1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/namei.h> 43 #include <linux/pagemap.h> 44 #include <linux/proc_fs.h> 45 #include <linux/rcupdate.h> 46 #include <linux/sched.h> 47 #include <linux/sched/mm.h> 48 #include <linux/sched/task.h> 49 #include <linux/seq_file.h> 50 #include <linux/security.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/stat.h> 54 #include <linux/string.h> 55 #include <linux/time.h> 56 #include <linux/time64.h> 57 #include <linux/backing-dev.h> 58 #include <linux/sort.h> 59 #include <linux/oom.h> 60 61 #include <linux/uaccess.h> 62 #include <linux/atomic.h> 63 #include <linux/mutex.h> 64 #include <linux/cgroup.h> 65 #include <linux/wait.h> 66 67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 69 70 /* See "Frequency meter" comments, below. */ 71 72 struct fmeter { 73 int cnt; /* unprocessed events count */ 74 int val; /* most recent output value */ 75 time64_t time; /* clock (secs) when val computed */ 76 spinlock_t lock; /* guards read or write of above */ 77 }; 78 79 struct cpuset { 80 struct cgroup_subsys_state css; 81 82 unsigned long flags; /* "unsigned long" so bitops work */ 83 84 /* 85 * On default hierarchy: 86 * 87 * The user-configured masks can only be changed by writing to 88 * cpuset.cpus and cpuset.mems, and won't be limited by the 89 * parent masks. 90 * 91 * The effective masks is the real masks that apply to the tasks 92 * in the cpuset. They may be changed if the configured masks are 93 * changed or hotplug happens. 94 * 95 * effective_mask == configured_mask & parent's effective_mask, 96 * and if it ends up empty, it will inherit the parent's mask. 97 * 98 * 99 * On legacy hierachy: 100 * 101 * The user-configured masks are always the same with effective masks. 102 */ 103 104 /* user-configured CPUs and Memory Nodes allow to tasks */ 105 cpumask_var_t cpus_allowed; 106 nodemask_t mems_allowed; 107 108 /* effective CPUs and Memory Nodes allow to tasks */ 109 cpumask_var_t effective_cpus; 110 nodemask_t effective_mems; 111 112 /* 113 * This is old Memory Nodes tasks took on. 114 * 115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 116 * - A new cpuset's old_mems_allowed is initialized when some 117 * task is moved into it. 118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 119 * cpuset.mems_allowed and have tasks' nodemask updated, and 120 * then old_mems_allowed is updated to mems_allowed. 121 */ 122 nodemask_t old_mems_allowed; 123 124 struct fmeter fmeter; /* memory_pressure filter */ 125 126 /* 127 * Tasks are being attached to this cpuset. Used to prevent 128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 129 */ 130 int attach_in_progress; 131 132 /* partition number for rebuild_sched_domains() */ 133 int pn; 134 135 /* for custom sched domain */ 136 int relax_domain_level; 137 }; 138 139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 140 { 141 return css ? container_of(css, struct cpuset, css) : NULL; 142 } 143 144 /* Retrieve the cpuset for a task */ 145 static inline struct cpuset *task_cs(struct task_struct *task) 146 { 147 return css_cs(task_css(task, cpuset_cgrp_id)); 148 } 149 150 static inline struct cpuset *parent_cs(struct cpuset *cs) 151 { 152 return css_cs(cs->css.parent); 153 } 154 155 #ifdef CONFIG_NUMA 156 static inline bool task_has_mempolicy(struct task_struct *task) 157 { 158 return task->mempolicy; 159 } 160 #else 161 static inline bool task_has_mempolicy(struct task_struct *task) 162 { 163 return false; 164 } 165 #endif 166 167 168 /* bits in struct cpuset flags field */ 169 typedef enum { 170 CS_ONLINE, 171 CS_CPU_EXCLUSIVE, 172 CS_MEM_EXCLUSIVE, 173 CS_MEM_HARDWALL, 174 CS_MEMORY_MIGRATE, 175 CS_SCHED_LOAD_BALANCE, 176 CS_SPREAD_PAGE, 177 CS_SPREAD_SLAB, 178 } cpuset_flagbits_t; 179 180 /* convenient tests for these bits */ 181 static inline bool is_cpuset_online(struct cpuset *cs) 182 { 183 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 184 } 185 186 static inline int is_cpu_exclusive(const struct cpuset *cs) 187 { 188 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 189 } 190 191 static inline int is_mem_exclusive(const struct cpuset *cs) 192 { 193 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 194 } 195 196 static inline int is_mem_hardwall(const struct cpuset *cs) 197 { 198 return test_bit(CS_MEM_HARDWALL, &cs->flags); 199 } 200 201 static inline int is_sched_load_balance(const struct cpuset *cs) 202 { 203 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 204 } 205 206 static inline int is_memory_migrate(const struct cpuset *cs) 207 { 208 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 209 } 210 211 static inline int is_spread_page(const struct cpuset *cs) 212 { 213 return test_bit(CS_SPREAD_PAGE, &cs->flags); 214 } 215 216 static inline int is_spread_slab(const struct cpuset *cs) 217 { 218 return test_bit(CS_SPREAD_SLAB, &cs->flags); 219 } 220 221 static struct cpuset top_cpuset = { 222 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 223 (1 << CS_MEM_EXCLUSIVE)), 224 }; 225 226 /** 227 * cpuset_for_each_child - traverse online children of a cpuset 228 * @child_cs: loop cursor pointing to the current child 229 * @pos_css: used for iteration 230 * @parent_cs: target cpuset to walk children of 231 * 232 * Walk @child_cs through the online children of @parent_cs. Must be used 233 * with RCU read locked. 234 */ 235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 236 css_for_each_child((pos_css), &(parent_cs)->css) \ 237 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 238 239 /** 240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 241 * @des_cs: loop cursor pointing to the current descendant 242 * @pos_css: used for iteration 243 * @root_cs: target cpuset to walk ancestor of 244 * 245 * Walk @des_cs through the online descendants of @root_cs. Must be used 246 * with RCU read locked. The caller may modify @pos_css by calling 247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 248 * iteration and the first node to be visited. 249 */ 250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 252 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 253 254 /* 255 * There are two global locks guarding cpuset structures - cpuset_mutex and 256 * callback_lock. We also require taking task_lock() when dereferencing a 257 * task's cpuset pointer. See "The task_lock() exception", at the end of this 258 * comment. 259 * 260 * A task must hold both locks to modify cpusets. If a task holds 261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 262 * is the only task able to also acquire callback_lock and be able to 263 * modify cpusets. It can perform various checks on the cpuset structure 264 * first, knowing nothing will change. It can also allocate memory while 265 * just holding cpuset_mutex. While it is performing these checks, various 266 * callback routines can briefly acquire callback_lock to query cpusets. 267 * Once it is ready to make the changes, it takes callback_lock, blocking 268 * everyone else. 269 * 270 * Calls to the kernel memory allocator can not be made while holding 271 * callback_lock, as that would risk double tripping on callback_lock 272 * from one of the callbacks into the cpuset code from within 273 * __alloc_pages(). 274 * 275 * If a task is only holding callback_lock, then it has read-only 276 * access to cpusets. 277 * 278 * Now, the task_struct fields mems_allowed and mempolicy may be changed 279 * by other task, we use alloc_lock in the task_struct fields to protect 280 * them. 281 * 282 * The cpuset_common_file_read() handlers only hold callback_lock across 283 * small pieces of code, such as when reading out possibly multi-word 284 * cpumasks and nodemasks. 285 * 286 * Accessing a task's cpuset should be done in accordance with the 287 * guidelines for accessing subsystem state in kernel/cgroup.c 288 */ 289 290 static DEFINE_MUTEX(cpuset_mutex); 291 static DEFINE_SPINLOCK(callback_lock); 292 293 static struct workqueue_struct *cpuset_migrate_mm_wq; 294 295 /* 296 * CPU / memory hotplug is handled asynchronously. 297 */ 298 static void cpuset_hotplug_workfn(struct work_struct *work); 299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 300 301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 302 303 /* 304 * Cgroup v2 behavior is used when on default hierarchy or the 305 * cgroup_v2_mode flag is set. 306 */ 307 static inline bool is_in_v2_mode(void) 308 { 309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 310 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 311 } 312 313 /* 314 * This is ugly, but preserves the userspace API for existing cpuset 315 * users. If someone tries to mount the "cpuset" filesystem, we 316 * silently switch it to mount "cgroup" instead 317 */ 318 static struct dentry *cpuset_mount(struct file_system_type *fs_type, 319 int flags, const char *unused_dev_name, void *data) 320 { 321 struct file_system_type *cgroup_fs = get_fs_type("cgroup"); 322 struct dentry *ret = ERR_PTR(-ENODEV); 323 if (cgroup_fs) { 324 char mountopts[] = 325 "cpuset,noprefix," 326 "release_agent=/sbin/cpuset_release_agent"; 327 ret = cgroup_fs->mount(cgroup_fs, flags, 328 unused_dev_name, mountopts); 329 put_filesystem(cgroup_fs); 330 } 331 return ret; 332 } 333 334 static struct file_system_type cpuset_fs_type = { 335 .name = "cpuset", 336 .mount = cpuset_mount, 337 }; 338 339 /* 340 * Return in pmask the portion of a cpusets's cpus_allowed that 341 * are online. If none are online, walk up the cpuset hierarchy 342 * until we find one that does have some online cpus. 343 * 344 * One way or another, we guarantee to return some non-empty subset 345 * of cpu_online_mask. 346 * 347 * Call with callback_lock or cpuset_mutex held. 348 */ 349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 350 { 351 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 352 cs = parent_cs(cs); 353 if (unlikely(!cs)) { 354 /* 355 * The top cpuset doesn't have any online cpu as a 356 * consequence of a race between cpuset_hotplug_work 357 * and cpu hotplug notifier. But we know the top 358 * cpuset's effective_cpus is on its way to to be 359 * identical to cpu_online_mask. 360 */ 361 cpumask_copy(pmask, cpu_online_mask); 362 return; 363 } 364 } 365 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 366 } 367 368 /* 369 * Return in *pmask the portion of a cpusets's mems_allowed that 370 * are online, with memory. If none are online with memory, walk 371 * up the cpuset hierarchy until we find one that does have some 372 * online mems. The top cpuset always has some mems online. 373 * 374 * One way or another, we guarantee to return some non-empty subset 375 * of node_states[N_MEMORY]. 376 * 377 * Call with callback_lock or cpuset_mutex held. 378 */ 379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 380 { 381 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 382 cs = parent_cs(cs); 383 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 384 } 385 386 /* 387 * update task's spread flag if cpuset's page/slab spread flag is set 388 * 389 * Call with callback_lock or cpuset_mutex held. 390 */ 391 static void cpuset_update_task_spread_flag(struct cpuset *cs, 392 struct task_struct *tsk) 393 { 394 if (is_spread_page(cs)) 395 task_set_spread_page(tsk); 396 else 397 task_clear_spread_page(tsk); 398 399 if (is_spread_slab(cs)) 400 task_set_spread_slab(tsk); 401 else 402 task_clear_spread_slab(tsk); 403 } 404 405 /* 406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 407 * 408 * One cpuset is a subset of another if all its allowed CPUs and 409 * Memory Nodes are a subset of the other, and its exclusive flags 410 * are only set if the other's are set. Call holding cpuset_mutex. 411 */ 412 413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 414 { 415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 416 nodes_subset(p->mems_allowed, q->mems_allowed) && 417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 418 is_mem_exclusive(p) <= is_mem_exclusive(q); 419 } 420 421 /** 422 * alloc_trial_cpuset - allocate a trial cpuset 423 * @cs: the cpuset that the trial cpuset duplicates 424 */ 425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 426 { 427 struct cpuset *trial; 428 429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 430 if (!trial) 431 return NULL; 432 433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) 434 goto free_cs; 435 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) 436 goto free_cpus; 437 438 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 439 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 440 return trial; 441 442 free_cpus: 443 free_cpumask_var(trial->cpus_allowed); 444 free_cs: 445 kfree(trial); 446 return NULL; 447 } 448 449 /** 450 * free_trial_cpuset - free the trial cpuset 451 * @trial: the trial cpuset to be freed 452 */ 453 static void free_trial_cpuset(struct cpuset *trial) 454 { 455 free_cpumask_var(trial->effective_cpus); 456 free_cpumask_var(trial->cpus_allowed); 457 kfree(trial); 458 } 459 460 /* 461 * validate_change() - Used to validate that any proposed cpuset change 462 * follows the structural rules for cpusets. 463 * 464 * If we replaced the flag and mask values of the current cpuset 465 * (cur) with those values in the trial cpuset (trial), would 466 * our various subset and exclusive rules still be valid? Presumes 467 * cpuset_mutex held. 468 * 469 * 'cur' is the address of an actual, in-use cpuset. Operations 470 * such as list traversal that depend on the actual address of the 471 * cpuset in the list must use cur below, not trial. 472 * 473 * 'trial' is the address of bulk structure copy of cur, with 474 * perhaps one or more of the fields cpus_allowed, mems_allowed, 475 * or flags changed to new, trial values. 476 * 477 * Return 0 if valid, -errno if not. 478 */ 479 480 static int validate_change(struct cpuset *cur, struct cpuset *trial) 481 { 482 struct cgroup_subsys_state *css; 483 struct cpuset *c, *par; 484 int ret; 485 486 rcu_read_lock(); 487 488 /* Each of our child cpusets must be a subset of us */ 489 ret = -EBUSY; 490 cpuset_for_each_child(c, css, cur) 491 if (!is_cpuset_subset(c, trial)) 492 goto out; 493 494 /* Remaining checks don't apply to root cpuset */ 495 ret = 0; 496 if (cur == &top_cpuset) 497 goto out; 498 499 par = parent_cs(cur); 500 501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 502 ret = -EACCES; 503 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 504 goto out; 505 506 /* 507 * If either I or some sibling (!= me) is exclusive, we can't 508 * overlap 509 */ 510 ret = -EINVAL; 511 cpuset_for_each_child(c, css, par) { 512 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 513 c != cur && 514 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 515 goto out; 516 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 517 c != cur && 518 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 519 goto out; 520 } 521 522 /* 523 * Cpusets with tasks - existing or newly being attached - can't 524 * be changed to have empty cpus_allowed or mems_allowed. 525 */ 526 ret = -ENOSPC; 527 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 528 if (!cpumask_empty(cur->cpus_allowed) && 529 cpumask_empty(trial->cpus_allowed)) 530 goto out; 531 if (!nodes_empty(cur->mems_allowed) && 532 nodes_empty(trial->mems_allowed)) 533 goto out; 534 } 535 536 /* 537 * We can't shrink if we won't have enough room for SCHED_DEADLINE 538 * tasks. 539 */ 540 ret = -EBUSY; 541 if (is_cpu_exclusive(cur) && 542 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 543 trial->cpus_allowed)) 544 goto out; 545 546 ret = 0; 547 out: 548 rcu_read_unlock(); 549 return ret; 550 } 551 552 #ifdef CONFIG_SMP 553 /* 554 * Helper routine for generate_sched_domains(). 555 * Do cpusets a, b have overlapping effective cpus_allowed masks? 556 */ 557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 558 { 559 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 560 } 561 562 static void 563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 564 { 565 if (dattr->relax_domain_level < c->relax_domain_level) 566 dattr->relax_domain_level = c->relax_domain_level; 567 return; 568 } 569 570 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 571 struct cpuset *root_cs) 572 { 573 struct cpuset *cp; 574 struct cgroup_subsys_state *pos_css; 575 576 rcu_read_lock(); 577 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 578 /* skip the whole subtree if @cp doesn't have any CPU */ 579 if (cpumask_empty(cp->cpus_allowed)) { 580 pos_css = css_rightmost_descendant(pos_css); 581 continue; 582 } 583 584 if (is_sched_load_balance(cp)) 585 update_domain_attr(dattr, cp); 586 } 587 rcu_read_unlock(); 588 } 589 590 /* Must be called with cpuset_mutex held. */ 591 static inline int nr_cpusets(void) 592 { 593 /* jump label reference count + the top-level cpuset */ 594 return static_key_count(&cpusets_enabled_key.key) + 1; 595 } 596 597 /* 598 * generate_sched_domains() 599 * 600 * This function builds a partial partition of the systems CPUs 601 * A 'partial partition' is a set of non-overlapping subsets whose 602 * union is a subset of that set. 603 * The output of this function needs to be passed to kernel/sched/core.c 604 * partition_sched_domains() routine, which will rebuild the scheduler's 605 * load balancing domains (sched domains) as specified by that partial 606 * partition. 607 * 608 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt 609 * for a background explanation of this. 610 * 611 * Does not return errors, on the theory that the callers of this 612 * routine would rather not worry about failures to rebuild sched 613 * domains when operating in the severe memory shortage situations 614 * that could cause allocation failures below. 615 * 616 * Must be called with cpuset_mutex held. 617 * 618 * The three key local variables below are: 619 * q - a linked-list queue of cpuset pointers, used to implement a 620 * top-down scan of all cpusets. This scan loads a pointer 621 * to each cpuset marked is_sched_load_balance into the 622 * array 'csa'. For our purposes, rebuilding the schedulers 623 * sched domains, we can ignore !is_sched_load_balance cpusets. 624 * csa - (for CpuSet Array) Array of pointers to all the cpusets 625 * that need to be load balanced, for convenient iterative 626 * access by the subsequent code that finds the best partition, 627 * i.e the set of domains (subsets) of CPUs such that the 628 * cpus_allowed of every cpuset marked is_sched_load_balance 629 * is a subset of one of these domains, while there are as 630 * many such domains as possible, each as small as possible. 631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 632 * the kernel/sched/core.c routine partition_sched_domains() in a 633 * convenient format, that can be easily compared to the prior 634 * value to determine what partition elements (sched domains) 635 * were changed (added or removed.) 636 * 637 * Finding the best partition (set of domains): 638 * The triple nested loops below over i, j, k scan over the 639 * load balanced cpusets (using the array of cpuset pointers in 640 * csa[]) looking for pairs of cpusets that have overlapping 641 * cpus_allowed, but which don't have the same 'pn' partition 642 * number and gives them in the same partition number. It keeps 643 * looping on the 'restart' label until it can no longer find 644 * any such pairs. 645 * 646 * The union of the cpus_allowed masks from the set of 647 * all cpusets having the same 'pn' value then form the one 648 * element of the partition (one sched domain) to be passed to 649 * partition_sched_domains(). 650 */ 651 static int generate_sched_domains(cpumask_var_t **domains, 652 struct sched_domain_attr **attributes) 653 { 654 struct cpuset *cp; /* scans q */ 655 struct cpuset **csa; /* array of all cpuset ptrs */ 656 int csn; /* how many cpuset ptrs in csa so far */ 657 int i, j, k; /* indices for partition finding loops */ 658 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 659 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */ 660 struct sched_domain_attr *dattr; /* attributes for custom domains */ 661 int ndoms = 0; /* number of sched domains in result */ 662 int nslot; /* next empty doms[] struct cpumask slot */ 663 struct cgroup_subsys_state *pos_css; 664 665 doms = NULL; 666 dattr = NULL; 667 csa = NULL; 668 669 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) 670 goto done; 671 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 672 673 /* Special case for the 99% of systems with one, full, sched domain */ 674 if (is_sched_load_balance(&top_cpuset)) { 675 ndoms = 1; 676 doms = alloc_sched_domains(ndoms); 677 if (!doms) 678 goto done; 679 680 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 681 if (dattr) { 682 *dattr = SD_ATTR_INIT; 683 update_domain_attr_tree(dattr, &top_cpuset); 684 } 685 cpumask_and(doms[0], top_cpuset.effective_cpus, 686 non_isolated_cpus); 687 688 goto done; 689 } 690 691 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); 692 if (!csa) 693 goto done; 694 csn = 0; 695 696 rcu_read_lock(); 697 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 698 if (cp == &top_cpuset) 699 continue; 700 /* 701 * Continue traversing beyond @cp iff @cp has some CPUs and 702 * isn't load balancing. The former is obvious. The 703 * latter: All child cpusets contain a subset of the 704 * parent's cpus, so just skip them, and then we call 705 * update_domain_attr_tree() to calc relax_domain_level of 706 * the corresponding sched domain. 707 */ 708 if (!cpumask_empty(cp->cpus_allowed) && 709 !(is_sched_load_balance(cp) && 710 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) 711 continue; 712 713 if (is_sched_load_balance(cp)) 714 csa[csn++] = cp; 715 716 /* skip @cp's subtree */ 717 pos_css = css_rightmost_descendant(pos_css); 718 } 719 rcu_read_unlock(); 720 721 for (i = 0; i < csn; i++) 722 csa[i]->pn = i; 723 ndoms = csn; 724 725 restart: 726 /* Find the best partition (set of sched domains) */ 727 for (i = 0; i < csn; i++) { 728 struct cpuset *a = csa[i]; 729 int apn = a->pn; 730 731 for (j = 0; j < csn; j++) { 732 struct cpuset *b = csa[j]; 733 int bpn = b->pn; 734 735 if (apn != bpn && cpusets_overlap(a, b)) { 736 for (k = 0; k < csn; k++) { 737 struct cpuset *c = csa[k]; 738 739 if (c->pn == bpn) 740 c->pn = apn; 741 } 742 ndoms--; /* one less element */ 743 goto restart; 744 } 745 } 746 } 747 748 /* 749 * Now we know how many domains to create. 750 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 751 */ 752 doms = alloc_sched_domains(ndoms); 753 if (!doms) 754 goto done; 755 756 /* 757 * The rest of the code, including the scheduler, can deal with 758 * dattr==NULL case. No need to abort if alloc fails. 759 */ 760 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 761 762 for (nslot = 0, i = 0; i < csn; i++) { 763 struct cpuset *a = csa[i]; 764 struct cpumask *dp; 765 int apn = a->pn; 766 767 if (apn < 0) { 768 /* Skip completed partitions */ 769 continue; 770 } 771 772 dp = doms[nslot]; 773 774 if (nslot == ndoms) { 775 static int warnings = 10; 776 if (warnings) { 777 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 778 nslot, ndoms, csn, i, apn); 779 warnings--; 780 } 781 continue; 782 } 783 784 cpumask_clear(dp); 785 if (dattr) 786 *(dattr + nslot) = SD_ATTR_INIT; 787 for (j = i; j < csn; j++) { 788 struct cpuset *b = csa[j]; 789 790 if (apn == b->pn) { 791 cpumask_or(dp, dp, b->effective_cpus); 792 cpumask_and(dp, dp, non_isolated_cpus); 793 if (dattr) 794 update_domain_attr_tree(dattr + nslot, b); 795 796 /* Done with this partition */ 797 b->pn = -1; 798 } 799 } 800 nslot++; 801 } 802 BUG_ON(nslot != ndoms); 803 804 done: 805 free_cpumask_var(non_isolated_cpus); 806 kfree(csa); 807 808 /* 809 * Fallback to the default domain if kmalloc() failed. 810 * See comments in partition_sched_domains(). 811 */ 812 if (doms == NULL) 813 ndoms = 1; 814 815 *domains = doms; 816 *attributes = dattr; 817 return ndoms; 818 } 819 820 /* 821 * Rebuild scheduler domains. 822 * 823 * If the flag 'sched_load_balance' of any cpuset with non-empty 824 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 825 * which has that flag enabled, or if any cpuset with a non-empty 826 * 'cpus' is removed, then call this routine to rebuild the 827 * scheduler's dynamic sched domains. 828 * 829 * Call with cpuset_mutex held. Takes get_online_cpus(). 830 */ 831 static void rebuild_sched_domains_locked(void) 832 { 833 struct sched_domain_attr *attr; 834 cpumask_var_t *doms; 835 int ndoms; 836 837 lockdep_assert_held(&cpuset_mutex); 838 get_online_cpus(); 839 840 /* 841 * We have raced with CPU hotplug. Don't do anything to avoid 842 * passing doms with offlined cpu to partition_sched_domains(). 843 * Anyways, hotplug work item will rebuild sched domains. 844 */ 845 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 846 goto out; 847 848 /* Generate domain masks and attrs */ 849 ndoms = generate_sched_domains(&doms, &attr); 850 851 /* Have scheduler rebuild the domains */ 852 partition_sched_domains(ndoms, doms, attr); 853 out: 854 put_online_cpus(); 855 } 856 #else /* !CONFIG_SMP */ 857 static void rebuild_sched_domains_locked(void) 858 { 859 } 860 #endif /* CONFIG_SMP */ 861 862 void rebuild_sched_domains(void) 863 { 864 mutex_lock(&cpuset_mutex); 865 rebuild_sched_domains_locked(); 866 mutex_unlock(&cpuset_mutex); 867 } 868 869 /** 870 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 871 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 872 * 873 * Iterate through each task of @cs updating its cpus_allowed to the 874 * effective cpuset's. As this function is called with cpuset_mutex held, 875 * cpuset membership stays stable. 876 */ 877 static void update_tasks_cpumask(struct cpuset *cs) 878 { 879 struct css_task_iter it; 880 struct task_struct *task; 881 882 css_task_iter_start(&cs->css, 0, &it); 883 while ((task = css_task_iter_next(&it))) 884 set_cpus_allowed_ptr(task, cs->effective_cpus); 885 css_task_iter_end(&it); 886 } 887 888 /* 889 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 890 * @cs: the cpuset to consider 891 * @new_cpus: temp variable for calculating new effective_cpus 892 * 893 * When congifured cpumask is changed, the effective cpumasks of this cpuset 894 * and all its descendants need to be updated. 895 * 896 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 897 * 898 * Called with cpuset_mutex held 899 */ 900 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) 901 { 902 struct cpuset *cp; 903 struct cgroup_subsys_state *pos_css; 904 bool need_rebuild_sched_domains = false; 905 906 rcu_read_lock(); 907 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 908 struct cpuset *parent = parent_cs(cp); 909 910 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); 911 912 /* 913 * If it becomes empty, inherit the effective mask of the 914 * parent, which is guaranteed to have some CPUs. 915 */ 916 if (is_in_v2_mode() && cpumask_empty(new_cpus)) 917 cpumask_copy(new_cpus, parent->effective_cpus); 918 919 /* Skip the whole subtree if the cpumask remains the same. */ 920 if (cpumask_equal(new_cpus, cp->effective_cpus)) { 921 pos_css = css_rightmost_descendant(pos_css); 922 continue; 923 } 924 925 if (!css_tryget_online(&cp->css)) 926 continue; 927 rcu_read_unlock(); 928 929 spin_lock_irq(&callback_lock); 930 cpumask_copy(cp->effective_cpus, new_cpus); 931 spin_unlock_irq(&callback_lock); 932 933 WARN_ON(!is_in_v2_mode() && 934 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 935 936 update_tasks_cpumask(cp); 937 938 /* 939 * If the effective cpumask of any non-empty cpuset is changed, 940 * we need to rebuild sched domains. 941 */ 942 if (!cpumask_empty(cp->cpus_allowed) && 943 is_sched_load_balance(cp)) 944 need_rebuild_sched_domains = true; 945 946 rcu_read_lock(); 947 css_put(&cp->css); 948 } 949 rcu_read_unlock(); 950 951 if (need_rebuild_sched_domains) 952 rebuild_sched_domains_locked(); 953 } 954 955 /** 956 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 957 * @cs: the cpuset to consider 958 * @trialcs: trial cpuset 959 * @buf: buffer of cpu numbers written to this cpuset 960 */ 961 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 962 const char *buf) 963 { 964 int retval; 965 966 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 967 if (cs == &top_cpuset) 968 return -EACCES; 969 970 /* 971 * An empty cpus_allowed is ok only if the cpuset has no tasks. 972 * Since cpulist_parse() fails on an empty mask, we special case 973 * that parsing. The validate_change() call ensures that cpusets 974 * with tasks have cpus. 975 */ 976 if (!*buf) { 977 cpumask_clear(trialcs->cpus_allowed); 978 } else { 979 retval = cpulist_parse(buf, trialcs->cpus_allowed); 980 if (retval < 0) 981 return retval; 982 983 if (!cpumask_subset(trialcs->cpus_allowed, 984 top_cpuset.cpus_allowed)) 985 return -EINVAL; 986 } 987 988 /* Nothing to do if the cpus didn't change */ 989 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 990 return 0; 991 992 retval = validate_change(cs, trialcs); 993 if (retval < 0) 994 return retval; 995 996 spin_lock_irq(&callback_lock); 997 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 998 spin_unlock_irq(&callback_lock); 999 1000 /* use trialcs->cpus_allowed as a temp variable */ 1001 update_cpumasks_hier(cs, trialcs->cpus_allowed); 1002 return 0; 1003 } 1004 1005 /* 1006 * Migrate memory region from one set of nodes to another. This is 1007 * performed asynchronously as it can be called from process migration path 1008 * holding locks involved in process management. All mm migrations are 1009 * performed in the queued order and can be waited for by flushing 1010 * cpuset_migrate_mm_wq. 1011 */ 1012 1013 struct cpuset_migrate_mm_work { 1014 struct work_struct work; 1015 struct mm_struct *mm; 1016 nodemask_t from; 1017 nodemask_t to; 1018 }; 1019 1020 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1021 { 1022 struct cpuset_migrate_mm_work *mwork = 1023 container_of(work, struct cpuset_migrate_mm_work, work); 1024 1025 /* on a wq worker, no need to worry about %current's mems_allowed */ 1026 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1027 mmput(mwork->mm); 1028 kfree(mwork); 1029 } 1030 1031 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1032 const nodemask_t *to) 1033 { 1034 struct cpuset_migrate_mm_work *mwork; 1035 1036 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1037 if (mwork) { 1038 mwork->mm = mm; 1039 mwork->from = *from; 1040 mwork->to = *to; 1041 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1042 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1043 } else { 1044 mmput(mm); 1045 } 1046 } 1047 1048 static void cpuset_post_attach(void) 1049 { 1050 flush_workqueue(cpuset_migrate_mm_wq); 1051 } 1052 1053 /* 1054 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1055 * @tsk: the task to change 1056 * @newmems: new nodes that the task will be set 1057 * 1058 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1059 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1060 * parallel, it might temporarily see an empty intersection, which results in 1061 * a seqlock check and retry before OOM or allocation failure. 1062 */ 1063 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1064 nodemask_t *newmems) 1065 { 1066 task_lock(tsk); 1067 1068 local_irq_disable(); 1069 write_seqcount_begin(&tsk->mems_allowed_seq); 1070 1071 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1072 mpol_rebind_task(tsk, newmems); 1073 tsk->mems_allowed = *newmems; 1074 1075 write_seqcount_end(&tsk->mems_allowed_seq); 1076 local_irq_enable(); 1077 1078 task_unlock(tsk); 1079 } 1080 1081 static void *cpuset_being_rebound; 1082 1083 /** 1084 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1085 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1086 * 1087 * Iterate through each task of @cs updating its mems_allowed to the 1088 * effective cpuset's. As this function is called with cpuset_mutex held, 1089 * cpuset membership stays stable. 1090 */ 1091 static void update_tasks_nodemask(struct cpuset *cs) 1092 { 1093 static nodemask_t newmems; /* protected by cpuset_mutex */ 1094 struct css_task_iter it; 1095 struct task_struct *task; 1096 1097 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1098 1099 guarantee_online_mems(cs, &newmems); 1100 1101 /* 1102 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1103 * take while holding tasklist_lock. Forks can happen - the 1104 * mpol_dup() cpuset_being_rebound check will catch such forks, 1105 * and rebind their vma mempolicies too. Because we still hold 1106 * the global cpuset_mutex, we know that no other rebind effort 1107 * will be contending for the global variable cpuset_being_rebound. 1108 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1109 * is idempotent. Also migrate pages in each mm to new nodes. 1110 */ 1111 css_task_iter_start(&cs->css, 0, &it); 1112 while ((task = css_task_iter_next(&it))) { 1113 struct mm_struct *mm; 1114 bool migrate; 1115 1116 cpuset_change_task_nodemask(task, &newmems); 1117 1118 mm = get_task_mm(task); 1119 if (!mm) 1120 continue; 1121 1122 migrate = is_memory_migrate(cs); 1123 1124 mpol_rebind_mm(mm, &cs->mems_allowed); 1125 if (migrate) 1126 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1127 else 1128 mmput(mm); 1129 } 1130 css_task_iter_end(&it); 1131 1132 /* 1133 * All the tasks' nodemasks have been updated, update 1134 * cs->old_mems_allowed. 1135 */ 1136 cs->old_mems_allowed = newmems; 1137 1138 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1139 cpuset_being_rebound = NULL; 1140 } 1141 1142 /* 1143 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1144 * @cs: the cpuset to consider 1145 * @new_mems: a temp variable for calculating new effective_mems 1146 * 1147 * When configured nodemask is changed, the effective nodemasks of this cpuset 1148 * and all its descendants need to be updated. 1149 * 1150 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1151 * 1152 * Called with cpuset_mutex held 1153 */ 1154 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1155 { 1156 struct cpuset *cp; 1157 struct cgroup_subsys_state *pos_css; 1158 1159 rcu_read_lock(); 1160 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1161 struct cpuset *parent = parent_cs(cp); 1162 1163 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1164 1165 /* 1166 * If it becomes empty, inherit the effective mask of the 1167 * parent, which is guaranteed to have some MEMs. 1168 */ 1169 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1170 *new_mems = parent->effective_mems; 1171 1172 /* Skip the whole subtree if the nodemask remains the same. */ 1173 if (nodes_equal(*new_mems, cp->effective_mems)) { 1174 pos_css = css_rightmost_descendant(pos_css); 1175 continue; 1176 } 1177 1178 if (!css_tryget_online(&cp->css)) 1179 continue; 1180 rcu_read_unlock(); 1181 1182 spin_lock_irq(&callback_lock); 1183 cp->effective_mems = *new_mems; 1184 spin_unlock_irq(&callback_lock); 1185 1186 WARN_ON(!is_in_v2_mode() && 1187 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1188 1189 update_tasks_nodemask(cp); 1190 1191 rcu_read_lock(); 1192 css_put(&cp->css); 1193 } 1194 rcu_read_unlock(); 1195 } 1196 1197 /* 1198 * Handle user request to change the 'mems' memory placement 1199 * of a cpuset. Needs to validate the request, update the 1200 * cpusets mems_allowed, and for each task in the cpuset, 1201 * update mems_allowed and rebind task's mempolicy and any vma 1202 * mempolicies and if the cpuset is marked 'memory_migrate', 1203 * migrate the tasks pages to the new memory. 1204 * 1205 * Call with cpuset_mutex held. May take callback_lock during call. 1206 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1207 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1208 * their mempolicies to the cpusets new mems_allowed. 1209 */ 1210 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1211 const char *buf) 1212 { 1213 int retval; 1214 1215 /* 1216 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1217 * it's read-only 1218 */ 1219 if (cs == &top_cpuset) { 1220 retval = -EACCES; 1221 goto done; 1222 } 1223 1224 /* 1225 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1226 * Since nodelist_parse() fails on an empty mask, we special case 1227 * that parsing. The validate_change() call ensures that cpusets 1228 * with tasks have memory. 1229 */ 1230 if (!*buf) { 1231 nodes_clear(trialcs->mems_allowed); 1232 } else { 1233 retval = nodelist_parse(buf, trialcs->mems_allowed); 1234 if (retval < 0) 1235 goto done; 1236 1237 if (!nodes_subset(trialcs->mems_allowed, 1238 top_cpuset.mems_allowed)) { 1239 retval = -EINVAL; 1240 goto done; 1241 } 1242 } 1243 1244 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1245 retval = 0; /* Too easy - nothing to do */ 1246 goto done; 1247 } 1248 retval = validate_change(cs, trialcs); 1249 if (retval < 0) 1250 goto done; 1251 1252 spin_lock_irq(&callback_lock); 1253 cs->mems_allowed = trialcs->mems_allowed; 1254 spin_unlock_irq(&callback_lock); 1255 1256 /* use trialcs->mems_allowed as a temp variable */ 1257 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1258 done: 1259 return retval; 1260 } 1261 1262 int current_cpuset_is_being_rebound(void) 1263 { 1264 int ret; 1265 1266 rcu_read_lock(); 1267 ret = task_cs(current) == cpuset_being_rebound; 1268 rcu_read_unlock(); 1269 1270 return ret; 1271 } 1272 1273 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1274 { 1275 #ifdef CONFIG_SMP 1276 if (val < -1 || val >= sched_domain_level_max) 1277 return -EINVAL; 1278 #endif 1279 1280 if (val != cs->relax_domain_level) { 1281 cs->relax_domain_level = val; 1282 if (!cpumask_empty(cs->cpus_allowed) && 1283 is_sched_load_balance(cs)) 1284 rebuild_sched_domains_locked(); 1285 } 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1292 * @cs: the cpuset in which each task's spread flags needs to be changed 1293 * 1294 * Iterate through each task of @cs updating its spread flags. As this 1295 * function is called with cpuset_mutex held, cpuset membership stays 1296 * stable. 1297 */ 1298 static void update_tasks_flags(struct cpuset *cs) 1299 { 1300 struct css_task_iter it; 1301 struct task_struct *task; 1302 1303 css_task_iter_start(&cs->css, 0, &it); 1304 while ((task = css_task_iter_next(&it))) 1305 cpuset_update_task_spread_flag(cs, task); 1306 css_task_iter_end(&it); 1307 } 1308 1309 /* 1310 * update_flag - read a 0 or a 1 in a file and update associated flag 1311 * bit: the bit to update (see cpuset_flagbits_t) 1312 * cs: the cpuset to update 1313 * turning_on: whether the flag is being set or cleared 1314 * 1315 * Call with cpuset_mutex held. 1316 */ 1317 1318 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1319 int turning_on) 1320 { 1321 struct cpuset *trialcs; 1322 int balance_flag_changed; 1323 int spread_flag_changed; 1324 int err; 1325 1326 trialcs = alloc_trial_cpuset(cs); 1327 if (!trialcs) 1328 return -ENOMEM; 1329 1330 if (turning_on) 1331 set_bit(bit, &trialcs->flags); 1332 else 1333 clear_bit(bit, &trialcs->flags); 1334 1335 err = validate_change(cs, trialcs); 1336 if (err < 0) 1337 goto out; 1338 1339 balance_flag_changed = (is_sched_load_balance(cs) != 1340 is_sched_load_balance(trialcs)); 1341 1342 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1343 || (is_spread_page(cs) != is_spread_page(trialcs))); 1344 1345 spin_lock_irq(&callback_lock); 1346 cs->flags = trialcs->flags; 1347 spin_unlock_irq(&callback_lock); 1348 1349 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1350 rebuild_sched_domains_locked(); 1351 1352 if (spread_flag_changed) 1353 update_tasks_flags(cs); 1354 out: 1355 free_trial_cpuset(trialcs); 1356 return err; 1357 } 1358 1359 /* 1360 * Frequency meter - How fast is some event occurring? 1361 * 1362 * These routines manage a digitally filtered, constant time based, 1363 * event frequency meter. There are four routines: 1364 * fmeter_init() - initialize a frequency meter. 1365 * fmeter_markevent() - called each time the event happens. 1366 * fmeter_getrate() - returns the recent rate of such events. 1367 * fmeter_update() - internal routine used to update fmeter. 1368 * 1369 * A common data structure is passed to each of these routines, 1370 * which is used to keep track of the state required to manage the 1371 * frequency meter and its digital filter. 1372 * 1373 * The filter works on the number of events marked per unit time. 1374 * The filter is single-pole low-pass recursive (IIR). The time unit 1375 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1376 * simulate 3 decimal digits of precision (multiplied by 1000). 1377 * 1378 * With an FM_COEF of 933, and a time base of 1 second, the filter 1379 * has a half-life of 10 seconds, meaning that if the events quit 1380 * happening, then the rate returned from the fmeter_getrate() 1381 * will be cut in half each 10 seconds, until it converges to zero. 1382 * 1383 * It is not worth doing a real infinitely recursive filter. If more 1384 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1385 * just compute FM_MAXTICKS ticks worth, by which point the level 1386 * will be stable. 1387 * 1388 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1389 * arithmetic overflow in the fmeter_update() routine. 1390 * 1391 * Given the simple 32 bit integer arithmetic used, this meter works 1392 * best for reporting rates between one per millisecond (msec) and 1393 * one per 32 (approx) seconds. At constant rates faster than one 1394 * per msec it maxes out at values just under 1,000,000. At constant 1395 * rates between one per msec, and one per second it will stabilize 1396 * to a value N*1000, where N is the rate of events per second. 1397 * At constant rates between one per second and one per 32 seconds, 1398 * it will be choppy, moving up on the seconds that have an event, 1399 * and then decaying until the next event. At rates slower than 1400 * about one in 32 seconds, it decays all the way back to zero between 1401 * each event. 1402 */ 1403 1404 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1405 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 1406 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1407 #define FM_SCALE 1000 /* faux fixed point scale */ 1408 1409 /* Initialize a frequency meter */ 1410 static void fmeter_init(struct fmeter *fmp) 1411 { 1412 fmp->cnt = 0; 1413 fmp->val = 0; 1414 fmp->time = 0; 1415 spin_lock_init(&fmp->lock); 1416 } 1417 1418 /* Internal meter update - process cnt events and update value */ 1419 static void fmeter_update(struct fmeter *fmp) 1420 { 1421 time64_t now; 1422 u32 ticks; 1423 1424 now = ktime_get_seconds(); 1425 ticks = now - fmp->time; 1426 1427 if (ticks == 0) 1428 return; 1429 1430 ticks = min(FM_MAXTICKS, ticks); 1431 while (ticks-- > 0) 1432 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 1433 fmp->time = now; 1434 1435 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 1436 fmp->cnt = 0; 1437 } 1438 1439 /* Process any previous ticks, then bump cnt by one (times scale). */ 1440 static void fmeter_markevent(struct fmeter *fmp) 1441 { 1442 spin_lock(&fmp->lock); 1443 fmeter_update(fmp); 1444 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 1445 spin_unlock(&fmp->lock); 1446 } 1447 1448 /* Process any previous ticks, then return current value. */ 1449 static int fmeter_getrate(struct fmeter *fmp) 1450 { 1451 int val; 1452 1453 spin_lock(&fmp->lock); 1454 fmeter_update(fmp); 1455 val = fmp->val; 1456 spin_unlock(&fmp->lock); 1457 return val; 1458 } 1459 1460 static struct cpuset *cpuset_attach_old_cs; 1461 1462 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 1463 static int cpuset_can_attach(struct cgroup_taskset *tset) 1464 { 1465 struct cgroup_subsys_state *css; 1466 struct cpuset *cs; 1467 struct task_struct *task; 1468 int ret; 1469 1470 /* used later by cpuset_attach() */ 1471 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 1472 cs = css_cs(css); 1473 1474 mutex_lock(&cpuset_mutex); 1475 1476 /* allow moving tasks into an empty cpuset if on default hierarchy */ 1477 ret = -ENOSPC; 1478 if (!is_in_v2_mode() && 1479 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 1480 goto out_unlock; 1481 1482 cgroup_taskset_for_each(task, css, tset) { 1483 ret = task_can_attach(task, cs->cpus_allowed); 1484 if (ret) 1485 goto out_unlock; 1486 ret = security_task_setscheduler(task); 1487 if (ret) 1488 goto out_unlock; 1489 } 1490 1491 /* 1492 * Mark attach is in progress. This makes validate_change() fail 1493 * changes which zero cpus/mems_allowed. 1494 */ 1495 cs->attach_in_progress++; 1496 ret = 0; 1497 out_unlock: 1498 mutex_unlock(&cpuset_mutex); 1499 return ret; 1500 } 1501 1502 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 1503 { 1504 struct cgroup_subsys_state *css; 1505 struct cpuset *cs; 1506 1507 cgroup_taskset_first(tset, &css); 1508 cs = css_cs(css); 1509 1510 mutex_lock(&cpuset_mutex); 1511 css_cs(css)->attach_in_progress--; 1512 mutex_unlock(&cpuset_mutex); 1513 } 1514 1515 /* 1516 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 1517 * but we can't allocate it dynamically there. Define it global and 1518 * allocate from cpuset_init(). 1519 */ 1520 static cpumask_var_t cpus_attach; 1521 1522 static void cpuset_attach(struct cgroup_taskset *tset) 1523 { 1524 /* static buf protected by cpuset_mutex */ 1525 static nodemask_t cpuset_attach_nodemask_to; 1526 struct task_struct *task; 1527 struct task_struct *leader; 1528 struct cgroup_subsys_state *css; 1529 struct cpuset *cs; 1530 struct cpuset *oldcs = cpuset_attach_old_cs; 1531 1532 cgroup_taskset_first(tset, &css); 1533 cs = css_cs(css); 1534 1535 mutex_lock(&cpuset_mutex); 1536 1537 /* prepare for attach */ 1538 if (cs == &top_cpuset) 1539 cpumask_copy(cpus_attach, cpu_possible_mask); 1540 else 1541 guarantee_online_cpus(cs, cpus_attach); 1542 1543 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1544 1545 cgroup_taskset_for_each(task, css, tset) { 1546 /* 1547 * can_attach beforehand should guarantee that this doesn't 1548 * fail. TODO: have a better way to handle failure here 1549 */ 1550 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 1551 1552 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 1553 cpuset_update_task_spread_flag(cs, task); 1554 } 1555 1556 /* 1557 * Change mm for all threadgroup leaders. This is expensive and may 1558 * sleep and should be moved outside migration path proper. 1559 */ 1560 cpuset_attach_nodemask_to = cs->effective_mems; 1561 cgroup_taskset_for_each_leader(leader, css, tset) { 1562 struct mm_struct *mm = get_task_mm(leader); 1563 1564 if (mm) { 1565 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 1566 1567 /* 1568 * old_mems_allowed is the same with mems_allowed 1569 * here, except if this task is being moved 1570 * automatically due to hotplug. In that case 1571 * @mems_allowed has been updated and is empty, so 1572 * @old_mems_allowed is the right nodesets that we 1573 * migrate mm from. 1574 */ 1575 if (is_memory_migrate(cs)) 1576 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 1577 &cpuset_attach_nodemask_to); 1578 else 1579 mmput(mm); 1580 } 1581 } 1582 1583 cs->old_mems_allowed = cpuset_attach_nodemask_to; 1584 1585 cs->attach_in_progress--; 1586 if (!cs->attach_in_progress) 1587 wake_up(&cpuset_attach_wq); 1588 1589 mutex_unlock(&cpuset_mutex); 1590 } 1591 1592 /* The various types of files and directories in a cpuset file system */ 1593 1594 typedef enum { 1595 FILE_MEMORY_MIGRATE, 1596 FILE_CPULIST, 1597 FILE_MEMLIST, 1598 FILE_EFFECTIVE_CPULIST, 1599 FILE_EFFECTIVE_MEMLIST, 1600 FILE_CPU_EXCLUSIVE, 1601 FILE_MEM_EXCLUSIVE, 1602 FILE_MEM_HARDWALL, 1603 FILE_SCHED_LOAD_BALANCE, 1604 FILE_SCHED_RELAX_DOMAIN_LEVEL, 1605 FILE_MEMORY_PRESSURE_ENABLED, 1606 FILE_MEMORY_PRESSURE, 1607 FILE_SPREAD_PAGE, 1608 FILE_SPREAD_SLAB, 1609 } cpuset_filetype_t; 1610 1611 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1612 u64 val) 1613 { 1614 struct cpuset *cs = css_cs(css); 1615 cpuset_filetype_t type = cft->private; 1616 int retval = 0; 1617 1618 mutex_lock(&cpuset_mutex); 1619 if (!is_cpuset_online(cs)) { 1620 retval = -ENODEV; 1621 goto out_unlock; 1622 } 1623 1624 switch (type) { 1625 case FILE_CPU_EXCLUSIVE: 1626 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 1627 break; 1628 case FILE_MEM_EXCLUSIVE: 1629 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 1630 break; 1631 case FILE_MEM_HARDWALL: 1632 retval = update_flag(CS_MEM_HARDWALL, cs, val); 1633 break; 1634 case FILE_SCHED_LOAD_BALANCE: 1635 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 1636 break; 1637 case FILE_MEMORY_MIGRATE: 1638 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 1639 break; 1640 case FILE_MEMORY_PRESSURE_ENABLED: 1641 cpuset_memory_pressure_enabled = !!val; 1642 break; 1643 case FILE_SPREAD_PAGE: 1644 retval = update_flag(CS_SPREAD_PAGE, cs, val); 1645 break; 1646 case FILE_SPREAD_SLAB: 1647 retval = update_flag(CS_SPREAD_SLAB, cs, val); 1648 break; 1649 default: 1650 retval = -EINVAL; 1651 break; 1652 } 1653 out_unlock: 1654 mutex_unlock(&cpuset_mutex); 1655 return retval; 1656 } 1657 1658 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 1659 s64 val) 1660 { 1661 struct cpuset *cs = css_cs(css); 1662 cpuset_filetype_t type = cft->private; 1663 int retval = -ENODEV; 1664 1665 mutex_lock(&cpuset_mutex); 1666 if (!is_cpuset_online(cs)) 1667 goto out_unlock; 1668 1669 switch (type) { 1670 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1671 retval = update_relax_domain_level(cs, val); 1672 break; 1673 default: 1674 retval = -EINVAL; 1675 break; 1676 } 1677 out_unlock: 1678 mutex_unlock(&cpuset_mutex); 1679 return retval; 1680 } 1681 1682 /* 1683 * Common handling for a write to a "cpus" or "mems" file. 1684 */ 1685 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 1686 char *buf, size_t nbytes, loff_t off) 1687 { 1688 struct cpuset *cs = css_cs(of_css(of)); 1689 struct cpuset *trialcs; 1690 int retval = -ENODEV; 1691 1692 buf = strstrip(buf); 1693 1694 /* 1695 * CPU or memory hotunplug may leave @cs w/o any execution 1696 * resources, in which case the hotplug code asynchronously updates 1697 * configuration and transfers all tasks to the nearest ancestor 1698 * which can execute. 1699 * 1700 * As writes to "cpus" or "mems" may restore @cs's execution 1701 * resources, wait for the previously scheduled operations before 1702 * proceeding, so that we don't end up keep removing tasks added 1703 * after execution capability is restored. 1704 * 1705 * cpuset_hotplug_work calls back into cgroup core via 1706 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 1707 * operation like this one can lead to a deadlock through kernfs 1708 * active_ref protection. Let's break the protection. Losing the 1709 * protection is okay as we check whether @cs is online after 1710 * grabbing cpuset_mutex anyway. This only happens on the legacy 1711 * hierarchies. 1712 */ 1713 css_get(&cs->css); 1714 kernfs_break_active_protection(of->kn); 1715 flush_work(&cpuset_hotplug_work); 1716 1717 mutex_lock(&cpuset_mutex); 1718 if (!is_cpuset_online(cs)) 1719 goto out_unlock; 1720 1721 trialcs = alloc_trial_cpuset(cs); 1722 if (!trialcs) { 1723 retval = -ENOMEM; 1724 goto out_unlock; 1725 } 1726 1727 switch (of_cft(of)->private) { 1728 case FILE_CPULIST: 1729 retval = update_cpumask(cs, trialcs, buf); 1730 break; 1731 case FILE_MEMLIST: 1732 retval = update_nodemask(cs, trialcs, buf); 1733 break; 1734 default: 1735 retval = -EINVAL; 1736 break; 1737 } 1738 1739 free_trial_cpuset(trialcs); 1740 out_unlock: 1741 mutex_unlock(&cpuset_mutex); 1742 kernfs_unbreak_active_protection(of->kn); 1743 css_put(&cs->css); 1744 flush_workqueue(cpuset_migrate_mm_wq); 1745 return retval ?: nbytes; 1746 } 1747 1748 /* 1749 * These ascii lists should be read in a single call, by using a user 1750 * buffer large enough to hold the entire map. If read in smaller 1751 * chunks, there is no guarantee of atomicity. Since the display format 1752 * used, list of ranges of sequential numbers, is variable length, 1753 * and since these maps can change value dynamically, one could read 1754 * gibberish by doing partial reads while a list was changing. 1755 */ 1756 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 1757 { 1758 struct cpuset *cs = css_cs(seq_css(sf)); 1759 cpuset_filetype_t type = seq_cft(sf)->private; 1760 int ret = 0; 1761 1762 spin_lock_irq(&callback_lock); 1763 1764 switch (type) { 1765 case FILE_CPULIST: 1766 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 1767 break; 1768 case FILE_MEMLIST: 1769 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 1770 break; 1771 case FILE_EFFECTIVE_CPULIST: 1772 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 1773 break; 1774 case FILE_EFFECTIVE_MEMLIST: 1775 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 1776 break; 1777 default: 1778 ret = -EINVAL; 1779 } 1780 1781 spin_unlock_irq(&callback_lock); 1782 return ret; 1783 } 1784 1785 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 1786 { 1787 struct cpuset *cs = css_cs(css); 1788 cpuset_filetype_t type = cft->private; 1789 switch (type) { 1790 case FILE_CPU_EXCLUSIVE: 1791 return is_cpu_exclusive(cs); 1792 case FILE_MEM_EXCLUSIVE: 1793 return is_mem_exclusive(cs); 1794 case FILE_MEM_HARDWALL: 1795 return is_mem_hardwall(cs); 1796 case FILE_SCHED_LOAD_BALANCE: 1797 return is_sched_load_balance(cs); 1798 case FILE_MEMORY_MIGRATE: 1799 return is_memory_migrate(cs); 1800 case FILE_MEMORY_PRESSURE_ENABLED: 1801 return cpuset_memory_pressure_enabled; 1802 case FILE_MEMORY_PRESSURE: 1803 return fmeter_getrate(&cs->fmeter); 1804 case FILE_SPREAD_PAGE: 1805 return is_spread_page(cs); 1806 case FILE_SPREAD_SLAB: 1807 return is_spread_slab(cs); 1808 default: 1809 BUG(); 1810 } 1811 1812 /* Unreachable but makes gcc happy */ 1813 return 0; 1814 } 1815 1816 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 1817 { 1818 struct cpuset *cs = css_cs(css); 1819 cpuset_filetype_t type = cft->private; 1820 switch (type) { 1821 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1822 return cs->relax_domain_level; 1823 default: 1824 BUG(); 1825 } 1826 1827 /* Unrechable but makes gcc happy */ 1828 return 0; 1829 } 1830 1831 1832 /* 1833 * for the common functions, 'private' gives the type of file 1834 */ 1835 1836 static struct cftype files[] = { 1837 { 1838 .name = "cpus", 1839 .seq_show = cpuset_common_seq_show, 1840 .write = cpuset_write_resmask, 1841 .max_write_len = (100U + 6 * NR_CPUS), 1842 .private = FILE_CPULIST, 1843 }, 1844 1845 { 1846 .name = "mems", 1847 .seq_show = cpuset_common_seq_show, 1848 .write = cpuset_write_resmask, 1849 .max_write_len = (100U + 6 * MAX_NUMNODES), 1850 .private = FILE_MEMLIST, 1851 }, 1852 1853 { 1854 .name = "effective_cpus", 1855 .seq_show = cpuset_common_seq_show, 1856 .private = FILE_EFFECTIVE_CPULIST, 1857 }, 1858 1859 { 1860 .name = "effective_mems", 1861 .seq_show = cpuset_common_seq_show, 1862 .private = FILE_EFFECTIVE_MEMLIST, 1863 }, 1864 1865 { 1866 .name = "cpu_exclusive", 1867 .read_u64 = cpuset_read_u64, 1868 .write_u64 = cpuset_write_u64, 1869 .private = FILE_CPU_EXCLUSIVE, 1870 }, 1871 1872 { 1873 .name = "mem_exclusive", 1874 .read_u64 = cpuset_read_u64, 1875 .write_u64 = cpuset_write_u64, 1876 .private = FILE_MEM_EXCLUSIVE, 1877 }, 1878 1879 { 1880 .name = "mem_hardwall", 1881 .read_u64 = cpuset_read_u64, 1882 .write_u64 = cpuset_write_u64, 1883 .private = FILE_MEM_HARDWALL, 1884 }, 1885 1886 { 1887 .name = "sched_load_balance", 1888 .read_u64 = cpuset_read_u64, 1889 .write_u64 = cpuset_write_u64, 1890 .private = FILE_SCHED_LOAD_BALANCE, 1891 }, 1892 1893 { 1894 .name = "sched_relax_domain_level", 1895 .read_s64 = cpuset_read_s64, 1896 .write_s64 = cpuset_write_s64, 1897 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 1898 }, 1899 1900 { 1901 .name = "memory_migrate", 1902 .read_u64 = cpuset_read_u64, 1903 .write_u64 = cpuset_write_u64, 1904 .private = FILE_MEMORY_MIGRATE, 1905 }, 1906 1907 { 1908 .name = "memory_pressure", 1909 .read_u64 = cpuset_read_u64, 1910 .private = FILE_MEMORY_PRESSURE, 1911 }, 1912 1913 { 1914 .name = "memory_spread_page", 1915 .read_u64 = cpuset_read_u64, 1916 .write_u64 = cpuset_write_u64, 1917 .private = FILE_SPREAD_PAGE, 1918 }, 1919 1920 { 1921 .name = "memory_spread_slab", 1922 .read_u64 = cpuset_read_u64, 1923 .write_u64 = cpuset_write_u64, 1924 .private = FILE_SPREAD_SLAB, 1925 }, 1926 1927 { 1928 .name = "memory_pressure_enabled", 1929 .flags = CFTYPE_ONLY_ON_ROOT, 1930 .read_u64 = cpuset_read_u64, 1931 .write_u64 = cpuset_write_u64, 1932 .private = FILE_MEMORY_PRESSURE_ENABLED, 1933 }, 1934 1935 { } /* terminate */ 1936 }; 1937 1938 /* 1939 * cpuset_css_alloc - allocate a cpuset css 1940 * cgrp: control group that the new cpuset will be part of 1941 */ 1942 1943 static struct cgroup_subsys_state * 1944 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 1945 { 1946 struct cpuset *cs; 1947 1948 if (!parent_css) 1949 return &top_cpuset.css; 1950 1951 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1952 if (!cs) 1953 return ERR_PTR(-ENOMEM); 1954 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) 1955 goto free_cs; 1956 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) 1957 goto free_cpus; 1958 1959 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1960 cpumask_clear(cs->cpus_allowed); 1961 nodes_clear(cs->mems_allowed); 1962 cpumask_clear(cs->effective_cpus); 1963 nodes_clear(cs->effective_mems); 1964 fmeter_init(&cs->fmeter); 1965 cs->relax_domain_level = -1; 1966 1967 return &cs->css; 1968 1969 free_cpus: 1970 free_cpumask_var(cs->cpus_allowed); 1971 free_cs: 1972 kfree(cs); 1973 return ERR_PTR(-ENOMEM); 1974 } 1975 1976 static int cpuset_css_online(struct cgroup_subsys_state *css) 1977 { 1978 struct cpuset *cs = css_cs(css); 1979 struct cpuset *parent = parent_cs(cs); 1980 struct cpuset *tmp_cs; 1981 struct cgroup_subsys_state *pos_css; 1982 1983 if (!parent) 1984 return 0; 1985 1986 mutex_lock(&cpuset_mutex); 1987 1988 set_bit(CS_ONLINE, &cs->flags); 1989 if (is_spread_page(parent)) 1990 set_bit(CS_SPREAD_PAGE, &cs->flags); 1991 if (is_spread_slab(parent)) 1992 set_bit(CS_SPREAD_SLAB, &cs->flags); 1993 1994 cpuset_inc(); 1995 1996 spin_lock_irq(&callback_lock); 1997 if (is_in_v2_mode()) { 1998 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1999 cs->effective_mems = parent->effective_mems; 2000 } 2001 spin_unlock_irq(&callback_lock); 2002 2003 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2004 goto out_unlock; 2005 2006 /* 2007 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2008 * set. This flag handling is implemented in cgroup core for 2009 * histrical reasons - the flag may be specified during mount. 2010 * 2011 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2012 * refuse to clone the configuration - thereby refusing the task to 2013 * be entered, and as a result refusing the sys_unshare() or 2014 * clone() which initiated it. If this becomes a problem for some 2015 * users who wish to allow that scenario, then this could be 2016 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2017 * (and likewise for mems) to the new cgroup. 2018 */ 2019 rcu_read_lock(); 2020 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2021 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2022 rcu_read_unlock(); 2023 goto out_unlock; 2024 } 2025 } 2026 rcu_read_unlock(); 2027 2028 spin_lock_irq(&callback_lock); 2029 cs->mems_allowed = parent->mems_allowed; 2030 cs->effective_mems = parent->mems_allowed; 2031 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2032 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2033 spin_unlock_irq(&callback_lock); 2034 out_unlock: 2035 mutex_unlock(&cpuset_mutex); 2036 return 0; 2037 } 2038 2039 /* 2040 * If the cpuset being removed has its flag 'sched_load_balance' 2041 * enabled, then simulate turning sched_load_balance off, which 2042 * will call rebuild_sched_domains_locked(). 2043 */ 2044 2045 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2046 { 2047 struct cpuset *cs = css_cs(css); 2048 2049 mutex_lock(&cpuset_mutex); 2050 2051 if (is_sched_load_balance(cs)) 2052 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2053 2054 cpuset_dec(); 2055 clear_bit(CS_ONLINE, &cs->flags); 2056 2057 mutex_unlock(&cpuset_mutex); 2058 } 2059 2060 static void cpuset_css_free(struct cgroup_subsys_state *css) 2061 { 2062 struct cpuset *cs = css_cs(css); 2063 2064 free_cpumask_var(cs->effective_cpus); 2065 free_cpumask_var(cs->cpus_allowed); 2066 kfree(cs); 2067 } 2068 2069 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2070 { 2071 mutex_lock(&cpuset_mutex); 2072 spin_lock_irq(&callback_lock); 2073 2074 if (is_in_v2_mode()) { 2075 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2076 top_cpuset.mems_allowed = node_possible_map; 2077 } else { 2078 cpumask_copy(top_cpuset.cpus_allowed, 2079 top_cpuset.effective_cpus); 2080 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2081 } 2082 2083 spin_unlock_irq(&callback_lock); 2084 mutex_unlock(&cpuset_mutex); 2085 } 2086 2087 /* 2088 * Make sure the new task conform to the current state of its parent, 2089 * which could have been changed by cpuset just after it inherits the 2090 * state from the parent and before it sits on the cgroup's task list. 2091 */ 2092 static void cpuset_fork(struct task_struct *task) 2093 { 2094 if (task_css_is_root(task, cpuset_cgrp_id)) 2095 return; 2096 2097 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2098 task->mems_allowed = current->mems_allowed; 2099 } 2100 2101 struct cgroup_subsys cpuset_cgrp_subsys = { 2102 .css_alloc = cpuset_css_alloc, 2103 .css_online = cpuset_css_online, 2104 .css_offline = cpuset_css_offline, 2105 .css_free = cpuset_css_free, 2106 .can_attach = cpuset_can_attach, 2107 .cancel_attach = cpuset_cancel_attach, 2108 .attach = cpuset_attach, 2109 .post_attach = cpuset_post_attach, 2110 .bind = cpuset_bind, 2111 .fork = cpuset_fork, 2112 .legacy_cftypes = files, 2113 .early_init = true, 2114 }; 2115 2116 /** 2117 * cpuset_init - initialize cpusets at system boot 2118 * 2119 * Description: Initialize top_cpuset and the cpuset internal file system, 2120 **/ 2121 2122 int __init cpuset_init(void) 2123 { 2124 int err = 0; 2125 2126 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2127 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2128 2129 cpumask_setall(top_cpuset.cpus_allowed); 2130 nodes_setall(top_cpuset.mems_allowed); 2131 cpumask_setall(top_cpuset.effective_cpus); 2132 nodes_setall(top_cpuset.effective_mems); 2133 2134 fmeter_init(&top_cpuset.fmeter); 2135 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2136 top_cpuset.relax_domain_level = -1; 2137 2138 err = register_filesystem(&cpuset_fs_type); 2139 if (err < 0) 2140 return err; 2141 2142 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2143 2144 return 0; 2145 } 2146 2147 /* 2148 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2149 * or memory nodes, we need to walk over the cpuset hierarchy, 2150 * removing that CPU or node from all cpusets. If this removes the 2151 * last CPU or node from a cpuset, then move the tasks in the empty 2152 * cpuset to its next-highest non-empty parent. 2153 */ 2154 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2155 { 2156 struct cpuset *parent; 2157 2158 /* 2159 * Find its next-highest non-empty parent, (top cpuset 2160 * has online cpus, so can't be empty). 2161 */ 2162 parent = parent_cs(cs); 2163 while (cpumask_empty(parent->cpus_allowed) || 2164 nodes_empty(parent->mems_allowed)) 2165 parent = parent_cs(parent); 2166 2167 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2168 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2169 pr_cont_cgroup_name(cs->css.cgroup); 2170 pr_cont("\n"); 2171 } 2172 } 2173 2174 static void 2175 hotplug_update_tasks_legacy(struct cpuset *cs, 2176 struct cpumask *new_cpus, nodemask_t *new_mems, 2177 bool cpus_updated, bool mems_updated) 2178 { 2179 bool is_empty; 2180 2181 spin_lock_irq(&callback_lock); 2182 cpumask_copy(cs->cpus_allowed, new_cpus); 2183 cpumask_copy(cs->effective_cpus, new_cpus); 2184 cs->mems_allowed = *new_mems; 2185 cs->effective_mems = *new_mems; 2186 spin_unlock_irq(&callback_lock); 2187 2188 /* 2189 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2190 * as the tasks will be migratecd to an ancestor. 2191 */ 2192 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2193 update_tasks_cpumask(cs); 2194 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2195 update_tasks_nodemask(cs); 2196 2197 is_empty = cpumask_empty(cs->cpus_allowed) || 2198 nodes_empty(cs->mems_allowed); 2199 2200 mutex_unlock(&cpuset_mutex); 2201 2202 /* 2203 * Move tasks to the nearest ancestor with execution resources, 2204 * This is full cgroup operation which will also call back into 2205 * cpuset. Should be done outside any lock. 2206 */ 2207 if (is_empty) 2208 remove_tasks_in_empty_cpuset(cs); 2209 2210 mutex_lock(&cpuset_mutex); 2211 } 2212 2213 static void 2214 hotplug_update_tasks(struct cpuset *cs, 2215 struct cpumask *new_cpus, nodemask_t *new_mems, 2216 bool cpus_updated, bool mems_updated) 2217 { 2218 if (cpumask_empty(new_cpus)) 2219 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2220 if (nodes_empty(*new_mems)) 2221 *new_mems = parent_cs(cs)->effective_mems; 2222 2223 spin_lock_irq(&callback_lock); 2224 cpumask_copy(cs->effective_cpus, new_cpus); 2225 cs->effective_mems = *new_mems; 2226 spin_unlock_irq(&callback_lock); 2227 2228 if (cpus_updated) 2229 update_tasks_cpumask(cs); 2230 if (mems_updated) 2231 update_tasks_nodemask(cs); 2232 } 2233 2234 /** 2235 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2236 * @cs: cpuset in interest 2237 * 2238 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2239 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2240 * all its tasks are moved to the nearest ancestor with both resources. 2241 */ 2242 static void cpuset_hotplug_update_tasks(struct cpuset *cs) 2243 { 2244 static cpumask_t new_cpus; 2245 static nodemask_t new_mems; 2246 bool cpus_updated; 2247 bool mems_updated; 2248 retry: 2249 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2250 2251 mutex_lock(&cpuset_mutex); 2252 2253 /* 2254 * We have raced with task attaching. We wait until attaching 2255 * is finished, so we won't attach a task to an empty cpuset. 2256 */ 2257 if (cs->attach_in_progress) { 2258 mutex_unlock(&cpuset_mutex); 2259 goto retry; 2260 } 2261 2262 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); 2263 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); 2264 2265 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 2266 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 2267 2268 if (is_in_v2_mode()) 2269 hotplug_update_tasks(cs, &new_cpus, &new_mems, 2270 cpus_updated, mems_updated); 2271 else 2272 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 2273 cpus_updated, mems_updated); 2274 2275 mutex_unlock(&cpuset_mutex); 2276 } 2277 2278 static bool force_rebuild; 2279 2280 void cpuset_force_rebuild(void) 2281 { 2282 force_rebuild = true; 2283 } 2284 2285 /** 2286 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 2287 * 2288 * This function is called after either CPU or memory configuration has 2289 * changed and updates cpuset accordingly. The top_cpuset is always 2290 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 2291 * order to make cpusets transparent (of no affect) on systems that are 2292 * actively using CPU hotplug but making no active use of cpusets. 2293 * 2294 * Non-root cpusets are only affected by offlining. If any CPUs or memory 2295 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 2296 * all descendants. 2297 * 2298 * Note that CPU offlining during suspend is ignored. We don't modify 2299 * cpusets across suspend/resume cycles at all. 2300 */ 2301 static void cpuset_hotplug_workfn(struct work_struct *work) 2302 { 2303 static cpumask_t new_cpus; 2304 static nodemask_t new_mems; 2305 bool cpus_updated, mems_updated; 2306 bool on_dfl = is_in_v2_mode(); 2307 2308 mutex_lock(&cpuset_mutex); 2309 2310 /* fetch the available cpus/mems and find out which changed how */ 2311 cpumask_copy(&new_cpus, cpu_active_mask); 2312 new_mems = node_states[N_MEMORY]; 2313 2314 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 2315 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 2316 2317 /* synchronize cpus_allowed to cpu_active_mask */ 2318 if (cpus_updated) { 2319 spin_lock_irq(&callback_lock); 2320 if (!on_dfl) 2321 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 2322 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 2323 spin_unlock_irq(&callback_lock); 2324 /* we don't mess with cpumasks of tasks in top_cpuset */ 2325 } 2326 2327 /* synchronize mems_allowed to N_MEMORY */ 2328 if (mems_updated) { 2329 spin_lock_irq(&callback_lock); 2330 if (!on_dfl) 2331 top_cpuset.mems_allowed = new_mems; 2332 top_cpuset.effective_mems = new_mems; 2333 spin_unlock_irq(&callback_lock); 2334 update_tasks_nodemask(&top_cpuset); 2335 } 2336 2337 mutex_unlock(&cpuset_mutex); 2338 2339 /* if cpus or mems changed, we need to propagate to descendants */ 2340 if (cpus_updated || mems_updated) { 2341 struct cpuset *cs; 2342 struct cgroup_subsys_state *pos_css; 2343 2344 rcu_read_lock(); 2345 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 2346 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 2347 continue; 2348 rcu_read_unlock(); 2349 2350 cpuset_hotplug_update_tasks(cs); 2351 2352 rcu_read_lock(); 2353 css_put(&cs->css); 2354 } 2355 rcu_read_unlock(); 2356 } 2357 2358 /* rebuild sched domains if cpus_allowed has changed */ 2359 if (cpus_updated || force_rebuild) { 2360 force_rebuild = false; 2361 rebuild_sched_domains(); 2362 } 2363 } 2364 2365 void cpuset_update_active_cpus(void) 2366 { 2367 /* 2368 * We're inside cpu hotplug critical region which usually nests 2369 * inside cgroup synchronization. Bounce actual hotplug processing 2370 * to a work item to avoid reverse locking order. 2371 */ 2372 schedule_work(&cpuset_hotplug_work); 2373 } 2374 2375 void cpuset_wait_for_hotplug(void) 2376 { 2377 flush_work(&cpuset_hotplug_work); 2378 } 2379 2380 /* 2381 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 2382 * Call this routine anytime after node_states[N_MEMORY] changes. 2383 * See cpuset_update_active_cpus() for CPU hotplug handling. 2384 */ 2385 static int cpuset_track_online_nodes(struct notifier_block *self, 2386 unsigned long action, void *arg) 2387 { 2388 schedule_work(&cpuset_hotplug_work); 2389 return NOTIFY_OK; 2390 } 2391 2392 static struct notifier_block cpuset_track_online_nodes_nb = { 2393 .notifier_call = cpuset_track_online_nodes, 2394 .priority = 10, /* ??! */ 2395 }; 2396 2397 /** 2398 * cpuset_init_smp - initialize cpus_allowed 2399 * 2400 * Description: Finish top cpuset after cpu, node maps are initialized 2401 */ 2402 void __init cpuset_init_smp(void) 2403 { 2404 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2405 top_cpuset.mems_allowed = node_states[N_MEMORY]; 2406 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 2407 2408 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 2409 top_cpuset.effective_mems = node_states[N_MEMORY]; 2410 2411 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 2412 2413 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 2414 BUG_ON(!cpuset_migrate_mm_wq); 2415 } 2416 2417 /** 2418 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2419 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2420 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 2421 * 2422 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 2423 * attached to the specified @tsk. Guaranteed to return some non-empty 2424 * subset of cpu_online_mask, even if this means going outside the 2425 * tasks cpuset. 2426 **/ 2427 2428 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2429 { 2430 unsigned long flags; 2431 2432 spin_lock_irqsave(&callback_lock, flags); 2433 rcu_read_lock(); 2434 guarantee_online_cpus(task_cs(tsk), pmask); 2435 rcu_read_unlock(); 2436 spin_unlock_irqrestore(&callback_lock, flags); 2437 } 2438 2439 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 2440 { 2441 rcu_read_lock(); 2442 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 2443 rcu_read_unlock(); 2444 2445 /* 2446 * We own tsk->cpus_allowed, nobody can change it under us. 2447 * 2448 * But we used cs && cs->cpus_allowed lockless and thus can 2449 * race with cgroup_attach_task() or update_cpumask() and get 2450 * the wrong tsk->cpus_allowed. However, both cases imply the 2451 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 2452 * which takes task_rq_lock(). 2453 * 2454 * If we are called after it dropped the lock we must see all 2455 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 2456 * set any mask even if it is not right from task_cs() pov, 2457 * the pending set_cpus_allowed_ptr() will fix things. 2458 * 2459 * select_fallback_rq() will fix things ups and set cpu_possible_mask 2460 * if required. 2461 */ 2462 } 2463 2464 void __init cpuset_init_current_mems_allowed(void) 2465 { 2466 nodes_setall(current->mems_allowed); 2467 } 2468 2469 /** 2470 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 2471 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 2472 * 2473 * Description: Returns the nodemask_t mems_allowed of the cpuset 2474 * attached to the specified @tsk. Guaranteed to return some non-empty 2475 * subset of node_states[N_MEMORY], even if this means going outside the 2476 * tasks cpuset. 2477 **/ 2478 2479 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 2480 { 2481 nodemask_t mask; 2482 unsigned long flags; 2483 2484 spin_lock_irqsave(&callback_lock, flags); 2485 rcu_read_lock(); 2486 guarantee_online_mems(task_cs(tsk), &mask); 2487 rcu_read_unlock(); 2488 spin_unlock_irqrestore(&callback_lock, flags); 2489 2490 return mask; 2491 } 2492 2493 /** 2494 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 2495 * @nodemask: the nodemask to be checked 2496 * 2497 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 2498 */ 2499 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 2500 { 2501 return nodes_intersects(*nodemask, current->mems_allowed); 2502 } 2503 2504 /* 2505 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 2506 * mem_hardwall ancestor to the specified cpuset. Call holding 2507 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 2508 * (an unusual configuration), then returns the root cpuset. 2509 */ 2510 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 2511 { 2512 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 2513 cs = parent_cs(cs); 2514 return cs; 2515 } 2516 2517 /** 2518 * cpuset_node_allowed - Can we allocate on a memory node? 2519 * @node: is this an allowed node? 2520 * @gfp_mask: memory allocation flags 2521 * 2522 * If we're in interrupt, yes, we can always allocate. If @node is set in 2523 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 2524 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 2525 * yes. If current has access to memory reserves as an oom victim, yes. 2526 * Otherwise, no. 2527 * 2528 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 2529 * and do not allow allocations outside the current tasks cpuset 2530 * unless the task has been OOM killed. 2531 * GFP_KERNEL allocations are not so marked, so can escape to the 2532 * nearest enclosing hardwalled ancestor cpuset. 2533 * 2534 * Scanning up parent cpusets requires callback_lock. The 2535 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 2536 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 2537 * current tasks mems_allowed came up empty on the first pass over 2538 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 2539 * cpuset are short of memory, might require taking the callback_lock. 2540 * 2541 * The first call here from mm/page_alloc:get_page_from_freelist() 2542 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 2543 * so no allocation on a node outside the cpuset is allowed (unless 2544 * in interrupt, of course). 2545 * 2546 * The second pass through get_page_from_freelist() doesn't even call 2547 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 2548 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 2549 * in alloc_flags. That logic and the checks below have the combined 2550 * affect that: 2551 * in_interrupt - any node ok (current task context irrelevant) 2552 * GFP_ATOMIC - any node ok 2553 * tsk_is_oom_victim - any node ok 2554 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 2555 * GFP_USER - only nodes in current tasks mems allowed ok. 2556 */ 2557 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 2558 { 2559 struct cpuset *cs; /* current cpuset ancestors */ 2560 int allowed; /* is allocation in zone z allowed? */ 2561 unsigned long flags; 2562 2563 if (in_interrupt()) 2564 return true; 2565 if (node_isset(node, current->mems_allowed)) 2566 return true; 2567 /* 2568 * Allow tasks that have access to memory reserves because they have 2569 * been OOM killed to get memory anywhere. 2570 */ 2571 if (unlikely(tsk_is_oom_victim(current))) 2572 return true; 2573 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 2574 return false; 2575 2576 if (current->flags & PF_EXITING) /* Let dying task have memory */ 2577 return true; 2578 2579 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 2580 spin_lock_irqsave(&callback_lock, flags); 2581 2582 rcu_read_lock(); 2583 cs = nearest_hardwall_ancestor(task_cs(current)); 2584 allowed = node_isset(node, cs->mems_allowed); 2585 rcu_read_unlock(); 2586 2587 spin_unlock_irqrestore(&callback_lock, flags); 2588 return allowed; 2589 } 2590 2591 /** 2592 * cpuset_mem_spread_node() - On which node to begin search for a file page 2593 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2594 * 2595 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 2596 * tasks in a cpuset with is_spread_page or is_spread_slab set), 2597 * and if the memory allocation used cpuset_mem_spread_node() 2598 * to determine on which node to start looking, as it will for 2599 * certain page cache or slab cache pages such as used for file 2600 * system buffers and inode caches, then instead of starting on the 2601 * local node to look for a free page, rather spread the starting 2602 * node around the tasks mems_allowed nodes. 2603 * 2604 * We don't have to worry about the returned node being offline 2605 * because "it can't happen", and even if it did, it would be ok. 2606 * 2607 * The routines calling guarantee_online_mems() are careful to 2608 * only set nodes in task->mems_allowed that are online. So it 2609 * should not be possible for the following code to return an 2610 * offline node. But if it did, that would be ok, as this routine 2611 * is not returning the node where the allocation must be, only 2612 * the node where the search should start. The zonelist passed to 2613 * __alloc_pages() will include all nodes. If the slab allocator 2614 * is passed an offline node, it will fall back to the local node. 2615 * See kmem_cache_alloc_node(). 2616 */ 2617 2618 static int cpuset_spread_node(int *rotor) 2619 { 2620 return *rotor = next_node_in(*rotor, current->mems_allowed); 2621 } 2622 2623 int cpuset_mem_spread_node(void) 2624 { 2625 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 2626 current->cpuset_mem_spread_rotor = 2627 node_random(¤t->mems_allowed); 2628 2629 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 2630 } 2631 2632 int cpuset_slab_spread_node(void) 2633 { 2634 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 2635 current->cpuset_slab_spread_rotor = 2636 node_random(¤t->mems_allowed); 2637 2638 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 2639 } 2640 2641 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 2642 2643 /** 2644 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 2645 * @tsk1: pointer to task_struct of some task. 2646 * @tsk2: pointer to task_struct of some other task. 2647 * 2648 * Description: Return true if @tsk1's mems_allowed intersects the 2649 * mems_allowed of @tsk2. Used by the OOM killer to determine if 2650 * one of the task's memory usage might impact the memory available 2651 * to the other. 2652 **/ 2653 2654 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 2655 const struct task_struct *tsk2) 2656 { 2657 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 2658 } 2659 2660 /** 2661 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 2662 * 2663 * Description: Prints current's name, cpuset name, and cached copy of its 2664 * mems_allowed to the kernel log. 2665 */ 2666 void cpuset_print_current_mems_allowed(void) 2667 { 2668 struct cgroup *cgrp; 2669 2670 rcu_read_lock(); 2671 2672 cgrp = task_cs(current)->css.cgroup; 2673 pr_info("%s cpuset=", current->comm); 2674 pr_cont_cgroup_name(cgrp); 2675 pr_cont(" mems_allowed=%*pbl\n", 2676 nodemask_pr_args(¤t->mems_allowed)); 2677 2678 rcu_read_unlock(); 2679 } 2680 2681 /* 2682 * Collection of memory_pressure is suppressed unless 2683 * this flag is enabled by writing "1" to the special 2684 * cpuset file 'memory_pressure_enabled' in the root cpuset. 2685 */ 2686 2687 int cpuset_memory_pressure_enabled __read_mostly; 2688 2689 /** 2690 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 2691 * 2692 * Keep a running average of the rate of synchronous (direct) 2693 * page reclaim efforts initiated by tasks in each cpuset. 2694 * 2695 * This represents the rate at which some task in the cpuset 2696 * ran low on memory on all nodes it was allowed to use, and 2697 * had to enter the kernels page reclaim code in an effort to 2698 * create more free memory by tossing clean pages or swapping 2699 * or writing dirty pages. 2700 * 2701 * Display to user space in the per-cpuset read-only file 2702 * "memory_pressure". Value displayed is an integer 2703 * representing the recent rate of entry into the synchronous 2704 * (direct) page reclaim by any task attached to the cpuset. 2705 **/ 2706 2707 void __cpuset_memory_pressure_bump(void) 2708 { 2709 rcu_read_lock(); 2710 fmeter_markevent(&task_cs(current)->fmeter); 2711 rcu_read_unlock(); 2712 } 2713 2714 #ifdef CONFIG_PROC_PID_CPUSET 2715 /* 2716 * proc_cpuset_show() 2717 * - Print tasks cpuset path into seq_file. 2718 * - Used for /proc/<pid>/cpuset. 2719 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2720 * doesn't really matter if tsk->cpuset changes after we read it, 2721 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 2722 * anyway. 2723 */ 2724 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 2725 struct pid *pid, struct task_struct *tsk) 2726 { 2727 char *buf; 2728 struct cgroup_subsys_state *css; 2729 int retval; 2730 2731 retval = -ENOMEM; 2732 buf = kmalloc(PATH_MAX, GFP_KERNEL); 2733 if (!buf) 2734 goto out; 2735 2736 css = task_get_css(tsk, cpuset_cgrp_id); 2737 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 2738 current->nsproxy->cgroup_ns); 2739 css_put(css); 2740 if (retval >= PATH_MAX) 2741 retval = -ENAMETOOLONG; 2742 if (retval < 0) 2743 goto out_free; 2744 seq_puts(m, buf); 2745 seq_putc(m, '\n'); 2746 retval = 0; 2747 out_free: 2748 kfree(buf); 2749 out: 2750 return retval; 2751 } 2752 #endif /* CONFIG_PROC_PID_CPUSET */ 2753 2754 /* Display task mems_allowed in /proc/<pid>/status file. */ 2755 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 2756 { 2757 seq_printf(m, "Mems_allowed:\t%*pb\n", 2758 nodemask_pr_args(&task->mems_allowed)); 2759 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 2760 nodemask_pr_args(&task->mems_allowed)); 2761 } 2762