1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/mm.h> 49 #include <linux/sched/task.h> 50 #include <linux/seq_file.h> 51 #include <linux/security.h> 52 #include <linux/slab.h> 53 #include <linux/spinlock.h> 54 #include <linux/stat.h> 55 #include <linux/string.h> 56 #include <linux/time.h> 57 #include <linux/time64.h> 58 #include <linux/backing-dev.h> 59 #include <linux/sort.h> 60 #include <linux/oom.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/uaccess.h> 63 #include <linux/atomic.h> 64 #include <linux/mutex.h> 65 #include <linux/cgroup.h> 66 #include <linux/wait.h> 67 68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 70 71 /* See "Frequency meter" comments, below. */ 72 73 struct fmeter { 74 int cnt; /* unprocessed events count */ 75 int val; /* most recent output value */ 76 time64_t time; /* clock (secs) when val computed */ 77 spinlock_t lock; /* guards read or write of above */ 78 }; 79 80 struct cpuset { 81 struct cgroup_subsys_state css; 82 83 unsigned long flags; /* "unsigned long" so bitops work */ 84 85 /* 86 * On default hierarchy: 87 * 88 * The user-configured masks can only be changed by writing to 89 * cpuset.cpus and cpuset.mems, and won't be limited by the 90 * parent masks. 91 * 92 * The effective masks is the real masks that apply to the tasks 93 * in the cpuset. They may be changed if the configured masks are 94 * changed or hotplug happens. 95 * 96 * effective_mask == configured_mask & parent's effective_mask, 97 * and if it ends up empty, it will inherit the parent's mask. 98 * 99 * 100 * On legacy hierachy: 101 * 102 * The user-configured masks are always the same with effective masks. 103 */ 104 105 /* user-configured CPUs and Memory Nodes allow to tasks */ 106 cpumask_var_t cpus_allowed; 107 nodemask_t mems_allowed; 108 109 /* effective CPUs and Memory Nodes allow to tasks */ 110 cpumask_var_t effective_cpus; 111 nodemask_t effective_mems; 112 113 /* 114 * CPUs allocated to child sub-partitions (default hierarchy only) 115 * - CPUs granted by the parent = effective_cpus U subparts_cpus 116 * - effective_cpus and subparts_cpus are mutually exclusive. 117 * 118 * effective_cpus contains only onlined CPUs, but subparts_cpus 119 * may have offlined ones. 120 */ 121 cpumask_var_t subparts_cpus; 122 123 /* 124 * This is old Memory Nodes tasks took on. 125 * 126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 127 * - A new cpuset's old_mems_allowed is initialized when some 128 * task is moved into it. 129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 130 * cpuset.mems_allowed and have tasks' nodemask updated, and 131 * then old_mems_allowed is updated to mems_allowed. 132 */ 133 nodemask_t old_mems_allowed; 134 135 struct fmeter fmeter; /* memory_pressure filter */ 136 137 /* 138 * Tasks are being attached to this cpuset. Used to prevent 139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 140 */ 141 int attach_in_progress; 142 143 /* partition number for rebuild_sched_domains() */ 144 int pn; 145 146 /* for custom sched domain */ 147 int relax_domain_level; 148 149 /* number of CPUs in subparts_cpus */ 150 int nr_subparts_cpus; 151 152 /* partition root state */ 153 int partition_root_state; 154 155 /* 156 * Default hierarchy only: 157 * use_parent_ecpus - set if using parent's effective_cpus 158 * child_ecpus_count - # of children with use_parent_ecpus set 159 */ 160 int use_parent_ecpus; 161 int child_ecpus_count; 162 }; 163 164 /* 165 * Partition root states: 166 * 167 * 0 - not a partition root 168 * 169 * 1 - partition root 170 * 171 * -1 - invalid partition root 172 * None of the cpus in cpus_allowed can be put into the parent's 173 * subparts_cpus. In this case, the cpuset is not a real partition 174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 175 * and the cpuset can be restored back to a partition root if the 176 * parent cpuset can give more CPUs back to this child cpuset. 177 */ 178 #define PRS_DISABLED 0 179 #define PRS_ENABLED 1 180 #define PRS_ERROR -1 181 182 /* 183 * Temporary cpumasks for working with partitions that are passed among 184 * functions to avoid memory allocation in inner functions. 185 */ 186 struct tmpmasks { 187 cpumask_var_t addmask, delmask; /* For partition root */ 188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 189 }; 190 191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 192 { 193 return css ? container_of(css, struct cpuset, css) : NULL; 194 } 195 196 /* Retrieve the cpuset for a task */ 197 static inline struct cpuset *task_cs(struct task_struct *task) 198 { 199 return css_cs(task_css(task, cpuset_cgrp_id)); 200 } 201 202 static inline struct cpuset *parent_cs(struct cpuset *cs) 203 { 204 return css_cs(cs->css.parent); 205 } 206 207 /* bits in struct cpuset flags field */ 208 typedef enum { 209 CS_ONLINE, 210 CS_CPU_EXCLUSIVE, 211 CS_MEM_EXCLUSIVE, 212 CS_MEM_HARDWALL, 213 CS_MEMORY_MIGRATE, 214 CS_SCHED_LOAD_BALANCE, 215 CS_SPREAD_PAGE, 216 CS_SPREAD_SLAB, 217 } cpuset_flagbits_t; 218 219 /* convenient tests for these bits */ 220 static inline bool is_cpuset_online(struct cpuset *cs) 221 { 222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 223 } 224 225 static inline int is_cpu_exclusive(const struct cpuset *cs) 226 { 227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 228 } 229 230 static inline int is_mem_exclusive(const struct cpuset *cs) 231 { 232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 233 } 234 235 static inline int is_mem_hardwall(const struct cpuset *cs) 236 { 237 return test_bit(CS_MEM_HARDWALL, &cs->flags); 238 } 239 240 static inline int is_sched_load_balance(const struct cpuset *cs) 241 { 242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 243 } 244 245 static inline int is_memory_migrate(const struct cpuset *cs) 246 { 247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 248 } 249 250 static inline int is_spread_page(const struct cpuset *cs) 251 { 252 return test_bit(CS_SPREAD_PAGE, &cs->flags); 253 } 254 255 static inline int is_spread_slab(const struct cpuset *cs) 256 { 257 return test_bit(CS_SPREAD_SLAB, &cs->flags); 258 } 259 260 static inline int is_partition_root(const struct cpuset *cs) 261 { 262 return cs->partition_root_state > 0; 263 } 264 265 static struct cpuset top_cpuset = { 266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 267 (1 << CS_MEM_EXCLUSIVE)), 268 .partition_root_state = PRS_ENABLED, 269 }; 270 271 /** 272 * cpuset_for_each_child - traverse online children of a cpuset 273 * @child_cs: loop cursor pointing to the current child 274 * @pos_css: used for iteration 275 * @parent_cs: target cpuset to walk children of 276 * 277 * Walk @child_cs through the online children of @parent_cs. Must be used 278 * with RCU read locked. 279 */ 280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 281 css_for_each_child((pos_css), &(parent_cs)->css) \ 282 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 283 284 /** 285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 286 * @des_cs: loop cursor pointing to the current descendant 287 * @pos_css: used for iteration 288 * @root_cs: target cpuset to walk ancestor of 289 * 290 * Walk @des_cs through the online descendants of @root_cs. Must be used 291 * with RCU read locked. The caller may modify @pos_css by calling 292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 293 * iteration and the first node to be visited. 294 */ 295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 297 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 298 299 /* 300 * There are two global locks guarding cpuset structures - cpuset_mutex and 301 * callback_lock. We also require taking task_lock() when dereferencing a 302 * task's cpuset pointer. See "The task_lock() exception", at the end of this 303 * comment. 304 * 305 * A task must hold both locks to modify cpusets. If a task holds 306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 307 * is the only task able to also acquire callback_lock and be able to 308 * modify cpusets. It can perform various checks on the cpuset structure 309 * first, knowing nothing will change. It can also allocate memory while 310 * just holding cpuset_mutex. While it is performing these checks, various 311 * callback routines can briefly acquire callback_lock to query cpusets. 312 * Once it is ready to make the changes, it takes callback_lock, blocking 313 * everyone else. 314 * 315 * Calls to the kernel memory allocator can not be made while holding 316 * callback_lock, as that would risk double tripping on callback_lock 317 * from one of the callbacks into the cpuset code from within 318 * __alloc_pages(). 319 * 320 * If a task is only holding callback_lock, then it has read-only 321 * access to cpusets. 322 * 323 * Now, the task_struct fields mems_allowed and mempolicy may be changed 324 * by other task, we use alloc_lock in the task_struct fields to protect 325 * them. 326 * 327 * The cpuset_common_file_read() handlers only hold callback_lock across 328 * small pieces of code, such as when reading out possibly multi-word 329 * cpumasks and nodemasks. 330 * 331 * Accessing a task's cpuset should be done in accordance with the 332 * guidelines for accessing subsystem state in kernel/cgroup.c 333 */ 334 335 static DEFINE_MUTEX(cpuset_mutex); 336 static DEFINE_SPINLOCK(callback_lock); 337 338 static struct workqueue_struct *cpuset_migrate_mm_wq; 339 340 /* 341 * CPU / memory hotplug is handled asynchronously. 342 */ 343 static void cpuset_hotplug_workfn(struct work_struct *work); 344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 345 346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 347 348 /* 349 * Cgroup v2 behavior is used when on default hierarchy or the 350 * cgroup_v2_mode flag is set. 351 */ 352 static inline bool is_in_v2_mode(void) 353 { 354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 356 } 357 358 /* 359 * Return in pmask the portion of a cpusets's cpus_allowed that 360 * are online. If none are online, walk up the cpuset hierarchy 361 * until we find one that does have some online cpus. 362 * 363 * One way or another, we guarantee to return some non-empty subset 364 * of cpu_online_mask. 365 * 366 * Call with callback_lock or cpuset_mutex held. 367 */ 368 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 369 { 370 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 371 cs = parent_cs(cs); 372 if (unlikely(!cs)) { 373 /* 374 * The top cpuset doesn't have any online cpu as a 375 * consequence of a race between cpuset_hotplug_work 376 * and cpu hotplug notifier. But we know the top 377 * cpuset's effective_cpus is on its way to to be 378 * identical to cpu_online_mask. 379 */ 380 cpumask_copy(pmask, cpu_online_mask); 381 return; 382 } 383 } 384 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 385 } 386 387 /* 388 * Return in *pmask the portion of a cpusets's mems_allowed that 389 * are online, with memory. If none are online with memory, walk 390 * up the cpuset hierarchy until we find one that does have some 391 * online mems. The top cpuset always has some mems online. 392 * 393 * One way or another, we guarantee to return some non-empty subset 394 * of node_states[N_MEMORY]. 395 * 396 * Call with callback_lock or cpuset_mutex held. 397 */ 398 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 399 { 400 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 401 cs = parent_cs(cs); 402 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 403 } 404 405 /* 406 * update task's spread flag if cpuset's page/slab spread flag is set 407 * 408 * Call with callback_lock or cpuset_mutex held. 409 */ 410 static void cpuset_update_task_spread_flag(struct cpuset *cs, 411 struct task_struct *tsk) 412 { 413 if (is_spread_page(cs)) 414 task_set_spread_page(tsk); 415 else 416 task_clear_spread_page(tsk); 417 418 if (is_spread_slab(cs)) 419 task_set_spread_slab(tsk); 420 else 421 task_clear_spread_slab(tsk); 422 } 423 424 /* 425 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 426 * 427 * One cpuset is a subset of another if all its allowed CPUs and 428 * Memory Nodes are a subset of the other, and its exclusive flags 429 * are only set if the other's are set. Call holding cpuset_mutex. 430 */ 431 432 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 433 { 434 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 435 nodes_subset(p->mems_allowed, q->mems_allowed) && 436 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 437 is_mem_exclusive(p) <= is_mem_exclusive(q); 438 } 439 440 /** 441 * alloc_cpumasks - allocate three cpumasks for cpuset 442 * @cs: the cpuset that have cpumasks to be allocated. 443 * @tmp: the tmpmasks structure pointer 444 * Return: 0 if successful, -ENOMEM otherwise. 445 * 446 * Only one of the two input arguments should be non-NULL. 447 */ 448 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 449 { 450 cpumask_var_t *pmask1, *pmask2, *pmask3; 451 452 if (cs) { 453 pmask1 = &cs->cpus_allowed; 454 pmask2 = &cs->effective_cpus; 455 pmask3 = &cs->subparts_cpus; 456 } else { 457 pmask1 = &tmp->new_cpus; 458 pmask2 = &tmp->addmask; 459 pmask3 = &tmp->delmask; 460 } 461 462 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 463 return -ENOMEM; 464 465 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 466 goto free_one; 467 468 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 469 goto free_two; 470 471 return 0; 472 473 free_two: 474 free_cpumask_var(*pmask2); 475 free_one: 476 free_cpumask_var(*pmask1); 477 return -ENOMEM; 478 } 479 480 /** 481 * free_cpumasks - free cpumasks in a tmpmasks structure 482 * @cs: the cpuset that have cpumasks to be free. 483 * @tmp: the tmpmasks structure pointer 484 */ 485 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 486 { 487 if (cs) { 488 free_cpumask_var(cs->cpus_allowed); 489 free_cpumask_var(cs->effective_cpus); 490 free_cpumask_var(cs->subparts_cpus); 491 } 492 if (tmp) { 493 free_cpumask_var(tmp->new_cpus); 494 free_cpumask_var(tmp->addmask); 495 free_cpumask_var(tmp->delmask); 496 } 497 } 498 499 /** 500 * alloc_trial_cpuset - allocate a trial cpuset 501 * @cs: the cpuset that the trial cpuset duplicates 502 */ 503 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 504 { 505 struct cpuset *trial; 506 507 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 508 if (!trial) 509 return NULL; 510 511 if (alloc_cpumasks(trial, NULL)) { 512 kfree(trial); 513 return NULL; 514 } 515 516 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 517 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 518 return trial; 519 } 520 521 /** 522 * free_cpuset - free the cpuset 523 * @cs: the cpuset to be freed 524 */ 525 static inline void free_cpuset(struct cpuset *cs) 526 { 527 free_cpumasks(cs, NULL); 528 kfree(cs); 529 } 530 531 /* 532 * validate_change() - Used to validate that any proposed cpuset change 533 * follows the structural rules for cpusets. 534 * 535 * If we replaced the flag and mask values of the current cpuset 536 * (cur) with those values in the trial cpuset (trial), would 537 * our various subset and exclusive rules still be valid? Presumes 538 * cpuset_mutex held. 539 * 540 * 'cur' is the address of an actual, in-use cpuset. Operations 541 * such as list traversal that depend on the actual address of the 542 * cpuset in the list must use cur below, not trial. 543 * 544 * 'trial' is the address of bulk structure copy of cur, with 545 * perhaps one or more of the fields cpus_allowed, mems_allowed, 546 * or flags changed to new, trial values. 547 * 548 * Return 0 if valid, -errno if not. 549 */ 550 551 static int validate_change(struct cpuset *cur, struct cpuset *trial) 552 { 553 struct cgroup_subsys_state *css; 554 struct cpuset *c, *par; 555 int ret; 556 557 rcu_read_lock(); 558 559 /* Each of our child cpusets must be a subset of us */ 560 ret = -EBUSY; 561 cpuset_for_each_child(c, css, cur) 562 if (!is_cpuset_subset(c, trial)) 563 goto out; 564 565 /* Remaining checks don't apply to root cpuset */ 566 ret = 0; 567 if (cur == &top_cpuset) 568 goto out; 569 570 par = parent_cs(cur); 571 572 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 573 ret = -EACCES; 574 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 575 goto out; 576 577 /* 578 * If either I or some sibling (!= me) is exclusive, we can't 579 * overlap 580 */ 581 ret = -EINVAL; 582 cpuset_for_each_child(c, css, par) { 583 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 584 c != cur && 585 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 586 goto out; 587 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 588 c != cur && 589 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 590 goto out; 591 } 592 593 /* 594 * Cpusets with tasks - existing or newly being attached - can't 595 * be changed to have empty cpus_allowed or mems_allowed. 596 */ 597 ret = -ENOSPC; 598 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 599 if (!cpumask_empty(cur->cpus_allowed) && 600 cpumask_empty(trial->cpus_allowed)) 601 goto out; 602 if (!nodes_empty(cur->mems_allowed) && 603 nodes_empty(trial->mems_allowed)) 604 goto out; 605 } 606 607 /* 608 * We can't shrink if we won't have enough room for SCHED_DEADLINE 609 * tasks. 610 */ 611 ret = -EBUSY; 612 if (is_cpu_exclusive(cur) && 613 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 614 trial->cpus_allowed)) 615 goto out; 616 617 ret = 0; 618 out: 619 rcu_read_unlock(); 620 return ret; 621 } 622 623 #ifdef CONFIG_SMP 624 /* 625 * Helper routine for generate_sched_domains(). 626 * Do cpusets a, b have overlapping effective cpus_allowed masks? 627 */ 628 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 629 { 630 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 631 } 632 633 static void 634 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 635 { 636 if (dattr->relax_domain_level < c->relax_domain_level) 637 dattr->relax_domain_level = c->relax_domain_level; 638 return; 639 } 640 641 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 642 struct cpuset *root_cs) 643 { 644 struct cpuset *cp; 645 struct cgroup_subsys_state *pos_css; 646 647 rcu_read_lock(); 648 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 649 /* skip the whole subtree if @cp doesn't have any CPU */ 650 if (cpumask_empty(cp->cpus_allowed)) { 651 pos_css = css_rightmost_descendant(pos_css); 652 continue; 653 } 654 655 if (is_sched_load_balance(cp)) 656 update_domain_attr(dattr, cp); 657 } 658 rcu_read_unlock(); 659 } 660 661 /* Must be called with cpuset_mutex held. */ 662 static inline int nr_cpusets(void) 663 { 664 /* jump label reference count + the top-level cpuset */ 665 return static_key_count(&cpusets_enabled_key.key) + 1; 666 } 667 668 /* 669 * generate_sched_domains() 670 * 671 * This function builds a partial partition of the systems CPUs 672 * A 'partial partition' is a set of non-overlapping subsets whose 673 * union is a subset of that set. 674 * The output of this function needs to be passed to kernel/sched/core.c 675 * partition_sched_domains() routine, which will rebuild the scheduler's 676 * load balancing domains (sched domains) as specified by that partial 677 * partition. 678 * 679 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 680 * for a background explanation of this. 681 * 682 * Does not return errors, on the theory that the callers of this 683 * routine would rather not worry about failures to rebuild sched 684 * domains when operating in the severe memory shortage situations 685 * that could cause allocation failures below. 686 * 687 * Must be called with cpuset_mutex held. 688 * 689 * The three key local variables below are: 690 * cp - cpuset pointer, used (together with pos_css) to perform a 691 * top-down scan of all cpusets. For our purposes, rebuilding 692 * the schedulers sched domains, we can ignore !is_sched_load_ 693 * balance cpusets. 694 * csa - (for CpuSet Array) Array of pointers to all the cpusets 695 * that need to be load balanced, for convenient iterative 696 * access by the subsequent code that finds the best partition, 697 * i.e the set of domains (subsets) of CPUs such that the 698 * cpus_allowed of every cpuset marked is_sched_load_balance 699 * is a subset of one of these domains, while there are as 700 * many such domains as possible, each as small as possible. 701 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 702 * the kernel/sched/core.c routine partition_sched_domains() in a 703 * convenient format, that can be easily compared to the prior 704 * value to determine what partition elements (sched domains) 705 * were changed (added or removed.) 706 * 707 * Finding the best partition (set of domains): 708 * The triple nested loops below over i, j, k scan over the 709 * load balanced cpusets (using the array of cpuset pointers in 710 * csa[]) looking for pairs of cpusets that have overlapping 711 * cpus_allowed, but which don't have the same 'pn' partition 712 * number and gives them in the same partition number. It keeps 713 * looping on the 'restart' label until it can no longer find 714 * any such pairs. 715 * 716 * The union of the cpus_allowed masks from the set of 717 * all cpusets having the same 'pn' value then form the one 718 * element of the partition (one sched domain) to be passed to 719 * partition_sched_domains(). 720 */ 721 static int generate_sched_domains(cpumask_var_t **domains, 722 struct sched_domain_attr **attributes) 723 { 724 struct cpuset *cp; /* top-down scan of cpusets */ 725 struct cpuset **csa; /* array of all cpuset ptrs */ 726 int csn; /* how many cpuset ptrs in csa so far */ 727 int i, j, k; /* indices for partition finding loops */ 728 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 729 struct sched_domain_attr *dattr; /* attributes for custom domains */ 730 int ndoms = 0; /* number of sched domains in result */ 731 int nslot; /* next empty doms[] struct cpumask slot */ 732 struct cgroup_subsys_state *pos_css; 733 bool root_load_balance = is_sched_load_balance(&top_cpuset); 734 735 doms = NULL; 736 dattr = NULL; 737 csa = NULL; 738 739 /* Special case for the 99% of systems with one, full, sched domain */ 740 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 741 ndoms = 1; 742 doms = alloc_sched_domains(ndoms); 743 if (!doms) 744 goto done; 745 746 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 747 if (dattr) { 748 *dattr = SD_ATTR_INIT; 749 update_domain_attr_tree(dattr, &top_cpuset); 750 } 751 cpumask_and(doms[0], top_cpuset.effective_cpus, 752 housekeeping_cpumask(HK_FLAG_DOMAIN)); 753 754 goto done; 755 } 756 757 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 758 if (!csa) 759 goto done; 760 csn = 0; 761 762 rcu_read_lock(); 763 if (root_load_balance) 764 csa[csn++] = &top_cpuset; 765 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 766 if (cp == &top_cpuset) 767 continue; 768 /* 769 * Continue traversing beyond @cp iff @cp has some CPUs and 770 * isn't load balancing. The former is obvious. The 771 * latter: All child cpusets contain a subset of the 772 * parent's cpus, so just skip them, and then we call 773 * update_domain_attr_tree() to calc relax_domain_level of 774 * the corresponding sched domain. 775 * 776 * If root is load-balancing, we can skip @cp if it 777 * is a subset of the root's effective_cpus. 778 */ 779 if (!cpumask_empty(cp->cpus_allowed) && 780 !(is_sched_load_balance(cp) && 781 cpumask_intersects(cp->cpus_allowed, 782 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 783 continue; 784 785 if (root_load_balance && 786 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 787 continue; 788 789 if (is_sched_load_balance(cp)) 790 csa[csn++] = cp; 791 792 /* skip @cp's subtree if not a partition root */ 793 if (!is_partition_root(cp)) 794 pos_css = css_rightmost_descendant(pos_css); 795 } 796 rcu_read_unlock(); 797 798 for (i = 0; i < csn; i++) 799 csa[i]->pn = i; 800 ndoms = csn; 801 802 restart: 803 /* Find the best partition (set of sched domains) */ 804 for (i = 0; i < csn; i++) { 805 struct cpuset *a = csa[i]; 806 int apn = a->pn; 807 808 for (j = 0; j < csn; j++) { 809 struct cpuset *b = csa[j]; 810 int bpn = b->pn; 811 812 if (apn != bpn && cpusets_overlap(a, b)) { 813 for (k = 0; k < csn; k++) { 814 struct cpuset *c = csa[k]; 815 816 if (c->pn == bpn) 817 c->pn = apn; 818 } 819 ndoms--; /* one less element */ 820 goto restart; 821 } 822 } 823 } 824 825 /* 826 * Now we know how many domains to create. 827 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 828 */ 829 doms = alloc_sched_domains(ndoms); 830 if (!doms) 831 goto done; 832 833 /* 834 * The rest of the code, including the scheduler, can deal with 835 * dattr==NULL case. No need to abort if alloc fails. 836 */ 837 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 838 GFP_KERNEL); 839 840 for (nslot = 0, i = 0; i < csn; i++) { 841 struct cpuset *a = csa[i]; 842 struct cpumask *dp; 843 int apn = a->pn; 844 845 if (apn < 0) { 846 /* Skip completed partitions */ 847 continue; 848 } 849 850 dp = doms[nslot]; 851 852 if (nslot == ndoms) { 853 static int warnings = 10; 854 if (warnings) { 855 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 856 nslot, ndoms, csn, i, apn); 857 warnings--; 858 } 859 continue; 860 } 861 862 cpumask_clear(dp); 863 if (dattr) 864 *(dattr + nslot) = SD_ATTR_INIT; 865 for (j = i; j < csn; j++) { 866 struct cpuset *b = csa[j]; 867 868 if (apn == b->pn) { 869 cpumask_or(dp, dp, b->effective_cpus); 870 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 871 if (dattr) 872 update_domain_attr_tree(dattr + nslot, b); 873 874 /* Done with this partition */ 875 b->pn = -1; 876 } 877 } 878 nslot++; 879 } 880 BUG_ON(nslot != ndoms); 881 882 done: 883 kfree(csa); 884 885 /* 886 * Fallback to the default domain if kmalloc() failed. 887 * See comments in partition_sched_domains(). 888 */ 889 if (doms == NULL) 890 ndoms = 1; 891 892 *domains = doms; 893 *attributes = dattr; 894 return ndoms; 895 } 896 897 /* 898 * Rebuild scheduler domains. 899 * 900 * If the flag 'sched_load_balance' of any cpuset with non-empty 901 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 902 * which has that flag enabled, or if any cpuset with a non-empty 903 * 'cpus' is removed, then call this routine to rebuild the 904 * scheduler's dynamic sched domains. 905 * 906 * Call with cpuset_mutex held. Takes get_online_cpus(). 907 */ 908 static void rebuild_sched_domains_locked(void) 909 { 910 struct sched_domain_attr *attr; 911 cpumask_var_t *doms; 912 int ndoms; 913 914 lockdep_assert_held(&cpuset_mutex); 915 get_online_cpus(); 916 917 /* 918 * We have raced with CPU hotplug. Don't do anything to avoid 919 * passing doms with offlined cpu to partition_sched_domains(). 920 * Anyways, hotplug work item will rebuild sched domains. 921 */ 922 if (!top_cpuset.nr_subparts_cpus && 923 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 924 goto out; 925 926 if (top_cpuset.nr_subparts_cpus && 927 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 928 goto out; 929 930 /* Generate domain masks and attrs */ 931 ndoms = generate_sched_domains(&doms, &attr); 932 933 /* Have scheduler rebuild the domains */ 934 partition_sched_domains(ndoms, doms, attr); 935 out: 936 put_online_cpus(); 937 } 938 #else /* !CONFIG_SMP */ 939 static void rebuild_sched_domains_locked(void) 940 { 941 } 942 #endif /* CONFIG_SMP */ 943 944 void rebuild_sched_domains(void) 945 { 946 mutex_lock(&cpuset_mutex); 947 rebuild_sched_domains_locked(); 948 mutex_unlock(&cpuset_mutex); 949 } 950 951 /** 952 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 953 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 954 * 955 * Iterate through each task of @cs updating its cpus_allowed to the 956 * effective cpuset's. As this function is called with cpuset_mutex held, 957 * cpuset membership stays stable. 958 */ 959 static void update_tasks_cpumask(struct cpuset *cs) 960 { 961 struct css_task_iter it; 962 struct task_struct *task; 963 964 css_task_iter_start(&cs->css, 0, &it); 965 while ((task = css_task_iter_next(&it))) 966 set_cpus_allowed_ptr(task, cs->effective_cpus); 967 css_task_iter_end(&it); 968 } 969 970 /** 971 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 972 * @new_cpus: the temp variable for the new effective_cpus mask 973 * @cs: the cpuset the need to recompute the new effective_cpus mask 974 * @parent: the parent cpuset 975 * 976 * If the parent has subpartition CPUs, include them in the list of 977 * allowable CPUs in computing the new effective_cpus mask. Since offlined 978 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 979 * to mask those out. 980 */ 981 static void compute_effective_cpumask(struct cpumask *new_cpus, 982 struct cpuset *cs, struct cpuset *parent) 983 { 984 if (parent->nr_subparts_cpus) { 985 cpumask_or(new_cpus, parent->effective_cpus, 986 parent->subparts_cpus); 987 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 988 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 989 } else { 990 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 991 } 992 } 993 994 /* 995 * Commands for update_parent_subparts_cpumask 996 */ 997 enum subparts_cmd { 998 partcmd_enable, /* Enable partition root */ 999 partcmd_disable, /* Disable partition root */ 1000 partcmd_update, /* Update parent's subparts_cpus */ 1001 }; 1002 1003 /** 1004 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1005 * @cpuset: The cpuset that requests change in partition root state 1006 * @cmd: Partition root state change command 1007 * @newmask: Optional new cpumask for partcmd_update 1008 * @tmp: Temporary addmask and delmask 1009 * Return: 0, 1 or an error code 1010 * 1011 * For partcmd_enable, the cpuset is being transformed from a non-partition 1012 * root to a partition root. The cpus_allowed mask of the given cpuset will 1013 * be put into parent's subparts_cpus and taken away from parent's 1014 * effective_cpus. The function will return 0 if all the CPUs listed in 1015 * cpus_allowed can be granted or an error code will be returned. 1016 * 1017 * For partcmd_disable, the cpuset is being transofrmed from a partition 1018 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1019 * parent's subparts_cpus will be taken away from that cpumask and put back 1020 * into parent's effective_cpus. 0 should always be returned. 1021 * 1022 * For partcmd_update, if the optional newmask is specified, the cpu 1023 * list is to be changed from cpus_allowed to newmask. Otherwise, 1024 * cpus_allowed is assumed to remain the same. The cpuset should either 1025 * be a partition root or an invalid partition root. The partition root 1026 * state may change if newmask is NULL and none of the requested CPUs can 1027 * be granted by the parent. The function will return 1 if changes to 1028 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1029 * Error code should only be returned when newmask is non-NULL. 1030 * 1031 * The partcmd_enable and partcmd_disable commands are used by 1032 * update_prstate(). The partcmd_update command is used by 1033 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1034 * newmask set. 1035 * 1036 * The checking is more strict when enabling partition root than the 1037 * other two commands. 1038 * 1039 * Because of the implicit cpu exclusive nature of a partition root, 1040 * cpumask changes that violates the cpu exclusivity rule will not be 1041 * permitted when checked by validate_change(). The validate_change() 1042 * function will also prevent any changes to the cpu list if it is not 1043 * a superset of children's cpu lists. 1044 */ 1045 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1046 struct cpumask *newmask, 1047 struct tmpmasks *tmp) 1048 { 1049 struct cpuset *parent = parent_cs(cpuset); 1050 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1051 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1052 bool part_error = false; /* Partition error? */ 1053 1054 lockdep_assert_held(&cpuset_mutex); 1055 1056 /* 1057 * The parent must be a partition root. 1058 * The new cpumask, if present, or the current cpus_allowed must 1059 * not be empty. 1060 */ 1061 if (!is_partition_root(parent) || 1062 (newmask && cpumask_empty(newmask)) || 1063 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1064 return -EINVAL; 1065 1066 /* 1067 * Enabling/disabling partition root is not allowed if there are 1068 * online children. 1069 */ 1070 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1071 return -EBUSY; 1072 1073 /* 1074 * Enabling partition root is not allowed if not all the CPUs 1075 * can be granted from parent's effective_cpus or at least one 1076 * CPU will be left after that. 1077 */ 1078 if ((cmd == partcmd_enable) && 1079 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1080 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1081 return -EINVAL; 1082 1083 /* 1084 * A cpumask update cannot make parent's effective_cpus become empty. 1085 */ 1086 adding = deleting = false; 1087 if (cmd == partcmd_enable) { 1088 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1089 adding = true; 1090 } else if (cmd == partcmd_disable) { 1091 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1092 parent->subparts_cpus); 1093 } else if (newmask) { 1094 /* 1095 * partcmd_update with newmask: 1096 * 1097 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1098 * addmask = newmask & parent->effective_cpus 1099 * & ~parent->subparts_cpus 1100 */ 1101 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1102 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1103 parent->subparts_cpus); 1104 1105 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1106 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1107 parent->subparts_cpus); 1108 /* 1109 * Return error if the new effective_cpus could become empty. 1110 */ 1111 if (adding && 1112 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1113 if (!deleting) 1114 return -EINVAL; 1115 /* 1116 * As some of the CPUs in subparts_cpus might have 1117 * been offlined, we need to compute the real delmask 1118 * to confirm that. 1119 */ 1120 if (!cpumask_and(tmp->addmask, tmp->delmask, 1121 cpu_active_mask)) 1122 return -EINVAL; 1123 cpumask_copy(tmp->addmask, parent->effective_cpus); 1124 } 1125 } else { 1126 /* 1127 * partcmd_update w/o newmask: 1128 * 1129 * addmask = cpus_allowed & parent->effectiveb_cpus 1130 * 1131 * Note that parent's subparts_cpus may have been 1132 * pre-shrunk in case there is a change in the cpu list. 1133 * So no deletion is needed. 1134 */ 1135 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1136 parent->effective_cpus); 1137 part_error = cpumask_equal(tmp->addmask, 1138 parent->effective_cpus); 1139 } 1140 1141 if (cmd == partcmd_update) { 1142 int prev_prs = cpuset->partition_root_state; 1143 1144 /* 1145 * Check for possible transition between PRS_ENABLED 1146 * and PRS_ERROR. 1147 */ 1148 switch (cpuset->partition_root_state) { 1149 case PRS_ENABLED: 1150 if (part_error) 1151 cpuset->partition_root_state = PRS_ERROR; 1152 break; 1153 case PRS_ERROR: 1154 if (!part_error) 1155 cpuset->partition_root_state = PRS_ENABLED; 1156 break; 1157 } 1158 /* 1159 * Set part_error if previously in invalid state. 1160 */ 1161 part_error = (prev_prs == PRS_ERROR); 1162 } 1163 1164 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1165 return 0; /* Nothing need to be done */ 1166 1167 if (cpuset->partition_root_state == PRS_ERROR) { 1168 /* 1169 * Remove all its cpus from parent's subparts_cpus. 1170 */ 1171 adding = false; 1172 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1173 parent->subparts_cpus); 1174 } 1175 1176 if (!adding && !deleting) 1177 return 0; 1178 1179 /* 1180 * Change the parent's subparts_cpus. 1181 * Newly added CPUs will be removed from effective_cpus and 1182 * newly deleted ones will be added back to effective_cpus. 1183 */ 1184 spin_lock_irq(&callback_lock); 1185 if (adding) { 1186 cpumask_or(parent->subparts_cpus, 1187 parent->subparts_cpus, tmp->addmask); 1188 cpumask_andnot(parent->effective_cpus, 1189 parent->effective_cpus, tmp->addmask); 1190 } 1191 if (deleting) { 1192 cpumask_andnot(parent->subparts_cpus, 1193 parent->subparts_cpus, tmp->delmask); 1194 /* 1195 * Some of the CPUs in subparts_cpus might have been offlined. 1196 */ 1197 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1198 cpumask_or(parent->effective_cpus, 1199 parent->effective_cpus, tmp->delmask); 1200 } 1201 1202 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1203 spin_unlock_irq(&callback_lock); 1204 1205 return cmd == partcmd_update; 1206 } 1207 1208 /* 1209 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1210 * @cs: the cpuset to consider 1211 * @tmp: temp variables for calculating effective_cpus & partition setup 1212 * 1213 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1214 * and all its descendants need to be updated. 1215 * 1216 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1217 * 1218 * Called with cpuset_mutex held 1219 */ 1220 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1221 { 1222 struct cpuset *cp; 1223 struct cgroup_subsys_state *pos_css; 1224 bool need_rebuild_sched_domains = false; 1225 1226 rcu_read_lock(); 1227 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1228 struct cpuset *parent = parent_cs(cp); 1229 1230 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1231 1232 /* 1233 * If it becomes empty, inherit the effective mask of the 1234 * parent, which is guaranteed to have some CPUs. 1235 */ 1236 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1237 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1238 if (!cp->use_parent_ecpus) { 1239 cp->use_parent_ecpus = true; 1240 parent->child_ecpus_count++; 1241 } 1242 } else if (cp->use_parent_ecpus) { 1243 cp->use_parent_ecpus = false; 1244 WARN_ON_ONCE(!parent->child_ecpus_count); 1245 parent->child_ecpus_count--; 1246 } 1247 1248 /* 1249 * Skip the whole subtree if the cpumask remains the same 1250 * and has no partition root state. 1251 */ 1252 if (!cp->partition_root_state && 1253 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1254 pos_css = css_rightmost_descendant(pos_css); 1255 continue; 1256 } 1257 1258 /* 1259 * update_parent_subparts_cpumask() should have been called 1260 * for cs already in update_cpumask(). We should also call 1261 * update_tasks_cpumask() again for tasks in the parent 1262 * cpuset if the parent's subparts_cpus changes. 1263 */ 1264 if ((cp != cs) && cp->partition_root_state) { 1265 switch (parent->partition_root_state) { 1266 case PRS_DISABLED: 1267 /* 1268 * If parent is not a partition root or an 1269 * invalid partition root, clear the state 1270 * state and the CS_CPU_EXCLUSIVE flag. 1271 */ 1272 WARN_ON_ONCE(cp->partition_root_state 1273 != PRS_ERROR); 1274 cp->partition_root_state = 0; 1275 1276 /* 1277 * clear_bit() is an atomic operation and 1278 * readers aren't interested in the state 1279 * of CS_CPU_EXCLUSIVE anyway. So we can 1280 * just update the flag without holding 1281 * the callback_lock. 1282 */ 1283 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1284 break; 1285 1286 case PRS_ENABLED: 1287 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1288 update_tasks_cpumask(parent); 1289 break; 1290 1291 case PRS_ERROR: 1292 /* 1293 * When parent is invalid, it has to be too. 1294 */ 1295 cp->partition_root_state = PRS_ERROR; 1296 if (cp->nr_subparts_cpus) { 1297 cp->nr_subparts_cpus = 0; 1298 cpumask_clear(cp->subparts_cpus); 1299 } 1300 break; 1301 } 1302 } 1303 1304 if (!css_tryget_online(&cp->css)) 1305 continue; 1306 rcu_read_unlock(); 1307 1308 spin_lock_irq(&callback_lock); 1309 1310 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1311 if (cp->nr_subparts_cpus && 1312 (cp->partition_root_state != PRS_ENABLED)) { 1313 cp->nr_subparts_cpus = 0; 1314 cpumask_clear(cp->subparts_cpus); 1315 } else if (cp->nr_subparts_cpus) { 1316 /* 1317 * Make sure that effective_cpus & subparts_cpus 1318 * are mutually exclusive. 1319 * 1320 * In the unlikely event that effective_cpus 1321 * becomes empty. we clear cp->nr_subparts_cpus and 1322 * let its child partition roots to compete for 1323 * CPUs again. 1324 */ 1325 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1326 cp->subparts_cpus); 1327 if (cpumask_empty(cp->effective_cpus)) { 1328 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1329 cpumask_clear(cp->subparts_cpus); 1330 cp->nr_subparts_cpus = 0; 1331 } else if (!cpumask_subset(cp->subparts_cpus, 1332 tmp->new_cpus)) { 1333 cpumask_andnot(cp->subparts_cpus, 1334 cp->subparts_cpus, tmp->new_cpus); 1335 cp->nr_subparts_cpus 1336 = cpumask_weight(cp->subparts_cpus); 1337 } 1338 } 1339 spin_unlock_irq(&callback_lock); 1340 1341 WARN_ON(!is_in_v2_mode() && 1342 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1343 1344 update_tasks_cpumask(cp); 1345 1346 /* 1347 * On legacy hierarchy, if the effective cpumask of any non- 1348 * empty cpuset is changed, we need to rebuild sched domains. 1349 * On default hierarchy, the cpuset needs to be a partition 1350 * root as well. 1351 */ 1352 if (!cpumask_empty(cp->cpus_allowed) && 1353 is_sched_load_balance(cp) && 1354 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1355 is_partition_root(cp))) 1356 need_rebuild_sched_domains = true; 1357 1358 rcu_read_lock(); 1359 css_put(&cp->css); 1360 } 1361 rcu_read_unlock(); 1362 1363 if (need_rebuild_sched_domains) 1364 rebuild_sched_domains_locked(); 1365 } 1366 1367 /** 1368 * update_sibling_cpumasks - Update siblings cpumasks 1369 * @parent: Parent cpuset 1370 * @cs: Current cpuset 1371 * @tmp: Temp variables 1372 */ 1373 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1374 struct tmpmasks *tmp) 1375 { 1376 struct cpuset *sibling; 1377 struct cgroup_subsys_state *pos_css; 1378 1379 /* 1380 * Check all its siblings and call update_cpumasks_hier() 1381 * if their use_parent_ecpus flag is set in order for them 1382 * to use the right effective_cpus value. 1383 */ 1384 rcu_read_lock(); 1385 cpuset_for_each_child(sibling, pos_css, parent) { 1386 if (sibling == cs) 1387 continue; 1388 if (!sibling->use_parent_ecpus) 1389 continue; 1390 1391 update_cpumasks_hier(sibling, tmp); 1392 } 1393 rcu_read_unlock(); 1394 } 1395 1396 /** 1397 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1398 * @cs: the cpuset to consider 1399 * @trialcs: trial cpuset 1400 * @buf: buffer of cpu numbers written to this cpuset 1401 */ 1402 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1403 const char *buf) 1404 { 1405 int retval; 1406 struct tmpmasks tmp; 1407 1408 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1409 if (cs == &top_cpuset) 1410 return -EACCES; 1411 1412 /* 1413 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1414 * Since cpulist_parse() fails on an empty mask, we special case 1415 * that parsing. The validate_change() call ensures that cpusets 1416 * with tasks have cpus. 1417 */ 1418 if (!*buf) { 1419 cpumask_clear(trialcs->cpus_allowed); 1420 } else { 1421 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1422 if (retval < 0) 1423 return retval; 1424 1425 if (!cpumask_subset(trialcs->cpus_allowed, 1426 top_cpuset.cpus_allowed)) 1427 return -EINVAL; 1428 } 1429 1430 /* Nothing to do if the cpus didn't change */ 1431 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1432 return 0; 1433 1434 retval = validate_change(cs, trialcs); 1435 if (retval < 0) 1436 return retval; 1437 1438 #ifdef CONFIG_CPUMASK_OFFSTACK 1439 /* 1440 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1441 * to allocated cpumasks. 1442 */ 1443 tmp.addmask = trialcs->subparts_cpus; 1444 tmp.delmask = trialcs->effective_cpus; 1445 tmp.new_cpus = trialcs->cpus_allowed; 1446 #endif 1447 1448 if (cs->partition_root_state) { 1449 /* Cpumask of a partition root cannot be empty */ 1450 if (cpumask_empty(trialcs->cpus_allowed)) 1451 return -EINVAL; 1452 if (update_parent_subparts_cpumask(cs, partcmd_update, 1453 trialcs->cpus_allowed, &tmp) < 0) 1454 return -EINVAL; 1455 } 1456 1457 spin_lock_irq(&callback_lock); 1458 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1459 1460 /* 1461 * Make sure that subparts_cpus is a subset of cpus_allowed. 1462 */ 1463 if (cs->nr_subparts_cpus) { 1464 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1465 cs->cpus_allowed); 1466 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1467 } 1468 spin_unlock_irq(&callback_lock); 1469 1470 update_cpumasks_hier(cs, &tmp); 1471 1472 if (cs->partition_root_state) { 1473 struct cpuset *parent = parent_cs(cs); 1474 1475 /* 1476 * For partition root, update the cpumasks of sibling 1477 * cpusets if they use parent's effective_cpus. 1478 */ 1479 if (parent->child_ecpus_count) 1480 update_sibling_cpumasks(parent, cs, &tmp); 1481 } 1482 return 0; 1483 } 1484 1485 /* 1486 * Migrate memory region from one set of nodes to another. This is 1487 * performed asynchronously as it can be called from process migration path 1488 * holding locks involved in process management. All mm migrations are 1489 * performed in the queued order and can be waited for by flushing 1490 * cpuset_migrate_mm_wq. 1491 */ 1492 1493 struct cpuset_migrate_mm_work { 1494 struct work_struct work; 1495 struct mm_struct *mm; 1496 nodemask_t from; 1497 nodemask_t to; 1498 }; 1499 1500 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1501 { 1502 struct cpuset_migrate_mm_work *mwork = 1503 container_of(work, struct cpuset_migrate_mm_work, work); 1504 1505 /* on a wq worker, no need to worry about %current's mems_allowed */ 1506 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1507 mmput(mwork->mm); 1508 kfree(mwork); 1509 } 1510 1511 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1512 const nodemask_t *to) 1513 { 1514 struct cpuset_migrate_mm_work *mwork; 1515 1516 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1517 if (mwork) { 1518 mwork->mm = mm; 1519 mwork->from = *from; 1520 mwork->to = *to; 1521 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1522 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1523 } else { 1524 mmput(mm); 1525 } 1526 } 1527 1528 static void cpuset_post_attach(void) 1529 { 1530 flush_workqueue(cpuset_migrate_mm_wq); 1531 } 1532 1533 /* 1534 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1535 * @tsk: the task to change 1536 * @newmems: new nodes that the task will be set 1537 * 1538 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1539 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1540 * parallel, it might temporarily see an empty intersection, which results in 1541 * a seqlock check and retry before OOM or allocation failure. 1542 */ 1543 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1544 nodemask_t *newmems) 1545 { 1546 task_lock(tsk); 1547 1548 local_irq_disable(); 1549 write_seqcount_begin(&tsk->mems_allowed_seq); 1550 1551 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1552 mpol_rebind_task(tsk, newmems); 1553 tsk->mems_allowed = *newmems; 1554 1555 write_seqcount_end(&tsk->mems_allowed_seq); 1556 local_irq_enable(); 1557 1558 task_unlock(tsk); 1559 } 1560 1561 static void *cpuset_being_rebound; 1562 1563 /** 1564 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1565 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1566 * 1567 * Iterate through each task of @cs updating its mems_allowed to the 1568 * effective cpuset's. As this function is called with cpuset_mutex held, 1569 * cpuset membership stays stable. 1570 */ 1571 static void update_tasks_nodemask(struct cpuset *cs) 1572 { 1573 static nodemask_t newmems; /* protected by cpuset_mutex */ 1574 struct css_task_iter it; 1575 struct task_struct *task; 1576 1577 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1578 1579 guarantee_online_mems(cs, &newmems); 1580 1581 /* 1582 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1583 * take while holding tasklist_lock. Forks can happen - the 1584 * mpol_dup() cpuset_being_rebound check will catch such forks, 1585 * and rebind their vma mempolicies too. Because we still hold 1586 * the global cpuset_mutex, we know that no other rebind effort 1587 * will be contending for the global variable cpuset_being_rebound. 1588 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1589 * is idempotent. Also migrate pages in each mm to new nodes. 1590 */ 1591 css_task_iter_start(&cs->css, 0, &it); 1592 while ((task = css_task_iter_next(&it))) { 1593 struct mm_struct *mm; 1594 bool migrate; 1595 1596 cpuset_change_task_nodemask(task, &newmems); 1597 1598 mm = get_task_mm(task); 1599 if (!mm) 1600 continue; 1601 1602 migrate = is_memory_migrate(cs); 1603 1604 mpol_rebind_mm(mm, &cs->mems_allowed); 1605 if (migrate) 1606 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1607 else 1608 mmput(mm); 1609 } 1610 css_task_iter_end(&it); 1611 1612 /* 1613 * All the tasks' nodemasks have been updated, update 1614 * cs->old_mems_allowed. 1615 */ 1616 cs->old_mems_allowed = newmems; 1617 1618 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1619 cpuset_being_rebound = NULL; 1620 } 1621 1622 /* 1623 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1624 * @cs: the cpuset to consider 1625 * @new_mems: a temp variable for calculating new effective_mems 1626 * 1627 * When configured nodemask is changed, the effective nodemasks of this cpuset 1628 * and all its descendants need to be updated. 1629 * 1630 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1631 * 1632 * Called with cpuset_mutex held 1633 */ 1634 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1635 { 1636 struct cpuset *cp; 1637 struct cgroup_subsys_state *pos_css; 1638 1639 rcu_read_lock(); 1640 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1641 struct cpuset *parent = parent_cs(cp); 1642 1643 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1644 1645 /* 1646 * If it becomes empty, inherit the effective mask of the 1647 * parent, which is guaranteed to have some MEMs. 1648 */ 1649 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1650 *new_mems = parent->effective_mems; 1651 1652 /* Skip the whole subtree if the nodemask remains the same. */ 1653 if (nodes_equal(*new_mems, cp->effective_mems)) { 1654 pos_css = css_rightmost_descendant(pos_css); 1655 continue; 1656 } 1657 1658 if (!css_tryget_online(&cp->css)) 1659 continue; 1660 rcu_read_unlock(); 1661 1662 spin_lock_irq(&callback_lock); 1663 cp->effective_mems = *new_mems; 1664 spin_unlock_irq(&callback_lock); 1665 1666 WARN_ON(!is_in_v2_mode() && 1667 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1668 1669 update_tasks_nodemask(cp); 1670 1671 rcu_read_lock(); 1672 css_put(&cp->css); 1673 } 1674 rcu_read_unlock(); 1675 } 1676 1677 /* 1678 * Handle user request to change the 'mems' memory placement 1679 * of a cpuset. Needs to validate the request, update the 1680 * cpusets mems_allowed, and for each task in the cpuset, 1681 * update mems_allowed and rebind task's mempolicy and any vma 1682 * mempolicies and if the cpuset is marked 'memory_migrate', 1683 * migrate the tasks pages to the new memory. 1684 * 1685 * Call with cpuset_mutex held. May take callback_lock during call. 1686 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1687 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1688 * their mempolicies to the cpusets new mems_allowed. 1689 */ 1690 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1691 const char *buf) 1692 { 1693 int retval; 1694 1695 /* 1696 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1697 * it's read-only 1698 */ 1699 if (cs == &top_cpuset) { 1700 retval = -EACCES; 1701 goto done; 1702 } 1703 1704 /* 1705 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1706 * Since nodelist_parse() fails on an empty mask, we special case 1707 * that parsing. The validate_change() call ensures that cpusets 1708 * with tasks have memory. 1709 */ 1710 if (!*buf) { 1711 nodes_clear(trialcs->mems_allowed); 1712 } else { 1713 retval = nodelist_parse(buf, trialcs->mems_allowed); 1714 if (retval < 0) 1715 goto done; 1716 1717 if (!nodes_subset(trialcs->mems_allowed, 1718 top_cpuset.mems_allowed)) { 1719 retval = -EINVAL; 1720 goto done; 1721 } 1722 } 1723 1724 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1725 retval = 0; /* Too easy - nothing to do */ 1726 goto done; 1727 } 1728 retval = validate_change(cs, trialcs); 1729 if (retval < 0) 1730 goto done; 1731 1732 spin_lock_irq(&callback_lock); 1733 cs->mems_allowed = trialcs->mems_allowed; 1734 spin_unlock_irq(&callback_lock); 1735 1736 /* use trialcs->mems_allowed as a temp variable */ 1737 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1738 done: 1739 return retval; 1740 } 1741 1742 bool current_cpuset_is_being_rebound(void) 1743 { 1744 bool ret; 1745 1746 rcu_read_lock(); 1747 ret = task_cs(current) == cpuset_being_rebound; 1748 rcu_read_unlock(); 1749 1750 return ret; 1751 } 1752 1753 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1754 { 1755 #ifdef CONFIG_SMP 1756 if (val < -1 || val >= sched_domain_level_max) 1757 return -EINVAL; 1758 #endif 1759 1760 if (val != cs->relax_domain_level) { 1761 cs->relax_domain_level = val; 1762 if (!cpumask_empty(cs->cpus_allowed) && 1763 is_sched_load_balance(cs)) 1764 rebuild_sched_domains_locked(); 1765 } 1766 1767 return 0; 1768 } 1769 1770 /** 1771 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1772 * @cs: the cpuset in which each task's spread flags needs to be changed 1773 * 1774 * Iterate through each task of @cs updating its spread flags. As this 1775 * function is called with cpuset_mutex held, cpuset membership stays 1776 * stable. 1777 */ 1778 static void update_tasks_flags(struct cpuset *cs) 1779 { 1780 struct css_task_iter it; 1781 struct task_struct *task; 1782 1783 css_task_iter_start(&cs->css, 0, &it); 1784 while ((task = css_task_iter_next(&it))) 1785 cpuset_update_task_spread_flag(cs, task); 1786 css_task_iter_end(&it); 1787 } 1788 1789 /* 1790 * update_flag - read a 0 or a 1 in a file and update associated flag 1791 * bit: the bit to update (see cpuset_flagbits_t) 1792 * cs: the cpuset to update 1793 * turning_on: whether the flag is being set or cleared 1794 * 1795 * Call with cpuset_mutex held. 1796 */ 1797 1798 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1799 int turning_on) 1800 { 1801 struct cpuset *trialcs; 1802 int balance_flag_changed; 1803 int spread_flag_changed; 1804 int err; 1805 1806 trialcs = alloc_trial_cpuset(cs); 1807 if (!trialcs) 1808 return -ENOMEM; 1809 1810 if (turning_on) 1811 set_bit(bit, &trialcs->flags); 1812 else 1813 clear_bit(bit, &trialcs->flags); 1814 1815 err = validate_change(cs, trialcs); 1816 if (err < 0) 1817 goto out; 1818 1819 balance_flag_changed = (is_sched_load_balance(cs) != 1820 is_sched_load_balance(trialcs)); 1821 1822 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1823 || (is_spread_page(cs) != is_spread_page(trialcs))); 1824 1825 spin_lock_irq(&callback_lock); 1826 cs->flags = trialcs->flags; 1827 spin_unlock_irq(&callback_lock); 1828 1829 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1830 rebuild_sched_domains_locked(); 1831 1832 if (spread_flag_changed) 1833 update_tasks_flags(cs); 1834 out: 1835 free_cpuset(trialcs); 1836 return err; 1837 } 1838 1839 /* 1840 * update_prstate - update partititon_root_state 1841 * cs: the cpuset to update 1842 * val: 0 - disabled, 1 - enabled 1843 * 1844 * Call with cpuset_mutex held. 1845 */ 1846 static int update_prstate(struct cpuset *cs, int val) 1847 { 1848 int err; 1849 struct cpuset *parent = parent_cs(cs); 1850 struct tmpmasks tmp; 1851 1852 if ((val != 0) && (val != 1)) 1853 return -EINVAL; 1854 if (val == cs->partition_root_state) 1855 return 0; 1856 1857 /* 1858 * Cannot force a partial or invalid partition root to a full 1859 * partition root. 1860 */ 1861 if (val && cs->partition_root_state) 1862 return -EINVAL; 1863 1864 if (alloc_cpumasks(NULL, &tmp)) 1865 return -ENOMEM; 1866 1867 err = -EINVAL; 1868 if (!cs->partition_root_state) { 1869 /* 1870 * Turning on partition root requires setting the 1871 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1872 * cannot be NULL. 1873 */ 1874 if (cpumask_empty(cs->cpus_allowed)) 1875 goto out; 1876 1877 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1878 if (err) 1879 goto out; 1880 1881 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1882 NULL, &tmp); 1883 if (err) { 1884 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1885 goto out; 1886 } 1887 cs->partition_root_state = PRS_ENABLED; 1888 } else { 1889 /* 1890 * Turning off partition root will clear the 1891 * CS_CPU_EXCLUSIVE bit. 1892 */ 1893 if (cs->partition_root_state == PRS_ERROR) { 1894 cs->partition_root_state = 0; 1895 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1896 err = 0; 1897 goto out; 1898 } 1899 1900 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1901 NULL, &tmp); 1902 if (err) 1903 goto out; 1904 1905 cs->partition_root_state = 0; 1906 1907 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1908 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1909 } 1910 1911 /* 1912 * Update cpumask of parent's tasks except when it is the top 1913 * cpuset as some system daemons cannot be mapped to other CPUs. 1914 */ 1915 if (parent != &top_cpuset) 1916 update_tasks_cpumask(parent); 1917 1918 if (parent->child_ecpus_count) 1919 update_sibling_cpumasks(parent, cs, &tmp); 1920 1921 rebuild_sched_domains_locked(); 1922 out: 1923 free_cpumasks(NULL, &tmp); 1924 return err; 1925 } 1926 1927 /* 1928 * Frequency meter - How fast is some event occurring? 1929 * 1930 * These routines manage a digitally filtered, constant time based, 1931 * event frequency meter. There are four routines: 1932 * fmeter_init() - initialize a frequency meter. 1933 * fmeter_markevent() - called each time the event happens. 1934 * fmeter_getrate() - returns the recent rate of such events. 1935 * fmeter_update() - internal routine used to update fmeter. 1936 * 1937 * A common data structure is passed to each of these routines, 1938 * which is used to keep track of the state required to manage the 1939 * frequency meter and its digital filter. 1940 * 1941 * The filter works on the number of events marked per unit time. 1942 * The filter is single-pole low-pass recursive (IIR). The time unit 1943 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1944 * simulate 3 decimal digits of precision (multiplied by 1000). 1945 * 1946 * With an FM_COEF of 933, and a time base of 1 second, the filter 1947 * has a half-life of 10 seconds, meaning that if the events quit 1948 * happening, then the rate returned from the fmeter_getrate() 1949 * will be cut in half each 10 seconds, until it converges to zero. 1950 * 1951 * It is not worth doing a real infinitely recursive filter. If more 1952 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1953 * just compute FM_MAXTICKS ticks worth, by which point the level 1954 * will be stable. 1955 * 1956 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1957 * arithmetic overflow in the fmeter_update() routine. 1958 * 1959 * Given the simple 32 bit integer arithmetic used, this meter works 1960 * best for reporting rates between one per millisecond (msec) and 1961 * one per 32 (approx) seconds. At constant rates faster than one 1962 * per msec it maxes out at values just under 1,000,000. At constant 1963 * rates between one per msec, and one per second it will stabilize 1964 * to a value N*1000, where N is the rate of events per second. 1965 * At constant rates between one per second and one per 32 seconds, 1966 * it will be choppy, moving up on the seconds that have an event, 1967 * and then decaying until the next event. At rates slower than 1968 * about one in 32 seconds, it decays all the way back to zero between 1969 * each event. 1970 */ 1971 1972 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1973 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 1974 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1975 #define FM_SCALE 1000 /* faux fixed point scale */ 1976 1977 /* Initialize a frequency meter */ 1978 static void fmeter_init(struct fmeter *fmp) 1979 { 1980 fmp->cnt = 0; 1981 fmp->val = 0; 1982 fmp->time = 0; 1983 spin_lock_init(&fmp->lock); 1984 } 1985 1986 /* Internal meter update - process cnt events and update value */ 1987 static void fmeter_update(struct fmeter *fmp) 1988 { 1989 time64_t now; 1990 u32 ticks; 1991 1992 now = ktime_get_seconds(); 1993 ticks = now - fmp->time; 1994 1995 if (ticks == 0) 1996 return; 1997 1998 ticks = min(FM_MAXTICKS, ticks); 1999 while (ticks-- > 0) 2000 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2001 fmp->time = now; 2002 2003 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2004 fmp->cnt = 0; 2005 } 2006 2007 /* Process any previous ticks, then bump cnt by one (times scale). */ 2008 static void fmeter_markevent(struct fmeter *fmp) 2009 { 2010 spin_lock(&fmp->lock); 2011 fmeter_update(fmp); 2012 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2013 spin_unlock(&fmp->lock); 2014 } 2015 2016 /* Process any previous ticks, then return current value. */ 2017 static int fmeter_getrate(struct fmeter *fmp) 2018 { 2019 int val; 2020 2021 spin_lock(&fmp->lock); 2022 fmeter_update(fmp); 2023 val = fmp->val; 2024 spin_unlock(&fmp->lock); 2025 return val; 2026 } 2027 2028 static struct cpuset *cpuset_attach_old_cs; 2029 2030 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2031 static int cpuset_can_attach(struct cgroup_taskset *tset) 2032 { 2033 struct cgroup_subsys_state *css; 2034 struct cpuset *cs; 2035 struct task_struct *task; 2036 int ret; 2037 2038 /* used later by cpuset_attach() */ 2039 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2040 cs = css_cs(css); 2041 2042 mutex_lock(&cpuset_mutex); 2043 2044 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2045 ret = -ENOSPC; 2046 if (!is_in_v2_mode() && 2047 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2048 goto out_unlock; 2049 2050 cgroup_taskset_for_each(task, css, tset) { 2051 ret = task_can_attach(task, cs->cpus_allowed); 2052 if (ret) 2053 goto out_unlock; 2054 ret = security_task_setscheduler(task); 2055 if (ret) 2056 goto out_unlock; 2057 } 2058 2059 /* 2060 * Mark attach is in progress. This makes validate_change() fail 2061 * changes which zero cpus/mems_allowed. 2062 */ 2063 cs->attach_in_progress++; 2064 ret = 0; 2065 out_unlock: 2066 mutex_unlock(&cpuset_mutex); 2067 return ret; 2068 } 2069 2070 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2071 { 2072 struct cgroup_subsys_state *css; 2073 2074 cgroup_taskset_first(tset, &css); 2075 2076 mutex_lock(&cpuset_mutex); 2077 css_cs(css)->attach_in_progress--; 2078 mutex_unlock(&cpuset_mutex); 2079 } 2080 2081 /* 2082 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2083 * but we can't allocate it dynamically there. Define it global and 2084 * allocate from cpuset_init(). 2085 */ 2086 static cpumask_var_t cpus_attach; 2087 2088 static void cpuset_attach(struct cgroup_taskset *tset) 2089 { 2090 /* static buf protected by cpuset_mutex */ 2091 static nodemask_t cpuset_attach_nodemask_to; 2092 struct task_struct *task; 2093 struct task_struct *leader; 2094 struct cgroup_subsys_state *css; 2095 struct cpuset *cs; 2096 struct cpuset *oldcs = cpuset_attach_old_cs; 2097 2098 cgroup_taskset_first(tset, &css); 2099 cs = css_cs(css); 2100 2101 mutex_lock(&cpuset_mutex); 2102 2103 /* prepare for attach */ 2104 if (cs == &top_cpuset) 2105 cpumask_copy(cpus_attach, cpu_possible_mask); 2106 else 2107 guarantee_online_cpus(cs, cpus_attach); 2108 2109 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2110 2111 cgroup_taskset_for_each(task, css, tset) { 2112 /* 2113 * can_attach beforehand should guarantee that this doesn't 2114 * fail. TODO: have a better way to handle failure here 2115 */ 2116 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2117 2118 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2119 cpuset_update_task_spread_flag(cs, task); 2120 } 2121 2122 /* 2123 * Change mm for all threadgroup leaders. This is expensive and may 2124 * sleep and should be moved outside migration path proper. 2125 */ 2126 cpuset_attach_nodemask_to = cs->effective_mems; 2127 cgroup_taskset_for_each_leader(leader, css, tset) { 2128 struct mm_struct *mm = get_task_mm(leader); 2129 2130 if (mm) { 2131 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2132 2133 /* 2134 * old_mems_allowed is the same with mems_allowed 2135 * here, except if this task is being moved 2136 * automatically due to hotplug. In that case 2137 * @mems_allowed has been updated and is empty, so 2138 * @old_mems_allowed is the right nodesets that we 2139 * migrate mm from. 2140 */ 2141 if (is_memory_migrate(cs)) 2142 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2143 &cpuset_attach_nodemask_to); 2144 else 2145 mmput(mm); 2146 } 2147 } 2148 2149 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2150 2151 cs->attach_in_progress--; 2152 if (!cs->attach_in_progress) 2153 wake_up(&cpuset_attach_wq); 2154 2155 mutex_unlock(&cpuset_mutex); 2156 } 2157 2158 /* The various types of files and directories in a cpuset file system */ 2159 2160 typedef enum { 2161 FILE_MEMORY_MIGRATE, 2162 FILE_CPULIST, 2163 FILE_MEMLIST, 2164 FILE_EFFECTIVE_CPULIST, 2165 FILE_EFFECTIVE_MEMLIST, 2166 FILE_SUBPARTS_CPULIST, 2167 FILE_CPU_EXCLUSIVE, 2168 FILE_MEM_EXCLUSIVE, 2169 FILE_MEM_HARDWALL, 2170 FILE_SCHED_LOAD_BALANCE, 2171 FILE_PARTITION_ROOT, 2172 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2173 FILE_MEMORY_PRESSURE_ENABLED, 2174 FILE_MEMORY_PRESSURE, 2175 FILE_SPREAD_PAGE, 2176 FILE_SPREAD_SLAB, 2177 } cpuset_filetype_t; 2178 2179 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2180 u64 val) 2181 { 2182 struct cpuset *cs = css_cs(css); 2183 cpuset_filetype_t type = cft->private; 2184 int retval = 0; 2185 2186 mutex_lock(&cpuset_mutex); 2187 if (!is_cpuset_online(cs)) { 2188 retval = -ENODEV; 2189 goto out_unlock; 2190 } 2191 2192 switch (type) { 2193 case FILE_CPU_EXCLUSIVE: 2194 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2195 break; 2196 case FILE_MEM_EXCLUSIVE: 2197 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2198 break; 2199 case FILE_MEM_HARDWALL: 2200 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2201 break; 2202 case FILE_SCHED_LOAD_BALANCE: 2203 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2204 break; 2205 case FILE_MEMORY_MIGRATE: 2206 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2207 break; 2208 case FILE_MEMORY_PRESSURE_ENABLED: 2209 cpuset_memory_pressure_enabled = !!val; 2210 break; 2211 case FILE_SPREAD_PAGE: 2212 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2213 break; 2214 case FILE_SPREAD_SLAB: 2215 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2216 break; 2217 default: 2218 retval = -EINVAL; 2219 break; 2220 } 2221 out_unlock: 2222 mutex_unlock(&cpuset_mutex); 2223 return retval; 2224 } 2225 2226 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2227 s64 val) 2228 { 2229 struct cpuset *cs = css_cs(css); 2230 cpuset_filetype_t type = cft->private; 2231 int retval = -ENODEV; 2232 2233 mutex_lock(&cpuset_mutex); 2234 if (!is_cpuset_online(cs)) 2235 goto out_unlock; 2236 2237 switch (type) { 2238 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2239 retval = update_relax_domain_level(cs, val); 2240 break; 2241 default: 2242 retval = -EINVAL; 2243 break; 2244 } 2245 out_unlock: 2246 mutex_unlock(&cpuset_mutex); 2247 return retval; 2248 } 2249 2250 /* 2251 * Common handling for a write to a "cpus" or "mems" file. 2252 */ 2253 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2254 char *buf, size_t nbytes, loff_t off) 2255 { 2256 struct cpuset *cs = css_cs(of_css(of)); 2257 struct cpuset *trialcs; 2258 int retval = -ENODEV; 2259 2260 buf = strstrip(buf); 2261 2262 /* 2263 * CPU or memory hotunplug may leave @cs w/o any execution 2264 * resources, in which case the hotplug code asynchronously updates 2265 * configuration and transfers all tasks to the nearest ancestor 2266 * which can execute. 2267 * 2268 * As writes to "cpus" or "mems" may restore @cs's execution 2269 * resources, wait for the previously scheduled operations before 2270 * proceeding, so that we don't end up keep removing tasks added 2271 * after execution capability is restored. 2272 * 2273 * cpuset_hotplug_work calls back into cgroup core via 2274 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2275 * operation like this one can lead to a deadlock through kernfs 2276 * active_ref protection. Let's break the protection. Losing the 2277 * protection is okay as we check whether @cs is online after 2278 * grabbing cpuset_mutex anyway. This only happens on the legacy 2279 * hierarchies. 2280 */ 2281 css_get(&cs->css); 2282 kernfs_break_active_protection(of->kn); 2283 flush_work(&cpuset_hotplug_work); 2284 2285 mutex_lock(&cpuset_mutex); 2286 if (!is_cpuset_online(cs)) 2287 goto out_unlock; 2288 2289 trialcs = alloc_trial_cpuset(cs); 2290 if (!trialcs) { 2291 retval = -ENOMEM; 2292 goto out_unlock; 2293 } 2294 2295 switch (of_cft(of)->private) { 2296 case FILE_CPULIST: 2297 retval = update_cpumask(cs, trialcs, buf); 2298 break; 2299 case FILE_MEMLIST: 2300 retval = update_nodemask(cs, trialcs, buf); 2301 break; 2302 default: 2303 retval = -EINVAL; 2304 break; 2305 } 2306 2307 free_cpuset(trialcs); 2308 out_unlock: 2309 mutex_unlock(&cpuset_mutex); 2310 kernfs_unbreak_active_protection(of->kn); 2311 css_put(&cs->css); 2312 flush_workqueue(cpuset_migrate_mm_wq); 2313 return retval ?: nbytes; 2314 } 2315 2316 /* 2317 * These ascii lists should be read in a single call, by using a user 2318 * buffer large enough to hold the entire map. If read in smaller 2319 * chunks, there is no guarantee of atomicity. Since the display format 2320 * used, list of ranges of sequential numbers, is variable length, 2321 * and since these maps can change value dynamically, one could read 2322 * gibberish by doing partial reads while a list was changing. 2323 */ 2324 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2325 { 2326 struct cpuset *cs = css_cs(seq_css(sf)); 2327 cpuset_filetype_t type = seq_cft(sf)->private; 2328 int ret = 0; 2329 2330 spin_lock_irq(&callback_lock); 2331 2332 switch (type) { 2333 case FILE_CPULIST: 2334 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2335 break; 2336 case FILE_MEMLIST: 2337 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2338 break; 2339 case FILE_EFFECTIVE_CPULIST: 2340 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2341 break; 2342 case FILE_EFFECTIVE_MEMLIST: 2343 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2344 break; 2345 case FILE_SUBPARTS_CPULIST: 2346 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2347 break; 2348 default: 2349 ret = -EINVAL; 2350 } 2351 2352 spin_unlock_irq(&callback_lock); 2353 return ret; 2354 } 2355 2356 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2357 { 2358 struct cpuset *cs = css_cs(css); 2359 cpuset_filetype_t type = cft->private; 2360 switch (type) { 2361 case FILE_CPU_EXCLUSIVE: 2362 return is_cpu_exclusive(cs); 2363 case FILE_MEM_EXCLUSIVE: 2364 return is_mem_exclusive(cs); 2365 case FILE_MEM_HARDWALL: 2366 return is_mem_hardwall(cs); 2367 case FILE_SCHED_LOAD_BALANCE: 2368 return is_sched_load_balance(cs); 2369 case FILE_MEMORY_MIGRATE: 2370 return is_memory_migrate(cs); 2371 case FILE_MEMORY_PRESSURE_ENABLED: 2372 return cpuset_memory_pressure_enabled; 2373 case FILE_MEMORY_PRESSURE: 2374 return fmeter_getrate(&cs->fmeter); 2375 case FILE_SPREAD_PAGE: 2376 return is_spread_page(cs); 2377 case FILE_SPREAD_SLAB: 2378 return is_spread_slab(cs); 2379 default: 2380 BUG(); 2381 } 2382 2383 /* Unreachable but makes gcc happy */ 2384 return 0; 2385 } 2386 2387 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2388 { 2389 struct cpuset *cs = css_cs(css); 2390 cpuset_filetype_t type = cft->private; 2391 switch (type) { 2392 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2393 return cs->relax_domain_level; 2394 default: 2395 BUG(); 2396 } 2397 2398 /* Unrechable but makes gcc happy */ 2399 return 0; 2400 } 2401 2402 static int sched_partition_show(struct seq_file *seq, void *v) 2403 { 2404 struct cpuset *cs = css_cs(seq_css(seq)); 2405 2406 switch (cs->partition_root_state) { 2407 case PRS_ENABLED: 2408 seq_puts(seq, "root\n"); 2409 break; 2410 case PRS_DISABLED: 2411 seq_puts(seq, "member\n"); 2412 break; 2413 case PRS_ERROR: 2414 seq_puts(seq, "root invalid\n"); 2415 break; 2416 } 2417 return 0; 2418 } 2419 2420 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2421 size_t nbytes, loff_t off) 2422 { 2423 struct cpuset *cs = css_cs(of_css(of)); 2424 int val; 2425 int retval = -ENODEV; 2426 2427 buf = strstrip(buf); 2428 2429 /* 2430 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2431 */ 2432 if (!strcmp(buf, "root")) 2433 val = PRS_ENABLED; 2434 else if (!strcmp(buf, "member")) 2435 val = PRS_DISABLED; 2436 else 2437 return -EINVAL; 2438 2439 css_get(&cs->css); 2440 mutex_lock(&cpuset_mutex); 2441 if (!is_cpuset_online(cs)) 2442 goto out_unlock; 2443 2444 retval = update_prstate(cs, val); 2445 out_unlock: 2446 mutex_unlock(&cpuset_mutex); 2447 css_put(&cs->css); 2448 return retval ?: nbytes; 2449 } 2450 2451 /* 2452 * for the common functions, 'private' gives the type of file 2453 */ 2454 2455 static struct cftype legacy_files[] = { 2456 { 2457 .name = "cpus", 2458 .seq_show = cpuset_common_seq_show, 2459 .write = cpuset_write_resmask, 2460 .max_write_len = (100U + 6 * NR_CPUS), 2461 .private = FILE_CPULIST, 2462 }, 2463 2464 { 2465 .name = "mems", 2466 .seq_show = cpuset_common_seq_show, 2467 .write = cpuset_write_resmask, 2468 .max_write_len = (100U + 6 * MAX_NUMNODES), 2469 .private = FILE_MEMLIST, 2470 }, 2471 2472 { 2473 .name = "effective_cpus", 2474 .seq_show = cpuset_common_seq_show, 2475 .private = FILE_EFFECTIVE_CPULIST, 2476 }, 2477 2478 { 2479 .name = "effective_mems", 2480 .seq_show = cpuset_common_seq_show, 2481 .private = FILE_EFFECTIVE_MEMLIST, 2482 }, 2483 2484 { 2485 .name = "cpu_exclusive", 2486 .read_u64 = cpuset_read_u64, 2487 .write_u64 = cpuset_write_u64, 2488 .private = FILE_CPU_EXCLUSIVE, 2489 }, 2490 2491 { 2492 .name = "mem_exclusive", 2493 .read_u64 = cpuset_read_u64, 2494 .write_u64 = cpuset_write_u64, 2495 .private = FILE_MEM_EXCLUSIVE, 2496 }, 2497 2498 { 2499 .name = "mem_hardwall", 2500 .read_u64 = cpuset_read_u64, 2501 .write_u64 = cpuset_write_u64, 2502 .private = FILE_MEM_HARDWALL, 2503 }, 2504 2505 { 2506 .name = "sched_load_balance", 2507 .read_u64 = cpuset_read_u64, 2508 .write_u64 = cpuset_write_u64, 2509 .private = FILE_SCHED_LOAD_BALANCE, 2510 }, 2511 2512 { 2513 .name = "sched_relax_domain_level", 2514 .read_s64 = cpuset_read_s64, 2515 .write_s64 = cpuset_write_s64, 2516 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2517 }, 2518 2519 { 2520 .name = "memory_migrate", 2521 .read_u64 = cpuset_read_u64, 2522 .write_u64 = cpuset_write_u64, 2523 .private = FILE_MEMORY_MIGRATE, 2524 }, 2525 2526 { 2527 .name = "memory_pressure", 2528 .read_u64 = cpuset_read_u64, 2529 .private = FILE_MEMORY_PRESSURE, 2530 }, 2531 2532 { 2533 .name = "memory_spread_page", 2534 .read_u64 = cpuset_read_u64, 2535 .write_u64 = cpuset_write_u64, 2536 .private = FILE_SPREAD_PAGE, 2537 }, 2538 2539 { 2540 .name = "memory_spread_slab", 2541 .read_u64 = cpuset_read_u64, 2542 .write_u64 = cpuset_write_u64, 2543 .private = FILE_SPREAD_SLAB, 2544 }, 2545 2546 { 2547 .name = "memory_pressure_enabled", 2548 .flags = CFTYPE_ONLY_ON_ROOT, 2549 .read_u64 = cpuset_read_u64, 2550 .write_u64 = cpuset_write_u64, 2551 .private = FILE_MEMORY_PRESSURE_ENABLED, 2552 }, 2553 2554 { } /* terminate */ 2555 }; 2556 2557 /* 2558 * This is currently a minimal set for the default hierarchy. It can be 2559 * expanded later on by migrating more features and control files from v1. 2560 */ 2561 static struct cftype dfl_files[] = { 2562 { 2563 .name = "cpus", 2564 .seq_show = cpuset_common_seq_show, 2565 .write = cpuset_write_resmask, 2566 .max_write_len = (100U + 6 * NR_CPUS), 2567 .private = FILE_CPULIST, 2568 .flags = CFTYPE_NOT_ON_ROOT, 2569 }, 2570 2571 { 2572 .name = "mems", 2573 .seq_show = cpuset_common_seq_show, 2574 .write = cpuset_write_resmask, 2575 .max_write_len = (100U + 6 * MAX_NUMNODES), 2576 .private = FILE_MEMLIST, 2577 .flags = CFTYPE_NOT_ON_ROOT, 2578 }, 2579 2580 { 2581 .name = "cpus.effective", 2582 .seq_show = cpuset_common_seq_show, 2583 .private = FILE_EFFECTIVE_CPULIST, 2584 }, 2585 2586 { 2587 .name = "mems.effective", 2588 .seq_show = cpuset_common_seq_show, 2589 .private = FILE_EFFECTIVE_MEMLIST, 2590 }, 2591 2592 { 2593 .name = "cpus.partition", 2594 .seq_show = sched_partition_show, 2595 .write = sched_partition_write, 2596 .private = FILE_PARTITION_ROOT, 2597 .flags = CFTYPE_NOT_ON_ROOT, 2598 }, 2599 2600 { 2601 .name = "cpus.subpartitions", 2602 .seq_show = cpuset_common_seq_show, 2603 .private = FILE_SUBPARTS_CPULIST, 2604 .flags = CFTYPE_DEBUG, 2605 }, 2606 2607 { } /* terminate */ 2608 }; 2609 2610 2611 /* 2612 * cpuset_css_alloc - allocate a cpuset css 2613 * cgrp: control group that the new cpuset will be part of 2614 */ 2615 2616 static struct cgroup_subsys_state * 2617 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2618 { 2619 struct cpuset *cs; 2620 2621 if (!parent_css) 2622 return &top_cpuset.css; 2623 2624 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2625 if (!cs) 2626 return ERR_PTR(-ENOMEM); 2627 2628 if (alloc_cpumasks(cs, NULL)) { 2629 kfree(cs); 2630 return ERR_PTR(-ENOMEM); 2631 } 2632 2633 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2634 nodes_clear(cs->mems_allowed); 2635 nodes_clear(cs->effective_mems); 2636 fmeter_init(&cs->fmeter); 2637 cs->relax_domain_level = -1; 2638 2639 return &cs->css; 2640 } 2641 2642 static int cpuset_css_online(struct cgroup_subsys_state *css) 2643 { 2644 struct cpuset *cs = css_cs(css); 2645 struct cpuset *parent = parent_cs(cs); 2646 struct cpuset *tmp_cs; 2647 struct cgroup_subsys_state *pos_css; 2648 2649 if (!parent) 2650 return 0; 2651 2652 mutex_lock(&cpuset_mutex); 2653 2654 set_bit(CS_ONLINE, &cs->flags); 2655 if (is_spread_page(parent)) 2656 set_bit(CS_SPREAD_PAGE, &cs->flags); 2657 if (is_spread_slab(parent)) 2658 set_bit(CS_SPREAD_SLAB, &cs->flags); 2659 2660 cpuset_inc(); 2661 2662 spin_lock_irq(&callback_lock); 2663 if (is_in_v2_mode()) { 2664 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2665 cs->effective_mems = parent->effective_mems; 2666 cs->use_parent_ecpus = true; 2667 parent->child_ecpus_count++; 2668 } 2669 spin_unlock_irq(&callback_lock); 2670 2671 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2672 goto out_unlock; 2673 2674 /* 2675 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2676 * set. This flag handling is implemented in cgroup core for 2677 * histrical reasons - the flag may be specified during mount. 2678 * 2679 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2680 * refuse to clone the configuration - thereby refusing the task to 2681 * be entered, and as a result refusing the sys_unshare() or 2682 * clone() which initiated it. If this becomes a problem for some 2683 * users who wish to allow that scenario, then this could be 2684 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2685 * (and likewise for mems) to the new cgroup. 2686 */ 2687 rcu_read_lock(); 2688 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2689 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2690 rcu_read_unlock(); 2691 goto out_unlock; 2692 } 2693 } 2694 rcu_read_unlock(); 2695 2696 spin_lock_irq(&callback_lock); 2697 cs->mems_allowed = parent->mems_allowed; 2698 cs->effective_mems = parent->mems_allowed; 2699 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2700 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2701 spin_unlock_irq(&callback_lock); 2702 out_unlock: 2703 mutex_unlock(&cpuset_mutex); 2704 return 0; 2705 } 2706 2707 /* 2708 * If the cpuset being removed has its flag 'sched_load_balance' 2709 * enabled, then simulate turning sched_load_balance off, which 2710 * will call rebuild_sched_domains_locked(). That is not needed 2711 * in the default hierarchy where only changes in partition 2712 * will cause repartitioning. 2713 * 2714 * If the cpuset has the 'sched.partition' flag enabled, simulate 2715 * turning 'sched.partition" off. 2716 */ 2717 2718 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2719 { 2720 struct cpuset *cs = css_cs(css); 2721 2722 mutex_lock(&cpuset_mutex); 2723 2724 if (is_partition_root(cs)) 2725 update_prstate(cs, 0); 2726 2727 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2728 is_sched_load_balance(cs)) 2729 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2730 2731 if (cs->use_parent_ecpus) { 2732 struct cpuset *parent = parent_cs(cs); 2733 2734 cs->use_parent_ecpus = false; 2735 parent->child_ecpus_count--; 2736 } 2737 2738 cpuset_dec(); 2739 clear_bit(CS_ONLINE, &cs->flags); 2740 2741 mutex_unlock(&cpuset_mutex); 2742 } 2743 2744 static void cpuset_css_free(struct cgroup_subsys_state *css) 2745 { 2746 struct cpuset *cs = css_cs(css); 2747 2748 free_cpuset(cs); 2749 } 2750 2751 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2752 { 2753 mutex_lock(&cpuset_mutex); 2754 spin_lock_irq(&callback_lock); 2755 2756 if (is_in_v2_mode()) { 2757 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2758 top_cpuset.mems_allowed = node_possible_map; 2759 } else { 2760 cpumask_copy(top_cpuset.cpus_allowed, 2761 top_cpuset.effective_cpus); 2762 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2763 } 2764 2765 spin_unlock_irq(&callback_lock); 2766 mutex_unlock(&cpuset_mutex); 2767 } 2768 2769 /* 2770 * Make sure the new task conform to the current state of its parent, 2771 * which could have been changed by cpuset just after it inherits the 2772 * state from the parent and before it sits on the cgroup's task list. 2773 */ 2774 static void cpuset_fork(struct task_struct *task) 2775 { 2776 if (task_css_is_root(task, cpuset_cgrp_id)) 2777 return; 2778 2779 set_cpus_allowed_ptr(task, current->cpus_ptr); 2780 task->mems_allowed = current->mems_allowed; 2781 } 2782 2783 struct cgroup_subsys cpuset_cgrp_subsys = { 2784 .css_alloc = cpuset_css_alloc, 2785 .css_online = cpuset_css_online, 2786 .css_offline = cpuset_css_offline, 2787 .css_free = cpuset_css_free, 2788 .can_attach = cpuset_can_attach, 2789 .cancel_attach = cpuset_cancel_attach, 2790 .attach = cpuset_attach, 2791 .post_attach = cpuset_post_attach, 2792 .bind = cpuset_bind, 2793 .fork = cpuset_fork, 2794 .legacy_cftypes = legacy_files, 2795 .dfl_cftypes = dfl_files, 2796 .early_init = true, 2797 .threaded = true, 2798 }; 2799 2800 /** 2801 * cpuset_init - initialize cpusets at system boot 2802 * 2803 * Description: Initialize top_cpuset 2804 **/ 2805 2806 int __init cpuset_init(void) 2807 { 2808 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2809 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2810 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2811 2812 cpumask_setall(top_cpuset.cpus_allowed); 2813 nodes_setall(top_cpuset.mems_allowed); 2814 cpumask_setall(top_cpuset.effective_cpus); 2815 nodes_setall(top_cpuset.effective_mems); 2816 2817 fmeter_init(&top_cpuset.fmeter); 2818 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2819 top_cpuset.relax_domain_level = -1; 2820 2821 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2822 2823 return 0; 2824 } 2825 2826 /* 2827 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2828 * or memory nodes, we need to walk over the cpuset hierarchy, 2829 * removing that CPU or node from all cpusets. If this removes the 2830 * last CPU or node from a cpuset, then move the tasks in the empty 2831 * cpuset to its next-highest non-empty parent. 2832 */ 2833 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2834 { 2835 struct cpuset *parent; 2836 2837 /* 2838 * Find its next-highest non-empty parent, (top cpuset 2839 * has online cpus, so can't be empty). 2840 */ 2841 parent = parent_cs(cs); 2842 while (cpumask_empty(parent->cpus_allowed) || 2843 nodes_empty(parent->mems_allowed)) 2844 parent = parent_cs(parent); 2845 2846 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2847 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2848 pr_cont_cgroup_name(cs->css.cgroup); 2849 pr_cont("\n"); 2850 } 2851 } 2852 2853 static void 2854 hotplug_update_tasks_legacy(struct cpuset *cs, 2855 struct cpumask *new_cpus, nodemask_t *new_mems, 2856 bool cpus_updated, bool mems_updated) 2857 { 2858 bool is_empty; 2859 2860 spin_lock_irq(&callback_lock); 2861 cpumask_copy(cs->cpus_allowed, new_cpus); 2862 cpumask_copy(cs->effective_cpus, new_cpus); 2863 cs->mems_allowed = *new_mems; 2864 cs->effective_mems = *new_mems; 2865 spin_unlock_irq(&callback_lock); 2866 2867 /* 2868 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2869 * as the tasks will be migratecd to an ancestor. 2870 */ 2871 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2872 update_tasks_cpumask(cs); 2873 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2874 update_tasks_nodemask(cs); 2875 2876 is_empty = cpumask_empty(cs->cpus_allowed) || 2877 nodes_empty(cs->mems_allowed); 2878 2879 mutex_unlock(&cpuset_mutex); 2880 2881 /* 2882 * Move tasks to the nearest ancestor with execution resources, 2883 * This is full cgroup operation which will also call back into 2884 * cpuset. Should be done outside any lock. 2885 */ 2886 if (is_empty) 2887 remove_tasks_in_empty_cpuset(cs); 2888 2889 mutex_lock(&cpuset_mutex); 2890 } 2891 2892 static void 2893 hotplug_update_tasks(struct cpuset *cs, 2894 struct cpumask *new_cpus, nodemask_t *new_mems, 2895 bool cpus_updated, bool mems_updated) 2896 { 2897 if (cpumask_empty(new_cpus)) 2898 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2899 if (nodes_empty(*new_mems)) 2900 *new_mems = parent_cs(cs)->effective_mems; 2901 2902 spin_lock_irq(&callback_lock); 2903 cpumask_copy(cs->effective_cpus, new_cpus); 2904 cs->effective_mems = *new_mems; 2905 spin_unlock_irq(&callback_lock); 2906 2907 if (cpus_updated) 2908 update_tasks_cpumask(cs); 2909 if (mems_updated) 2910 update_tasks_nodemask(cs); 2911 } 2912 2913 static bool force_rebuild; 2914 2915 void cpuset_force_rebuild(void) 2916 { 2917 force_rebuild = true; 2918 } 2919 2920 /** 2921 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2922 * @cs: cpuset in interest 2923 * @tmp: the tmpmasks structure pointer 2924 * 2925 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2926 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2927 * all its tasks are moved to the nearest ancestor with both resources. 2928 */ 2929 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 2930 { 2931 static cpumask_t new_cpus; 2932 static nodemask_t new_mems; 2933 bool cpus_updated; 2934 bool mems_updated; 2935 struct cpuset *parent; 2936 retry: 2937 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2938 2939 mutex_lock(&cpuset_mutex); 2940 2941 /* 2942 * We have raced with task attaching. We wait until attaching 2943 * is finished, so we won't attach a task to an empty cpuset. 2944 */ 2945 if (cs->attach_in_progress) { 2946 mutex_unlock(&cpuset_mutex); 2947 goto retry; 2948 } 2949 2950 parent = parent_cs(cs); 2951 compute_effective_cpumask(&new_cpus, cs, parent); 2952 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 2953 2954 if (cs->nr_subparts_cpus) 2955 /* 2956 * Make sure that CPUs allocated to child partitions 2957 * do not show up in effective_cpus. 2958 */ 2959 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 2960 2961 if (!tmp || !cs->partition_root_state) 2962 goto update_tasks; 2963 2964 /* 2965 * In the unlikely event that a partition root has empty 2966 * effective_cpus or its parent becomes erroneous, we have to 2967 * transition it to the erroneous state. 2968 */ 2969 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 2970 (parent->partition_root_state == PRS_ERROR))) { 2971 if (cs->nr_subparts_cpus) { 2972 cs->nr_subparts_cpus = 0; 2973 cpumask_clear(cs->subparts_cpus); 2974 compute_effective_cpumask(&new_cpus, cs, parent); 2975 } 2976 2977 /* 2978 * If the effective_cpus is empty because the child 2979 * partitions take away all the CPUs, we can keep 2980 * the current partition and let the child partitions 2981 * fight for available CPUs. 2982 */ 2983 if ((parent->partition_root_state == PRS_ERROR) || 2984 cpumask_empty(&new_cpus)) { 2985 update_parent_subparts_cpumask(cs, partcmd_disable, 2986 NULL, tmp); 2987 cs->partition_root_state = PRS_ERROR; 2988 } 2989 cpuset_force_rebuild(); 2990 } 2991 2992 /* 2993 * On the other hand, an erroneous partition root may be transitioned 2994 * back to a regular one or a partition root with no CPU allocated 2995 * from the parent may change to erroneous. 2996 */ 2997 if (is_partition_root(parent) && 2998 ((cs->partition_root_state == PRS_ERROR) || 2999 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3000 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3001 cpuset_force_rebuild(); 3002 3003 update_tasks: 3004 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3005 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3006 3007 if (is_in_v2_mode()) 3008 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3009 cpus_updated, mems_updated); 3010 else 3011 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3012 cpus_updated, mems_updated); 3013 3014 mutex_unlock(&cpuset_mutex); 3015 } 3016 3017 /** 3018 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3019 * 3020 * This function is called after either CPU or memory configuration has 3021 * changed and updates cpuset accordingly. The top_cpuset is always 3022 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3023 * order to make cpusets transparent (of no affect) on systems that are 3024 * actively using CPU hotplug but making no active use of cpusets. 3025 * 3026 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3027 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3028 * all descendants. 3029 * 3030 * Note that CPU offlining during suspend is ignored. We don't modify 3031 * cpusets across suspend/resume cycles at all. 3032 */ 3033 static void cpuset_hotplug_workfn(struct work_struct *work) 3034 { 3035 static cpumask_t new_cpus; 3036 static nodemask_t new_mems; 3037 bool cpus_updated, mems_updated; 3038 bool on_dfl = is_in_v2_mode(); 3039 struct tmpmasks tmp, *ptmp = NULL; 3040 3041 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3042 ptmp = &tmp; 3043 3044 mutex_lock(&cpuset_mutex); 3045 3046 /* fetch the available cpus/mems and find out which changed how */ 3047 cpumask_copy(&new_cpus, cpu_active_mask); 3048 new_mems = node_states[N_MEMORY]; 3049 3050 /* 3051 * If subparts_cpus is populated, it is likely that the check below 3052 * will produce a false positive on cpus_updated when the cpu list 3053 * isn't changed. It is extra work, but it is better to be safe. 3054 */ 3055 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3056 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3057 3058 /* synchronize cpus_allowed to cpu_active_mask */ 3059 if (cpus_updated) { 3060 spin_lock_irq(&callback_lock); 3061 if (!on_dfl) 3062 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3063 /* 3064 * Make sure that CPUs allocated to child partitions 3065 * do not show up in effective_cpus. If no CPU is left, 3066 * we clear the subparts_cpus & let the child partitions 3067 * fight for the CPUs again. 3068 */ 3069 if (top_cpuset.nr_subparts_cpus) { 3070 if (cpumask_subset(&new_cpus, 3071 top_cpuset.subparts_cpus)) { 3072 top_cpuset.nr_subparts_cpus = 0; 3073 cpumask_clear(top_cpuset.subparts_cpus); 3074 } else { 3075 cpumask_andnot(&new_cpus, &new_cpus, 3076 top_cpuset.subparts_cpus); 3077 } 3078 } 3079 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3080 spin_unlock_irq(&callback_lock); 3081 /* we don't mess with cpumasks of tasks in top_cpuset */ 3082 } 3083 3084 /* synchronize mems_allowed to N_MEMORY */ 3085 if (mems_updated) { 3086 spin_lock_irq(&callback_lock); 3087 if (!on_dfl) 3088 top_cpuset.mems_allowed = new_mems; 3089 top_cpuset.effective_mems = new_mems; 3090 spin_unlock_irq(&callback_lock); 3091 update_tasks_nodemask(&top_cpuset); 3092 } 3093 3094 mutex_unlock(&cpuset_mutex); 3095 3096 /* if cpus or mems changed, we need to propagate to descendants */ 3097 if (cpus_updated || mems_updated) { 3098 struct cpuset *cs; 3099 struct cgroup_subsys_state *pos_css; 3100 3101 rcu_read_lock(); 3102 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3103 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3104 continue; 3105 rcu_read_unlock(); 3106 3107 cpuset_hotplug_update_tasks(cs, ptmp); 3108 3109 rcu_read_lock(); 3110 css_put(&cs->css); 3111 } 3112 rcu_read_unlock(); 3113 } 3114 3115 /* rebuild sched domains if cpus_allowed has changed */ 3116 if (cpus_updated || force_rebuild) { 3117 force_rebuild = false; 3118 rebuild_sched_domains(); 3119 } 3120 3121 free_cpumasks(NULL, ptmp); 3122 } 3123 3124 void cpuset_update_active_cpus(void) 3125 { 3126 /* 3127 * We're inside cpu hotplug critical region which usually nests 3128 * inside cgroup synchronization. Bounce actual hotplug processing 3129 * to a work item to avoid reverse locking order. 3130 */ 3131 schedule_work(&cpuset_hotplug_work); 3132 } 3133 3134 void cpuset_wait_for_hotplug(void) 3135 { 3136 flush_work(&cpuset_hotplug_work); 3137 } 3138 3139 /* 3140 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3141 * Call this routine anytime after node_states[N_MEMORY] changes. 3142 * See cpuset_update_active_cpus() for CPU hotplug handling. 3143 */ 3144 static int cpuset_track_online_nodes(struct notifier_block *self, 3145 unsigned long action, void *arg) 3146 { 3147 schedule_work(&cpuset_hotplug_work); 3148 return NOTIFY_OK; 3149 } 3150 3151 static struct notifier_block cpuset_track_online_nodes_nb = { 3152 .notifier_call = cpuset_track_online_nodes, 3153 .priority = 10, /* ??! */ 3154 }; 3155 3156 /** 3157 * cpuset_init_smp - initialize cpus_allowed 3158 * 3159 * Description: Finish top cpuset after cpu, node maps are initialized 3160 */ 3161 void __init cpuset_init_smp(void) 3162 { 3163 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3164 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3165 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3166 3167 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3168 top_cpuset.effective_mems = node_states[N_MEMORY]; 3169 3170 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3171 3172 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3173 BUG_ON(!cpuset_migrate_mm_wq); 3174 } 3175 3176 /** 3177 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3178 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3179 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3180 * 3181 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3182 * attached to the specified @tsk. Guaranteed to return some non-empty 3183 * subset of cpu_online_mask, even if this means going outside the 3184 * tasks cpuset. 3185 **/ 3186 3187 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3188 { 3189 unsigned long flags; 3190 3191 spin_lock_irqsave(&callback_lock, flags); 3192 rcu_read_lock(); 3193 guarantee_online_cpus(task_cs(tsk), pmask); 3194 rcu_read_unlock(); 3195 spin_unlock_irqrestore(&callback_lock, flags); 3196 } 3197 3198 /** 3199 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3200 * @tsk: pointer to task_struct with which the scheduler is struggling 3201 * 3202 * Description: In the case that the scheduler cannot find an allowed cpu in 3203 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3204 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3205 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3206 * This is the absolute last resort for the scheduler and it is only used if 3207 * _every_ other avenue has been traveled. 3208 **/ 3209 3210 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3211 { 3212 rcu_read_lock(); 3213 do_set_cpus_allowed(tsk, is_in_v2_mode() ? 3214 task_cs(tsk)->cpus_allowed : cpu_possible_mask); 3215 rcu_read_unlock(); 3216 3217 /* 3218 * We own tsk->cpus_allowed, nobody can change it under us. 3219 * 3220 * But we used cs && cs->cpus_allowed lockless and thus can 3221 * race with cgroup_attach_task() or update_cpumask() and get 3222 * the wrong tsk->cpus_allowed. However, both cases imply the 3223 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3224 * which takes task_rq_lock(). 3225 * 3226 * If we are called after it dropped the lock we must see all 3227 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3228 * set any mask even if it is not right from task_cs() pov, 3229 * the pending set_cpus_allowed_ptr() will fix things. 3230 * 3231 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3232 * if required. 3233 */ 3234 } 3235 3236 void __init cpuset_init_current_mems_allowed(void) 3237 { 3238 nodes_setall(current->mems_allowed); 3239 } 3240 3241 /** 3242 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3243 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3244 * 3245 * Description: Returns the nodemask_t mems_allowed of the cpuset 3246 * attached to the specified @tsk. Guaranteed to return some non-empty 3247 * subset of node_states[N_MEMORY], even if this means going outside the 3248 * tasks cpuset. 3249 **/ 3250 3251 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3252 { 3253 nodemask_t mask; 3254 unsigned long flags; 3255 3256 spin_lock_irqsave(&callback_lock, flags); 3257 rcu_read_lock(); 3258 guarantee_online_mems(task_cs(tsk), &mask); 3259 rcu_read_unlock(); 3260 spin_unlock_irqrestore(&callback_lock, flags); 3261 3262 return mask; 3263 } 3264 3265 /** 3266 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3267 * @nodemask: the nodemask to be checked 3268 * 3269 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3270 */ 3271 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3272 { 3273 return nodes_intersects(*nodemask, current->mems_allowed); 3274 } 3275 3276 /* 3277 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3278 * mem_hardwall ancestor to the specified cpuset. Call holding 3279 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3280 * (an unusual configuration), then returns the root cpuset. 3281 */ 3282 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3283 { 3284 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3285 cs = parent_cs(cs); 3286 return cs; 3287 } 3288 3289 /** 3290 * cpuset_node_allowed - Can we allocate on a memory node? 3291 * @node: is this an allowed node? 3292 * @gfp_mask: memory allocation flags 3293 * 3294 * If we're in interrupt, yes, we can always allocate. If @node is set in 3295 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3296 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3297 * yes. If current has access to memory reserves as an oom victim, yes. 3298 * Otherwise, no. 3299 * 3300 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3301 * and do not allow allocations outside the current tasks cpuset 3302 * unless the task has been OOM killed. 3303 * GFP_KERNEL allocations are not so marked, so can escape to the 3304 * nearest enclosing hardwalled ancestor cpuset. 3305 * 3306 * Scanning up parent cpusets requires callback_lock. The 3307 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3308 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3309 * current tasks mems_allowed came up empty on the first pass over 3310 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3311 * cpuset are short of memory, might require taking the callback_lock. 3312 * 3313 * The first call here from mm/page_alloc:get_page_from_freelist() 3314 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3315 * so no allocation on a node outside the cpuset is allowed (unless 3316 * in interrupt, of course). 3317 * 3318 * The second pass through get_page_from_freelist() doesn't even call 3319 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3320 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3321 * in alloc_flags. That logic and the checks below have the combined 3322 * affect that: 3323 * in_interrupt - any node ok (current task context irrelevant) 3324 * GFP_ATOMIC - any node ok 3325 * tsk_is_oom_victim - any node ok 3326 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3327 * GFP_USER - only nodes in current tasks mems allowed ok. 3328 */ 3329 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3330 { 3331 struct cpuset *cs; /* current cpuset ancestors */ 3332 int allowed; /* is allocation in zone z allowed? */ 3333 unsigned long flags; 3334 3335 if (in_interrupt()) 3336 return true; 3337 if (node_isset(node, current->mems_allowed)) 3338 return true; 3339 /* 3340 * Allow tasks that have access to memory reserves because they have 3341 * been OOM killed to get memory anywhere. 3342 */ 3343 if (unlikely(tsk_is_oom_victim(current))) 3344 return true; 3345 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3346 return false; 3347 3348 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3349 return true; 3350 3351 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3352 spin_lock_irqsave(&callback_lock, flags); 3353 3354 rcu_read_lock(); 3355 cs = nearest_hardwall_ancestor(task_cs(current)); 3356 allowed = node_isset(node, cs->mems_allowed); 3357 rcu_read_unlock(); 3358 3359 spin_unlock_irqrestore(&callback_lock, flags); 3360 return allowed; 3361 } 3362 3363 /** 3364 * cpuset_mem_spread_node() - On which node to begin search for a file page 3365 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3366 * 3367 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3368 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3369 * and if the memory allocation used cpuset_mem_spread_node() 3370 * to determine on which node to start looking, as it will for 3371 * certain page cache or slab cache pages such as used for file 3372 * system buffers and inode caches, then instead of starting on the 3373 * local node to look for a free page, rather spread the starting 3374 * node around the tasks mems_allowed nodes. 3375 * 3376 * We don't have to worry about the returned node being offline 3377 * because "it can't happen", and even if it did, it would be ok. 3378 * 3379 * The routines calling guarantee_online_mems() are careful to 3380 * only set nodes in task->mems_allowed that are online. So it 3381 * should not be possible for the following code to return an 3382 * offline node. But if it did, that would be ok, as this routine 3383 * is not returning the node where the allocation must be, only 3384 * the node where the search should start. The zonelist passed to 3385 * __alloc_pages() will include all nodes. If the slab allocator 3386 * is passed an offline node, it will fall back to the local node. 3387 * See kmem_cache_alloc_node(). 3388 */ 3389 3390 static int cpuset_spread_node(int *rotor) 3391 { 3392 return *rotor = next_node_in(*rotor, current->mems_allowed); 3393 } 3394 3395 int cpuset_mem_spread_node(void) 3396 { 3397 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3398 current->cpuset_mem_spread_rotor = 3399 node_random(¤t->mems_allowed); 3400 3401 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3402 } 3403 3404 int cpuset_slab_spread_node(void) 3405 { 3406 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3407 current->cpuset_slab_spread_rotor = 3408 node_random(¤t->mems_allowed); 3409 3410 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3411 } 3412 3413 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3414 3415 /** 3416 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3417 * @tsk1: pointer to task_struct of some task. 3418 * @tsk2: pointer to task_struct of some other task. 3419 * 3420 * Description: Return true if @tsk1's mems_allowed intersects the 3421 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3422 * one of the task's memory usage might impact the memory available 3423 * to the other. 3424 **/ 3425 3426 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3427 const struct task_struct *tsk2) 3428 { 3429 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3430 } 3431 3432 /** 3433 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3434 * 3435 * Description: Prints current's name, cpuset name, and cached copy of its 3436 * mems_allowed to the kernel log. 3437 */ 3438 void cpuset_print_current_mems_allowed(void) 3439 { 3440 struct cgroup *cgrp; 3441 3442 rcu_read_lock(); 3443 3444 cgrp = task_cs(current)->css.cgroup; 3445 pr_cont(",cpuset="); 3446 pr_cont_cgroup_name(cgrp); 3447 pr_cont(",mems_allowed=%*pbl", 3448 nodemask_pr_args(¤t->mems_allowed)); 3449 3450 rcu_read_unlock(); 3451 } 3452 3453 /* 3454 * Collection of memory_pressure is suppressed unless 3455 * this flag is enabled by writing "1" to the special 3456 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3457 */ 3458 3459 int cpuset_memory_pressure_enabled __read_mostly; 3460 3461 /** 3462 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3463 * 3464 * Keep a running average of the rate of synchronous (direct) 3465 * page reclaim efforts initiated by tasks in each cpuset. 3466 * 3467 * This represents the rate at which some task in the cpuset 3468 * ran low on memory on all nodes it was allowed to use, and 3469 * had to enter the kernels page reclaim code in an effort to 3470 * create more free memory by tossing clean pages or swapping 3471 * or writing dirty pages. 3472 * 3473 * Display to user space in the per-cpuset read-only file 3474 * "memory_pressure". Value displayed is an integer 3475 * representing the recent rate of entry into the synchronous 3476 * (direct) page reclaim by any task attached to the cpuset. 3477 **/ 3478 3479 void __cpuset_memory_pressure_bump(void) 3480 { 3481 rcu_read_lock(); 3482 fmeter_markevent(&task_cs(current)->fmeter); 3483 rcu_read_unlock(); 3484 } 3485 3486 #ifdef CONFIG_PROC_PID_CPUSET 3487 /* 3488 * proc_cpuset_show() 3489 * - Print tasks cpuset path into seq_file. 3490 * - Used for /proc/<pid>/cpuset. 3491 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3492 * doesn't really matter if tsk->cpuset changes after we read it, 3493 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3494 * anyway. 3495 */ 3496 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3497 struct pid *pid, struct task_struct *tsk) 3498 { 3499 char *buf; 3500 struct cgroup_subsys_state *css; 3501 int retval; 3502 3503 retval = -ENOMEM; 3504 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3505 if (!buf) 3506 goto out; 3507 3508 css = task_get_css(tsk, cpuset_cgrp_id); 3509 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3510 current->nsproxy->cgroup_ns); 3511 css_put(css); 3512 if (retval >= PATH_MAX) 3513 retval = -ENAMETOOLONG; 3514 if (retval < 0) 3515 goto out_free; 3516 seq_puts(m, buf); 3517 seq_putc(m, '\n'); 3518 retval = 0; 3519 out_free: 3520 kfree(buf); 3521 out: 3522 return retval; 3523 } 3524 #endif /* CONFIG_PROC_PID_CPUSET */ 3525 3526 /* Display task mems_allowed in /proc/<pid>/status file. */ 3527 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3528 { 3529 seq_printf(m, "Mems_allowed:\t%*pb\n", 3530 nodemask_pr_args(&task->mems_allowed)); 3531 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3532 nodemask_pr_args(&task->mems_allowed)); 3533 } 3534