xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 5e012745)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/mm.h>
49 #include <linux/sched/task.h>
50 #include <linux/seq_file.h>
51 #include <linux/security.h>
52 #include <linux/slab.h>
53 #include <linux/spinlock.h>
54 #include <linux/stat.h>
55 #include <linux/string.h>
56 #include <linux/time.h>
57 #include <linux/time64.h>
58 #include <linux/backing-dev.h>
59 #include <linux/sort.h>
60 #include <linux/oom.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/uaccess.h>
63 #include <linux/atomic.h>
64 #include <linux/mutex.h>
65 #include <linux/cgroup.h>
66 #include <linux/wait.h>
67 
68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70 
71 /* See "Frequency meter" comments, below. */
72 
73 struct fmeter {
74 	int cnt;		/* unprocessed events count */
75 	int val;		/* most recent output value */
76 	time64_t time;		/* clock (secs) when val computed */
77 	spinlock_t lock;	/* guards read or write of above */
78 };
79 
80 struct cpuset {
81 	struct cgroup_subsys_state css;
82 
83 	unsigned long flags;		/* "unsigned long" so bitops work */
84 
85 	/*
86 	 * On default hierarchy:
87 	 *
88 	 * The user-configured masks can only be changed by writing to
89 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 	 * parent masks.
91 	 *
92 	 * The effective masks is the real masks that apply to the tasks
93 	 * in the cpuset. They may be changed if the configured masks are
94 	 * changed or hotplug happens.
95 	 *
96 	 * effective_mask == configured_mask & parent's effective_mask,
97 	 * and if it ends up empty, it will inherit the parent's mask.
98 	 *
99 	 *
100 	 * On legacy hierachy:
101 	 *
102 	 * The user-configured masks are always the same with effective masks.
103 	 */
104 
105 	/* user-configured CPUs and Memory Nodes allow to tasks */
106 	cpumask_var_t cpus_allowed;
107 	nodemask_t mems_allowed;
108 
109 	/* effective CPUs and Memory Nodes allow to tasks */
110 	cpumask_var_t effective_cpus;
111 	nodemask_t effective_mems;
112 
113 	/*
114 	 * CPUs allocated to child sub-partitions (default hierarchy only)
115 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
116 	 * - effective_cpus and subparts_cpus are mutually exclusive.
117 	 *
118 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
119 	 * may have offlined ones.
120 	 */
121 	cpumask_var_t subparts_cpus;
122 
123 	/*
124 	 * This is old Memory Nodes tasks took on.
125 	 *
126 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
127 	 * - A new cpuset's old_mems_allowed is initialized when some
128 	 *   task is moved into it.
129 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
130 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
131 	 *   then old_mems_allowed is updated to mems_allowed.
132 	 */
133 	nodemask_t old_mems_allowed;
134 
135 	struct fmeter fmeter;		/* memory_pressure filter */
136 
137 	/*
138 	 * Tasks are being attached to this cpuset.  Used to prevent
139 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
140 	 */
141 	int attach_in_progress;
142 
143 	/* partition number for rebuild_sched_domains() */
144 	int pn;
145 
146 	/* for custom sched domain */
147 	int relax_domain_level;
148 
149 	/* number of CPUs in subparts_cpus */
150 	int nr_subparts_cpus;
151 
152 	/* partition root state */
153 	int partition_root_state;
154 
155 	/*
156 	 * Default hierarchy only:
157 	 * use_parent_ecpus - set if using parent's effective_cpus
158 	 * child_ecpus_count - # of children with use_parent_ecpus set
159 	 */
160 	int use_parent_ecpus;
161 	int child_ecpus_count;
162 };
163 
164 /*
165  * Partition root states:
166  *
167  *   0 - not a partition root
168  *
169  *   1 - partition root
170  *
171  *  -1 - invalid partition root
172  *       None of the cpus in cpus_allowed can be put into the parent's
173  *       subparts_cpus. In this case, the cpuset is not a real partition
174  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
175  *       and the cpuset can be restored back to a partition root if the
176  *       parent cpuset can give more CPUs back to this child cpuset.
177  */
178 #define PRS_DISABLED		0
179 #define PRS_ENABLED		1
180 #define PRS_ERROR		-1
181 
182 /*
183  * Temporary cpumasks for working with partitions that are passed among
184  * functions to avoid memory allocation in inner functions.
185  */
186 struct tmpmasks {
187 	cpumask_var_t addmask, delmask;	/* For partition root */
188 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
189 };
190 
191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
192 {
193 	return css ? container_of(css, struct cpuset, css) : NULL;
194 }
195 
196 /* Retrieve the cpuset for a task */
197 static inline struct cpuset *task_cs(struct task_struct *task)
198 {
199 	return css_cs(task_css(task, cpuset_cgrp_id));
200 }
201 
202 static inline struct cpuset *parent_cs(struct cpuset *cs)
203 {
204 	return css_cs(cs->css.parent);
205 }
206 
207 /* bits in struct cpuset flags field */
208 typedef enum {
209 	CS_ONLINE,
210 	CS_CPU_EXCLUSIVE,
211 	CS_MEM_EXCLUSIVE,
212 	CS_MEM_HARDWALL,
213 	CS_MEMORY_MIGRATE,
214 	CS_SCHED_LOAD_BALANCE,
215 	CS_SPREAD_PAGE,
216 	CS_SPREAD_SLAB,
217 } cpuset_flagbits_t;
218 
219 /* convenient tests for these bits */
220 static inline bool is_cpuset_online(struct cpuset *cs)
221 {
222 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
223 }
224 
225 static inline int is_cpu_exclusive(const struct cpuset *cs)
226 {
227 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
228 }
229 
230 static inline int is_mem_exclusive(const struct cpuset *cs)
231 {
232 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
233 }
234 
235 static inline int is_mem_hardwall(const struct cpuset *cs)
236 {
237 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
238 }
239 
240 static inline int is_sched_load_balance(const struct cpuset *cs)
241 {
242 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
243 }
244 
245 static inline int is_memory_migrate(const struct cpuset *cs)
246 {
247 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
248 }
249 
250 static inline int is_spread_page(const struct cpuset *cs)
251 {
252 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
253 }
254 
255 static inline int is_spread_slab(const struct cpuset *cs)
256 {
257 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
258 }
259 
260 static inline int is_partition_root(const struct cpuset *cs)
261 {
262 	return cs->partition_root_state > 0;
263 }
264 
265 static struct cpuset top_cpuset = {
266 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
267 		  (1 << CS_MEM_EXCLUSIVE)),
268 	.partition_root_state = PRS_ENABLED,
269 };
270 
271 /**
272  * cpuset_for_each_child - traverse online children of a cpuset
273  * @child_cs: loop cursor pointing to the current child
274  * @pos_css: used for iteration
275  * @parent_cs: target cpuset to walk children of
276  *
277  * Walk @child_cs through the online children of @parent_cs.  Must be used
278  * with RCU read locked.
279  */
280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
281 	css_for_each_child((pos_css), &(parent_cs)->css)		\
282 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
283 
284 /**
285  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
286  * @des_cs: loop cursor pointing to the current descendant
287  * @pos_css: used for iteration
288  * @root_cs: target cpuset to walk ancestor of
289  *
290  * Walk @des_cs through the online descendants of @root_cs.  Must be used
291  * with RCU read locked.  The caller may modify @pos_css by calling
292  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
293  * iteration and the first node to be visited.
294  */
295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
296 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
297 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
298 
299 /*
300  * There are two global locks guarding cpuset structures - cpuset_mutex and
301  * callback_lock. We also require taking task_lock() when dereferencing a
302  * task's cpuset pointer. See "The task_lock() exception", at the end of this
303  * comment.
304  *
305  * A task must hold both locks to modify cpusets.  If a task holds
306  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
307  * is the only task able to also acquire callback_lock and be able to
308  * modify cpusets.  It can perform various checks on the cpuset structure
309  * first, knowing nothing will change.  It can also allocate memory while
310  * just holding cpuset_mutex.  While it is performing these checks, various
311  * callback routines can briefly acquire callback_lock to query cpusets.
312  * Once it is ready to make the changes, it takes callback_lock, blocking
313  * everyone else.
314  *
315  * Calls to the kernel memory allocator can not be made while holding
316  * callback_lock, as that would risk double tripping on callback_lock
317  * from one of the callbacks into the cpuset code from within
318  * __alloc_pages().
319  *
320  * If a task is only holding callback_lock, then it has read-only
321  * access to cpusets.
322  *
323  * Now, the task_struct fields mems_allowed and mempolicy may be changed
324  * by other task, we use alloc_lock in the task_struct fields to protect
325  * them.
326  *
327  * The cpuset_common_file_read() handlers only hold callback_lock across
328  * small pieces of code, such as when reading out possibly multi-word
329  * cpumasks and nodemasks.
330  *
331  * Accessing a task's cpuset should be done in accordance with the
332  * guidelines for accessing subsystem state in kernel/cgroup.c
333  */
334 
335 static DEFINE_MUTEX(cpuset_mutex);
336 static DEFINE_SPINLOCK(callback_lock);
337 
338 static struct workqueue_struct *cpuset_migrate_mm_wq;
339 
340 /*
341  * CPU / memory hotplug is handled asynchronously.
342  */
343 static void cpuset_hotplug_workfn(struct work_struct *work);
344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
345 
346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
347 
348 /*
349  * Cgroup v2 behavior is used when on default hierarchy or the
350  * cgroup_v2_mode flag is set.
351  */
352 static inline bool is_in_v2_mode(void)
353 {
354 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
355 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
356 }
357 
358 /*
359  * Return in pmask the portion of a cpusets's cpus_allowed that
360  * are online.  If none are online, walk up the cpuset hierarchy
361  * until we find one that does have some online cpus.
362  *
363  * One way or another, we guarantee to return some non-empty subset
364  * of cpu_online_mask.
365  *
366  * Call with callback_lock or cpuset_mutex held.
367  */
368 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
369 {
370 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
371 		cs = parent_cs(cs);
372 		if (unlikely(!cs)) {
373 			/*
374 			 * The top cpuset doesn't have any online cpu as a
375 			 * consequence of a race between cpuset_hotplug_work
376 			 * and cpu hotplug notifier.  But we know the top
377 			 * cpuset's effective_cpus is on its way to to be
378 			 * identical to cpu_online_mask.
379 			 */
380 			cpumask_copy(pmask, cpu_online_mask);
381 			return;
382 		}
383 	}
384 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
385 }
386 
387 /*
388  * Return in *pmask the portion of a cpusets's mems_allowed that
389  * are online, with memory.  If none are online with memory, walk
390  * up the cpuset hierarchy until we find one that does have some
391  * online mems.  The top cpuset always has some mems online.
392  *
393  * One way or another, we guarantee to return some non-empty subset
394  * of node_states[N_MEMORY].
395  *
396  * Call with callback_lock or cpuset_mutex held.
397  */
398 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
399 {
400 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
401 		cs = parent_cs(cs);
402 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
403 }
404 
405 /*
406  * update task's spread flag if cpuset's page/slab spread flag is set
407  *
408  * Call with callback_lock or cpuset_mutex held.
409  */
410 static void cpuset_update_task_spread_flag(struct cpuset *cs,
411 					struct task_struct *tsk)
412 {
413 	if (is_spread_page(cs))
414 		task_set_spread_page(tsk);
415 	else
416 		task_clear_spread_page(tsk);
417 
418 	if (is_spread_slab(cs))
419 		task_set_spread_slab(tsk);
420 	else
421 		task_clear_spread_slab(tsk);
422 }
423 
424 /*
425  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
426  *
427  * One cpuset is a subset of another if all its allowed CPUs and
428  * Memory Nodes are a subset of the other, and its exclusive flags
429  * are only set if the other's are set.  Call holding cpuset_mutex.
430  */
431 
432 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
433 {
434 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
435 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
436 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
437 		is_mem_exclusive(p) <= is_mem_exclusive(q);
438 }
439 
440 /**
441  * alloc_cpumasks - allocate three cpumasks for cpuset
442  * @cs:  the cpuset that have cpumasks to be allocated.
443  * @tmp: the tmpmasks structure pointer
444  * Return: 0 if successful, -ENOMEM otherwise.
445  *
446  * Only one of the two input arguments should be non-NULL.
447  */
448 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
449 {
450 	cpumask_var_t *pmask1, *pmask2, *pmask3;
451 
452 	if (cs) {
453 		pmask1 = &cs->cpus_allowed;
454 		pmask2 = &cs->effective_cpus;
455 		pmask3 = &cs->subparts_cpus;
456 	} else {
457 		pmask1 = &tmp->new_cpus;
458 		pmask2 = &tmp->addmask;
459 		pmask3 = &tmp->delmask;
460 	}
461 
462 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
463 		return -ENOMEM;
464 
465 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
466 		goto free_one;
467 
468 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
469 		goto free_two;
470 
471 	return 0;
472 
473 free_two:
474 	free_cpumask_var(*pmask2);
475 free_one:
476 	free_cpumask_var(*pmask1);
477 	return -ENOMEM;
478 }
479 
480 /**
481  * free_cpumasks - free cpumasks in a tmpmasks structure
482  * @cs:  the cpuset that have cpumasks to be free.
483  * @tmp: the tmpmasks structure pointer
484  */
485 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
486 {
487 	if (cs) {
488 		free_cpumask_var(cs->cpus_allowed);
489 		free_cpumask_var(cs->effective_cpus);
490 		free_cpumask_var(cs->subparts_cpus);
491 	}
492 	if (tmp) {
493 		free_cpumask_var(tmp->new_cpus);
494 		free_cpumask_var(tmp->addmask);
495 		free_cpumask_var(tmp->delmask);
496 	}
497 }
498 
499 /**
500  * alloc_trial_cpuset - allocate a trial cpuset
501  * @cs: the cpuset that the trial cpuset duplicates
502  */
503 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
504 {
505 	struct cpuset *trial;
506 
507 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
508 	if (!trial)
509 		return NULL;
510 
511 	if (alloc_cpumasks(trial, NULL)) {
512 		kfree(trial);
513 		return NULL;
514 	}
515 
516 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
517 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
518 	return trial;
519 }
520 
521 /**
522  * free_cpuset - free the cpuset
523  * @cs: the cpuset to be freed
524  */
525 static inline void free_cpuset(struct cpuset *cs)
526 {
527 	free_cpumasks(cs, NULL);
528 	kfree(cs);
529 }
530 
531 /*
532  * validate_change() - Used to validate that any proposed cpuset change
533  *		       follows the structural rules for cpusets.
534  *
535  * If we replaced the flag and mask values of the current cpuset
536  * (cur) with those values in the trial cpuset (trial), would
537  * our various subset and exclusive rules still be valid?  Presumes
538  * cpuset_mutex held.
539  *
540  * 'cur' is the address of an actual, in-use cpuset.  Operations
541  * such as list traversal that depend on the actual address of the
542  * cpuset in the list must use cur below, not trial.
543  *
544  * 'trial' is the address of bulk structure copy of cur, with
545  * perhaps one or more of the fields cpus_allowed, mems_allowed,
546  * or flags changed to new, trial values.
547  *
548  * Return 0 if valid, -errno if not.
549  */
550 
551 static int validate_change(struct cpuset *cur, struct cpuset *trial)
552 {
553 	struct cgroup_subsys_state *css;
554 	struct cpuset *c, *par;
555 	int ret;
556 
557 	rcu_read_lock();
558 
559 	/* Each of our child cpusets must be a subset of us */
560 	ret = -EBUSY;
561 	cpuset_for_each_child(c, css, cur)
562 		if (!is_cpuset_subset(c, trial))
563 			goto out;
564 
565 	/* Remaining checks don't apply to root cpuset */
566 	ret = 0;
567 	if (cur == &top_cpuset)
568 		goto out;
569 
570 	par = parent_cs(cur);
571 
572 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
573 	ret = -EACCES;
574 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
575 		goto out;
576 
577 	/*
578 	 * If either I or some sibling (!= me) is exclusive, we can't
579 	 * overlap
580 	 */
581 	ret = -EINVAL;
582 	cpuset_for_each_child(c, css, par) {
583 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
584 		    c != cur &&
585 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
586 			goto out;
587 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
588 		    c != cur &&
589 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
590 			goto out;
591 	}
592 
593 	/*
594 	 * Cpusets with tasks - existing or newly being attached - can't
595 	 * be changed to have empty cpus_allowed or mems_allowed.
596 	 */
597 	ret = -ENOSPC;
598 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
599 		if (!cpumask_empty(cur->cpus_allowed) &&
600 		    cpumask_empty(trial->cpus_allowed))
601 			goto out;
602 		if (!nodes_empty(cur->mems_allowed) &&
603 		    nodes_empty(trial->mems_allowed))
604 			goto out;
605 	}
606 
607 	/*
608 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
609 	 * tasks.
610 	 */
611 	ret = -EBUSY;
612 	if (is_cpu_exclusive(cur) &&
613 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
614 				       trial->cpus_allowed))
615 		goto out;
616 
617 	ret = 0;
618 out:
619 	rcu_read_unlock();
620 	return ret;
621 }
622 
623 #ifdef CONFIG_SMP
624 /*
625  * Helper routine for generate_sched_domains().
626  * Do cpusets a, b have overlapping effective cpus_allowed masks?
627  */
628 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
629 {
630 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
631 }
632 
633 static void
634 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
635 {
636 	if (dattr->relax_domain_level < c->relax_domain_level)
637 		dattr->relax_domain_level = c->relax_domain_level;
638 	return;
639 }
640 
641 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
642 				    struct cpuset *root_cs)
643 {
644 	struct cpuset *cp;
645 	struct cgroup_subsys_state *pos_css;
646 
647 	rcu_read_lock();
648 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
649 		/* skip the whole subtree if @cp doesn't have any CPU */
650 		if (cpumask_empty(cp->cpus_allowed)) {
651 			pos_css = css_rightmost_descendant(pos_css);
652 			continue;
653 		}
654 
655 		if (is_sched_load_balance(cp))
656 			update_domain_attr(dattr, cp);
657 	}
658 	rcu_read_unlock();
659 }
660 
661 /* Must be called with cpuset_mutex held.  */
662 static inline int nr_cpusets(void)
663 {
664 	/* jump label reference count + the top-level cpuset */
665 	return static_key_count(&cpusets_enabled_key.key) + 1;
666 }
667 
668 /*
669  * generate_sched_domains()
670  *
671  * This function builds a partial partition of the systems CPUs
672  * A 'partial partition' is a set of non-overlapping subsets whose
673  * union is a subset of that set.
674  * The output of this function needs to be passed to kernel/sched/core.c
675  * partition_sched_domains() routine, which will rebuild the scheduler's
676  * load balancing domains (sched domains) as specified by that partial
677  * partition.
678  *
679  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
680  * for a background explanation of this.
681  *
682  * Does not return errors, on the theory that the callers of this
683  * routine would rather not worry about failures to rebuild sched
684  * domains when operating in the severe memory shortage situations
685  * that could cause allocation failures below.
686  *
687  * Must be called with cpuset_mutex held.
688  *
689  * The three key local variables below are:
690  *    cp - cpuset pointer, used (together with pos_css) to perform a
691  *	   top-down scan of all cpusets. For our purposes, rebuilding
692  *	   the schedulers sched domains, we can ignore !is_sched_load_
693  *	   balance cpusets.
694  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
695  *	   that need to be load balanced, for convenient iterative
696  *	   access by the subsequent code that finds the best partition,
697  *	   i.e the set of domains (subsets) of CPUs such that the
698  *	   cpus_allowed of every cpuset marked is_sched_load_balance
699  *	   is a subset of one of these domains, while there are as
700  *	   many such domains as possible, each as small as possible.
701  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
702  *	   the kernel/sched/core.c routine partition_sched_domains() in a
703  *	   convenient format, that can be easily compared to the prior
704  *	   value to determine what partition elements (sched domains)
705  *	   were changed (added or removed.)
706  *
707  * Finding the best partition (set of domains):
708  *	The triple nested loops below over i, j, k scan over the
709  *	load balanced cpusets (using the array of cpuset pointers in
710  *	csa[]) looking for pairs of cpusets that have overlapping
711  *	cpus_allowed, but which don't have the same 'pn' partition
712  *	number and gives them in the same partition number.  It keeps
713  *	looping on the 'restart' label until it can no longer find
714  *	any such pairs.
715  *
716  *	The union of the cpus_allowed masks from the set of
717  *	all cpusets having the same 'pn' value then form the one
718  *	element of the partition (one sched domain) to be passed to
719  *	partition_sched_domains().
720  */
721 static int generate_sched_domains(cpumask_var_t **domains,
722 			struct sched_domain_attr **attributes)
723 {
724 	struct cpuset *cp;	/* top-down scan of cpusets */
725 	struct cpuset **csa;	/* array of all cpuset ptrs */
726 	int csn;		/* how many cpuset ptrs in csa so far */
727 	int i, j, k;		/* indices for partition finding loops */
728 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
729 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
730 	int ndoms = 0;		/* number of sched domains in result */
731 	int nslot;		/* next empty doms[] struct cpumask slot */
732 	struct cgroup_subsys_state *pos_css;
733 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
734 
735 	doms = NULL;
736 	dattr = NULL;
737 	csa = NULL;
738 
739 	/* Special case for the 99% of systems with one, full, sched domain */
740 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
741 		ndoms = 1;
742 		doms = alloc_sched_domains(ndoms);
743 		if (!doms)
744 			goto done;
745 
746 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
747 		if (dattr) {
748 			*dattr = SD_ATTR_INIT;
749 			update_domain_attr_tree(dattr, &top_cpuset);
750 		}
751 		cpumask_and(doms[0], top_cpuset.effective_cpus,
752 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
753 
754 		goto done;
755 	}
756 
757 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
758 	if (!csa)
759 		goto done;
760 	csn = 0;
761 
762 	rcu_read_lock();
763 	if (root_load_balance)
764 		csa[csn++] = &top_cpuset;
765 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
766 		if (cp == &top_cpuset)
767 			continue;
768 		/*
769 		 * Continue traversing beyond @cp iff @cp has some CPUs and
770 		 * isn't load balancing.  The former is obvious.  The
771 		 * latter: All child cpusets contain a subset of the
772 		 * parent's cpus, so just skip them, and then we call
773 		 * update_domain_attr_tree() to calc relax_domain_level of
774 		 * the corresponding sched domain.
775 		 *
776 		 * If root is load-balancing, we can skip @cp if it
777 		 * is a subset of the root's effective_cpus.
778 		 */
779 		if (!cpumask_empty(cp->cpus_allowed) &&
780 		    !(is_sched_load_balance(cp) &&
781 		      cpumask_intersects(cp->cpus_allowed,
782 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
783 			continue;
784 
785 		if (root_load_balance &&
786 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
787 			continue;
788 
789 		if (is_sched_load_balance(cp))
790 			csa[csn++] = cp;
791 
792 		/* skip @cp's subtree if not a partition root */
793 		if (!is_partition_root(cp))
794 			pos_css = css_rightmost_descendant(pos_css);
795 	}
796 	rcu_read_unlock();
797 
798 	for (i = 0; i < csn; i++)
799 		csa[i]->pn = i;
800 	ndoms = csn;
801 
802 restart:
803 	/* Find the best partition (set of sched domains) */
804 	for (i = 0; i < csn; i++) {
805 		struct cpuset *a = csa[i];
806 		int apn = a->pn;
807 
808 		for (j = 0; j < csn; j++) {
809 			struct cpuset *b = csa[j];
810 			int bpn = b->pn;
811 
812 			if (apn != bpn && cpusets_overlap(a, b)) {
813 				for (k = 0; k < csn; k++) {
814 					struct cpuset *c = csa[k];
815 
816 					if (c->pn == bpn)
817 						c->pn = apn;
818 				}
819 				ndoms--;	/* one less element */
820 				goto restart;
821 			}
822 		}
823 	}
824 
825 	/*
826 	 * Now we know how many domains to create.
827 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
828 	 */
829 	doms = alloc_sched_domains(ndoms);
830 	if (!doms)
831 		goto done;
832 
833 	/*
834 	 * The rest of the code, including the scheduler, can deal with
835 	 * dattr==NULL case. No need to abort if alloc fails.
836 	 */
837 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
838 			      GFP_KERNEL);
839 
840 	for (nslot = 0, i = 0; i < csn; i++) {
841 		struct cpuset *a = csa[i];
842 		struct cpumask *dp;
843 		int apn = a->pn;
844 
845 		if (apn < 0) {
846 			/* Skip completed partitions */
847 			continue;
848 		}
849 
850 		dp = doms[nslot];
851 
852 		if (nslot == ndoms) {
853 			static int warnings = 10;
854 			if (warnings) {
855 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
856 					nslot, ndoms, csn, i, apn);
857 				warnings--;
858 			}
859 			continue;
860 		}
861 
862 		cpumask_clear(dp);
863 		if (dattr)
864 			*(dattr + nslot) = SD_ATTR_INIT;
865 		for (j = i; j < csn; j++) {
866 			struct cpuset *b = csa[j];
867 
868 			if (apn == b->pn) {
869 				cpumask_or(dp, dp, b->effective_cpus);
870 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
871 				if (dattr)
872 					update_domain_attr_tree(dattr + nslot, b);
873 
874 				/* Done with this partition */
875 				b->pn = -1;
876 			}
877 		}
878 		nslot++;
879 	}
880 	BUG_ON(nslot != ndoms);
881 
882 done:
883 	kfree(csa);
884 
885 	/*
886 	 * Fallback to the default domain if kmalloc() failed.
887 	 * See comments in partition_sched_domains().
888 	 */
889 	if (doms == NULL)
890 		ndoms = 1;
891 
892 	*domains    = doms;
893 	*attributes = dattr;
894 	return ndoms;
895 }
896 
897 /*
898  * Rebuild scheduler domains.
899  *
900  * If the flag 'sched_load_balance' of any cpuset with non-empty
901  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
902  * which has that flag enabled, or if any cpuset with a non-empty
903  * 'cpus' is removed, then call this routine to rebuild the
904  * scheduler's dynamic sched domains.
905  *
906  * Call with cpuset_mutex held.  Takes get_online_cpus().
907  */
908 static void rebuild_sched_domains_locked(void)
909 {
910 	struct sched_domain_attr *attr;
911 	cpumask_var_t *doms;
912 	int ndoms;
913 
914 	lockdep_assert_held(&cpuset_mutex);
915 	get_online_cpus();
916 
917 	/*
918 	 * We have raced with CPU hotplug. Don't do anything to avoid
919 	 * passing doms with offlined cpu to partition_sched_domains().
920 	 * Anyways, hotplug work item will rebuild sched domains.
921 	 */
922 	if (!top_cpuset.nr_subparts_cpus &&
923 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
924 		goto out;
925 
926 	if (top_cpuset.nr_subparts_cpus &&
927 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
928 		goto out;
929 
930 	/* Generate domain masks and attrs */
931 	ndoms = generate_sched_domains(&doms, &attr);
932 
933 	/* Have scheduler rebuild the domains */
934 	partition_sched_domains(ndoms, doms, attr);
935 out:
936 	put_online_cpus();
937 }
938 #else /* !CONFIG_SMP */
939 static void rebuild_sched_domains_locked(void)
940 {
941 }
942 #endif /* CONFIG_SMP */
943 
944 void rebuild_sched_domains(void)
945 {
946 	mutex_lock(&cpuset_mutex);
947 	rebuild_sched_domains_locked();
948 	mutex_unlock(&cpuset_mutex);
949 }
950 
951 /**
952  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
953  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
954  *
955  * Iterate through each task of @cs updating its cpus_allowed to the
956  * effective cpuset's.  As this function is called with cpuset_mutex held,
957  * cpuset membership stays stable.
958  */
959 static void update_tasks_cpumask(struct cpuset *cs)
960 {
961 	struct css_task_iter it;
962 	struct task_struct *task;
963 
964 	css_task_iter_start(&cs->css, 0, &it);
965 	while ((task = css_task_iter_next(&it)))
966 		set_cpus_allowed_ptr(task, cs->effective_cpus);
967 	css_task_iter_end(&it);
968 }
969 
970 /**
971  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
972  * @new_cpus: the temp variable for the new effective_cpus mask
973  * @cs: the cpuset the need to recompute the new effective_cpus mask
974  * @parent: the parent cpuset
975  *
976  * If the parent has subpartition CPUs, include them in the list of
977  * allowable CPUs in computing the new effective_cpus mask. Since offlined
978  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
979  * to mask those out.
980  */
981 static void compute_effective_cpumask(struct cpumask *new_cpus,
982 				      struct cpuset *cs, struct cpuset *parent)
983 {
984 	if (parent->nr_subparts_cpus) {
985 		cpumask_or(new_cpus, parent->effective_cpus,
986 			   parent->subparts_cpus);
987 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
988 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
989 	} else {
990 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
991 	}
992 }
993 
994 /*
995  * Commands for update_parent_subparts_cpumask
996  */
997 enum subparts_cmd {
998 	partcmd_enable,		/* Enable partition root	 */
999 	partcmd_disable,	/* Disable partition root	 */
1000 	partcmd_update,		/* Update parent's subparts_cpus */
1001 };
1002 
1003 /**
1004  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1005  * @cpuset:  The cpuset that requests change in partition root state
1006  * @cmd:     Partition root state change command
1007  * @newmask: Optional new cpumask for partcmd_update
1008  * @tmp:     Temporary addmask and delmask
1009  * Return:   0, 1 or an error code
1010  *
1011  * For partcmd_enable, the cpuset is being transformed from a non-partition
1012  * root to a partition root. The cpus_allowed mask of the given cpuset will
1013  * be put into parent's subparts_cpus and taken away from parent's
1014  * effective_cpus. The function will return 0 if all the CPUs listed in
1015  * cpus_allowed can be granted or an error code will be returned.
1016  *
1017  * For partcmd_disable, the cpuset is being transofrmed from a partition
1018  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1019  * parent's subparts_cpus will be taken away from that cpumask and put back
1020  * into parent's effective_cpus. 0 should always be returned.
1021  *
1022  * For partcmd_update, if the optional newmask is specified, the cpu
1023  * list is to be changed from cpus_allowed to newmask. Otherwise,
1024  * cpus_allowed is assumed to remain the same. The cpuset should either
1025  * be a partition root or an invalid partition root. The partition root
1026  * state may change if newmask is NULL and none of the requested CPUs can
1027  * be granted by the parent. The function will return 1 if changes to
1028  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1029  * Error code should only be returned when newmask is non-NULL.
1030  *
1031  * The partcmd_enable and partcmd_disable commands are used by
1032  * update_prstate(). The partcmd_update command is used by
1033  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1034  * newmask set.
1035  *
1036  * The checking is more strict when enabling partition root than the
1037  * other two commands.
1038  *
1039  * Because of the implicit cpu exclusive nature of a partition root,
1040  * cpumask changes that violates the cpu exclusivity rule will not be
1041  * permitted when checked by validate_change(). The validate_change()
1042  * function will also prevent any changes to the cpu list if it is not
1043  * a superset of children's cpu lists.
1044  */
1045 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1046 					  struct cpumask *newmask,
1047 					  struct tmpmasks *tmp)
1048 {
1049 	struct cpuset *parent = parent_cs(cpuset);
1050 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1051 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1052 	bool part_error = false;	/* Partition error? */
1053 
1054 	lockdep_assert_held(&cpuset_mutex);
1055 
1056 	/*
1057 	 * The parent must be a partition root.
1058 	 * The new cpumask, if present, or the current cpus_allowed must
1059 	 * not be empty.
1060 	 */
1061 	if (!is_partition_root(parent) ||
1062 	   (newmask && cpumask_empty(newmask)) ||
1063 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1064 		return -EINVAL;
1065 
1066 	/*
1067 	 * Enabling/disabling partition root is not allowed if there are
1068 	 * online children.
1069 	 */
1070 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1071 		return -EBUSY;
1072 
1073 	/*
1074 	 * Enabling partition root is not allowed if not all the CPUs
1075 	 * can be granted from parent's effective_cpus or at least one
1076 	 * CPU will be left after that.
1077 	 */
1078 	if ((cmd == partcmd_enable) &&
1079 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1080 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1081 		return -EINVAL;
1082 
1083 	/*
1084 	 * A cpumask update cannot make parent's effective_cpus become empty.
1085 	 */
1086 	adding = deleting = false;
1087 	if (cmd == partcmd_enable) {
1088 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1089 		adding = true;
1090 	} else if (cmd == partcmd_disable) {
1091 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1092 				       parent->subparts_cpus);
1093 	} else if (newmask) {
1094 		/*
1095 		 * partcmd_update with newmask:
1096 		 *
1097 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1098 		 * addmask = newmask & parent->effective_cpus
1099 		 *		     & ~parent->subparts_cpus
1100 		 */
1101 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1102 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1103 				       parent->subparts_cpus);
1104 
1105 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1106 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1107 					parent->subparts_cpus);
1108 		/*
1109 		 * Return error if the new effective_cpus could become empty.
1110 		 */
1111 		if (adding &&
1112 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1113 			if (!deleting)
1114 				return -EINVAL;
1115 			/*
1116 			 * As some of the CPUs in subparts_cpus might have
1117 			 * been offlined, we need to compute the real delmask
1118 			 * to confirm that.
1119 			 */
1120 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1121 					 cpu_active_mask))
1122 				return -EINVAL;
1123 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1124 		}
1125 	} else {
1126 		/*
1127 		 * partcmd_update w/o newmask:
1128 		 *
1129 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1130 		 *
1131 		 * Note that parent's subparts_cpus may have been
1132 		 * pre-shrunk in case there is a change in the cpu list.
1133 		 * So no deletion is needed.
1134 		 */
1135 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1136 				     parent->effective_cpus);
1137 		part_error = cpumask_equal(tmp->addmask,
1138 					   parent->effective_cpus);
1139 	}
1140 
1141 	if (cmd == partcmd_update) {
1142 		int prev_prs = cpuset->partition_root_state;
1143 
1144 		/*
1145 		 * Check for possible transition between PRS_ENABLED
1146 		 * and PRS_ERROR.
1147 		 */
1148 		switch (cpuset->partition_root_state) {
1149 		case PRS_ENABLED:
1150 			if (part_error)
1151 				cpuset->partition_root_state = PRS_ERROR;
1152 			break;
1153 		case PRS_ERROR:
1154 			if (!part_error)
1155 				cpuset->partition_root_state = PRS_ENABLED;
1156 			break;
1157 		}
1158 		/*
1159 		 * Set part_error if previously in invalid state.
1160 		 */
1161 		part_error = (prev_prs == PRS_ERROR);
1162 	}
1163 
1164 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1165 		return 0;	/* Nothing need to be done */
1166 
1167 	if (cpuset->partition_root_state == PRS_ERROR) {
1168 		/*
1169 		 * Remove all its cpus from parent's subparts_cpus.
1170 		 */
1171 		adding = false;
1172 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1173 				       parent->subparts_cpus);
1174 	}
1175 
1176 	if (!adding && !deleting)
1177 		return 0;
1178 
1179 	/*
1180 	 * Change the parent's subparts_cpus.
1181 	 * Newly added CPUs will be removed from effective_cpus and
1182 	 * newly deleted ones will be added back to effective_cpus.
1183 	 */
1184 	spin_lock_irq(&callback_lock);
1185 	if (adding) {
1186 		cpumask_or(parent->subparts_cpus,
1187 			   parent->subparts_cpus, tmp->addmask);
1188 		cpumask_andnot(parent->effective_cpus,
1189 			       parent->effective_cpus, tmp->addmask);
1190 	}
1191 	if (deleting) {
1192 		cpumask_andnot(parent->subparts_cpus,
1193 			       parent->subparts_cpus, tmp->delmask);
1194 		/*
1195 		 * Some of the CPUs in subparts_cpus might have been offlined.
1196 		 */
1197 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1198 		cpumask_or(parent->effective_cpus,
1199 			   parent->effective_cpus, tmp->delmask);
1200 	}
1201 
1202 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1203 	spin_unlock_irq(&callback_lock);
1204 
1205 	return cmd == partcmd_update;
1206 }
1207 
1208 /*
1209  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1210  * @cs:  the cpuset to consider
1211  * @tmp: temp variables for calculating effective_cpus & partition setup
1212  *
1213  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1214  * and all its descendants need to be updated.
1215  *
1216  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1217  *
1218  * Called with cpuset_mutex held
1219  */
1220 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1221 {
1222 	struct cpuset *cp;
1223 	struct cgroup_subsys_state *pos_css;
1224 	bool need_rebuild_sched_domains = false;
1225 
1226 	rcu_read_lock();
1227 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1228 		struct cpuset *parent = parent_cs(cp);
1229 
1230 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1231 
1232 		/*
1233 		 * If it becomes empty, inherit the effective mask of the
1234 		 * parent, which is guaranteed to have some CPUs.
1235 		 */
1236 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1237 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1238 			if (!cp->use_parent_ecpus) {
1239 				cp->use_parent_ecpus = true;
1240 				parent->child_ecpus_count++;
1241 			}
1242 		} else if (cp->use_parent_ecpus) {
1243 			cp->use_parent_ecpus = false;
1244 			WARN_ON_ONCE(!parent->child_ecpus_count);
1245 			parent->child_ecpus_count--;
1246 		}
1247 
1248 		/*
1249 		 * Skip the whole subtree if the cpumask remains the same
1250 		 * and has no partition root state.
1251 		 */
1252 		if (!cp->partition_root_state &&
1253 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1254 			pos_css = css_rightmost_descendant(pos_css);
1255 			continue;
1256 		}
1257 
1258 		/*
1259 		 * update_parent_subparts_cpumask() should have been called
1260 		 * for cs already in update_cpumask(). We should also call
1261 		 * update_tasks_cpumask() again for tasks in the parent
1262 		 * cpuset if the parent's subparts_cpus changes.
1263 		 */
1264 		if ((cp != cs) && cp->partition_root_state) {
1265 			switch (parent->partition_root_state) {
1266 			case PRS_DISABLED:
1267 				/*
1268 				 * If parent is not a partition root or an
1269 				 * invalid partition root, clear the state
1270 				 * state and the CS_CPU_EXCLUSIVE flag.
1271 				 */
1272 				WARN_ON_ONCE(cp->partition_root_state
1273 					     != PRS_ERROR);
1274 				cp->partition_root_state = 0;
1275 
1276 				/*
1277 				 * clear_bit() is an atomic operation and
1278 				 * readers aren't interested in the state
1279 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1280 				 * just update the flag without holding
1281 				 * the callback_lock.
1282 				 */
1283 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1284 				break;
1285 
1286 			case PRS_ENABLED:
1287 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1288 					update_tasks_cpumask(parent);
1289 				break;
1290 
1291 			case PRS_ERROR:
1292 				/*
1293 				 * When parent is invalid, it has to be too.
1294 				 */
1295 				cp->partition_root_state = PRS_ERROR;
1296 				if (cp->nr_subparts_cpus) {
1297 					cp->nr_subparts_cpus = 0;
1298 					cpumask_clear(cp->subparts_cpus);
1299 				}
1300 				break;
1301 			}
1302 		}
1303 
1304 		if (!css_tryget_online(&cp->css))
1305 			continue;
1306 		rcu_read_unlock();
1307 
1308 		spin_lock_irq(&callback_lock);
1309 
1310 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1311 		if (cp->nr_subparts_cpus &&
1312 		   (cp->partition_root_state != PRS_ENABLED)) {
1313 			cp->nr_subparts_cpus = 0;
1314 			cpumask_clear(cp->subparts_cpus);
1315 		} else if (cp->nr_subparts_cpus) {
1316 			/*
1317 			 * Make sure that effective_cpus & subparts_cpus
1318 			 * are mutually exclusive.
1319 			 *
1320 			 * In the unlikely event that effective_cpus
1321 			 * becomes empty. we clear cp->nr_subparts_cpus and
1322 			 * let its child partition roots to compete for
1323 			 * CPUs again.
1324 			 */
1325 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1326 				       cp->subparts_cpus);
1327 			if (cpumask_empty(cp->effective_cpus)) {
1328 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1329 				cpumask_clear(cp->subparts_cpus);
1330 				cp->nr_subparts_cpus = 0;
1331 			} else if (!cpumask_subset(cp->subparts_cpus,
1332 						   tmp->new_cpus)) {
1333 				cpumask_andnot(cp->subparts_cpus,
1334 					cp->subparts_cpus, tmp->new_cpus);
1335 				cp->nr_subparts_cpus
1336 					= cpumask_weight(cp->subparts_cpus);
1337 			}
1338 		}
1339 		spin_unlock_irq(&callback_lock);
1340 
1341 		WARN_ON(!is_in_v2_mode() &&
1342 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1343 
1344 		update_tasks_cpumask(cp);
1345 
1346 		/*
1347 		 * On legacy hierarchy, if the effective cpumask of any non-
1348 		 * empty cpuset is changed, we need to rebuild sched domains.
1349 		 * On default hierarchy, the cpuset needs to be a partition
1350 		 * root as well.
1351 		 */
1352 		if (!cpumask_empty(cp->cpus_allowed) &&
1353 		    is_sched_load_balance(cp) &&
1354 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1355 		    is_partition_root(cp)))
1356 			need_rebuild_sched_domains = true;
1357 
1358 		rcu_read_lock();
1359 		css_put(&cp->css);
1360 	}
1361 	rcu_read_unlock();
1362 
1363 	if (need_rebuild_sched_domains)
1364 		rebuild_sched_domains_locked();
1365 }
1366 
1367 /**
1368  * update_sibling_cpumasks - Update siblings cpumasks
1369  * @parent:  Parent cpuset
1370  * @cs:      Current cpuset
1371  * @tmp:     Temp variables
1372  */
1373 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1374 				    struct tmpmasks *tmp)
1375 {
1376 	struct cpuset *sibling;
1377 	struct cgroup_subsys_state *pos_css;
1378 
1379 	/*
1380 	 * Check all its siblings and call update_cpumasks_hier()
1381 	 * if their use_parent_ecpus flag is set in order for them
1382 	 * to use the right effective_cpus value.
1383 	 */
1384 	rcu_read_lock();
1385 	cpuset_for_each_child(sibling, pos_css, parent) {
1386 		if (sibling == cs)
1387 			continue;
1388 		if (!sibling->use_parent_ecpus)
1389 			continue;
1390 
1391 		update_cpumasks_hier(sibling, tmp);
1392 	}
1393 	rcu_read_unlock();
1394 }
1395 
1396 /**
1397  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1398  * @cs: the cpuset to consider
1399  * @trialcs: trial cpuset
1400  * @buf: buffer of cpu numbers written to this cpuset
1401  */
1402 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1403 			  const char *buf)
1404 {
1405 	int retval;
1406 	struct tmpmasks tmp;
1407 
1408 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1409 	if (cs == &top_cpuset)
1410 		return -EACCES;
1411 
1412 	/*
1413 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1414 	 * Since cpulist_parse() fails on an empty mask, we special case
1415 	 * that parsing.  The validate_change() call ensures that cpusets
1416 	 * with tasks have cpus.
1417 	 */
1418 	if (!*buf) {
1419 		cpumask_clear(trialcs->cpus_allowed);
1420 	} else {
1421 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1422 		if (retval < 0)
1423 			return retval;
1424 
1425 		if (!cpumask_subset(trialcs->cpus_allowed,
1426 				    top_cpuset.cpus_allowed))
1427 			return -EINVAL;
1428 	}
1429 
1430 	/* Nothing to do if the cpus didn't change */
1431 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1432 		return 0;
1433 
1434 	retval = validate_change(cs, trialcs);
1435 	if (retval < 0)
1436 		return retval;
1437 
1438 #ifdef CONFIG_CPUMASK_OFFSTACK
1439 	/*
1440 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1441 	 * to allocated cpumasks.
1442 	 */
1443 	tmp.addmask  = trialcs->subparts_cpus;
1444 	tmp.delmask  = trialcs->effective_cpus;
1445 	tmp.new_cpus = trialcs->cpus_allowed;
1446 #endif
1447 
1448 	if (cs->partition_root_state) {
1449 		/* Cpumask of a partition root cannot be empty */
1450 		if (cpumask_empty(trialcs->cpus_allowed))
1451 			return -EINVAL;
1452 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1453 					trialcs->cpus_allowed, &tmp) < 0)
1454 			return -EINVAL;
1455 	}
1456 
1457 	spin_lock_irq(&callback_lock);
1458 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1459 
1460 	/*
1461 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1462 	 */
1463 	if (cs->nr_subparts_cpus) {
1464 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1465 			       cs->cpus_allowed);
1466 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1467 	}
1468 	spin_unlock_irq(&callback_lock);
1469 
1470 	update_cpumasks_hier(cs, &tmp);
1471 
1472 	if (cs->partition_root_state) {
1473 		struct cpuset *parent = parent_cs(cs);
1474 
1475 		/*
1476 		 * For partition root, update the cpumasks of sibling
1477 		 * cpusets if they use parent's effective_cpus.
1478 		 */
1479 		if (parent->child_ecpus_count)
1480 			update_sibling_cpumasks(parent, cs, &tmp);
1481 	}
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Migrate memory region from one set of nodes to another.  This is
1487  * performed asynchronously as it can be called from process migration path
1488  * holding locks involved in process management.  All mm migrations are
1489  * performed in the queued order and can be waited for by flushing
1490  * cpuset_migrate_mm_wq.
1491  */
1492 
1493 struct cpuset_migrate_mm_work {
1494 	struct work_struct	work;
1495 	struct mm_struct	*mm;
1496 	nodemask_t		from;
1497 	nodemask_t		to;
1498 };
1499 
1500 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1501 {
1502 	struct cpuset_migrate_mm_work *mwork =
1503 		container_of(work, struct cpuset_migrate_mm_work, work);
1504 
1505 	/* on a wq worker, no need to worry about %current's mems_allowed */
1506 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1507 	mmput(mwork->mm);
1508 	kfree(mwork);
1509 }
1510 
1511 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1512 							const nodemask_t *to)
1513 {
1514 	struct cpuset_migrate_mm_work *mwork;
1515 
1516 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1517 	if (mwork) {
1518 		mwork->mm = mm;
1519 		mwork->from = *from;
1520 		mwork->to = *to;
1521 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1522 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1523 	} else {
1524 		mmput(mm);
1525 	}
1526 }
1527 
1528 static void cpuset_post_attach(void)
1529 {
1530 	flush_workqueue(cpuset_migrate_mm_wq);
1531 }
1532 
1533 /*
1534  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1535  * @tsk: the task to change
1536  * @newmems: new nodes that the task will be set
1537  *
1538  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1539  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1540  * parallel, it might temporarily see an empty intersection, which results in
1541  * a seqlock check and retry before OOM or allocation failure.
1542  */
1543 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1544 					nodemask_t *newmems)
1545 {
1546 	task_lock(tsk);
1547 
1548 	local_irq_disable();
1549 	write_seqcount_begin(&tsk->mems_allowed_seq);
1550 
1551 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1552 	mpol_rebind_task(tsk, newmems);
1553 	tsk->mems_allowed = *newmems;
1554 
1555 	write_seqcount_end(&tsk->mems_allowed_seq);
1556 	local_irq_enable();
1557 
1558 	task_unlock(tsk);
1559 }
1560 
1561 static void *cpuset_being_rebound;
1562 
1563 /**
1564  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1565  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1566  *
1567  * Iterate through each task of @cs updating its mems_allowed to the
1568  * effective cpuset's.  As this function is called with cpuset_mutex held,
1569  * cpuset membership stays stable.
1570  */
1571 static void update_tasks_nodemask(struct cpuset *cs)
1572 {
1573 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1574 	struct css_task_iter it;
1575 	struct task_struct *task;
1576 
1577 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1578 
1579 	guarantee_online_mems(cs, &newmems);
1580 
1581 	/*
1582 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1583 	 * take while holding tasklist_lock.  Forks can happen - the
1584 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1585 	 * and rebind their vma mempolicies too.  Because we still hold
1586 	 * the global cpuset_mutex, we know that no other rebind effort
1587 	 * will be contending for the global variable cpuset_being_rebound.
1588 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1589 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1590 	 */
1591 	css_task_iter_start(&cs->css, 0, &it);
1592 	while ((task = css_task_iter_next(&it))) {
1593 		struct mm_struct *mm;
1594 		bool migrate;
1595 
1596 		cpuset_change_task_nodemask(task, &newmems);
1597 
1598 		mm = get_task_mm(task);
1599 		if (!mm)
1600 			continue;
1601 
1602 		migrate = is_memory_migrate(cs);
1603 
1604 		mpol_rebind_mm(mm, &cs->mems_allowed);
1605 		if (migrate)
1606 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1607 		else
1608 			mmput(mm);
1609 	}
1610 	css_task_iter_end(&it);
1611 
1612 	/*
1613 	 * All the tasks' nodemasks have been updated, update
1614 	 * cs->old_mems_allowed.
1615 	 */
1616 	cs->old_mems_allowed = newmems;
1617 
1618 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1619 	cpuset_being_rebound = NULL;
1620 }
1621 
1622 /*
1623  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1624  * @cs: the cpuset to consider
1625  * @new_mems: a temp variable for calculating new effective_mems
1626  *
1627  * When configured nodemask is changed, the effective nodemasks of this cpuset
1628  * and all its descendants need to be updated.
1629  *
1630  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1631  *
1632  * Called with cpuset_mutex held
1633  */
1634 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1635 {
1636 	struct cpuset *cp;
1637 	struct cgroup_subsys_state *pos_css;
1638 
1639 	rcu_read_lock();
1640 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1641 		struct cpuset *parent = parent_cs(cp);
1642 
1643 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1644 
1645 		/*
1646 		 * If it becomes empty, inherit the effective mask of the
1647 		 * parent, which is guaranteed to have some MEMs.
1648 		 */
1649 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1650 			*new_mems = parent->effective_mems;
1651 
1652 		/* Skip the whole subtree if the nodemask remains the same. */
1653 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1654 			pos_css = css_rightmost_descendant(pos_css);
1655 			continue;
1656 		}
1657 
1658 		if (!css_tryget_online(&cp->css))
1659 			continue;
1660 		rcu_read_unlock();
1661 
1662 		spin_lock_irq(&callback_lock);
1663 		cp->effective_mems = *new_mems;
1664 		spin_unlock_irq(&callback_lock);
1665 
1666 		WARN_ON(!is_in_v2_mode() &&
1667 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1668 
1669 		update_tasks_nodemask(cp);
1670 
1671 		rcu_read_lock();
1672 		css_put(&cp->css);
1673 	}
1674 	rcu_read_unlock();
1675 }
1676 
1677 /*
1678  * Handle user request to change the 'mems' memory placement
1679  * of a cpuset.  Needs to validate the request, update the
1680  * cpusets mems_allowed, and for each task in the cpuset,
1681  * update mems_allowed and rebind task's mempolicy and any vma
1682  * mempolicies and if the cpuset is marked 'memory_migrate',
1683  * migrate the tasks pages to the new memory.
1684  *
1685  * Call with cpuset_mutex held. May take callback_lock during call.
1686  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1687  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1688  * their mempolicies to the cpusets new mems_allowed.
1689  */
1690 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1691 			   const char *buf)
1692 {
1693 	int retval;
1694 
1695 	/*
1696 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1697 	 * it's read-only
1698 	 */
1699 	if (cs == &top_cpuset) {
1700 		retval = -EACCES;
1701 		goto done;
1702 	}
1703 
1704 	/*
1705 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1706 	 * Since nodelist_parse() fails on an empty mask, we special case
1707 	 * that parsing.  The validate_change() call ensures that cpusets
1708 	 * with tasks have memory.
1709 	 */
1710 	if (!*buf) {
1711 		nodes_clear(trialcs->mems_allowed);
1712 	} else {
1713 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1714 		if (retval < 0)
1715 			goto done;
1716 
1717 		if (!nodes_subset(trialcs->mems_allowed,
1718 				  top_cpuset.mems_allowed)) {
1719 			retval = -EINVAL;
1720 			goto done;
1721 		}
1722 	}
1723 
1724 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1725 		retval = 0;		/* Too easy - nothing to do */
1726 		goto done;
1727 	}
1728 	retval = validate_change(cs, trialcs);
1729 	if (retval < 0)
1730 		goto done;
1731 
1732 	spin_lock_irq(&callback_lock);
1733 	cs->mems_allowed = trialcs->mems_allowed;
1734 	spin_unlock_irq(&callback_lock);
1735 
1736 	/* use trialcs->mems_allowed as a temp variable */
1737 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1738 done:
1739 	return retval;
1740 }
1741 
1742 bool current_cpuset_is_being_rebound(void)
1743 {
1744 	bool ret;
1745 
1746 	rcu_read_lock();
1747 	ret = task_cs(current) == cpuset_being_rebound;
1748 	rcu_read_unlock();
1749 
1750 	return ret;
1751 }
1752 
1753 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1754 {
1755 #ifdef CONFIG_SMP
1756 	if (val < -1 || val >= sched_domain_level_max)
1757 		return -EINVAL;
1758 #endif
1759 
1760 	if (val != cs->relax_domain_level) {
1761 		cs->relax_domain_level = val;
1762 		if (!cpumask_empty(cs->cpus_allowed) &&
1763 		    is_sched_load_balance(cs))
1764 			rebuild_sched_domains_locked();
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 /**
1771  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1772  * @cs: the cpuset in which each task's spread flags needs to be changed
1773  *
1774  * Iterate through each task of @cs updating its spread flags.  As this
1775  * function is called with cpuset_mutex held, cpuset membership stays
1776  * stable.
1777  */
1778 static void update_tasks_flags(struct cpuset *cs)
1779 {
1780 	struct css_task_iter it;
1781 	struct task_struct *task;
1782 
1783 	css_task_iter_start(&cs->css, 0, &it);
1784 	while ((task = css_task_iter_next(&it)))
1785 		cpuset_update_task_spread_flag(cs, task);
1786 	css_task_iter_end(&it);
1787 }
1788 
1789 /*
1790  * update_flag - read a 0 or a 1 in a file and update associated flag
1791  * bit:		the bit to update (see cpuset_flagbits_t)
1792  * cs:		the cpuset to update
1793  * turning_on: 	whether the flag is being set or cleared
1794  *
1795  * Call with cpuset_mutex held.
1796  */
1797 
1798 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1799 		       int turning_on)
1800 {
1801 	struct cpuset *trialcs;
1802 	int balance_flag_changed;
1803 	int spread_flag_changed;
1804 	int err;
1805 
1806 	trialcs = alloc_trial_cpuset(cs);
1807 	if (!trialcs)
1808 		return -ENOMEM;
1809 
1810 	if (turning_on)
1811 		set_bit(bit, &trialcs->flags);
1812 	else
1813 		clear_bit(bit, &trialcs->flags);
1814 
1815 	err = validate_change(cs, trialcs);
1816 	if (err < 0)
1817 		goto out;
1818 
1819 	balance_flag_changed = (is_sched_load_balance(cs) !=
1820 				is_sched_load_balance(trialcs));
1821 
1822 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1823 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1824 
1825 	spin_lock_irq(&callback_lock);
1826 	cs->flags = trialcs->flags;
1827 	spin_unlock_irq(&callback_lock);
1828 
1829 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1830 		rebuild_sched_domains_locked();
1831 
1832 	if (spread_flag_changed)
1833 		update_tasks_flags(cs);
1834 out:
1835 	free_cpuset(trialcs);
1836 	return err;
1837 }
1838 
1839 /*
1840  * update_prstate - update partititon_root_state
1841  * cs:	the cpuset to update
1842  * val: 0 - disabled, 1 - enabled
1843  *
1844  * Call with cpuset_mutex held.
1845  */
1846 static int update_prstate(struct cpuset *cs, int val)
1847 {
1848 	int err;
1849 	struct cpuset *parent = parent_cs(cs);
1850 	struct tmpmasks tmp;
1851 
1852 	if ((val != 0) && (val != 1))
1853 		return -EINVAL;
1854 	if (val == cs->partition_root_state)
1855 		return 0;
1856 
1857 	/*
1858 	 * Cannot force a partial or invalid partition root to a full
1859 	 * partition root.
1860 	 */
1861 	if (val && cs->partition_root_state)
1862 		return -EINVAL;
1863 
1864 	if (alloc_cpumasks(NULL, &tmp))
1865 		return -ENOMEM;
1866 
1867 	err = -EINVAL;
1868 	if (!cs->partition_root_state) {
1869 		/*
1870 		 * Turning on partition root requires setting the
1871 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1872 		 * cannot be NULL.
1873 		 */
1874 		if (cpumask_empty(cs->cpus_allowed))
1875 			goto out;
1876 
1877 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1878 		if (err)
1879 			goto out;
1880 
1881 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1882 						     NULL, &tmp);
1883 		if (err) {
1884 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1885 			goto out;
1886 		}
1887 		cs->partition_root_state = PRS_ENABLED;
1888 	} else {
1889 		/*
1890 		 * Turning off partition root will clear the
1891 		 * CS_CPU_EXCLUSIVE bit.
1892 		 */
1893 		if (cs->partition_root_state == PRS_ERROR) {
1894 			cs->partition_root_state = 0;
1895 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1896 			err = 0;
1897 			goto out;
1898 		}
1899 
1900 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1901 						     NULL, &tmp);
1902 		if (err)
1903 			goto out;
1904 
1905 		cs->partition_root_state = 0;
1906 
1907 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1908 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1909 	}
1910 
1911 	/*
1912 	 * Update cpumask of parent's tasks except when it is the top
1913 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1914 	 */
1915 	if (parent != &top_cpuset)
1916 		update_tasks_cpumask(parent);
1917 
1918 	if (parent->child_ecpus_count)
1919 		update_sibling_cpumasks(parent, cs, &tmp);
1920 
1921 	rebuild_sched_domains_locked();
1922 out:
1923 	free_cpumasks(NULL, &tmp);
1924 	return err;
1925 }
1926 
1927 /*
1928  * Frequency meter - How fast is some event occurring?
1929  *
1930  * These routines manage a digitally filtered, constant time based,
1931  * event frequency meter.  There are four routines:
1932  *   fmeter_init() - initialize a frequency meter.
1933  *   fmeter_markevent() - called each time the event happens.
1934  *   fmeter_getrate() - returns the recent rate of such events.
1935  *   fmeter_update() - internal routine used to update fmeter.
1936  *
1937  * A common data structure is passed to each of these routines,
1938  * which is used to keep track of the state required to manage the
1939  * frequency meter and its digital filter.
1940  *
1941  * The filter works on the number of events marked per unit time.
1942  * The filter is single-pole low-pass recursive (IIR).  The time unit
1943  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1944  * simulate 3 decimal digits of precision (multiplied by 1000).
1945  *
1946  * With an FM_COEF of 933, and a time base of 1 second, the filter
1947  * has a half-life of 10 seconds, meaning that if the events quit
1948  * happening, then the rate returned from the fmeter_getrate()
1949  * will be cut in half each 10 seconds, until it converges to zero.
1950  *
1951  * It is not worth doing a real infinitely recursive filter.  If more
1952  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1953  * just compute FM_MAXTICKS ticks worth, by which point the level
1954  * will be stable.
1955  *
1956  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1957  * arithmetic overflow in the fmeter_update() routine.
1958  *
1959  * Given the simple 32 bit integer arithmetic used, this meter works
1960  * best for reporting rates between one per millisecond (msec) and
1961  * one per 32 (approx) seconds.  At constant rates faster than one
1962  * per msec it maxes out at values just under 1,000,000.  At constant
1963  * rates between one per msec, and one per second it will stabilize
1964  * to a value N*1000, where N is the rate of events per second.
1965  * At constant rates between one per second and one per 32 seconds,
1966  * it will be choppy, moving up on the seconds that have an event,
1967  * and then decaying until the next event.  At rates slower than
1968  * about one in 32 seconds, it decays all the way back to zero between
1969  * each event.
1970  */
1971 
1972 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1973 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1974 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1975 #define FM_SCALE 1000		/* faux fixed point scale */
1976 
1977 /* Initialize a frequency meter */
1978 static void fmeter_init(struct fmeter *fmp)
1979 {
1980 	fmp->cnt = 0;
1981 	fmp->val = 0;
1982 	fmp->time = 0;
1983 	spin_lock_init(&fmp->lock);
1984 }
1985 
1986 /* Internal meter update - process cnt events and update value */
1987 static void fmeter_update(struct fmeter *fmp)
1988 {
1989 	time64_t now;
1990 	u32 ticks;
1991 
1992 	now = ktime_get_seconds();
1993 	ticks = now - fmp->time;
1994 
1995 	if (ticks == 0)
1996 		return;
1997 
1998 	ticks = min(FM_MAXTICKS, ticks);
1999 	while (ticks-- > 0)
2000 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2001 	fmp->time = now;
2002 
2003 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2004 	fmp->cnt = 0;
2005 }
2006 
2007 /* Process any previous ticks, then bump cnt by one (times scale). */
2008 static void fmeter_markevent(struct fmeter *fmp)
2009 {
2010 	spin_lock(&fmp->lock);
2011 	fmeter_update(fmp);
2012 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2013 	spin_unlock(&fmp->lock);
2014 }
2015 
2016 /* Process any previous ticks, then return current value. */
2017 static int fmeter_getrate(struct fmeter *fmp)
2018 {
2019 	int val;
2020 
2021 	spin_lock(&fmp->lock);
2022 	fmeter_update(fmp);
2023 	val = fmp->val;
2024 	spin_unlock(&fmp->lock);
2025 	return val;
2026 }
2027 
2028 static struct cpuset *cpuset_attach_old_cs;
2029 
2030 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2031 static int cpuset_can_attach(struct cgroup_taskset *tset)
2032 {
2033 	struct cgroup_subsys_state *css;
2034 	struct cpuset *cs;
2035 	struct task_struct *task;
2036 	int ret;
2037 
2038 	/* used later by cpuset_attach() */
2039 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2040 	cs = css_cs(css);
2041 
2042 	mutex_lock(&cpuset_mutex);
2043 
2044 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2045 	ret = -ENOSPC;
2046 	if (!is_in_v2_mode() &&
2047 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2048 		goto out_unlock;
2049 
2050 	cgroup_taskset_for_each(task, css, tset) {
2051 		ret = task_can_attach(task, cs->cpus_allowed);
2052 		if (ret)
2053 			goto out_unlock;
2054 		ret = security_task_setscheduler(task);
2055 		if (ret)
2056 			goto out_unlock;
2057 	}
2058 
2059 	/*
2060 	 * Mark attach is in progress.  This makes validate_change() fail
2061 	 * changes which zero cpus/mems_allowed.
2062 	 */
2063 	cs->attach_in_progress++;
2064 	ret = 0;
2065 out_unlock:
2066 	mutex_unlock(&cpuset_mutex);
2067 	return ret;
2068 }
2069 
2070 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2071 {
2072 	struct cgroup_subsys_state *css;
2073 
2074 	cgroup_taskset_first(tset, &css);
2075 
2076 	mutex_lock(&cpuset_mutex);
2077 	css_cs(css)->attach_in_progress--;
2078 	mutex_unlock(&cpuset_mutex);
2079 }
2080 
2081 /*
2082  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2083  * but we can't allocate it dynamically there.  Define it global and
2084  * allocate from cpuset_init().
2085  */
2086 static cpumask_var_t cpus_attach;
2087 
2088 static void cpuset_attach(struct cgroup_taskset *tset)
2089 {
2090 	/* static buf protected by cpuset_mutex */
2091 	static nodemask_t cpuset_attach_nodemask_to;
2092 	struct task_struct *task;
2093 	struct task_struct *leader;
2094 	struct cgroup_subsys_state *css;
2095 	struct cpuset *cs;
2096 	struct cpuset *oldcs = cpuset_attach_old_cs;
2097 
2098 	cgroup_taskset_first(tset, &css);
2099 	cs = css_cs(css);
2100 
2101 	mutex_lock(&cpuset_mutex);
2102 
2103 	/* prepare for attach */
2104 	if (cs == &top_cpuset)
2105 		cpumask_copy(cpus_attach, cpu_possible_mask);
2106 	else
2107 		guarantee_online_cpus(cs, cpus_attach);
2108 
2109 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2110 
2111 	cgroup_taskset_for_each(task, css, tset) {
2112 		/*
2113 		 * can_attach beforehand should guarantee that this doesn't
2114 		 * fail.  TODO: have a better way to handle failure here
2115 		 */
2116 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2117 
2118 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2119 		cpuset_update_task_spread_flag(cs, task);
2120 	}
2121 
2122 	/*
2123 	 * Change mm for all threadgroup leaders. This is expensive and may
2124 	 * sleep and should be moved outside migration path proper.
2125 	 */
2126 	cpuset_attach_nodemask_to = cs->effective_mems;
2127 	cgroup_taskset_for_each_leader(leader, css, tset) {
2128 		struct mm_struct *mm = get_task_mm(leader);
2129 
2130 		if (mm) {
2131 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2132 
2133 			/*
2134 			 * old_mems_allowed is the same with mems_allowed
2135 			 * here, except if this task is being moved
2136 			 * automatically due to hotplug.  In that case
2137 			 * @mems_allowed has been updated and is empty, so
2138 			 * @old_mems_allowed is the right nodesets that we
2139 			 * migrate mm from.
2140 			 */
2141 			if (is_memory_migrate(cs))
2142 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2143 						  &cpuset_attach_nodemask_to);
2144 			else
2145 				mmput(mm);
2146 		}
2147 	}
2148 
2149 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2150 
2151 	cs->attach_in_progress--;
2152 	if (!cs->attach_in_progress)
2153 		wake_up(&cpuset_attach_wq);
2154 
2155 	mutex_unlock(&cpuset_mutex);
2156 }
2157 
2158 /* The various types of files and directories in a cpuset file system */
2159 
2160 typedef enum {
2161 	FILE_MEMORY_MIGRATE,
2162 	FILE_CPULIST,
2163 	FILE_MEMLIST,
2164 	FILE_EFFECTIVE_CPULIST,
2165 	FILE_EFFECTIVE_MEMLIST,
2166 	FILE_SUBPARTS_CPULIST,
2167 	FILE_CPU_EXCLUSIVE,
2168 	FILE_MEM_EXCLUSIVE,
2169 	FILE_MEM_HARDWALL,
2170 	FILE_SCHED_LOAD_BALANCE,
2171 	FILE_PARTITION_ROOT,
2172 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2173 	FILE_MEMORY_PRESSURE_ENABLED,
2174 	FILE_MEMORY_PRESSURE,
2175 	FILE_SPREAD_PAGE,
2176 	FILE_SPREAD_SLAB,
2177 } cpuset_filetype_t;
2178 
2179 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2180 			    u64 val)
2181 {
2182 	struct cpuset *cs = css_cs(css);
2183 	cpuset_filetype_t type = cft->private;
2184 	int retval = 0;
2185 
2186 	mutex_lock(&cpuset_mutex);
2187 	if (!is_cpuset_online(cs)) {
2188 		retval = -ENODEV;
2189 		goto out_unlock;
2190 	}
2191 
2192 	switch (type) {
2193 	case FILE_CPU_EXCLUSIVE:
2194 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2195 		break;
2196 	case FILE_MEM_EXCLUSIVE:
2197 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2198 		break;
2199 	case FILE_MEM_HARDWALL:
2200 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2201 		break;
2202 	case FILE_SCHED_LOAD_BALANCE:
2203 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2204 		break;
2205 	case FILE_MEMORY_MIGRATE:
2206 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2207 		break;
2208 	case FILE_MEMORY_PRESSURE_ENABLED:
2209 		cpuset_memory_pressure_enabled = !!val;
2210 		break;
2211 	case FILE_SPREAD_PAGE:
2212 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2213 		break;
2214 	case FILE_SPREAD_SLAB:
2215 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2216 		break;
2217 	default:
2218 		retval = -EINVAL;
2219 		break;
2220 	}
2221 out_unlock:
2222 	mutex_unlock(&cpuset_mutex);
2223 	return retval;
2224 }
2225 
2226 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2227 			    s64 val)
2228 {
2229 	struct cpuset *cs = css_cs(css);
2230 	cpuset_filetype_t type = cft->private;
2231 	int retval = -ENODEV;
2232 
2233 	mutex_lock(&cpuset_mutex);
2234 	if (!is_cpuset_online(cs))
2235 		goto out_unlock;
2236 
2237 	switch (type) {
2238 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2239 		retval = update_relax_domain_level(cs, val);
2240 		break;
2241 	default:
2242 		retval = -EINVAL;
2243 		break;
2244 	}
2245 out_unlock:
2246 	mutex_unlock(&cpuset_mutex);
2247 	return retval;
2248 }
2249 
2250 /*
2251  * Common handling for a write to a "cpus" or "mems" file.
2252  */
2253 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2254 				    char *buf, size_t nbytes, loff_t off)
2255 {
2256 	struct cpuset *cs = css_cs(of_css(of));
2257 	struct cpuset *trialcs;
2258 	int retval = -ENODEV;
2259 
2260 	buf = strstrip(buf);
2261 
2262 	/*
2263 	 * CPU or memory hotunplug may leave @cs w/o any execution
2264 	 * resources, in which case the hotplug code asynchronously updates
2265 	 * configuration and transfers all tasks to the nearest ancestor
2266 	 * which can execute.
2267 	 *
2268 	 * As writes to "cpus" or "mems" may restore @cs's execution
2269 	 * resources, wait for the previously scheduled operations before
2270 	 * proceeding, so that we don't end up keep removing tasks added
2271 	 * after execution capability is restored.
2272 	 *
2273 	 * cpuset_hotplug_work calls back into cgroup core via
2274 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2275 	 * operation like this one can lead to a deadlock through kernfs
2276 	 * active_ref protection.  Let's break the protection.  Losing the
2277 	 * protection is okay as we check whether @cs is online after
2278 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2279 	 * hierarchies.
2280 	 */
2281 	css_get(&cs->css);
2282 	kernfs_break_active_protection(of->kn);
2283 	flush_work(&cpuset_hotplug_work);
2284 
2285 	mutex_lock(&cpuset_mutex);
2286 	if (!is_cpuset_online(cs))
2287 		goto out_unlock;
2288 
2289 	trialcs = alloc_trial_cpuset(cs);
2290 	if (!trialcs) {
2291 		retval = -ENOMEM;
2292 		goto out_unlock;
2293 	}
2294 
2295 	switch (of_cft(of)->private) {
2296 	case FILE_CPULIST:
2297 		retval = update_cpumask(cs, trialcs, buf);
2298 		break;
2299 	case FILE_MEMLIST:
2300 		retval = update_nodemask(cs, trialcs, buf);
2301 		break;
2302 	default:
2303 		retval = -EINVAL;
2304 		break;
2305 	}
2306 
2307 	free_cpuset(trialcs);
2308 out_unlock:
2309 	mutex_unlock(&cpuset_mutex);
2310 	kernfs_unbreak_active_protection(of->kn);
2311 	css_put(&cs->css);
2312 	flush_workqueue(cpuset_migrate_mm_wq);
2313 	return retval ?: nbytes;
2314 }
2315 
2316 /*
2317  * These ascii lists should be read in a single call, by using a user
2318  * buffer large enough to hold the entire map.  If read in smaller
2319  * chunks, there is no guarantee of atomicity.  Since the display format
2320  * used, list of ranges of sequential numbers, is variable length,
2321  * and since these maps can change value dynamically, one could read
2322  * gibberish by doing partial reads while a list was changing.
2323  */
2324 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2325 {
2326 	struct cpuset *cs = css_cs(seq_css(sf));
2327 	cpuset_filetype_t type = seq_cft(sf)->private;
2328 	int ret = 0;
2329 
2330 	spin_lock_irq(&callback_lock);
2331 
2332 	switch (type) {
2333 	case FILE_CPULIST:
2334 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2335 		break;
2336 	case FILE_MEMLIST:
2337 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2338 		break;
2339 	case FILE_EFFECTIVE_CPULIST:
2340 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2341 		break;
2342 	case FILE_EFFECTIVE_MEMLIST:
2343 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2344 		break;
2345 	case FILE_SUBPARTS_CPULIST:
2346 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2347 		break;
2348 	default:
2349 		ret = -EINVAL;
2350 	}
2351 
2352 	spin_unlock_irq(&callback_lock);
2353 	return ret;
2354 }
2355 
2356 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2357 {
2358 	struct cpuset *cs = css_cs(css);
2359 	cpuset_filetype_t type = cft->private;
2360 	switch (type) {
2361 	case FILE_CPU_EXCLUSIVE:
2362 		return is_cpu_exclusive(cs);
2363 	case FILE_MEM_EXCLUSIVE:
2364 		return is_mem_exclusive(cs);
2365 	case FILE_MEM_HARDWALL:
2366 		return is_mem_hardwall(cs);
2367 	case FILE_SCHED_LOAD_BALANCE:
2368 		return is_sched_load_balance(cs);
2369 	case FILE_MEMORY_MIGRATE:
2370 		return is_memory_migrate(cs);
2371 	case FILE_MEMORY_PRESSURE_ENABLED:
2372 		return cpuset_memory_pressure_enabled;
2373 	case FILE_MEMORY_PRESSURE:
2374 		return fmeter_getrate(&cs->fmeter);
2375 	case FILE_SPREAD_PAGE:
2376 		return is_spread_page(cs);
2377 	case FILE_SPREAD_SLAB:
2378 		return is_spread_slab(cs);
2379 	default:
2380 		BUG();
2381 	}
2382 
2383 	/* Unreachable but makes gcc happy */
2384 	return 0;
2385 }
2386 
2387 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2388 {
2389 	struct cpuset *cs = css_cs(css);
2390 	cpuset_filetype_t type = cft->private;
2391 	switch (type) {
2392 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2393 		return cs->relax_domain_level;
2394 	default:
2395 		BUG();
2396 	}
2397 
2398 	/* Unrechable but makes gcc happy */
2399 	return 0;
2400 }
2401 
2402 static int sched_partition_show(struct seq_file *seq, void *v)
2403 {
2404 	struct cpuset *cs = css_cs(seq_css(seq));
2405 
2406 	switch (cs->partition_root_state) {
2407 	case PRS_ENABLED:
2408 		seq_puts(seq, "root\n");
2409 		break;
2410 	case PRS_DISABLED:
2411 		seq_puts(seq, "member\n");
2412 		break;
2413 	case PRS_ERROR:
2414 		seq_puts(seq, "root invalid\n");
2415 		break;
2416 	}
2417 	return 0;
2418 }
2419 
2420 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2421 				     size_t nbytes, loff_t off)
2422 {
2423 	struct cpuset *cs = css_cs(of_css(of));
2424 	int val;
2425 	int retval = -ENODEV;
2426 
2427 	buf = strstrip(buf);
2428 
2429 	/*
2430 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2431 	 */
2432 	if (!strcmp(buf, "root"))
2433 		val = PRS_ENABLED;
2434 	else if (!strcmp(buf, "member"))
2435 		val = PRS_DISABLED;
2436 	else
2437 		return -EINVAL;
2438 
2439 	css_get(&cs->css);
2440 	mutex_lock(&cpuset_mutex);
2441 	if (!is_cpuset_online(cs))
2442 		goto out_unlock;
2443 
2444 	retval = update_prstate(cs, val);
2445 out_unlock:
2446 	mutex_unlock(&cpuset_mutex);
2447 	css_put(&cs->css);
2448 	return retval ?: nbytes;
2449 }
2450 
2451 /*
2452  * for the common functions, 'private' gives the type of file
2453  */
2454 
2455 static struct cftype legacy_files[] = {
2456 	{
2457 		.name = "cpus",
2458 		.seq_show = cpuset_common_seq_show,
2459 		.write = cpuset_write_resmask,
2460 		.max_write_len = (100U + 6 * NR_CPUS),
2461 		.private = FILE_CPULIST,
2462 	},
2463 
2464 	{
2465 		.name = "mems",
2466 		.seq_show = cpuset_common_seq_show,
2467 		.write = cpuset_write_resmask,
2468 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2469 		.private = FILE_MEMLIST,
2470 	},
2471 
2472 	{
2473 		.name = "effective_cpus",
2474 		.seq_show = cpuset_common_seq_show,
2475 		.private = FILE_EFFECTIVE_CPULIST,
2476 	},
2477 
2478 	{
2479 		.name = "effective_mems",
2480 		.seq_show = cpuset_common_seq_show,
2481 		.private = FILE_EFFECTIVE_MEMLIST,
2482 	},
2483 
2484 	{
2485 		.name = "cpu_exclusive",
2486 		.read_u64 = cpuset_read_u64,
2487 		.write_u64 = cpuset_write_u64,
2488 		.private = FILE_CPU_EXCLUSIVE,
2489 	},
2490 
2491 	{
2492 		.name = "mem_exclusive",
2493 		.read_u64 = cpuset_read_u64,
2494 		.write_u64 = cpuset_write_u64,
2495 		.private = FILE_MEM_EXCLUSIVE,
2496 	},
2497 
2498 	{
2499 		.name = "mem_hardwall",
2500 		.read_u64 = cpuset_read_u64,
2501 		.write_u64 = cpuset_write_u64,
2502 		.private = FILE_MEM_HARDWALL,
2503 	},
2504 
2505 	{
2506 		.name = "sched_load_balance",
2507 		.read_u64 = cpuset_read_u64,
2508 		.write_u64 = cpuset_write_u64,
2509 		.private = FILE_SCHED_LOAD_BALANCE,
2510 	},
2511 
2512 	{
2513 		.name = "sched_relax_domain_level",
2514 		.read_s64 = cpuset_read_s64,
2515 		.write_s64 = cpuset_write_s64,
2516 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2517 	},
2518 
2519 	{
2520 		.name = "memory_migrate",
2521 		.read_u64 = cpuset_read_u64,
2522 		.write_u64 = cpuset_write_u64,
2523 		.private = FILE_MEMORY_MIGRATE,
2524 	},
2525 
2526 	{
2527 		.name = "memory_pressure",
2528 		.read_u64 = cpuset_read_u64,
2529 		.private = FILE_MEMORY_PRESSURE,
2530 	},
2531 
2532 	{
2533 		.name = "memory_spread_page",
2534 		.read_u64 = cpuset_read_u64,
2535 		.write_u64 = cpuset_write_u64,
2536 		.private = FILE_SPREAD_PAGE,
2537 	},
2538 
2539 	{
2540 		.name = "memory_spread_slab",
2541 		.read_u64 = cpuset_read_u64,
2542 		.write_u64 = cpuset_write_u64,
2543 		.private = FILE_SPREAD_SLAB,
2544 	},
2545 
2546 	{
2547 		.name = "memory_pressure_enabled",
2548 		.flags = CFTYPE_ONLY_ON_ROOT,
2549 		.read_u64 = cpuset_read_u64,
2550 		.write_u64 = cpuset_write_u64,
2551 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2552 	},
2553 
2554 	{ }	/* terminate */
2555 };
2556 
2557 /*
2558  * This is currently a minimal set for the default hierarchy. It can be
2559  * expanded later on by migrating more features and control files from v1.
2560  */
2561 static struct cftype dfl_files[] = {
2562 	{
2563 		.name = "cpus",
2564 		.seq_show = cpuset_common_seq_show,
2565 		.write = cpuset_write_resmask,
2566 		.max_write_len = (100U + 6 * NR_CPUS),
2567 		.private = FILE_CPULIST,
2568 		.flags = CFTYPE_NOT_ON_ROOT,
2569 	},
2570 
2571 	{
2572 		.name = "mems",
2573 		.seq_show = cpuset_common_seq_show,
2574 		.write = cpuset_write_resmask,
2575 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2576 		.private = FILE_MEMLIST,
2577 		.flags = CFTYPE_NOT_ON_ROOT,
2578 	},
2579 
2580 	{
2581 		.name = "cpus.effective",
2582 		.seq_show = cpuset_common_seq_show,
2583 		.private = FILE_EFFECTIVE_CPULIST,
2584 	},
2585 
2586 	{
2587 		.name = "mems.effective",
2588 		.seq_show = cpuset_common_seq_show,
2589 		.private = FILE_EFFECTIVE_MEMLIST,
2590 	},
2591 
2592 	{
2593 		.name = "cpus.partition",
2594 		.seq_show = sched_partition_show,
2595 		.write = sched_partition_write,
2596 		.private = FILE_PARTITION_ROOT,
2597 		.flags = CFTYPE_NOT_ON_ROOT,
2598 	},
2599 
2600 	{
2601 		.name = "cpus.subpartitions",
2602 		.seq_show = cpuset_common_seq_show,
2603 		.private = FILE_SUBPARTS_CPULIST,
2604 		.flags = CFTYPE_DEBUG,
2605 	},
2606 
2607 	{ }	/* terminate */
2608 };
2609 
2610 
2611 /*
2612  *	cpuset_css_alloc - allocate a cpuset css
2613  *	cgrp:	control group that the new cpuset will be part of
2614  */
2615 
2616 static struct cgroup_subsys_state *
2617 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2618 {
2619 	struct cpuset *cs;
2620 
2621 	if (!parent_css)
2622 		return &top_cpuset.css;
2623 
2624 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2625 	if (!cs)
2626 		return ERR_PTR(-ENOMEM);
2627 
2628 	if (alloc_cpumasks(cs, NULL)) {
2629 		kfree(cs);
2630 		return ERR_PTR(-ENOMEM);
2631 	}
2632 
2633 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2634 	nodes_clear(cs->mems_allowed);
2635 	nodes_clear(cs->effective_mems);
2636 	fmeter_init(&cs->fmeter);
2637 	cs->relax_domain_level = -1;
2638 
2639 	return &cs->css;
2640 }
2641 
2642 static int cpuset_css_online(struct cgroup_subsys_state *css)
2643 {
2644 	struct cpuset *cs = css_cs(css);
2645 	struct cpuset *parent = parent_cs(cs);
2646 	struct cpuset *tmp_cs;
2647 	struct cgroup_subsys_state *pos_css;
2648 
2649 	if (!parent)
2650 		return 0;
2651 
2652 	mutex_lock(&cpuset_mutex);
2653 
2654 	set_bit(CS_ONLINE, &cs->flags);
2655 	if (is_spread_page(parent))
2656 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2657 	if (is_spread_slab(parent))
2658 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2659 
2660 	cpuset_inc();
2661 
2662 	spin_lock_irq(&callback_lock);
2663 	if (is_in_v2_mode()) {
2664 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2665 		cs->effective_mems = parent->effective_mems;
2666 		cs->use_parent_ecpus = true;
2667 		parent->child_ecpus_count++;
2668 	}
2669 	spin_unlock_irq(&callback_lock);
2670 
2671 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2672 		goto out_unlock;
2673 
2674 	/*
2675 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2676 	 * set.  This flag handling is implemented in cgroup core for
2677 	 * histrical reasons - the flag may be specified during mount.
2678 	 *
2679 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2680 	 * refuse to clone the configuration - thereby refusing the task to
2681 	 * be entered, and as a result refusing the sys_unshare() or
2682 	 * clone() which initiated it.  If this becomes a problem for some
2683 	 * users who wish to allow that scenario, then this could be
2684 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2685 	 * (and likewise for mems) to the new cgroup.
2686 	 */
2687 	rcu_read_lock();
2688 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2689 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2690 			rcu_read_unlock();
2691 			goto out_unlock;
2692 		}
2693 	}
2694 	rcu_read_unlock();
2695 
2696 	spin_lock_irq(&callback_lock);
2697 	cs->mems_allowed = parent->mems_allowed;
2698 	cs->effective_mems = parent->mems_allowed;
2699 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2700 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2701 	spin_unlock_irq(&callback_lock);
2702 out_unlock:
2703 	mutex_unlock(&cpuset_mutex);
2704 	return 0;
2705 }
2706 
2707 /*
2708  * If the cpuset being removed has its flag 'sched_load_balance'
2709  * enabled, then simulate turning sched_load_balance off, which
2710  * will call rebuild_sched_domains_locked(). That is not needed
2711  * in the default hierarchy where only changes in partition
2712  * will cause repartitioning.
2713  *
2714  * If the cpuset has the 'sched.partition' flag enabled, simulate
2715  * turning 'sched.partition" off.
2716  */
2717 
2718 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2719 {
2720 	struct cpuset *cs = css_cs(css);
2721 
2722 	mutex_lock(&cpuset_mutex);
2723 
2724 	if (is_partition_root(cs))
2725 		update_prstate(cs, 0);
2726 
2727 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2728 	    is_sched_load_balance(cs))
2729 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2730 
2731 	if (cs->use_parent_ecpus) {
2732 		struct cpuset *parent = parent_cs(cs);
2733 
2734 		cs->use_parent_ecpus = false;
2735 		parent->child_ecpus_count--;
2736 	}
2737 
2738 	cpuset_dec();
2739 	clear_bit(CS_ONLINE, &cs->flags);
2740 
2741 	mutex_unlock(&cpuset_mutex);
2742 }
2743 
2744 static void cpuset_css_free(struct cgroup_subsys_state *css)
2745 {
2746 	struct cpuset *cs = css_cs(css);
2747 
2748 	free_cpuset(cs);
2749 }
2750 
2751 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2752 {
2753 	mutex_lock(&cpuset_mutex);
2754 	spin_lock_irq(&callback_lock);
2755 
2756 	if (is_in_v2_mode()) {
2757 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2758 		top_cpuset.mems_allowed = node_possible_map;
2759 	} else {
2760 		cpumask_copy(top_cpuset.cpus_allowed,
2761 			     top_cpuset.effective_cpus);
2762 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2763 	}
2764 
2765 	spin_unlock_irq(&callback_lock);
2766 	mutex_unlock(&cpuset_mutex);
2767 }
2768 
2769 /*
2770  * Make sure the new task conform to the current state of its parent,
2771  * which could have been changed by cpuset just after it inherits the
2772  * state from the parent and before it sits on the cgroup's task list.
2773  */
2774 static void cpuset_fork(struct task_struct *task)
2775 {
2776 	if (task_css_is_root(task, cpuset_cgrp_id))
2777 		return;
2778 
2779 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2780 	task->mems_allowed = current->mems_allowed;
2781 }
2782 
2783 struct cgroup_subsys cpuset_cgrp_subsys = {
2784 	.css_alloc	= cpuset_css_alloc,
2785 	.css_online	= cpuset_css_online,
2786 	.css_offline	= cpuset_css_offline,
2787 	.css_free	= cpuset_css_free,
2788 	.can_attach	= cpuset_can_attach,
2789 	.cancel_attach	= cpuset_cancel_attach,
2790 	.attach		= cpuset_attach,
2791 	.post_attach	= cpuset_post_attach,
2792 	.bind		= cpuset_bind,
2793 	.fork		= cpuset_fork,
2794 	.legacy_cftypes	= legacy_files,
2795 	.dfl_cftypes	= dfl_files,
2796 	.early_init	= true,
2797 	.threaded	= true,
2798 };
2799 
2800 /**
2801  * cpuset_init - initialize cpusets at system boot
2802  *
2803  * Description: Initialize top_cpuset
2804  **/
2805 
2806 int __init cpuset_init(void)
2807 {
2808 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2809 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2810 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2811 
2812 	cpumask_setall(top_cpuset.cpus_allowed);
2813 	nodes_setall(top_cpuset.mems_allowed);
2814 	cpumask_setall(top_cpuset.effective_cpus);
2815 	nodes_setall(top_cpuset.effective_mems);
2816 
2817 	fmeter_init(&top_cpuset.fmeter);
2818 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2819 	top_cpuset.relax_domain_level = -1;
2820 
2821 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2822 
2823 	return 0;
2824 }
2825 
2826 /*
2827  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2828  * or memory nodes, we need to walk over the cpuset hierarchy,
2829  * removing that CPU or node from all cpusets.  If this removes the
2830  * last CPU or node from a cpuset, then move the tasks in the empty
2831  * cpuset to its next-highest non-empty parent.
2832  */
2833 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2834 {
2835 	struct cpuset *parent;
2836 
2837 	/*
2838 	 * Find its next-highest non-empty parent, (top cpuset
2839 	 * has online cpus, so can't be empty).
2840 	 */
2841 	parent = parent_cs(cs);
2842 	while (cpumask_empty(parent->cpus_allowed) ||
2843 			nodes_empty(parent->mems_allowed))
2844 		parent = parent_cs(parent);
2845 
2846 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2847 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2848 		pr_cont_cgroup_name(cs->css.cgroup);
2849 		pr_cont("\n");
2850 	}
2851 }
2852 
2853 static void
2854 hotplug_update_tasks_legacy(struct cpuset *cs,
2855 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2856 			    bool cpus_updated, bool mems_updated)
2857 {
2858 	bool is_empty;
2859 
2860 	spin_lock_irq(&callback_lock);
2861 	cpumask_copy(cs->cpus_allowed, new_cpus);
2862 	cpumask_copy(cs->effective_cpus, new_cpus);
2863 	cs->mems_allowed = *new_mems;
2864 	cs->effective_mems = *new_mems;
2865 	spin_unlock_irq(&callback_lock);
2866 
2867 	/*
2868 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2869 	 * as the tasks will be migratecd to an ancestor.
2870 	 */
2871 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2872 		update_tasks_cpumask(cs);
2873 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2874 		update_tasks_nodemask(cs);
2875 
2876 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2877 		   nodes_empty(cs->mems_allowed);
2878 
2879 	mutex_unlock(&cpuset_mutex);
2880 
2881 	/*
2882 	 * Move tasks to the nearest ancestor with execution resources,
2883 	 * This is full cgroup operation which will also call back into
2884 	 * cpuset. Should be done outside any lock.
2885 	 */
2886 	if (is_empty)
2887 		remove_tasks_in_empty_cpuset(cs);
2888 
2889 	mutex_lock(&cpuset_mutex);
2890 }
2891 
2892 static void
2893 hotplug_update_tasks(struct cpuset *cs,
2894 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2895 		     bool cpus_updated, bool mems_updated)
2896 {
2897 	if (cpumask_empty(new_cpus))
2898 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2899 	if (nodes_empty(*new_mems))
2900 		*new_mems = parent_cs(cs)->effective_mems;
2901 
2902 	spin_lock_irq(&callback_lock);
2903 	cpumask_copy(cs->effective_cpus, new_cpus);
2904 	cs->effective_mems = *new_mems;
2905 	spin_unlock_irq(&callback_lock);
2906 
2907 	if (cpus_updated)
2908 		update_tasks_cpumask(cs);
2909 	if (mems_updated)
2910 		update_tasks_nodemask(cs);
2911 }
2912 
2913 static bool force_rebuild;
2914 
2915 void cpuset_force_rebuild(void)
2916 {
2917 	force_rebuild = true;
2918 }
2919 
2920 /**
2921  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2922  * @cs: cpuset in interest
2923  * @tmp: the tmpmasks structure pointer
2924  *
2925  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2926  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2927  * all its tasks are moved to the nearest ancestor with both resources.
2928  */
2929 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2930 {
2931 	static cpumask_t new_cpus;
2932 	static nodemask_t new_mems;
2933 	bool cpus_updated;
2934 	bool mems_updated;
2935 	struct cpuset *parent;
2936 retry:
2937 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2938 
2939 	mutex_lock(&cpuset_mutex);
2940 
2941 	/*
2942 	 * We have raced with task attaching. We wait until attaching
2943 	 * is finished, so we won't attach a task to an empty cpuset.
2944 	 */
2945 	if (cs->attach_in_progress) {
2946 		mutex_unlock(&cpuset_mutex);
2947 		goto retry;
2948 	}
2949 
2950 	parent =  parent_cs(cs);
2951 	compute_effective_cpumask(&new_cpus, cs, parent);
2952 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
2953 
2954 	if (cs->nr_subparts_cpus)
2955 		/*
2956 		 * Make sure that CPUs allocated to child partitions
2957 		 * do not show up in effective_cpus.
2958 		 */
2959 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
2960 
2961 	if (!tmp || !cs->partition_root_state)
2962 		goto update_tasks;
2963 
2964 	/*
2965 	 * In the unlikely event that a partition root has empty
2966 	 * effective_cpus or its parent becomes erroneous, we have to
2967 	 * transition it to the erroneous state.
2968 	 */
2969 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
2970 	   (parent->partition_root_state == PRS_ERROR))) {
2971 		if (cs->nr_subparts_cpus) {
2972 			cs->nr_subparts_cpus = 0;
2973 			cpumask_clear(cs->subparts_cpus);
2974 			compute_effective_cpumask(&new_cpus, cs, parent);
2975 		}
2976 
2977 		/*
2978 		 * If the effective_cpus is empty because the child
2979 		 * partitions take away all the CPUs, we can keep
2980 		 * the current partition and let the child partitions
2981 		 * fight for available CPUs.
2982 		 */
2983 		if ((parent->partition_root_state == PRS_ERROR) ||
2984 		     cpumask_empty(&new_cpus)) {
2985 			update_parent_subparts_cpumask(cs, partcmd_disable,
2986 						       NULL, tmp);
2987 			cs->partition_root_state = PRS_ERROR;
2988 		}
2989 		cpuset_force_rebuild();
2990 	}
2991 
2992 	/*
2993 	 * On the other hand, an erroneous partition root may be transitioned
2994 	 * back to a regular one or a partition root with no CPU allocated
2995 	 * from the parent may change to erroneous.
2996 	 */
2997 	if (is_partition_root(parent) &&
2998 	   ((cs->partition_root_state == PRS_ERROR) ||
2999 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3000 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3001 		cpuset_force_rebuild();
3002 
3003 update_tasks:
3004 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3005 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3006 
3007 	if (is_in_v2_mode())
3008 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3009 				     cpus_updated, mems_updated);
3010 	else
3011 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3012 					    cpus_updated, mems_updated);
3013 
3014 	mutex_unlock(&cpuset_mutex);
3015 }
3016 
3017 /**
3018  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3019  *
3020  * This function is called after either CPU or memory configuration has
3021  * changed and updates cpuset accordingly.  The top_cpuset is always
3022  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3023  * order to make cpusets transparent (of no affect) on systems that are
3024  * actively using CPU hotplug but making no active use of cpusets.
3025  *
3026  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3027  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3028  * all descendants.
3029  *
3030  * Note that CPU offlining during suspend is ignored.  We don't modify
3031  * cpusets across suspend/resume cycles at all.
3032  */
3033 static void cpuset_hotplug_workfn(struct work_struct *work)
3034 {
3035 	static cpumask_t new_cpus;
3036 	static nodemask_t new_mems;
3037 	bool cpus_updated, mems_updated;
3038 	bool on_dfl = is_in_v2_mode();
3039 	struct tmpmasks tmp, *ptmp = NULL;
3040 
3041 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3042 		ptmp = &tmp;
3043 
3044 	mutex_lock(&cpuset_mutex);
3045 
3046 	/* fetch the available cpus/mems and find out which changed how */
3047 	cpumask_copy(&new_cpus, cpu_active_mask);
3048 	new_mems = node_states[N_MEMORY];
3049 
3050 	/*
3051 	 * If subparts_cpus is populated, it is likely that the check below
3052 	 * will produce a false positive on cpus_updated when the cpu list
3053 	 * isn't changed. It is extra work, but it is better to be safe.
3054 	 */
3055 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3056 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3057 
3058 	/* synchronize cpus_allowed to cpu_active_mask */
3059 	if (cpus_updated) {
3060 		spin_lock_irq(&callback_lock);
3061 		if (!on_dfl)
3062 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3063 		/*
3064 		 * Make sure that CPUs allocated to child partitions
3065 		 * do not show up in effective_cpus. If no CPU is left,
3066 		 * we clear the subparts_cpus & let the child partitions
3067 		 * fight for the CPUs again.
3068 		 */
3069 		if (top_cpuset.nr_subparts_cpus) {
3070 			if (cpumask_subset(&new_cpus,
3071 					   top_cpuset.subparts_cpus)) {
3072 				top_cpuset.nr_subparts_cpus = 0;
3073 				cpumask_clear(top_cpuset.subparts_cpus);
3074 			} else {
3075 				cpumask_andnot(&new_cpus, &new_cpus,
3076 					       top_cpuset.subparts_cpus);
3077 			}
3078 		}
3079 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3080 		spin_unlock_irq(&callback_lock);
3081 		/* we don't mess with cpumasks of tasks in top_cpuset */
3082 	}
3083 
3084 	/* synchronize mems_allowed to N_MEMORY */
3085 	if (mems_updated) {
3086 		spin_lock_irq(&callback_lock);
3087 		if (!on_dfl)
3088 			top_cpuset.mems_allowed = new_mems;
3089 		top_cpuset.effective_mems = new_mems;
3090 		spin_unlock_irq(&callback_lock);
3091 		update_tasks_nodemask(&top_cpuset);
3092 	}
3093 
3094 	mutex_unlock(&cpuset_mutex);
3095 
3096 	/* if cpus or mems changed, we need to propagate to descendants */
3097 	if (cpus_updated || mems_updated) {
3098 		struct cpuset *cs;
3099 		struct cgroup_subsys_state *pos_css;
3100 
3101 		rcu_read_lock();
3102 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3103 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3104 				continue;
3105 			rcu_read_unlock();
3106 
3107 			cpuset_hotplug_update_tasks(cs, ptmp);
3108 
3109 			rcu_read_lock();
3110 			css_put(&cs->css);
3111 		}
3112 		rcu_read_unlock();
3113 	}
3114 
3115 	/* rebuild sched domains if cpus_allowed has changed */
3116 	if (cpus_updated || force_rebuild) {
3117 		force_rebuild = false;
3118 		rebuild_sched_domains();
3119 	}
3120 
3121 	free_cpumasks(NULL, ptmp);
3122 }
3123 
3124 void cpuset_update_active_cpus(void)
3125 {
3126 	/*
3127 	 * We're inside cpu hotplug critical region which usually nests
3128 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3129 	 * to a work item to avoid reverse locking order.
3130 	 */
3131 	schedule_work(&cpuset_hotplug_work);
3132 }
3133 
3134 void cpuset_wait_for_hotplug(void)
3135 {
3136 	flush_work(&cpuset_hotplug_work);
3137 }
3138 
3139 /*
3140  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3141  * Call this routine anytime after node_states[N_MEMORY] changes.
3142  * See cpuset_update_active_cpus() for CPU hotplug handling.
3143  */
3144 static int cpuset_track_online_nodes(struct notifier_block *self,
3145 				unsigned long action, void *arg)
3146 {
3147 	schedule_work(&cpuset_hotplug_work);
3148 	return NOTIFY_OK;
3149 }
3150 
3151 static struct notifier_block cpuset_track_online_nodes_nb = {
3152 	.notifier_call = cpuset_track_online_nodes,
3153 	.priority = 10,		/* ??! */
3154 };
3155 
3156 /**
3157  * cpuset_init_smp - initialize cpus_allowed
3158  *
3159  * Description: Finish top cpuset after cpu, node maps are initialized
3160  */
3161 void __init cpuset_init_smp(void)
3162 {
3163 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3164 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3165 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3166 
3167 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3168 	top_cpuset.effective_mems = node_states[N_MEMORY];
3169 
3170 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3171 
3172 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3173 	BUG_ON(!cpuset_migrate_mm_wq);
3174 }
3175 
3176 /**
3177  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3178  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3179  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3180  *
3181  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3182  * attached to the specified @tsk.  Guaranteed to return some non-empty
3183  * subset of cpu_online_mask, even if this means going outside the
3184  * tasks cpuset.
3185  **/
3186 
3187 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3188 {
3189 	unsigned long flags;
3190 
3191 	spin_lock_irqsave(&callback_lock, flags);
3192 	rcu_read_lock();
3193 	guarantee_online_cpus(task_cs(tsk), pmask);
3194 	rcu_read_unlock();
3195 	spin_unlock_irqrestore(&callback_lock, flags);
3196 }
3197 
3198 /**
3199  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3200  * @tsk: pointer to task_struct with which the scheduler is struggling
3201  *
3202  * Description: In the case that the scheduler cannot find an allowed cpu in
3203  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3204  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3205  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3206  * This is the absolute last resort for the scheduler and it is only used if
3207  * _every_ other avenue has been traveled.
3208  **/
3209 
3210 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3211 {
3212 	rcu_read_lock();
3213 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3214 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3215 	rcu_read_unlock();
3216 
3217 	/*
3218 	 * We own tsk->cpus_allowed, nobody can change it under us.
3219 	 *
3220 	 * But we used cs && cs->cpus_allowed lockless and thus can
3221 	 * race with cgroup_attach_task() or update_cpumask() and get
3222 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3223 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3224 	 * which takes task_rq_lock().
3225 	 *
3226 	 * If we are called after it dropped the lock we must see all
3227 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3228 	 * set any mask even if it is not right from task_cs() pov,
3229 	 * the pending set_cpus_allowed_ptr() will fix things.
3230 	 *
3231 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3232 	 * if required.
3233 	 */
3234 }
3235 
3236 void __init cpuset_init_current_mems_allowed(void)
3237 {
3238 	nodes_setall(current->mems_allowed);
3239 }
3240 
3241 /**
3242  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3243  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3244  *
3245  * Description: Returns the nodemask_t mems_allowed of the cpuset
3246  * attached to the specified @tsk.  Guaranteed to return some non-empty
3247  * subset of node_states[N_MEMORY], even if this means going outside the
3248  * tasks cpuset.
3249  **/
3250 
3251 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3252 {
3253 	nodemask_t mask;
3254 	unsigned long flags;
3255 
3256 	spin_lock_irqsave(&callback_lock, flags);
3257 	rcu_read_lock();
3258 	guarantee_online_mems(task_cs(tsk), &mask);
3259 	rcu_read_unlock();
3260 	spin_unlock_irqrestore(&callback_lock, flags);
3261 
3262 	return mask;
3263 }
3264 
3265 /**
3266  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3267  * @nodemask: the nodemask to be checked
3268  *
3269  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3270  */
3271 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3272 {
3273 	return nodes_intersects(*nodemask, current->mems_allowed);
3274 }
3275 
3276 /*
3277  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3278  * mem_hardwall ancestor to the specified cpuset.  Call holding
3279  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3280  * (an unusual configuration), then returns the root cpuset.
3281  */
3282 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3283 {
3284 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3285 		cs = parent_cs(cs);
3286 	return cs;
3287 }
3288 
3289 /**
3290  * cpuset_node_allowed - Can we allocate on a memory node?
3291  * @node: is this an allowed node?
3292  * @gfp_mask: memory allocation flags
3293  *
3294  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3295  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3296  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3297  * yes.  If current has access to memory reserves as an oom victim, yes.
3298  * Otherwise, no.
3299  *
3300  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3301  * and do not allow allocations outside the current tasks cpuset
3302  * unless the task has been OOM killed.
3303  * GFP_KERNEL allocations are not so marked, so can escape to the
3304  * nearest enclosing hardwalled ancestor cpuset.
3305  *
3306  * Scanning up parent cpusets requires callback_lock.  The
3307  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3308  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3309  * current tasks mems_allowed came up empty on the first pass over
3310  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3311  * cpuset are short of memory, might require taking the callback_lock.
3312  *
3313  * The first call here from mm/page_alloc:get_page_from_freelist()
3314  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3315  * so no allocation on a node outside the cpuset is allowed (unless
3316  * in interrupt, of course).
3317  *
3318  * The second pass through get_page_from_freelist() doesn't even call
3319  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3320  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3321  * in alloc_flags.  That logic and the checks below have the combined
3322  * affect that:
3323  *	in_interrupt - any node ok (current task context irrelevant)
3324  *	GFP_ATOMIC   - any node ok
3325  *	tsk_is_oom_victim   - any node ok
3326  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3327  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3328  */
3329 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3330 {
3331 	struct cpuset *cs;		/* current cpuset ancestors */
3332 	int allowed;			/* is allocation in zone z allowed? */
3333 	unsigned long flags;
3334 
3335 	if (in_interrupt())
3336 		return true;
3337 	if (node_isset(node, current->mems_allowed))
3338 		return true;
3339 	/*
3340 	 * Allow tasks that have access to memory reserves because they have
3341 	 * been OOM killed to get memory anywhere.
3342 	 */
3343 	if (unlikely(tsk_is_oom_victim(current)))
3344 		return true;
3345 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3346 		return false;
3347 
3348 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3349 		return true;
3350 
3351 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3352 	spin_lock_irqsave(&callback_lock, flags);
3353 
3354 	rcu_read_lock();
3355 	cs = nearest_hardwall_ancestor(task_cs(current));
3356 	allowed = node_isset(node, cs->mems_allowed);
3357 	rcu_read_unlock();
3358 
3359 	spin_unlock_irqrestore(&callback_lock, flags);
3360 	return allowed;
3361 }
3362 
3363 /**
3364  * cpuset_mem_spread_node() - On which node to begin search for a file page
3365  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3366  *
3367  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3368  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3369  * and if the memory allocation used cpuset_mem_spread_node()
3370  * to determine on which node to start looking, as it will for
3371  * certain page cache or slab cache pages such as used for file
3372  * system buffers and inode caches, then instead of starting on the
3373  * local node to look for a free page, rather spread the starting
3374  * node around the tasks mems_allowed nodes.
3375  *
3376  * We don't have to worry about the returned node being offline
3377  * because "it can't happen", and even if it did, it would be ok.
3378  *
3379  * The routines calling guarantee_online_mems() are careful to
3380  * only set nodes in task->mems_allowed that are online.  So it
3381  * should not be possible for the following code to return an
3382  * offline node.  But if it did, that would be ok, as this routine
3383  * is not returning the node where the allocation must be, only
3384  * the node where the search should start.  The zonelist passed to
3385  * __alloc_pages() will include all nodes.  If the slab allocator
3386  * is passed an offline node, it will fall back to the local node.
3387  * See kmem_cache_alloc_node().
3388  */
3389 
3390 static int cpuset_spread_node(int *rotor)
3391 {
3392 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3393 }
3394 
3395 int cpuset_mem_spread_node(void)
3396 {
3397 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3398 		current->cpuset_mem_spread_rotor =
3399 			node_random(&current->mems_allowed);
3400 
3401 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3402 }
3403 
3404 int cpuset_slab_spread_node(void)
3405 {
3406 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3407 		current->cpuset_slab_spread_rotor =
3408 			node_random(&current->mems_allowed);
3409 
3410 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3411 }
3412 
3413 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3414 
3415 /**
3416  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3417  * @tsk1: pointer to task_struct of some task.
3418  * @tsk2: pointer to task_struct of some other task.
3419  *
3420  * Description: Return true if @tsk1's mems_allowed intersects the
3421  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3422  * one of the task's memory usage might impact the memory available
3423  * to the other.
3424  **/
3425 
3426 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3427 				   const struct task_struct *tsk2)
3428 {
3429 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3430 }
3431 
3432 /**
3433  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3434  *
3435  * Description: Prints current's name, cpuset name, and cached copy of its
3436  * mems_allowed to the kernel log.
3437  */
3438 void cpuset_print_current_mems_allowed(void)
3439 {
3440 	struct cgroup *cgrp;
3441 
3442 	rcu_read_lock();
3443 
3444 	cgrp = task_cs(current)->css.cgroup;
3445 	pr_cont(",cpuset=");
3446 	pr_cont_cgroup_name(cgrp);
3447 	pr_cont(",mems_allowed=%*pbl",
3448 		nodemask_pr_args(&current->mems_allowed));
3449 
3450 	rcu_read_unlock();
3451 }
3452 
3453 /*
3454  * Collection of memory_pressure is suppressed unless
3455  * this flag is enabled by writing "1" to the special
3456  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3457  */
3458 
3459 int cpuset_memory_pressure_enabled __read_mostly;
3460 
3461 /**
3462  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3463  *
3464  * Keep a running average of the rate of synchronous (direct)
3465  * page reclaim efforts initiated by tasks in each cpuset.
3466  *
3467  * This represents the rate at which some task in the cpuset
3468  * ran low on memory on all nodes it was allowed to use, and
3469  * had to enter the kernels page reclaim code in an effort to
3470  * create more free memory by tossing clean pages or swapping
3471  * or writing dirty pages.
3472  *
3473  * Display to user space in the per-cpuset read-only file
3474  * "memory_pressure".  Value displayed is an integer
3475  * representing the recent rate of entry into the synchronous
3476  * (direct) page reclaim by any task attached to the cpuset.
3477  **/
3478 
3479 void __cpuset_memory_pressure_bump(void)
3480 {
3481 	rcu_read_lock();
3482 	fmeter_markevent(&task_cs(current)->fmeter);
3483 	rcu_read_unlock();
3484 }
3485 
3486 #ifdef CONFIG_PROC_PID_CPUSET
3487 /*
3488  * proc_cpuset_show()
3489  *  - Print tasks cpuset path into seq_file.
3490  *  - Used for /proc/<pid>/cpuset.
3491  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3492  *    doesn't really matter if tsk->cpuset changes after we read it,
3493  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3494  *    anyway.
3495  */
3496 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3497 		     struct pid *pid, struct task_struct *tsk)
3498 {
3499 	char *buf;
3500 	struct cgroup_subsys_state *css;
3501 	int retval;
3502 
3503 	retval = -ENOMEM;
3504 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3505 	if (!buf)
3506 		goto out;
3507 
3508 	css = task_get_css(tsk, cpuset_cgrp_id);
3509 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3510 				current->nsproxy->cgroup_ns);
3511 	css_put(css);
3512 	if (retval >= PATH_MAX)
3513 		retval = -ENAMETOOLONG;
3514 	if (retval < 0)
3515 		goto out_free;
3516 	seq_puts(m, buf);
3517 	seq_putc(m, '\n');
3518 	retval = 0;
3519 out_free:
3520 	kfree(buf);
3521 out:
3522 	return retval;
3523 }
3524 #endif /* CONFIG_PROC_PID_CPUSET */
3525 
3526 /* Display task mems_allowed in /proc/<pid>/status file. */
3527 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3528 {
3529 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3530 		   nodemask_pr_args(&task->mems_allowed));
3531 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3532 		   nodemask_pr_args(&task->mems_allowed));
3533 }
3534