cpuset_update_active_cpus(void)
2366 {
2367 	/*
2368 	 * We're inside cpu hotplug critical region which usually nests
2369 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2370 	 * to a work item to avoid reverse locking order.
2371 	 */
2372 	schedule_work(&cpuset_hotplug_work);
2373 }
2374 
2375 void cpuset_wait_for_hotplug(void)
2376 {
2377 	flush_work(&cpuset_hotplug_work);
2378 }
2379 
2380 /*
2381  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2382  * Call this routine anytime after node_states[N_MEMORY] changes.
2383  * See cpuset_update_active_cpus() for CPU hotplug handling.
2384  */
2385 static int cpuset_track_online_nodes(struct notifier_block *self,
2386 				unsigned long action, void *arg)
2387 {
2388 	schedule_work(&cpuset_hotplug_work);
2389 	return NOTIFY_OK;
2390 }
2391 
2392 static struct notifier_block cpuset_track_online_nodes_nb = {
2393 	.notifier_call = cpuset_track_online_nodes,
2394 	.priority = 10,		/* ??! */
2395 };
2396 
2397 /**
2398  * cpuset_init_smp - initialize cpus_allowed
2399  *
2400  * Description: Finish top cpuset after cpu, node maps are initialized
2401  */
2402 void __init cpuset_init_smp(void)
2403 {
2404 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2405 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2406 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2407 
2408 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2409 	top_cpuset.effective_mems = node_states[N_MEMORY];
2410 
2411 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2412 
2413 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2414 	BUG_ON(!cpuset_migrate_mm_wq);
2415 }
2416 
2417 /**
2418  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2419  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2420  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2421  *
2422  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2423  * attached to the specified @tsk.  Guaranteed to return some non-empty
2424  * subset of cpu_online_mask, even if this means going outside the
2425  * tasks cpuset.
2426  **/
2427 
2428 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2429 {
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&callback_lock, flags);
2433 	rcu_read_lock();
2434 	guarantee_online_cpus(task_cs(tsk), pmask);
2435 	rcu_read_unlock();
2436 	spin_unlock_irqrestore(&callback_lock, flags);
2437 }
2438 
2439 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2440 {
2441 	rcu_read_lock();
2442 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2443 	rcu_read_unlock();
2444 
2445 	/*
2446 	 * We own tsk->cpus_allowed, nobody can change it under us.
2447 	 *
2448 	 * But we used cs && cs->cpus_allowed lockless and thus can
2449 	 * race with cgroup_attach_task() or update_cpumask() and get
2450 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2451 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2452 	 * which takes task_rq_lock().
2453 	 *
2454 	 * If we are called after it dropped the lock we must see all
2455 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2456 	 * set any mask even if it is not right from task_cs() pov,
2457 	 * the pending set_cpus_allowed_ptr() will fix things.
2458 	 *
2459 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2460 	 * if required.
2461 	 */
2462 }
2463 
2464 void __init cpuset_init_current_mems_allowed(void)
2465 {
2466 	nodes_setall(current->mems_allowed);
2467 }
2468 
2469 /**
2470  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2471  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2472  *
2473  * Description: Returns the nodemask_t mems_allowed of the cpuset
2474  * attached to the specified @tsk.  Guaranteed to return some non-empty
2475  * subset of node_states[N_MEMORY], even if this means going outside the
2476  * tasks cpuset.
2477  **/
2478 
2479 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2480 {
2481 	nodemask_t mask;
2482 	unsigned long flags;
2483 
2484 	spin_lock_irqsave(&callback_lock, flags);
2485 	rcu_read_lock();
2486 	guarantee_online_mems(task_cs(tsk), &mask);
2487 	rcu_read_unlock();
2488 	spin_unlock_irqrestore(&callback_lock, flags);
2489 
2490 	return mask;
2491 }
2492 
2493 /**
2494  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2495  * @nodemask: the nodemask to be checked
2496  *
2497  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2498  */
2499 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2500 {
2501 	return nodes_intersects(*nodemask, current->mems_allowed);
2502 }
2503 
2504 /*
2505  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2506  * mem_hardwall ancestor to the specified cpuset.  Call holding
2507  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2508  * (an unusual configuration), then returns the root cpuset.
2509  */
2510 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2511 {
2512 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2513 		cs = parent_cs(cs);
2514 	return cs;
2515 }
2516 
2517 /**
2518  * cpuset_node_allowed - Can we allocate on a memory node?
2519  * @node: is this an allowed node?
2520  * @gfp_mask: memory allocation flags
2521  *
2522  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2523  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2524  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2525  * yes.  If current has access to memory reserves as an oom victim, yes.
2526  * Otherwise, no.
2527  *
2528  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2529  * and do not allow allocations outside the current tasks cpuset
2530  * unless the task has been OOM killed.
2531  * GFP_KERNEL allocations are not so marked, so can escape to the
2532  * nearest enclosing hardwalled ancestor cpuset.
2533  *
2534  * Scanning up parent cpusets requires callback_lock.  The
2535  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2536  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2537  * current tasks mems_allowed came up empty on the first pass over
2538  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2539  * cpuset are short of memory, might require taking the callback_lock.
2540  *
2541  * The first call here from mm/page_alloc:get_page_from_freelist()
2542  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2543  * so no allocation on a node outside the cpuset is allowed (unless
2544  * in interrupt, of course).
2545  *
2546  * The second pass through get_page_from_freelist() doesn't even call
2547  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2548  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2549  * in alloc_flags.  That logic and the checks below have the combined
2550  * affect that:
2551  *	in_interrupt - any node ok (current task context irrelevant)
2552  *	GFP_ATOMIC   - any node ok
2553  *	tsk_is_oom_victim   - any node ok
2554  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2555  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2556  */
2557 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2558 {
2559 	struct cpuset *cs;		/* current cpuset ancestors */
2560 	int allowed;			/* is allocation in zone z allowed? */
2561 	unsigned long flags;
2562 
2563 	if (in_interrupt())
2564 		return true;
2565 	if (node_isset(node, current->mems_allowed))
2566 		return true;
2567 	/*
2568 	 * Allow tasks that have access to memory reserves because they have
2569 	 * been OOM killed to get memory anywhere.
2570 	 */
2571 	if (unlikely(tsk_is_oom_victim(current)))
2572 		return true;
2573 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2574 		return false;
2575 
2576 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2577 		return true;
2578 
2579 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2580 	spin_lock_irqsave(&callback_lock, flags);
2581 
2582 	rcu_read_lock();
2583 	cs = nearest_hardwall_ancestor(task_cs(current));
2584 	allowed = node_isset(node, cs->mems_allowed);
2585 	rcu_read_unlock();
2586 
2587 	spin_unlock_irqrestore(&callback_lock, flags);
2588 	return allowed;
2589 }
2590 
2591 /**
2592  * cpuset_mem_spread_node() - On which node to begin search for a file page
2593  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2594  *
2595  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2596  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2597  * and if the memory allocation used cpuset_mem_spread_node()
2598  * to determine on which node to start looking, as it will for
2599  * certain page cache or slab cache pages such as used for file
2600  * system buffers and inode caches, then instead of starting on the
2601  * local node to look for a free page, rather spread the starting
2602  * node around the tasks mems_allowed nodes.
2603  *
2604  * We don't have to worry about the returned node being offline
2605  * because "it can't happen", and even if it did, it would be ok.
2606  *
2607  * The routines calling guarantee_online_mems() are careful to
2608  * only set nodes in task->mems_allowed that are online.  So it
2609  * should not be possible for the following code to return an
2610  * offline node.  But if it did, that would be ok, as this routine
2611  * is not returning the node where the allocation must be, only
2612  * the node where the search should start.  The zonelist passed to
2613  * __alloc_pages() will include all nodes.  If the slab allocator
2614  * is passed an offline node, it will fall back to the local node.
2615  * See kmem_cache_alloc_node().
2616  */
2617 
2618 static int cpuset_spread_node(int *rotor)
2619 {
2620 	return *rotor = next_node_in(*rotor, current->mems_allowed);
2621 }
2622 
2623 int cpuset_mem_spread_node(void)
2624 {
2625 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2626 		current->cpuset_mem_spread_rotor =
2627 			node_random(&current->mems_allowed);
2628 
2629 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2630 }
2631 
2632 int cpuset_slab_spread_node(void)
2633 {
2634 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2635 		current->cpuset_slab_spread_rotor =
2636 			node_random(&current->mems_allowed);
2637 
2638 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2639 }
2640 
2641 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2642 
2643 /**
2644  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2645  * @tsk1: pointer to task_struct of some task.
2646  * @tsk2: pointer to task_struct of some other task.
2647  *
2648  * Description: Return true if @tsk1's mems_allowed intersects the
2649  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2650  * one of the task's memory usage might impact the memory available
2651  * to the other.
2652  **/
2653 
2654 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2655 				   const struct task_struct *tsk2)
2656 {
2657 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2658 }
2659 
2660 /**
2661  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2662  *
2663  * Description: Prints current's name, cpuset name, and cached copy of its
2664  * mems_allowed to the kernel log.
2665  */
2666 void cpuset_print_current_mems_allowed(void)
2667 {
2668 	struct cgroup *cgrp;
2669 
2670 	rcu_read_lock();
2671 
2672 	cgrp = task_cs(current)->css.cgroup;
2673 	pr_info("%s cpuset=", current->comm);
2674 	pr_cont_cgroup_name(cgrp);
2675 	pr_cont(" mems_allowed=%*pbl\n",
2676 		nodemask_pr_args(&current->mems_allowed));
2677 
2678 	rcu_read_unlock();
2679 }
2680 
2681 /*
2682  * Collection of memory_pressure is suppressed unless
2683  * this flag is enabled by writing "1" to the special
2684  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2685  */
2686 
2687 int cpuset_memory_pressure_enabled __read_mostly;
2688 
2689 /**
2690  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2691  *
2692  * Keep a running average of the rate of synchronous (direct)
2693  * page reclaim efforts initiated by tasks in each cpuset.
2694  *
2695  * This represents the rate at which some task in the cpuset
2696  * ran low on memory on all nodes it was allowed to use, and
2697  * had to enter the kernels page reclaim code in an effort to
2698  * create more free memory by tossing clean pages or swapping
2699  * or writing dirty pages.
2700  *
2701  * Display to user space in the per-cpuset read-only file
2702  * "memory_pressure".  Value displayed is an integer
2703  * representing the recent rate of entry into the synchronous
2704  * (direct) page reclaim by any task attached to the cpuset.
2705  **/
2706 
2707 void __cpuset_memory_pressure_bump(void)
2708 {
2709 	rcu_read_lock();
2710 	fmeter_markevent(&task_cs(current)->fmeter);
2711 	rcu_read_unlock();
2712 }
2713 
2714 #ifdef CONFIG_PROC_PID_CPUSET
2715 /*
2716  * proc_cpuset_show()
2717  *  - Print tasks cpuset path into seq_file.
2718  *  - Used for /proc/<pid>/cpuset.
2719  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2720  *    doesn't really matter if tsk->cpuset changes after we read it,
2721  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2722  *    anyway.
2723  */
2724 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2725 		     struct pid *pid, struct task_struct *tsk)
2726 {
2727 	char *buf;
2728 	struct cgroup_subsys_state *css;
2729 	int retval;
2730 
2731 	retval = -ENOMEM;
2732 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2733 	if (!buf)
2734 		goto out;
2735 
2736 	css = task_get_css(tsk, cpuset_cgrp_id);
2737 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2738 				current->nsproxy->cgroup_ns);
2739 	css_put(css);
2740 	if (retval >= PATH_MAX)
2741 		retval = -ENAMETOOLONG;
2742 	if (retval < 0)
2743 		goto out_free;
2744 	seq_puts(m, buf);
2745 	seq_putc(m, '\n');
2746 	retval = 0;
2747 out_free:
2748 	kfree(buf);
2749 out:
2750 	return retval;
2751 }
2752 #endif /* CONFIG_PROC_PID_CPUSET */
2753 
2754 /* Display task mems_allowed in /proc/<pid>/status file. */
2755 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2756 {
2757 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2758 		   nodemask_pr_args(&task->mems_allowed));
2759 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2760 		   nodemask_pr_args(&task->mems_allowed));
2761 }
2762